等离子发射光谱实验报告

等离子发射光谱实验报告
等离子发射光谱实验报告

等离子发射光谱实验报告

一实验目的

1、理解仪器原理和应用

2、了解仪器构成

3、了解整个分析过程

二实验仪器及其构成

本实验所用仪器为:美国Varian ICP-710ES电感耦合等离子发射光谱仪。

等离子体是一种由自由电子、离子、中性原子与分子所组成的在总体上呈中性能导电的气体。当高频发生器接通电源后,高频电流I通过感应线圈产生交变磁场(绿色)。开始时,管内为Ar气,不导电,需要用高压电火花触发,使气体电离后,在高频交流电场的作用下,带电粒子高速运动,碰撞,形成“雪崩”式放电,产生等离子体气流。在垂直于磁场方向将产生感应电流(涡电流,粉色),其电阻很小,电流很大(数百安),产生高温。又将气体加热、电离,在管口形成稳定的等离子体焰炬。

ICP 特点:

a)温度高,惰性气氛,原子化条件好,有利于难熔化合物的分解和元素激发,有很高的灵敏度和稳定性;

b)“趋肤效应”,涡电流在外表面处密度大,使表面温度高,轴心温度低,中心通道进样对等离子的稳定性影响小。能有效消除自吸现象,线性范围宽(4~5个数量级)

c)I CP中电子密度大,碱金属电离造成的影响小

d)Ar气体产生的背景干扰小

e)无电极放电,无电极污染

f)ICP焰炬外型像火焰,但不是化学燃烧火焰,气体放电

缺点:对非金属测定的灵敏度低,仪器昂贵,操作费用高

仪器组成为:

1、样品导入系统

a)蠕动泵。进入雾化器的液体流,由蠕动泵控制。泵的主要作用是为雾化器提供恒定样品流,并将雾化室中多余废液排出。除通常进样和排废液通道外,三通道蠕动泵为用户提供一个额外通道,用该通道可在分析过程中导入内标等。b)雾化器。雾化器将液态样品转化成细雾状喷入雾化室,较大雾滴被滤出,细雾状样品到达等离子炬。

c)雾化室由雾化器、蠕动泵和载气所产生的雾状样品进到雾化室。雾化室的功能相当于一个样品过滤器,较小的细雾通过雾化室到达炬管,较大的样品滴被滤除流到废液容器中。

d)炬管。外层管(等离子气)通Ar气作为冷却气,沿切线方向引入,并螺旋上升,其作用:第一,将等离子体吹离外层石英管的内壁,可保护石英管不被烧毁;第二,是利用离心作用,在炬管中心产生低气压通道,以利于进样;第三,这部分Ar气流同时也参与放电过程。中间层管(辅助气)中层管通入辅助气体Ar 气,用于点燃等离子体。注射管(样品)内层石英管内径为1-2mm左右,以Ar为载气,把经过雾化器的试样溶液以气溶胶形式引入等离子体中。

2、检测器

目前较成熟的主要是电荷注入器件Charge-Injection Detector(CID)、电荷耦合器件Charge-Coupled Detector(CCD)。CID与CCD的主要区别在于读出过程,在CCD中,信号电荷必须经过转移,才能读出,信号一经读取即刻消失。而在CID中,信号电荷不用转移,是直接注入体内形成电流来读出的。即每当积分结束时,去掉栅极上的电压,存贮在势阱中的电荷少数载流子(电子)被注入到体内,从而在外电路中引起信号电流,这种读出方式称为非破坏性读取(Non-Destructive Read Out),简称:NDRO.CID的NDRO特性使它具有优化指定波长处的信噪比(S/N)的功能。同时CID可寻址到任意一个或一组象素,因此可获得如“相板”一样的所有元素谱线信息。

3、多色器

光栅、棱镜、检测器均为固定安装,整个单色器系统无任何移动部件,确保仪器具有非常稳定的光学性能。

4、RF发生器

采用空气冷却且无移动部件,保证了系统的高可靠性;RF 功率参数(700-1700W)计算机控制连续可调。

三分析过程

样品前处理:针对不同实验室及样品情况准备a)微波消解b)灰化c)湿法消解d)参考标准方法。注:许多盐酸盐在相对较低的温度下易挥发,故灰化时需考虑温度影响。

液体样品引入ICP光源的通则:一般以“真溶液”进样,即各元素以盐类形式;酸度、黏度等尽量做到标准溶液与样品一致5-7%HCL、HNO3;溶解样品酸的选择(主要是黏度影响雾化效率)HCL< HNO3

1打开计算机,进入仪器控制软件ICPExpertII.

2夹好泵管,并将进样毛细管插入亚沸水中,打开排气装置。

3进入仪器界面,待仪器参数稳定后,点燃等离子炬。

4再进入工作表格界面,进行分析方法的编辑,做标准曲线。

5做样品空白,做样品。

6样品做完后,将毛细管放入亚沸水中,清洗15-20min。

7关闭等离子火焰,然后按需要进行谱线分析。

8松开泵管。

9计算结果,打印报告。

10退出分析程序,关闭计算机,仪器返回备用状态。

原子吸收光谱实验报告

原子吸收光谱定量分析实验报告 班级:环科10-1 姓名:王强学号:27 一、实验目的: 1.了解石墨炉原子吸收分光光度计的使用方法。 2.了解石墨炉原子吸收分光光度计进样方法及技术关键。 3.学会以石墨炉原子吸收分光光度法进行元素定量分析的方法。 二、实验原理: 在原子吸收分光光度分析中,火焰原子吸收和石墨炉原子吸收是目前使用最多、应用范围最广的两种方法。相对而言,前者虽然具有振作简单、重现性好等优点而得到广泛应用,但该法由于雾化效率低、火焰的稀释作用降低了基态原子浓度、基态原子在火焰的原子化区停留时间短等因素限制了测定灵敏度的提高以及样品使用量大等方面的原因,对于来源困难、鹭或数量很少的试样及固态样品的直接分析,受到很大的限制。石墨炉原子化法由于很好地克服了上述不足,近年来得到迅速的发展。 石墨炉原子吸收方法是利用电能使石墨炉中的石墨管温度上升至2000 ~ 3000 ℃的高温,从而使待测试样完全蒸发、充分的原子化,并且基态原子在原子化区停留时间长,所以灵敏度要比火焰原子吸收方法高几个数量级。样品用量也少,仅5 ~ 100 uL。还能直接分析固体样品。该方法的缺点是干扰较多、精密度不如火焰法好、仪器较昂贵、操作较复杂等。 本实验采用标准曲线法,待测水样品用微量分液器注入,经过干燥、灰化、原子化等过程对样品中的痕量镉进行分析。 三、仪器和试剂: 1.仪器 由北京瑞利分析仪器公司生产的WFX-120型原子吸收分光光度计。 镉元素空心阴极灯 容量瓶 50 mL(5只)微量分液器 ~ mL及5 ~ 50 uL

2.试剂 100 ng/mL镉标准溶液(1%硝酸介质) 2 mol/L硝酸溶液 四、实验步骤: 1.测定条件 分析线波长: nm 灯电流:3 mA 狭缝宽度: nm 干燥温度、时间:100℃、15 s 灰化温度、时间:400℃、10 s 原子化温度、时间:2200℃、3 s 净化温度、时间:2200℃、2 s 保护气流量:100 mL/min 2.溶液的配制 取4只50 mL容量瓶,分别加入0 mL、 mL、 mL、 mL浓度为100 ng/mL的镉标准溶液,再各添加 mL硝酸溶液(2 mol/L),然后以Milli-Q去离子水稀释至刻度,摇匀,供原子吸收测定用。 取水样500 mL于烧杯中,加入5 mL浓硝酸溶液,加热浓缩后转移至50 mL 容量瓶,以Milli-Q去离子水稀释至刻度,摇匀,此待测水样供原子吸收测定用。3.吸光度的测定 设置好测定条件参数,待仪器稳定后,升温空烧石墨管,用微量分液器由稀到浓向石墨管中依次注入40 uL标准溶液及待测水样,测得各份溶液的吸光度。 五、数据记录:

电感耦合等离子体发射光谱仪技术参数

电感耦合等离子体发射光谱仪技术参数 设备名称:电感耦合等离子体发射光谱仪 数量:1套 1、工作条件: 1.1 适于在交流电源相电压为230V±10%,频率50/60Hz的中国电网条件下长期正常工作; 2、设备用途 主要应用于对用于对各类样品中主量、微量及痕量元素的定性、半定量和定量分析, 仪器以固体检测器为基础,由进样系统、高频发生器、等离子体炬、光路系统、检测器、分析软件和计算机系统组成,全自动控制,仪器监控仪表全部由计算机控制. 3、技术规格与要求: 3.1技术规格 ★1具备耐HF酸,分析1ppm的锰标准溶液,Mn 257nm谱线的强度大于990万cps。 2蠕动泵为四通道系统。具有智能快速冲洗功能,随时监测特定的谱线 3炬管、雾室和雾化器为一体式设计,雾室、雾化器和等离子体相互分隔。具有雾化器压力提示功能,随时监控雾化器是否堵塞。提供软件截屏作为证明资料。 ★4自激式射频发生器,频率40.00MHz以上。功率稳定性优于0.1%。射频发生器的功率传输效率优于80%。最大功率≥1500W。提供软件截屏作为证明资料 ★5等离子体为垂直式,轴向、轴向衰减和径向、径向衰减四种观测方式,具有实时全彩色摄像系统,在仪器的控制软件中可以实时全彩色看到等离子体的运行图形,并观察炬管、炬管中心管是否变脏需要清洗。至少可设置1/500秒、1/1000秒、1/2000秒摄像速度抓拍等离子体。提供软件截屏作为证明资料。6免维护的平板或线圈等离子体且无需循环冷却水或气体进行冷却。 ★7等离子体气、雾化器、辅助气全部采用质量流量计控制,连续可调。等离子体正常运行的氩气消耗总量小于11升/分钟。 ★8光学系统高性能二维(交叉)色散中阶梯光栅(或棱镜),波长范围包含170-900nm。 能测试Cs894.347、Cl894.806nm;提供光谱图及标准曲线作为证明资料并作为验收指标。 9固态检测器,其形状与中阶梯二维光谱图完全匹配且无紫外线转换荧光涂层。强光和弱光同时测量采用不同的积分时间,避免检测器的损坏。 10 计算机控制系统与数据工作站为主流品牌最新款高配置商务机型,配激光高速打印机。软件为全中文多任务操作。控制软件可以在中文版Windows 7下运行,可以脱离仪器安装在其它计算机上进行模

等离子体发射光谱

等离子体光谱是指等离子体从红外到VUV发射的电磁辐射光谱。 资源 它包含了大量关于等离子体复杂原子过程的信息。利用光谱原理、实验技术和等离子体理论模型对等离子体光谱进行测量和分析具有重要意义。 包括 等离子体光谱主要是线性的和连续的。当等离子体中的中性原子和离子从高能能级的激发态转移到低能能级时,会产生线性谱;②在电子从高能能级跃迁到低能能级逃逸出等离子体之前光子的再吸收量被重新吸收。然而,谱线的总强度与电子和离子的密度和温度有关,每一条谱线都有其强度分布规律。因此,结合光谱模型中的理论模型和原子数据,通过测量谱线的强度,可以得到电子和离子的密度和温度。根据多普勒效应,等离子体的宏观速度可以由谱线波长的偏移来确定。当电子在其他粒子的势场中加速或减速时,就会产生连续的谱。连续谱强度测量也可获得电子密度和温度的数据。 改变

随着等离子体温度的升高,当达到10℃以上时,原子的外部电子逐渐剥离形成各种离子态的离子,如C IV、CV、O VI、n V、Fe Xi x、Ti Xi x(I为中性原子,II,III,IV损失1,2,3)的一个电子外层。这些高电离离子的线性谱主要在远紫外波段。在连续谱情况下,当温度升高时,最大发射强度向短波方向移动;对于聚变高温等离子体,其工作物质为氢,同位素为氘和三种,但不可避免地会含有一些杂质,如C、O、Fe,Ti、Mo、W等元素的温度已达到10度以上。这些杂质离子的光谱大多在真空紫外和X射线波段。分析时间非常重要。比较了高阶重杂质电离线的位置和位置。他们的强度。研究等离子体参数的测量、传输过程和在如此高的温度下的辐射损耗是非常重要的。特别是分析氢离子和氦离子的线强度更为有用,因为这些离子的原子数据相对完整。 形状 等离子体光谱的另一个重要方面是光谱线的形状或轮廓。谱线不是“线”,而是具有一定宽度的等高线。在等离子体光谱中,线展宽的机理非常复杂。多普勒效应和斯塔克效应是影响多普勒效应的两个重要因素。等离子体中的各种粒子都处于随机热运动状

液晶电光效应实验报告

液晶电光效应实验报告 【实验目的】 1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。 2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。 3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。 4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。 【实验仪器】 液晶电光效应实验仪一台,液晶片一块 【实验原理】 1.液晶光开关的工作原理 液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。棍的长度在十几埃(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。取两张偏振片贴在玻璃的

电感耦合等离子体原子发射光谱法(ICP—AES)测定铝合金中其它金属元素的研究

电感耦合等离子体原子发射光谱法(ICP—AES)测定铝合金中其它 金属元素的研究 摘要:本文采用电感耦合全谱直读等离子体原子发射光谱法(ICP-AES)对未知元素组成和含量的铝合金中钛、铜、镁、锰、锌、铬、硅和铁的测定进行了研究,所测试的结果具有较好的精密度和准确度。 关键词:电感耦合等离子体原子发射光谱法元素组成和含量铝合金钛、铜、镁、锰、锌、铬、硅和铁 一、引言 铝合金具有较高的强度,良好的塑性成形能力和机械加工性能,在航空工业中具有重要的应用前景[1-3]。铝合金中其它金属的含量,如金属元素钛、铜、镁、锰、锌、铬、硅和铁等,对其性质和应用具有很大的影响[3-6]。所以,准确测定铝合金中其它金属的含量显得尤为重要。对金属材料的成分进行表征分析,可以深入了解材料的组成元素及其内部构造,可以为我们更好地去研发设计复杂的金属材料提供依据[7]。为此必需建立一个快速、准确的分析方法,以控制其化学成分,使该材料获得良好的物理性能。 国内外常用和新发展的分析方法包括[7-13]:分光光度法、滴定分析法、原子光谱分析法、X射线荧光光谱法、电化学分析法、电感耦合等离子体质谱法、激光诱导等离子体光谱法、电感耦合等离子原子发射光谱法(ICP-AES)和石墨炉原子吸收法。一般铝合金中元素的测定分析方法采用ICP-AES和石墨炉原子吸收法[9,14-18]。ICP-AES[19]作为一种新型的分析方法,较其它分析方法而言,具有灵敏度高、精密度好、线性范围宽、基体效应小、动态范围宽、快速简便并可同时进行多元素分析的优点,已成为铝合金常用的分析方法之一。 基于以上的背景调研,我们拟采用ICP-AES法对未知元素组成和含量的铝合金样品中其它金属元素的组成和含量进行研究,为铝合金材料的潜在应用和材料制备提供理论基础。通过查阅相关文献[3-5],可以知道铝合金材料中可能含有的金属元素;因此,本文主要研究并测定了铝合金中可能存在的金属元素,如钛、铜、镁、锰、锌、铬、硅和铁的含量。 二、实验部分 1.主要仪器及实验条件 铝合金样品(元素组成和含量未知),水(二次去离子),盐酸(优级纯),硝酸(优级纯)。 ICP 6300型电感耦合等离子体发射光谱仪。工作参数:射频功率1.15 kW,

光谱分析 实验报告

实验报告 课程名称: 材料科学基础实验 指导老师: 乔旭升 成绩: 实验名称: 光谱分析 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 三、主要仪器设备(必填) 五、实验数据记录和处理 七、讨论、心得 二、实验内容和原理(必填) 四、操作方法和实验步骤 六、实验结果与分析(必填)一、实验目的 通过本实验了解紫光/可见光光度计、傅里叶变换红外光谱仪(FTIR )和荧光光谱仪的基本原理、主要用途和实际操作过程。掌握玻璃透光率、薄膜吸收光谱、固体粉末红外光谱和固体发光材料荧光光谱的测试方法。学习分析影响测试结果的主要因素。 二、实验原理 电磁波可与多种物质相互作用。如果这种作用导致能量从电磁波转移至物质,就称为吸收。当光波与某一受体作用时,光子和接受体之间就存在碰撞。光子的能量可被传递给接受体而被吸收,由此产生吸收光谱。通常紫外和可见光的能量接近于某两个电子能级地能量差,故紫外与可见光吸收光谱起源于价电子在电子能级之间的跃迁,又称为电子光谱。 当一束平行单色光照射到非散射的均匀介质时,光的一部分将被介质所反射,一部分被介质吸收,一部分透过介质。如果入射光强度为I0.反射光强度为Ir ,吸收光强度为Ia ,透过光强度为It ,则有I0=Ir+Ia+It 投射光强度与入射光强度之比称为透光率 T=It/I0 当一束具有连续波长的红外光照射某化合物时,其分子要吸收一部分光能转变为分子的震动能量或转动能量。此时若将其透过的光用单色器进行色散,就可得到一带暗条的谱带。以红外光的波长或波数为横坐标,以吸收率或者透过率百分数为纵坐标,把该谱带记录下来,就可得到该化合物的红外吸收光谱图。不同的化合物均有标准特征谱,将实验所得的光谱与标准谱对照,就可进行分子结构的基础研究和化合组成的分析。可由吸收峰的位置和形状来推知被测物的结构,按照特征峰的强度来测定混合物中各组分的含量。 当分子吸收来自光辐射的能量后,其本身就由处于稳定的基态跃迁至不稳定的激发态: M+h ν→。激发态是不稳定的,寿命极短,激发态分子会迅速以向周围散热或再发射电磁波(荧光或磷光)的方式回到基态: →M+荧光(或磷光)。任何能产生荧光(或磷光)的物质都具有两个特征光谱:激发光谱和发射光谱。 激发光谱:荧光(或磷光)为光致发光,因此必须选择合适的激发光波长,这可通过激发

微波氢等离子体发射光谱分析实验讲义

微波氢等离子体发射光谱分析 实验背景 等离子体是一种由大量离化的粒子组成并呈现电中性的热力学体系。对等离子体性能的研究能够从纯科学的角度为研究自然空间和大气现象提供重要的依据,也为涉及等离子体发展应用中遇到的技术问题提供解答。等离子体的诊断可以分为接触式和非接触式,接触式诊断方法主要包括Langmuir探针法、阻抗测量法等,一般用于大范围均匀分布等离子体的诊断;非接触式诊断方法主要包括微波透射法、光谱法等,一般用于小尺寸等离子体的诊断。 微波氢等离子体由于采用无极放电方式,在高质量光学金刚石膜、金刚石同质外延等方面有广泛的应用。氢等离子体的原位在线检测对于研究等离子体中各基团的物理—化学过程、改进薄膜沉积工艺具有重要意义。 发射光谱诊断技术具有无干扰、灵敏度高等优点,其原理是基于电磁辐射与物质的相互作用,是研究等离子体状态和性能较为理想的诊断方法,如利用氢原子发射光谱的相对强度测量等离子体中的电子参数,利用氢原子发射光谱的展宽测量等离子体中的电场强度等。 在空间和实验室等离子体物理的研究中,氢等离子体Balmer线系是重要的研究对象。在实验室条件下,Balmer线系主要研究Hα、Hβ和Hγ三条谱线,他们分别是主量子数n=3、4、5向n=2的跃迁,表1为上述三条谱线的相关参数。 表1 Balmer线系的常数 Balmer series Wavelength (nm) Transition Coefficient(μs-1) Weighing of upper level Excitation energies(eV) Hα(3→2)656.28 44.10 18 12.0875 Hβ(4→2) 486.13 8.419 32 12.7485 Hγ(5→2) 434.05 2.530 50 13.0545 本实验利用压缩波导反应腔结构和热辅助激发的方式产生了可稳定运行于接近一个大气压下的微波辉光氢等离子体,研究在可见光区范围内的氢等离子体发射光谱中氢原子的Balmer线系的谱线以及谱线随实验条件的变化。 一实验目的 1.理解微波氢等离子体的激发原理和原子发射光谱的形成过程。 2.掌握微波等离子体及光栅光谱仪的工作原理与使用方法。 3.掌握使用Origin软件对数据作图的基本方法。 二实验仪器及原材料 微波等离子体化学气相沉积装置一台、WDS-8A多功能光栅光谱仪一台、光缆1根、计算机一台、高纯氢气一瓶。 三实验原理 1. 多功能光栅光谱仪 1.1 WDS-8A多功能光栅光谱仪 图1 光栅光谱仪装置示意图

等离子体实验报告

等离子体分析实验报告 摘要: 本文阐述了气体放电中等离子体的特性及其测试方法,分别使用单探针法和双探针法测量了等离子体参量,并简要介绍了等离子体的应用,最后对实验结果进行讨论。 关键词:等离子体、单探针、双探针 (一)引言 等离子体作为物质的第四态在宇宙中普遍存在。在实验室中对等离子体的研究是从气体放电开始的。朗缪尔和汤克斯首先引入“等离子体”这个名称。近年来等离子体物理学有了较快发展,并被应用于电力工业、电子工业、金属加工和广播通讯等部门,特别是等离子体的研究,为利用受控热核反应,解决能源问题提供了诱人的前景。 (二)实验目的 1,了解气体放电中等离子体的特性。 2,利用等离子体诊断技术测定等离子体的一些基本参量。 (三)实验原理 1,等离子体的物理特性 等离子体定义为包含大量正负带电粒子、而又不出现净空间电荷的电离气体。 等离子体有一系列不同于普通气体的特性: (1)高度电离,是电和热的良导体,具有比普通气体大几百倍的比热容。 (2)带正电的和带负电的粒子密度几乎相等。

(3)宏观上是电中性的。 描述等离子体的一些主要参量为: (1)电子温度e T 。它是等离子体的一个主要参量,因为在等离子体中电子碰撞电离是主要的,而电子碰撞电离与电子的能量有直接关系,即与电子温度相关联。 (2)带电粒子密度。电子密度为e n ,正离子密度为i n ,在等离子体中e i n n 。 (3)轴向电场强度L E 。表征为维持等离子体的存在所需的能量。 (4)电子平均动能e E 。 (5)空间电位分布。 本实验研究的是辉光放电等离子体。 辉光放电是气体导电的一种形态。当放电管内的压强保持在10~102 Pa 时,在两电极上加高电压,就能观察到管内有放电现象。辉光分为明暗相间的8个区域,在管内两个电极间的光强、电位和场强分布如图一所示。8个区域的名称为 (1)阿斯顿区,(2)阴极辉区,(3)阴极暗区,(4)负辉区,(5)法拉第暗区, (6)正辉区,(7)阳极暗区,(8)阳极辉区。其中正辉区是等离子区。 辉光放电的光强、电位和场强分布 2,单探针与双探针法的测量原理 测试等离子体的方法被称为诊断。等离子体诊断有探针法,霍尔效应法,微

分子荧光光谱法实验报告范文

分子荧光光谱法实验报告范文 一、实验目的 1.掌握荧光光度计的基本原理及使用。 2.了解荧光分光光度计的构造和各组成部分的作用。 3.掌握分子荧光光度计分析物质的特征荧光光谱:激发光谱、发射光谱的测定方法。 4.了解影响荧光产生的几个主要因素。 5.学会运用分子荧光光谱法对物质进行定性和定量分析。 二、实验原理 原子外层电子吸收光子后,由基态跃迁到激发态,再回到较低能级或者基态时,发射出一定波长的辐射,称为原子荧光。对于分子的能级激发态称为分子荧光,平时所说的荧光指分子荧光。 具有不饱和基团的基态分子经光照射后,价电子跃迁产生荧光,是当电子从第一激发单重态S1的最低振动能级回到基态S0各振动能级所产生的光辐射。 (1)激发光谱 是指发光的某一谱线或谱带的强度随激发光波长(或频率)变化的曲线。横坐标为激发光波长,纵坐标为发光相对强度。 激发光谱反映不同波长的光激发材料产生发光的效果。即表示发光的某一谱线或谱带可以被什么波长的光激发、激发的本领是高还是低;也表示用不同波长的光激发材料时,

使材料发出某一波长光的效率。荧光为光致发光,合适的激发光波长需根据激发光谱确定——激发光谱是在固定荧光波长下,测量荧光体的荧光强度随激发波长变化的光谱。获得方法:先把第二单色器的波长固定,使测定的λem不变,改变第一单色器波长,让不同波长的光照在荧光物质上,测定它的荧光强度,以I为纵坐标,λex为横坐标所得图谱即荧光物质的激发光谱,从曲线上找出λex,,实际上选波长较长的高波长峰。 (2)发射光谱 是指发光的能量按波长或频率的分布。通常实验测量的是发光的相对能量。发射光谱中,横坐标为波长(或频率),纵坐标为发光相对强度。 发射光谱常分为带谱和线谱,有时也会出现既有带谱、又有线谱的情况。发射光谱的获得方法:先把第一单色器的波长固定,使激发的λex不变,改变第二单色器波长,让不同波长的光扫描,测定它的发光强度,以I为纵坐标,λem为横坐标得图谱即荧光物质的发射光谱;从曲线上找出最大的λem。 (3)荧光强度与荧光物质浓度的关系 用强度为I0的入射光,照射到液池内的荧光物质时,产生荧光,荧光强度If用仪器测得,在荧光浓度很稀(A0.05)时,荧光物质发射的荧光强度If与浓度有下面的关系:If=KC。 三、实验试剂和仪器

电感耦合等离子体原子发射光谱法

电感耦合等离子体原子发射光谱法 电感耦合等离子体原子发射光谱法(ICP-AES)是以等离子体为激发光源的原子发射光谱分析方法,可进行多元素的同时测定。 样品由载气(氩气)引入雾化系统进行雾化后,以气溶胶形式进入等离子体的轴向通道,在高温和惰性气氛中被充分蒸发、原子化、电离和激发,发射出所含元素的特征谱线。根据特征谱线的存在与否,鉴别样品中是否含有某种元素(定性分析);根据特征谱线强度确定样品中相应元素的含量(定量分析)。 本法适用于各类药品中从痕量到常量的元素分析,尤其是矿物类中药、营养补充剂等药品中的元素定性定量测定。 1、对仪器的一般要求 电感耦合等离子体原子发射光谱仪由样品引入系统、电感耦合等离子体(ICP)光源、分光系统、检测系统等构成,另有计算机控制及数据处理系统,冷却系统、气体控制系统等。 样品引入系统 按样品状态不同可以分为以液体、气体或固体进样,通常采用液体进样方式。样品引入系统由两个主要部分组成:样品提升部分和雾化部分。样品提升部分一般为蠕动泵,也可使用自提升雾化器。要求蠕动泵转速稳定,泵管弹性良好,使样品溶液匀速地泵入,废液顺畅地排出。雾化部分包括雾化器和雾化室。样品以泵入方式或自提升方式进入雾化器后,在载气作用下形成小雾滴并进入雾化室,大雾滴碰到雾化室壁后被排除,只有小雾滴可进入等离子体源。要求雾化器雾化效率高,雾化稳定性高,记忆效应小,耐腐蚀;雾化室应保持稳定的低温环境,并需经常清洗。常用的溶液型雾化器有同心雾化器、交叉型雾化器等;常见的雾化室有双通路型和旋流型。实际应用中宜根据样品基质,待测元素,灵敏度等因

素选择合适的雾化器和雾化室。 电感耦合等离子体(ICP)光源 电感耦合等离子体光源的“点燃”,需具备持续稳定的高纯氩气流,炬管、感应圈、高频发生器,冷却系统等条件。样品气溶胶被引入等离子体源后,在6,000K~10,000K的高温下,发生去溶剂、蒸发、离解、激发、电离、发射谱线。根据光路采光方向,可分为水平观察ICP源和垂直观察ICP源;双向观察ICP 光源可实现垂直/水平双向观察。实际应用中宜根据样品基质、待测元素、波长、灵敏度等因素选择合适的观察方式。 色散系统 电感耦合等离子体原子发射光谱的色散系统通常采用棱镜或光栅分光,光源发出的复合光经色散系统分解成按波长顺序排列的谱线,形成光谱。 检测系统 电感耦合等离子体原子发射光谱的检测系统为光电转换器,它是利用光电效应将不同波长光的辐射能转化成电信号。常见的光电转换器有光电倍增管和固态成像系统两类。固态成像系统是一类以半导体硅片为基材的光敏元件制成的多元阵列集成电路式的焦平面检测器,如电荷注入器件(CID)、电荷耦合器件(CCD)等,具有多谱线同时检测能力,检测速度快,动态线性范围宽,灵敏度高等特点。检测系统应保持性能稳定,具有良好的灵敏度、分辨率和光谱响应范围。 冷却和气体控制系统 冷却系统包括排风系统和循环水系统,其功能主要是有效地排出仪器内部的热量。循环水温度和排风口温度应控制在仪器要求范围内。气体控制系统须稳定正常地运行,氩气的纯度应不小于99.99%。 2、干扰和校正 电感耦合等离子体原子发射光谱法测定中通常存在的干扰大致可分为两类:

等离子体实验报告

等离子体特性研究 Research on Plasma 【教学基本要求】 1.了解计算机数据采集的基本过程和影响采集精确度的主要因素。 2.掌握气体放电中等离子体的特性与特点。 3.掌握描述等离子体特性的主要参量及各参量的影响因素。 4.理解等离子体诊断的主要方法,重点掌握单探针法。 5.了解等离子体研究实验软件的主要功能,熟练操作软件。 【授课提纲】 1.等离子体物理学科发展史和主要研究领域(1)等离子体物理学科发展简史 ●19世纪30年代起 ●20世纪50年代起 ●20世纪80年代起 (2)等离子体物理主要研究领域 ●低温应用等离子体 ●聚变等离子体 ●空间和天体等离子体 2.认识等离子体 (1)空间等离子体展示 (2)宇宙中90%物质处于等离子体态 (3)等离子体概念 (4)等离子体分类 (5)等离子体是物质第四态 (6)等离子体参数空间 (7)电离气体是一种常见的等离子体 (8)等离子体特性和主要参量 3.等离子体诊断 (1)德拜屏蔽和准中性 (2)等离子体诊断-单探针法

【板书内容】 等离子体特性研究 φφtan 11600tan == k e T e e e kT E 23= e e e m kT v π8= kT m eS I v eS I n e e e π2400= = ()? ????-== =e s p e e kT U U e I Se n e N I exp 41 ? C kT eU I e p += ln e e e e n v E T ,, ,

【实验报告】 等离子体特性研究 【实验目的】 1. 了解气体放电中等离子体的特性。 2. 利用等离子体诊断技术测定等离子体的一些基本参量。 【实验原理】 等离子体(又称等离子区)定义为包含大量正负带电粒子、而又不出现净空间电荷的电离气体。也就是说,其中正负电荷密度相等,整体上呈现电中性。等离子体可分为等温等离子体和不等温等离子体,一般气体放电产生的等离子体属不等温等离子体。 等离子体有一系列不同于普通气体的特性:① 高度电离,是电和热的良导体,具有比普通气体大几百倍的比热容。② 带正电的和带负电的粒子密度几乎相等。③ 宏观上是电中性的。 虽然等离子体宏观上是电中性的,但是由于电子的热运动,等离子体局部会偏离电中性。然而,电荷之间的库仑相互作用,使这种偏离电中性的范围不能无限扩大,最终使电中性得以恢复。偏离电中性的区域最大尺度称为德拜长度。 1. 等离子体的主要参量 描述等离子体的主要参量有:① 电子温度T ,它是等离子的一个主要参量,因为在等离子中电子碰撞电离是主要的,而电子碰撞电离与电子的能量有直接关系,即与电子温度相关;② 带电粒子密度,电子密度为ne ,正离子密度为ni ,在等离子体中ne ni 。;③ 轴向电场强度EL 。表征为维持等离子体的存在所需的能量;④ 电子平均动能e E ;⑤ 空间电位分布。 此外,由于等离子体中带电粒子间的相互作用是长程的库仑力,使它们在无规则的热运动之外,能产生某些类型的集体运动,如等离子振荡,其振荡频率p f 称为朗缪尔频率或等离子体频率。电子振荡时辐射的电磁波称为等离子体电磁辐射。 2. 稀薄气体产生的辉光放电 辉光放电是气体导电的一种形态。当放电管内的压强保持在Pa 2 10~10时,在两电极上加高电压,就能观察到管内有放电现象。辉光分为明暗相间的8个区域,分别为阿斯顿区、阴极辉区、阴极暗区、负辉区、法拉第暗区、正辉区(即正辉柱)、阳极暗区、阳极辉区。正辉区是感兴趣的等离子区。其特征是:气体高度电离;电场强度很小,且沿轴向有恒定值。这使得其中带电粒子的无规则热运动胜过它们的定向运动。所以它们基本上遵从麦克斯韦速度分布律。由其具体分布可得到一个相应的温度,即电子温度。但是由于电子质量小,它在跟离子或原子作弹性碰撞时能量损失很小,所以电子的平均动能比其他粒子的大得多,这是一种非平衡状态。因此,虽然电子温度很高(约为105K ),但放电气体的整体温度并不明显升高,放电管的玻璃壁并不软化。

分子荧光光谱实验报告doc

分子荧光光谱实验报告 篇一:分子荧光光谱实验报告 分子荧光光谱实验报告 一、实验目的: 1.掌握荧光光度法的基本原理及激发光谱、发射光谱的测定方法;学会运用分子荧光光谱法对物质进行定性分析。 2.了解荧光分光光度计的构造和各组成部分的作用。 3.了解影响荧光产生的几个主要因素。二、实验内容:测定荧光黄/水体系的激发光谱和发射光谱; 首先根据已知的激发波长(如果未知,则用紫外分光光度计进行测量,以最大吸收波长为激发波长)测定发射光谱,得到最大发射波长;然后根据最大发射波长测定激发光谱,得到最大激发波长;然后在根据最大激发波长测定测定发射光谱; 根据所得数据,用origin软件做出光谱图。三、实验原理: 某些物质吸收光子后,外层电子从基态跃迁至激发态,然后经辐射跃迁的方式返回基态,发射出一定波长的光辐射,此即光致发光。光致发光现象分荧光、磷光两种,分别对应单重激发态、三重激发态的辐射跃迁过程。本实验为荧光光谱的测定。

激发光谱:在发射波长一定的条件下,被测物吸收的荧光强度随激发波长的变化图。 发射光谱:在激发波长一定的条件下,被测物发射的荧光强度随发射波长的变化图。 各种物质均有其特征的最大激发波长和最大发射波长,因此,根据最大激发波长和最大发射波长,可以对某种物质进行定性的测定。 四、荧光光谱仪的基本机构 五、实验结果与讨论: XX00 S1 / R1 (CPS / MicroAmps) 150000 100000 50000 0Wavelength (nm) 400000 S1 / R1 (CPS / MicroAmps) 300000 XX00 100000 Wavelength (nm)

Varian 715-ES等离子体发射光谱仪图文操作手册

Varian 715-ES等离子体发射光谱仪的 图文操作手册 一、V arian 715-ES等离子体发射光谱仪: V arian 715-ES等离子体发射光谱仪 二、功能和用途: 1、功能:本仪器可以全波段同时测量,所以可选择不同的波长轻易避免光谱 干扰,意味着具有更好的精度、更好的背景矫正和更高的效率;采用百万像素CCD检测器搭配Echelle二维分光器,可以使系统在一次观测就可完成高低浓度样品的检测,并具有更低的检出限和更宽的动态线性范围; CCI冷锥切割尾焰技术使水平观测检测限更低,并能分析较高TDS含量的样品;测定过程中没有任何移动部件的光学系统提高了仪器稳定性;直观、强大、易学易用的ICP Expert II全中文操作软件大大提高了工作效率。 2、用途:本仪器可以同时测定元素周期表中73中元素,每个元素的波长可 以任意选择,最大限度地减少了元素之间的相互干扰,液体进样适用于金属材料、食品、医药、环保等领域中低含量及中等含量的化学元素的快速定量或半定量分析。 三、操作步骤: 1、开机 a、冷开机(从仪器关闭状态开机) (1)、依次打开计算机主机、显示器和打印机,进入操作系统;

(2)、打开氩气气源阀,检查并调节减压阀在5.5MPa左右,气体纯度≥99.996%; (3)、打开循环水电源开关,检查压力指示在0.5~3.1MPa,温度设定在20℃±1℃; (4)、打开仪器后部高压电源开关(向上); (5)、打开仪器前部系统电源开关(绿色指示灯处于亮的状态); (6)、打开实验室排风系统; (7)、如有其它附件,依次打开。 b、热开机 (1)、依次打开计算机主机、显示器和打印机开关; (2)、打开循环水开关;

直流辉光等离子体系列实验报告-复旦大学物理教学实验中心

直流辉光等离子体系列实验报告 陈金杰合作者张帆指导老师乐永康 (复旦大学物理系上海 200433) 摘要:利用直流辉光等离子体实验装置,获得等离子体。并研究直流低气压放电现象,测量等离子体伏安曲线,测定气体击穿电压验证帕邢定律,利用Langmuir单探针和Langmuir双探针测量等离子体的密度、温度和德拜长度等参数。并就相关现象进行讨论。 关键词:直流辉光等离子体气体放电伏安特性击穿Langmuir探针 引言:关于等离子体 等离子体(Plasma)是一种由大量正、负带电粒子和中性粒子组成的准中性气体,广泛存在于宇宙中,常被视为是物质的第四态,被称为等离子态,或者“超气态”。等离子体具有很高的电导率,与电磁场存在极强的耦合作用。等离子体是由克鲁克斯在1879年发现的,1928年美国科学家欧文·朗缪尔和汤克斯(Tonks)首次将“等离子体(plasma)”一词引入物理学,用来描述气体放电管里的物质形态。严格来说,等离子是具有高位能动能的气体团,等离子的总带电量仍是中性,借由电场或磁场的高动能将外层的电子击出,结果电子已不再被束缚于原子核,而成为高位能高动能的的自由电子。等离子体可通过放电、加热、光激励等方法产生,它有以下特点: [1] (1) 电子温度高于离子温度 由于电子和离子的质量差别悬殊,电子更容易从电场中获得能量,因此电子的平均动能远大于离子的平均动能,即电子和离子有各自独立的不同平衡温度。电子温度比离子温度高得多,而离子温度与等离子体中中性粒子温度一样。引入等离子体中的极板也可以保持较低的温度。等离子体高度电离,是电和热的良导体,具有比普通气体大几百倍的比热容。 (2) 具有丰富的活性粒子 通过与电子的非弹性碰撞,各种粒子得到活性激发。这些活性粒子具有不同能量,可在固体表面发生各种物理和化学效应。所以需要在很高温度下才能进行的化学反应在等离子体中很容易完成。 (3) 存在等离子体鞘层 在等离子体中引入负(或正) 电极,为屏蔽外电势对等离子体的影响,在电极周围形成正(或负) 电荷层,称为等离子体鞘层。以等离子体电位为零电位,则外加电压完全降落在这一鞘层上。进入这一鞘层的正离子受到加速,得到数值上相当于电势能的动能。调节外加负电压的数值,正

等离子发射光谱实验报告

等离子发射光谱实验报告 一实验目的 1、理解仪器原理和应用 2、了解仪器构成 3、了解整个分析过程 二实验仪器及其构成 本实验所用仪器为:美国Varian ICP-710ES电感耦合等离子发射光谱仪。 等离子体是一种由自由电子、离子、中性原子与分子所组成的在总体上呈中性能导电的气体。当高频发生器接通电源后,高频电流I通过感应线圈产生交变磁场(绿色)。开始时,管内为Ar气,不导电,需要用高压电火花触发,使气体电离后,在高频交流电场的作用下,带电粒子高速运动,碰撞,形成“雪崩”式放电,产生等离子体气流。在垂直于磁场方向将产生感应电流(涡电流,粉色),其电阻很小,电流很大(数百安),产生高温。又将气体加热、电离,在管口形成稳定的等离子体焰炬。 ICP 特点: a)温度高,惰性气氛,原子化条件好,有利于难熔化合物的分解和元素激发,有很高的灵敏度和稳定性; b)“趋肤效应”,涡电流在外表面处密度大,使表面温度高,轴心温度低,中心通道进样对等离子的稳定性影响小。能有效消除自吸现象,线性范围宽(4~5个数量级) c)I CP中电子密度大,碱金属电离造成的影响小 d)Ar气体产生的背景干扰小 e)无电极放电,无电极污染 f)ICP焰炬外型像火焰,但不是化学燃烧火焰,气体放电 缺点:对非金属测定的灵敏度低,仪器昂贵,操作费用高 仪器组成为: 1、样品导入系统 a)蠕动泵。进入雾化器的液体流,由蠕动泵控制。泵的主要作用是为雾化器提供恒定样品流,并将雾化室中多余废液排出。除通常进样和排废液通道外,三通道蠕动泵为用户提供一个额外通道,用该通道可在分析过程中导入内标等。b)雾化器。雾化器将液态样品转化成细雾状喷入雾化室,较大雾滴被滤出,细雾状样品到达等离子炬。 c)雾化室由雾化器、蠕动泵和载气所产生的雾状样品进到雾化室。雾化室的功能相当于一个样品过滤器,较小的细雾通过雾化室到达炬管,较大的样品滴被滤除流到废液容器中。 d)炬管。外层管(等离子气)通Ar气作为冷却气,沿切线方向引入,并螺旋上升,其作用:第一,将等离子体吹离外层石英管的内壁,可保护石英管不被烧毁;第二,是利用离心作用,在炬管中心产生低气压通道,以利于进样;第三,这部分Ar气流同时也参与放电过程。中间层管(辅助气)中层管通入辅助气体Ar 气,用于点燃等离子体。注射管(样品)内层石英管内径为1-2mm左右,以Ar为载气,把经过雾化器的试样溶液以气溶胶形式引入等离子体中。

实验31 原子发射光谱观测分析(实验报告)

实验31(A )原子发射光谱观测分析 【实验目的】 1. 学会使用光学多通道分析器的方法 2. 通过对钠原子光谱的研究了解碱金属原子光谱的一般规律 3. 加深对碱金属原子中外层电子与原子核相互作用以及自旋与轨道运动相互作用的了解 【实验仪器】 光学多通道分析器、光学平台、汞灯、钠灯、计算机 【原理概述】 钠属碱金属原子类,碱金属原子和氢原子一样,都只有一个价电子。但在碱金属原子中除了一个价电子外,还有内封闭壳层的电子,这些内封壳层电子与原子核构成原子实。价电子是在原子核和内部电子共同组成的力场中运动。原子实作用于价电子的电场与点电荷的电场有显著的不同。特别是当价电子轨道贯穿原子实时(称贯穿轨道),这种差别就更为突出。因此,碱金属原子光谱线公式为: ()()2 22*12*2 11~l l n R n R n n R μμν--'-'=???? ??-=' 其中ν ~为光谱线的波数;R 为里德堡常数。 n '与n 分别为始态和终态的主量子数 *2n 与*1n 分别为始态和终态的有效量子数 l '与l 分别为该量子数决定之能级的轨道量子数 l ''μ与l μ分别为始态和终态的量子缺(也称量子改正数,量子亏损) 根据就的波尔理论,在电子轨道愈接近原子中心的地方,μ的数值愈大。当轨道是贯穿轨道实,μ得数值还要大些。因为这时作用在电子上的原子核的有效电荷Z eff 有很大程度的改变。在非常靠近原子核的地方,全部核电荷作用在电子上。而距离很远的,原子核被周围电子屏蔽,以致有效核电荷1→eff Z 。因此s 项的μ值最大,而对p 项来说就小一些,对于d 来说还更小,由此类推。因而量子缺μ的大小直接反映原子实作用于价电子的电场与点电荷近似偏离的大小 对于钠原子光谱分如下四个线系 主线系:s np 3~→=ν 锐线系:p ns 3~→=ν 漫线系:p nd 3~→=ν 基线系:d nf 3~→=ν

ICP等离子体发射光谱仪

ICP等离子体发射光谱仪 仪器组成及工作原理 ICP等离子体单道扫描光谱仪,是多元素顺序测量的分析测试仪器。该仪器由扫描分光器、射频发生器、试样引入系统、光电转换、控制系统、数据处理系统、分析操作软件组成。等离子体是在三重同心石英炬管中产生。炬管内分别以切向通入氩气,炬管上部绕有紫铜负载线圈〈内通冷却水〉当高频发生器产生的高频电流(工作频率40MHz功率1KW左右)通过线圈时,其周围产生交变磁场,使少量氩气电离产生电子和离子,在磁场作用下加速运动与其它中性原子碰撞,产生更多的电子和离子,在炬管内形成涡流,在电火花作用下形成等离子炬(即等离子体),这种等离子体温度可达10000K以上。待测水溶液经喷雾器形成气溶胶进入石英炬管中心通道。原子在受到外界能量的作用下电离,但处于激发态的原子十分不稳定,从较高能级跃迁到基态时,将释放出巨大能量,这种能量是以一定波长的电磁波的形式辐射出去。不同元素产生不同的特征光谱。这些特征光谱通过透镜射到分光器中的光栅上,计算通过控制步进电机转动光栅,传动机构将分光后的待测元素特征谱线光强准确定位于出口狭缝处,光电倍增管将该谱线光强转变为电流,再经电路处理和V/F转换后,由计算机进行数据处理,最后由打印机打出分析结果。 仪器型号:HKYT-2000型 技术指标 整机技术指标 (1) 分析速度快 (2) 扫描范围:范围180~500nm、方式为正弦杆,由计算机控制的脉冲马达 驱动,最小扫描步距0.0005nm (3) 波长示值误差和重复性:波长示值误差:± 0.03nm 重复性≤0.005nm (4)相关系数≥0.9998% (5) 精密度高相对标准偏差RSD≤1.5%(HKYT-2000型RSD≤2.0%) (6) 稳定性:相对标准偏差RSD≤2.0%(HKYT-2000型RSD≤3.0%) (7) 测量范围:超微量到常量 (8) 检出限低 ppb(ug/L)级(部分元素检出限见附录一)_ (9) 分析元素多可对72种金属元素和部分非金属元素(如B、P、Si、Se、 Te)进行定量或定性分析 (10) 测量方式单、多元素顺序测量 (11) 功率 800W—1200W 可调 (12) 操作便捷全新WindowsXP下运行的第三代多窗口升级中文或英文 分析软件速度更快,功能更全,多窗口多任务同时执行(国 内独此一家) 射频发生器(RF) (1)电路类型:电感反馈自激式振荡电路、同轴电缆输出、匹配调谐、取功率

等离子体发射光谱

等离子体发射光谱 等离子体(Plasma)在近代物理学中是一个很普通的概念,是一种在一定程度上被电离(电离度大于0.1%)的气体,其中电子和阳离子的浓度处于平衡状态,宏观上呈电中性的物质。 1仪器介绍 电感耦合等离子体发射光谱仪原理 矩管外高频线圈产生高频电磁场,高纯氩气在高频电磁场中失去电子,该电子轰击待测样品,样品的各元素产生跃迁,发射出具有一定的特征谱线的光。通过检测器探测这种特征谱线并检测其强度,可以定性分析元素和定量计算该元素的浓度。 2性能特点 ICP-AES分析性能特点 电感耦合等离子体(ICP)是由高频电流经感应线圈产生高频电磁场,使工作气体形成等离子体,并呈现火焰状放电(等离子体焰炬),达到10000K的高温,是一个具有良好的蒸发-原子化-激发-电离性能的光谱光源。而且由于这种等离子体焰炬呈环状结构,有利于从等离子体中心通道进样并维持火焰的稳定;较低的载气流速(低于1L/min)便可穿透ICP,使样品在中心通道停留时间达2~3ms,可完全蒸发、原子化;ICP环状结构的中心通道的高温,高于任何火焰

或电弧火花的温度,是原子、离子的最佳激发温度,分析物在中心通道内被间接加热,对ICP放电性质影响小;ICP光源又是一种光薄的光源,自吸现象小,且系无电极放电,无电极沾污。这些特点使ICP 光源具有优异的分析性能,符合于一个理想分析方法的要求。 一个理想的分析方法,应该是:可以多组分同时测定;测定范围要宽(低含量与高含量成分能同测定);具有高的灵敏度和好的精确度;可以适用于不同状态的样品的分析;操作要简便与易于掌握。ICP-AES分析方法便具有这些优异的分析特性: ICP-AES法首先是一种发射光谱分析方法,可以多元素同时测定。

化学实验报告原子发射光谱法

原子发射光谱法-摄谱和译谱 一、实验目的和要求 1、熟悉光谱定性分析的原理; 2、了解石英棱镜摄谱仪的工作原理和基本结构; 3、学习电极的制作摄谱仪的使用方法及暗室处理技术; 4、学会用标准铁光谱比较法定性判断试样中所含未知元素的分析方法; 5、根据特征谱线的强度及最后线出现的情况对元素含量进行粗略的估计; 6、掌握映谱仪的原理和使用方法。 二、实验内容和原理 1、摄谱 原子在受到一定能量的激发后,其电子在由高能级向低能级跃迁时将能量以光辐射的形式释放,各种元素因其原子结构的不同而有不同的能级,因此每一种元素的原子都只能辐射出特定波长的光谱线,它代表了元素的特征,这是发射光谱定性分析的依据。 一个元素可以有许多条谱线,各条谱线的强度也不同。在进行光谱定性分析时,并不需要找出元素的所有谱线,一般只要检查它的几条(2~3条)灵敏线或最后线,根据最后线(灵敏线)是否出现,它们的强度比是否与谱线所表示的相符,就可以判断该元素存在与否。 经典电光源的试样处理: 1)固体金属及合金等导电材料的处理 棒状金属表面用金刚砂纸除氧化层后,可直接激发。 碎金属屑用酸或丙酮洗去表面污物,烘干后磨成粉末状后,最好以1:1与碳粉混合,在玛瑙研钵中磨匀后装入下电极孔内再激发。 2)非导体固体试样及植物试样 非金属氧化物、陶瓷、土壤、植物等试样经灼烧处理后,磨细,加入缓冲剂及内标,置于石墨电极孔中用电弧激发。 3)液体试样处理 液体样品经稀释后,滴到用液体石蜡涂过的平头石墨电极上,在红外灯下烘干后进行光谱分析。 摄谱法是用感光板记录光谱。将光谱感光板置于摄谱仪焦面上,接受被分析试样的光谱作用而感光,再经过显影、定影等过程后,制得光谱底片,其上有许多黑度不同的光谱线。然后用影谱仪观察谱线位置及大致强度,进行光谱定性及半定量分析。用测微光度计测量谱线的黑度,进行光谱定量分析。 用发射光谱进行定性分析通常采用在同一块感光板上并列地摄取试样光谱和铁光谱,然后借助光谱投影仪使摄得的铁光谱与“元素标准光谱图”上的铁光谱重合,从“元素标准光谱图”上标记的谱线来辨认摄得的试样谱线。 本实验可对粉末样品进行指定元素的定性分析或全元素分析。 2、译谱 不同种类的元素因其内部原子结构的不同,在光源的激发下,将发射出其特征谱线,据此可确定是否有某些元素的存在。在实际定性分析中,将所摄谱板放置在光谱投影仪上,经20倍放大后,以标准铁光谱图作为波长基准,选用2~3条灵敏线或其特征谱线组进行该元素的定性判断,并粗略估计含量。 半定量分析的含量表示方法如下表所示。 半定量分析的含量表示方法

相关文档
最新文档