矩阵理论研究生课程大作业

矩阵理论研究生课程大作业
矩阵理论研究生课程大作业

研究生“矩阵论”课程课外作业

姓名:学号:

学院:专业:

类别:组数:

成绩:

人口迁移问题和航班问题

(重庆大学 机械工程学院,机械传动国家重点实验室)

摘要:随着人类文明的进程,一些关于数学类的问题越来越贴近我们的生活,越发觉得数学与我们息息相关。本文将利用矩阵理论的知识对人口迁移问题和航班问题进行分析。

人口迁移问题

假设有两个地区——如南方和北方,之间发生人口迁移。每一年北方50%的人口迁移到南方,同时有25%的南方人口迁移到北方,直观上可由下图表示:

问题:如果这个移民过程持续下去,北方的人会不会全部都到南方?如果会请说明理由;如果不会,那么北方的最终人口分布会怎样?

解 设n 年后北方和南方的人口分别为n x 和n y , 我们假设最初北方有0x 人,南方有0y 人。则我们可得,1=n 时,一年后北方和南方的人口为

???+=+=0

010

0175.05.025.05.0y x y y x x (1-1)

将上述方程组(1-1)写成矩阵的形式

???

? ??=????

??0011y x A y x

其中 ??

?

???=75.05.025.05.0A

2=n 时,两年后北方和南方的人口为

???? ??=???? ??=???? ??0021122y x A y x A y x

依次类推下去,n 年后北方和南方的人口为

???

? ??=???? ??00y x A y x n n n (1-2) N S 0.5 0.25 0.5 0.75

现在只需求出n A 就可得出若干年后北方和南方的人口数。 下面将使用待定系数法[1]求n A

)1)(25.0(25

.025.125

.05.0)75.0)(5.0(75

.05.025

.05

.02--=+-=?---=----=

-λλλλλλλλλA E

所以 1,25.021==λλ

矩阵A 的最小多项式为 )1)(25.0()(--=λλλm 设A a E a A n 10+= 由此可得方程组

???=+=+125.025.01010a a a a n

解方程组得

???????-=+-=75.025.0175.025.025.010n n

a a 所以

??

????+?--?+=-++-=+=++11

1025.05.025.05.05.025.025.025.05.025.075.0175

.025.0175.025.025.0n n n n n

n n

A

E A a E a A 所以由式(1-2),我们得到n 年后北方和南方的人口

北方:01

075.025.025.075.025.05.025.0y x x n n n +-+?+=

南方:01

075

.025.05.075.025.05.05.0y x y n n n +++?-=

当∞→n 时,得

)(3

1

)75.025.025.075.025.05.025.0(lim lim 0001

0y x y x x n n n n n +=-+?+=+∞→∞→

()000103

2

75.025.05.075.025.05.05.0lim lim y x y x y n n n n n +=????

??++?-=+∞∞→∞→ 由上面计算可以得到,如果移民过程持续下去,北方的人不会全部都到南方。最终北方的人口是移民前南北人口之和的1/3。南方人口是北方人口的两倍。

结论

本文论述的南北方人口迁移问题是一个比较理想化的问题,但还是有一些实际的参考价值,通过本问题的演算过程,我们可以推论,若一个地区有人口迁出(迁出率<1),那么只要有人口迁入,则该地区始终有人口住居。

航班问题

一家航空公司经营A 、B 、C 、D 和H 五个城市的航线业务,其中H 为中心城市。各个城市间的路线见图1。

图 1

假设你想从A 城市飞往B 城市,因此要完成这次路线,至少需要两个相连的航班,即A →H 和H →B 。如果没有中转站的话,就不得不要至少三个相连的航班。那么问题如下: (1)从A 到B ,有多少条路线刚好是三个相连的航班; (2)从A 到B ,有多少条路线要求不多于四个相连的航班。

解 为了方便计算,设1、2、3、4、5分别代表A 、B 、C 、D 、H 五个城市。令()ij a A =,其中ij a 表示i 城市到j 城市单连航班的路线条数()5,4,3,2,1,=j i ,若1=ij a 表示i 城市到j 城市的单连航班有1条,若0=ij a 表示i 城市到j 城市的单连航班有0条[2]。则表示i 城市到j 城市单连航班的路线条数用矩阵A 表示为

???????

??????

???=01111

1001011000

100011010

0A 令()

2A b B ij ==,则ij b 表示i 城市到j 城市两个相连航班的路线条数

???

????

?

?????

???==411111*********

11211121112A B

令()

3A c C ij ==,则ij c 表示i 城市到j 城市三个相连航班的路线条数

???

????

?

????????==45555

5232252223

53222522323

A C

令()

4A d D ij ==,则ij c 表示i 城市到j 城市四个相连航班的路线条数

???

??

??

??????

???==209999

9877797877

9778797

7784A D

(1)由上面的计算可得,12c 代表从A 到B 刚好是三个相连的航班路线条数。 所以,从A 到B ,有3条路线刚好是三个相连的航班。

(2)要求从A 到B ,不多于四个相连的航班路线条数,即是要把单个相连、两个相连、三 个相连和四个相连的全部航班路线条数加起来。 即 11731012121212=+++=+++d c b a

所以,从A 到B ,有11条路线不多于四个相连的航班。

参考文献

[1]李新,何传江.矩阵理论及其应用[M].重庆:重庆大学出版社,2005.8:117-120 [2]同济大学数学系.工程数学.线性代数[M].北京:高等教育出版社,2007.5:30-37

2012矩阵论复习题

2012矩阵论复习题 1. 设+=R V 是正实数集,对于任意的V y x ∈,,定义x 与y 的和为 y x y x ?=⊕ 对于任意的数R k ∈,定义k 与x 的数乘为 k x x k =? 问:对于上述定义加法和数乘运算的集合V ,是否构成线性空间,并说明理由. 2.对任意的2,R y x ∈,),(21x x x =,),(21y y y =定义x 与y 的和为 ),(112211y x y x y x y x +++=⊕ 对于任意的数R k ∈,定义k 与x 的数乘为 )2 )1(,(2121x k k kx kx x k -+=? 问:对于上述定义加法和数乘运算的集合2R ,是否构成线性空间,并说明理由. 3.设},022|),,{(321321R x x x x x x x S i ∈=++=,试证明S 是3R 的子空间,并求S 的一组基和S dim . 4.设)(R P n 表示次数不超过n 的全体多项式构成的线性空间, )}()(,0)0(|)({R P x f f x f S n ∈='= 证明S 是)(R P n 的子空间,并写出S 的一组基和计算S dim . 5. 设T 是2R 上的线性变换,对于基向量i 和j 有 j i i T +=)( j i j T -=2)( 1)确定T 在基},{j i 下的矩阵; 2)若j i e -=1 j i e +=32,确定T 在基},{21e e 下的矩阵. 6. 设T 是3R 上的线性变换,对于基},,{k j i 有 k j k j i T -=++)( i k j T =+)( k j i k T 532)(++=

(完整版)第二章矩阵及其运算作业及答案

第二部分 矩阵及其运算作业 (一)选择题(15分) 1.设,均为n 阶矩阵,且,则必有( )A B 22 ()()A B A B A B +-=-(A) (B) (C) (D) A B =A E =AB BA =B E =2.设,均为n 阶矩阵,且,则和( ) A B AB O =A B (A)至多一个等于零 (B)都不等于零 (C) 只有一个等于零 (D) 都等于零 3.设,均为n 阶对称矩阵,仍为对称矩阵的充分必要条件是( ) A B AB (A) 可逆 (B)可逆 (C) (D) A B 0AB ≠AB BA =4.设为n 阶矩阵,是的伴随矩阵,则=( ) A A *A A *(A) (B) (C) (D) 1n A -2n A -n A A 5.设,均为n 阶可逆矩阵,则下列公式成立的是( ) A B (A) (B) ()T T T AB A B =()T T T A B A B +=+(C) (D) 111()AB A B ---=111 ()A B A B ---+=+(二)填空题(15分) 1.设,均为3阶矩阵,且,则= 。 A B 1 ,32A B ==2T B A 2.设矩阵,,则= 。 1123A -?? = ???232B A A E =-+1B -3.设为4阶矩阵,是的伴随矩阵,若,则= 。 A A *A 2A =-A *4.设,均为n 阶矩阵,,则= 。 A B 2,3A B ==-12A B *-5.设,为整数,则= 。 101020101A ? ? ?= ? ??? 2n ≥12n n A A --(三)计算题(50分) 1. 设,,且,求矩阵。 010111101A ?? ?=- ? ?--??112053B -? ? ? = ? ??? X AX B =+X

矩阵论课程教学大纲

《矩阵论》课程教学大纲 一、课程基本信息 课程编号: xxxxx 课程中文名称:矩阵论 课程英文名称:Matrix Theory 课程性质:学位课 考核方式:考试 开课专业:工科各专业 开课学期:1 总学时:36学时 总学分: 2学分 二、课程目的和任务 矩阵论是线性代数的后继课程。在线性代数的基础上,进一步介绍线性空间与线性变换、欧氏空间与酉空间以及在此空间上的线性变换,深刻地揭示有限维空间上的线性变换的本质与思想。为了拓展高等数学的分析领域,通过引入向量范数和矩阵范数在有限维空间上构建了矩阵分析理论。 从应用的角度,矩阵代数是数值分析的重要基础,矩阵分析是研究线性动力系统的重要工具。为了矩阵理论的实用性,对于矩阵代数与分析的计算问题,利用Matlab计算软件实现快捷的计算分析。 三、教学基本要求(含素质教育与创新能力培养的要求) 通过本课程的学习,使学生在已掌握本科阶段线性代数知识的基础上,进一步深化和提高矩阵理论的相关知识。并着重培养学生将所学的理论知识应用于本专业的实际问题和解决实际问题的能力。 本课程还要求学生从理论上掌握矩阵的相关理论,会证明简单的一些命题和结论,从而培养逻辑思维能力。要求掌握一些有关矩阵计算的方法,如各种标准型、矩阵函数等,为今后在相关专业中实际应用打好基础。 四、教学内容与学时分配 (一) 线性空间与线性变换 8学时 1. 理解线性空间的概念,掌握基变换与坐标变换的公式;

2. 掌握子空间与维数定理,了解线性空间同构的含义; 3. 理解线性变换的概念,掌握线性变换的矩阵表示。 (二) 内积空间 6学时 1. 理解内积空间的概念,掌握正交基及子空间的正交关系; 2. 了解内积空间的同构的含义,掌握判断正交变换的方法; 3. 理解酉空间的概念,会判定一个空间是否为酉空间 4. 掌握酉空间与实内积空间的异同; 5. 掌握正规矩阵的概念及判定定理和性质。 (三) 矩阵的对角化与若当标准形 6学时 1. 掌握矩阵相似对角化的判别方法; 2. 理解埃尔米特二次型的含义; 3. 会求史密斯标准形; 4. 会求若当标准型。 (四) 矩阵分解4学时 1. 会求矩阵的三角分解和UR分解; 2. 会求矩阵的满秩分解和单纯矩阵的谱分解; 3. 了解矩阵的奇异值和极分解。 (五) 向量与矩阵的重要数字特征4学时 1. 理解向量范数、矩阵范数; 2. 有限维线性空间上向量范数的等价性; 3. 向量范数与矩阵范数的相容性。 (六) 矩阵分析 4学时 1. 理解向量和矩阵的极限的概念; 2. 掌握矩阵幂级数收敛的判定方法; 3. 理解矩阵的克罗内克积; 4. 会求矩阵的微分与积分。 (七) 矩阵函数 4学时 1. 理解矩阵多项式的概念; 2. 掌握由解析函数确定的矩阵函数; 3. 掌握矩阵函数的计算方法。 五、教学方法及手段(含现代化教学手段) 本课程的所有授课内容,均使用多媒体教学方式,教案采用PowerPoint编写,教师使

研究生矩阵试题B2

北京交通大学 2005-2006学年第一学期硕士研究生矩阵分析考试试卷(B) 专业 班级 学号 姓名 一. (12分)设3R 的两个基为T T T I )1,0,1( ,)1,0,1( ,)1,1,1( :321=-==ααα和T T T II )5,4,3( ,)4,3,2( ,)1,2,1( :321===βββ, (1) 求基I 到基II 的过度矩阵;(2) 求T )1,1,1(=α在基I 下的坐 标。 二. (14分)设线性影射34:R R T →满足,对任意44321),,,(R x x x x T ∈, T T x x x x x x x x x x x x x x x T )3,2,(),,,(432142143214321-++-+++-=, 求T 的核()N T 及值域()R T 的基和维数。 三. (12分)设???? ? ??-=120520i i i A , (1)计算1A 和∞A ;(2)如果T x )1,1,1(=, 计算1Ax 和∞Ax 。 四.(10分)求矩阵???? ? ??=131321*********A 的满秩分解。 五. (12分)求矩阵???? ? ??=230111140A 的正交三角分解UR A =,其中U 是

酉矩阵,R 是正线上三角矩阵。 六. (20分)证明题: 1. 设A 是反Hermite 矩阵,证明A E -是可逆的。 2.设A 是正规矩阵, 如果A 满足0432=--E A A ,证明:A 是Hermite 矩阵。 3.证明:n 维欧氏空间V 的线性变换T 是对称变换,即对任何,x y V ∈, ),(),(Ty x y Tx = 的充要条件是T 在标准正交基下的矩阵表示是对称拒阵。 七. (20分) 设???? ? ??=100100011A 。 (1)求E A λ-的Smith 标准形;(2)写出A 的最小多项式, A 的初等因子和Jordan 标准形; (3)求矩阵函数()f A ,并计算tA e 。

矩阵论课程论文

西安理工大学 研究生课程论文报告 课程名称:矩阵论 课程代号: 任课教师: 论文报告题目:矩阵函数在线性定常系统 状态转移矩阵求解中的应用完成日期:2015 年10 月25 日学科:电力电子与电力传动 学号: 姓名: 成绩:

矩阵函数在线性定常系统状态转移矩阵 求解中的应用 摘 要 控制系统的运动是系统性能定量分析的重要内容。“运动”是物理学上的一个概念,它是通过求系统方程的解)(t x 、)(t y 来分析研究的。由于状态方程是矩阵微分(差分)方程,输出方程式为矩阵代数方程,因此求系统方程的解主要是求状态方程的解。而求状态方程的解的关键是求状态转移矩阵。本文主要介绍了矩阵对角化标准型,约当标准型,凯莱-哈密顿定理及矩阵函数知识在线性定常系统的齐次状态方程的状态转移矩阵求解中的应用。 关键词:状态转移矩阵,约当标准型,凯莱-哈密顿定理,矩阵函数. 1.问题提出 线性系统有线性定常系统和线性时变系统,最为基本的是线性定常系统。而线性定常系统根据有无初始输入,分为线性定常齐次方程,和线性定常非齐次方程。本文只给出线性定常系统的齐次状态方程的状态转移矩阵的求解。 线性定常系统齐次方程的解亦即系统的自由解,是指系统输入为零时,由初始状态引起的自由运动。 线性定常系统齐次状态方程为 ()()t Ax t x = ()1-1 其中,x 是n 维状态向量;A 为n n ?系数矩阵。设初始时刻00=t ,系统的初始状态()()00x t x =。仿照标量微分方程求解的方法求方程()1-1的解。 设方程()1-1的解为t 的向量幂级数形式,即 )(t x = ++++++k k t b t b t b t b b 332210 ()2-1 式中,() ,2,1,0=i b i 为n 维向量。 式()2-1代入方程()1-1得 () +++++=+++++-k k k k t b t b t b b b A t kb t b t b b 3322101232132 ()3-1 既然式()2-1是方程()1-1的解,则式()3-1对任意的t 都成立。因此,式()3-1的等式两边t 的同次幂项的系数应相等,有

北京理工大学2017级硕士研究生矩阵分析考试题

北京理工大学2017-2018学年第一学期 2017级硕士研究生〈矩阵分析〉终考试题 一、(10分)设线性变换f 在基123[1,1,1],[1,0,1],[0,1,1] ααα=-=-=下的矩阵表示为101110123A -????=????-?? (1)求f 在基123[1,0,0],[0,1,0],[0,0,1]εεε===下的矩阵表示。 (2)求f 的核与值域。 二、(10分)求矩阵20000i A ????=?????? 的奇异值分解。 三、(10分)求矩阵111222111A -????=-????--?? 的谱分解。 四、(15分)已知(1)n u R n ∈>为一个单位列向量,令T A I uu =-,证明 (1)21A =; (2)对任意的X R ∈,如果有AX X ≠,那么22AX X <。 五、(15分)已知矩阵1212a A a ??-??=????-???? , (1)问当a 满足什么条件时,矩阵幂级数121()k k k A ∞ =+∑绝对收敛? (2)取a = 0,求上述矩阵幂级数的和。

七、(20分)求下列矩阵的矩阵函数2,sin ,cos tA e A A π π 300030021 01300103123001013000301 00013()()()A A A ??????????? ???===?????? ???????????? 八、(5分)已知 sin 53sin 2sin 52sin sin 5sin sin sin 5sin 2sin 52sin sin 5sin sin 5sin 2sin 52sin sin 53sin t t t t t t tA t t t t t t t t t t t t +--????=-+-????--+?? 求矩阵A 。 九、(5分)已知不相容线性方程组 141223341 10 x x x x x x x x +=??+=??+=??+=? 求其最佳最小二乘解。 十、(10分)已知Hermite 二次型 12312132131(,,)f x x x ix x x x ix x x x =+-+ 求酉变换X UY =将123(,,)f x x x 化为标准型。

上海交大矩阵理论大纲

上海交通大学研究生(非数学专业)数学基础课程 《矩阵理论》教学大纲(附:选课指南) 一.概况 1.开课学院(系)和学科:理学院数学系 2.课程代码: 3.课程名称:矩阵理论 4.学时/学分:51学时/3学分 5.预修课程:线性代数(行列式,矩阵与线性方程组,线性空间F n,欧氏空间R n,特征值与矩阵的对角化,实对称矩阵与二次型), 高等数学(一元微积分,空间解析几何,无 穷级数,常微分方程) 6.适合专业:全校的机、电、材、管理、生命和物理、力学诸大学科类,以及人文学科等需要的专业(另请参看选课指南)。 7.教材/教学参考书: 《矩阵理论》,苏育才、姜翠波、张跃辉编,科学出版社,2006 《矩阵分析》, R.A. Horn and C.R. Johnson, Cambridge Press (中译本),杨奇译,机械工业出版社,2005。 《矩理阵论与应用》,陈公宁编,高等教育出版社,1990。 《特殊矩阵》,陈景良,陈向晖,清华大学出版社,2001。 《代数特征值问题》,JH.威尔金森著,石钟慈邓健新译,科学出版社,2001。 二、课程的性质和任务 矩阵理论作为一种基本的数学工具,在数学学科与其他科学技术领域诸如数值分析、优化理论、微分方程、概率统计、系统工程等学科都有广泛应用。电子计算机及计算技术的发展也为矩阵理论的应用开辟了更广阔的前景。因此,学习和掌握矩阵的基本理论和方法,对于将来从事工程技术工作的工科研究生来说是必不可少的。通过该门课程的学习,期望学生能深刻地理解矩阵理论的基本知识和数学思想,掌握有关的计算方法及技巧,提高学生的数学素质,提高科研能力,掌握矩阵理论在多元微积分、线性控制系统、微分方程、逼近理论、投入产出分析等领域的许多应用。 三、课程的教学内容和要求 矩阵理论的教学内容分为十部分,对不同的内容提出不同的教学要求。 (数字表示供参考的相应的学时数)

2016矩阵论复习题

矩阵论复习题 1. 设+=R V 是正实数集,对于任意的V y x ∈,,定义x 与y 的和为 y x y x ?=⊕ 对于任意的数R k ∈,定义k 与x 的数乘为 k x x k =? 问:对于上述定义加法和数乘运算的集合V ,是否构成线性空间,并说明理由. 2.对任意的2,R y x ∈,),(21x x x =,),(21y y y =定义x 与y 的和为 ),(112211y x y x y x y x +++=⊕ 对于任意的数R k ∈,定义k 与x 的数乘为 )2 )1(,(2121x k k kx kx x k -+=? 问:对于上述定义加法和数乘运算的集合2R ,是否构成线性空间,并说明理由. 3.设},022|),,{(321321R x x x x x x x S i ∈=++=,试证明S 是3R 的子空间,并求S 的一组基和S dim . 4.设)(R P n 表示次数不超过n 的全体多项式构成的线性空间, )}()(,0)0(|)({R P x f f x f S n ∈='= 证明S 是)(R P n 的子空间,并写出S 的一组基和计算S dim . 5. 设33:R R T →是线性变换, ()()321323213212,,2,,x x x x x x x x x x x T -++-+= 求T 的零空间)(T N 和像空间)(T R 的基和维数. 6. 设T 是3R 上的线性变换,对于基},,{k j i 有 k j k j i T -=++)( i k j T =+)( k j i k T 532)(++= 1)确定T 在基},,{k j i 下的矩阵; 2)求T 的像空间的基与维数.

矩阵理论研究生课程大作业

研究生“矩阵论”课程课外作业 姓名:学号: 学院:专业: 类别:组数: 成绩:

人口迁移问题和航班问题 (重庆大学 机械工程学院,机械传动国家重点实验室) 摘要:随着人类文明的进程,一些关于数学类的问题越来越贴近我们的生活,越发觉得数学与我们息息相关。本文将利用矩阵理论的知识对人口迁移问题和航班问题进行分析。 人口迁移问题 假设有两个地区——如南方和北方,之间发生人口迁移。每一年北方50%的人口迁移到南方,同时有25%的南方人口迁移到北方,直观上可由下图表示: 问题:如果这个移民过程持续下去,北方的人会不会全部都到南方?如果会请说明理由;如果不会,那么北方的最终人口分布会怎样? 解 设n 年后北方和南方的人口分别为n x 和n y , 我们假设最初北方有0x 人,南方有0y 人。则我们可得,1=n 时,一年后北方和南方的人口为 ???+=+=001 00175.05.025.05.0y x y y x x (1-1) 将上述方程组(1-1)写成矩阵的形式 ??? ? ??= ??? ? ??0011y x A y x 其中 ?? ? ???=75.05.025.05.0A

2=n 时,两年后北方和南方的人口为 ???? ??=???? ??=???? ??0021122y x A y x A y x 依次类推下去,n 年后北方和南方的人口为 ???? ??=???? ??00y x A y x n n n (1-2) 现在只需求出n A 就可得出若干年后北方和南方的人口数。 下面将使用待定系数法[1]求n A )1)(25.0(25 .025.125 .05.0)75.0)(5.0(75 .05.025 .05 .02--=+-=?---=----= -λλλλλλλλλA E 所以 1,25.021==λλ 矩阵A 的最小多项式为 )1)(25.0()(--=λλλm 设A a E a A n 10+= 由此可得方程组 ???=+=+125.025.01010a a a a n 解方程组得 ??? ????-= +-=75.025.0175.025.025.010n n a a 所以 ?? ????+?--?+=-++-=+=++11 1025.05.025.05.05.025.025.025.05.025.075.0175 .025.0175.025.025.0n n n n n n n A E A a E a A 所以由式(1-2),我们得到n 年后北方和南方的人口

矩阵分析 - 北京理工大学研究生院

课程名称:矩阵分析 一、课程编码:1700002 课内学时: 32 学分: 2 二、适用学科专业:计算机、通信、软件、宇航、光电、生命科学等工科研究生专业 三、先修课程:线性代数,高等数学 四、教学目标 通过本课程的学习,要使学生掌握线性空间、线性变换、Jordan标准形,及各种矩阵分解如QR分解、奇异值分解等,正规矩阵的结构、向量范数和矩阵范数、矩阵函数,广义逆矩阵、Kronecker积等概念和理论方法,提升研究生的数学基础,更好地掌握矩阵理论,在今后的专业研究或工作领域中熟练应用相关的矩阵分析技巧与方法,让科研结果有严格的数学理论依据。 五、教学方式 教师授课 六、主要内容及学时分配 1、线性空间和线性变换(5学时) 1.1线性空间的概念、基、维数、基变换与坐标变换 1.2子空间、线性变换 1.3线性变换的矩阵、特征值与特征向量、矩阵的可对角化条件 2、λ-矩阵与矩阵的Jordan标准形(4学时) 2.1 λ-矩阵及Smith标准形 2.2 初等因子与相似条件 2.3 Jordan标准形及应用; 3、内积空间、正规矩阵、Hermite 矩阵(6学时) 3.1 欧式空间、酉空间 3.2标准正交基、Schmidt方法 3.3酉变换、正交变换 3.4幂等矩阵、正交投影 3.5正规矩阵、Schur 引理 3.6 Hermite 矩阵、Hermite 二次齐式 3.7.正定二次齐式、正定Hermite 矩阵 3.8 Hermite 矩阵偶在复相合下的标准形

4、矩阵分解(4学时) 4.1矩阵的满秩分解 4.2矩阵的正交三角分解(UR、QR分解) 4.3矩阵的奇异值分解 4.4矩阵的极分解 4.5矩阵的谱分解 5、范数、序列、级数(4学时) 5.1向量范数 5.2矩阵范数 5.3诱导范数(算子范数) 5.4矩阵序列与极限 5.5矩阵幂级数 6、矩阵函数(4学时) 6.1矩阵多项式、最小多项式 6.2矩阵函数及其Jordan表示 6.3矩阵函数的多项式表示 6.4矩阵函数的幂级数表示 6.5矩阵指数函数与矩阵三角函数 7、函数矩阵与矩阵微分方程(2学时) 7.1 函数矩阵对纯量的导数与积分 7.2 函数向量的线性相关性 7.3 矩阵微分方程 (t) ()() dX A t X t dt = 7.4 线性向量微分方程 (t) ()()() dx A t x t f t dt =+ 8、矩阵的广义逆(3学时) 8.1 广义逆矩阵 8.2 伪逆矩阵 8.3 广义逆与线性方程组 课时分配说明:第一章的课时根据学生的数学基础情况可以调整,最多5学时,如学生线

#研究生矩阵论第1讲 线性空间

矩阵论 1、意义 随着科学技术的发展,古典的线性代数知识己不能满足现代科技的需要,矩阵的理论和方法业巳成为现代科技领域必不可少的工具.有人认为:“科学计算实质就是矩阵的计算”.这句话概括了矩阵理论和方法的重要性及其使用的广泛性.因此,学习和掌握矩阵的基本理论和方法,对于理、工科研究生来说是必不可少的数学工具.2、内容 《矩阵论》和工科《线性代数》课程在研究矩阵的内容上有较大的差异: 线性代数:研究行列式、矩阵的四则运算(加、减、乘、求逆 ) 以及第一类初等变换 (非正交的)、对角标准形 (含二次型) 以及n阶线性方程组的解等基本内容. 矩阵论:研究矩阵的几何理论(线性空间、线性算子、内积空间等)、第二和第三类初等变换(正交的)、分析运算(矩阵微积分和级数)、矩阵的范数和条件数、广义逆和分解、若尔当标准形以及几类特殊矩阵和特殊运算等,内容十分丰富. 3、方法 在研究的方法上,矩阵论和线性代数也有很大的不同: 线性代数:引入概念直观,着重计算. 矩阵论:着重从几何理论的角度引入矩阵的许多概念和运算,把矩阵看成是线性空间上线性算子的一种数量表示.深刻理解它们对将

来正确处理实际问题有很大的作用. 第1讲 线性空间 内容: 1.线性空间的概念; 2.基变换和坐标变换; 3.子空间和维数定理; 4.线性空间的同构 线性空间和线性变换是矩阵分析中经常用到的两个极其重要的概念,也是通常几何空间概念的推广和抽象,线性空间是某类客观事物从量的方面的一个抽象. §1 线性空间的概念 1. 群,环,域 代数学是用符号代替数(或其它)来研究数(或其它)的运算性质和规律的学科,简称代数. 代数运算:假定对于集A 中的任意元素a 和集B 中的任意元素b ,按某一法则和集C 中唯一确定的元素c 对应,则称这个对应为A 、B 的一个(二元)代数运算. 代数系统:指一个集A 满足某些代数运算的系统. 1.1群 定义1.1 设V 是一个非空集合,在集合V 的元素之间定义了一种代数运算,叫做加法,记为“+”.即,对V 中给定的一个法则,对于V 中任意元素βα,,在V 中都有惟一的一个元ν和他们对应,称ν为βα,的和,记为βαν+=.若在“+”下,满足下列四个条件,则称V 为一个群. 1)V 在“+”下是封闭的.即,若,,V ∈βα有 V ∈+βα; 2) V 在“+”下是可结合的.即,)()(γβαγβα++=++ ,V ∈γ;

矩阵理论第3章习题解答

第三章 习题解答 1.求矩阵 1141?? =???? A 的谱分解. 解:(1) 求特征值 ()()12310E A λλλ-=-+=,所以特征值为123,1λλ==-. (2) 求特征向量:13λ=对应的特征向量为()11,2;T p = 21λ=-对应的特征向量为()21,2T p =-. (3)谱分解:令1211(,)22P p p ??==?? -??,则1 121124.1 124T T P ωω-?? ????==????????-???? 令1111 124,112T A p ω????==? ?????? ?2221 124,112T A p ω??-??==???? -???? 故谱分解式为123A A A =- 2 求单纯矩阵 296182051240825A -?? ?=- ? ?-?? 的谱分解式. 3.设()1,2,i i n λ= 是正规矩阵n A ∈C 的特征值,证明:()2 1,2,i i n λ= 是H A A 与H AA 的特征值. 证:根据题设矩阵A ,则A 酉相似与对角矩阵,即 ()12diag ,,,H n A U U λλλ= 其中U 为酉矩阵,则 ()() ()() 121 2 diag ,,diag ,,H H H H n n A A U U U U λλλλλλ= ( )222 12diag ,,,H n U U λλλ= 即H A A 的特征值为()2 1,2,i i n λ= ,同理可证()2 1,2,i i n λ= 也是H AA 的特征值。

4 设A 是n n ?阶的实对称矩阵,并且20,A =你能用几种方法证明0.A = 证:(1)设λ是矩阵A 的一个特征值,x 是对应于λ的一个非零特征向量,即 ,Ax x λ=220,A x x λ==所以20,λ=即0,λ=所以矩阵A 的特征值全为零,又A 酉相似与 对角矩阵()12diag ,,,n λλλ 所以0.A = (2)设0,A ≠则20,H A A A =≠与题设矛盾,所以结论成立。 5 试证:对于每一个实对称矩阵A ,都存在一个n 阶方阵S ,使3 A S =。 证:矩阵A 是一个对称矩阵,则A 酉相似于一个对角矩阵,即 ()H 12diag ,,,,n λλλ= A U U 令12111 333diag ,,n λλλ??= ??? D ,则()3 12diag ,,.n λλλ= D 又由()()()3H H H H .==A UD U UDU UDU UDU 令H ,=S UDU 则3=A S 。 7 证明:一个正规矩阵若是三角矩阵,则它一定是对角矩阵. 证明参考课本101页引理3必要性的证明. 8 证明:正规矩阵是幂零阵() 2 0=A 的充要条件是0.=A 证:充分性:0.=A 则结论显然。 必要性:若() 2 0=A ,由题设矩阵A 是正规矩阵,则A 酉相似于一个对角矩阵,即 ()12diag ,,,H n λλλ= A U U () 222221diag ,,0,n H λλλ== A U U 即 () 22221diag ,,0n λλλ= 所以,可得 120,n λλλ==== 即0.=A 结论成立。 9 求矩阵324262423--????=--????--?? A 的谱分解式,并给出n A 的表达式。 解:矩阵A 的特征值:()()()2 det 27,λλλ-=+-E A 所以矩阵A 的特征值为 12,32,7λλ=-=。

北京交通大学研究生矩阵分析期末考试试卷(7份)

2004-2005学年第一学期硕士研究生矩阵分析考试试卷(A) 专业 班级 学号 姓名 一. (12分)3[]R x 表示由次数小于3的多项式组成的线性空间。在 3[]R x 中取两个基:21231,1,(1)x x ααα==-=-; 21232,2,(2)x x βββ==-=-。(1)求123,,βββ到123,,ααα的过度矩阵,(2) 求21x x ++ 在123,,ααα下的坐标。 二. (14分)设T 是n R 的线性映射,对任意12(,, ,)T n n x x x x R =∈满足 11(0,, ,)n Tx x x -=。(1)证明0n T =; (2)求T 的核()N T 及值域 ()R T 的 基和维数。 三. (12分)设1023510224i A i i i -?? ?=++ ? ?-??,120x i -?? ? ?= ? ? ?-?? ,i = 。 计算11, , , Ax Ax A A ∞∞。 四.(10分)求矩阵1123101032160113A -?? ?-- ? = ?- ? ?-? ? 的满秩分解。 五. (12分)求矩阵011110101A ?? ? = ? ??? 的正交三角分解A UR =,其中U

是酉矩阵,R 是正线上三角矩阵。 六. (16分,1、2小题各5分, 3小题6分)证明题: 1. 设A 是n 阶正规矩阵,且满足2320A A E -+=。证明A 是Hermite 矩阵,并写出A 的Jordan 标准形的形式。 2.设A 是正定Hermite 矩阵,且A 是酉矩阵,证明A E =。 3.证明:若A 是Hermite 矩阵,则iA e 是酉矩阵。 七. (24分) 设100011101A ?? ? =- ? ?-?? 。(1)求E A λ-的Smith 标准形; (2)写出A 的最小多项式, A 的初等因子和Jordan 标准形; (3)求相似变换矩阵P 使得1P AP J -=;(4)求1P -矩阵函数()f A ,并计算tA e 。 2004-2005学年第一学期硕士研究生矩阵分析考试试卷(B) 专业 班级 学号 姓名 一. (12分)设3R 两个:123(1,0,1),(1,0,0),(0,1,1)T T T ααα==-=; 123(0,1,1),(1,1,0),(1,0,1)T T T βββ=-=-=。(1)求123,,ααα到 123,,βββ的过度矩阵,(2) 求子空间V ,其中V 中的向量在两个基下的坐标相同。 二. (14分)设线性映射43:T R R →满足:对任意41234(,,,)T x x x x R ∈, 求的核()N T 及值域()R T 的基和维数。

《矩阵论》教学大纲

《矩阵论》教学大纲 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

《矩阵论》课程教学大纲 一、课程性质与目标 (一)课程性质 《矩阵论》是数学专业的选修课,是学习经典数学的基础,又是一门最具有实用价值的数学理论。它不仅是数学的一个重要的分支,而且业已成为现代各科技领域处理大量有限维空间形式与数量关系的强有力的工具。 (二)课程目标 通过本课程的学习,使学生掌握矩阵论的基本概念,基本理论和基本运算,全面了解若干特殊矩阵的标准形及其基本性质,了解近代矩阵论中十分活跃的若干分支,为今后在应用数学,计算数学专业的进一步学习和研究打下扎实的基础。 二、课程内容与教学 (一)课程内容 1、课程内容选编的基本原则 把握理论、技能相结合的基本原则。 2、课程基本内容 本课程主要介绍了线性空间、线性映射、酉空间、欧氏空间、若当标准型、矩阵的分解、矩阵的分析、矩阵函数和广义逆矩阵等基本内容。 (二)课程教学 通过本课程中基本概念和基本定理的阐述和论证,培养高年级本科生的抽象思维与逻辑推理能力,提高高年级本科生的数学素养。 三、课程实施与评价 (一)学时、学分 本课程总学时为54学时。学生修完本课程全部内容,成绩合格,可获3学分。(二)教学基本条件 1、教师 教师应具有良好的师德和较高的专业素质与教学水平,一般应具备讲师以上职称或本专业硕士以上学位。 2、教学设备 配置与教学内容相关的图书、期刊、音像资料等。 (三)课程评价 1、对学生能力的评价 逻辑推理能力,包括逻辑思维的合理性和严密性。 2、采取教师评价为主的评价方法。 3、课程学习成绩由期末考试成绩(70%)和平时成绩(30%)构成。课程结束时评出成绩,成绩评定可分为优、良、中、及格和不及格五个等级,也可采用百分制。 四、课程基本要求 第一章线性空间和线性变换 基本内容:线性空间线性变换 基本要求: (1)理解线性空间有关内容。

矩阵分析期末考试2012

2012-2013学年第一学期硕士研究生矩阵分析考试试卷(A) 专业 学号 姓名 一、(共30分,每小题6分)完成下列各题: (1)设4 R 空间中的向量????????????=23121α,????????????--=32232α,????????????=78013α,???? ?? ??????--=43234α, ????? ? ??????--=30475α Span V =1{}321,,ααα,Span V =2{}54,αα,分别求21V V +和21V V I 的 维数. 解:=A { }54321,,,,ααααα? ? ??? ? ??? ???--→000004100030110 202 01 21V V +和21V V I 的维数为 3和1 (2) 设() T i i 11-=α,() T i i 11-=β是酉空间中两向量,求 内积()βα, 及它们的长度(i = . (0, 2, 2); (3)求矩阵?? ?? ? ?????----=137723521111A 的满秩分解.

解:?? ?? ? ?????----=137723521111A ??????? ? ??? ????? -- --→0000747510737201 ??????????----=137723521111A ??????????--=775211??????? ??? ??? ?? ? ----747 510737201* (4)设-λ矩阵???? ? ??++=2)1(000000 )1()(λλλλλA ,求)(λA 的标准形及其 行列式因子. 解:????? ??++=2)1(000000)1()(λλλλλA ()()??? ? ? ??++→2111λλλλ (5)设*A 是矩阵范数,给定一个非零向量α,定义 *H x x α=, 验证x 是向量范数. 二、(10分)设3R 中的线性变换T 在基321,,εεε下的矩阵表示为 ?? ?? ? ?????-=021110111A , (1)(5分)求T 的值域)(T R 的维数及一组基; (2)(5分)求T 的核)(T N 的维数及一组基. 解:(1)由题意知 T [ε1,ε2,ε3]=[]?? ?? ? ?????-021110111,,321εεε

矩阵理论

矩阵理论 通过学习矩阵理论这门课,发现在这个大数据的时代,矩阵理论是这个时代的基础学科,也是计算机飞速发展的引擎,它的重要性令我咂舌。一下内容是我对矩阵理论这门课程的总结和描述。 本门课程主要包含以下几部分内容:线性方程组、线性空间与线性变换、内积空间、特殊变换及其矩阵、范数及其应用、矩阵分析及其应用、特征值问题。 一 线性方程组 对*m n 矩阵A 施行一次初等行变换(初等行变换),相当于在A 的左边(右边)乘以相应的m 阶(n 阶)初等矩阵。 由于现代计算机处理的数据越来越多,运行的任务越来越大,因此,对矩阵的处理复杂度就是我们关注的重点。 对行列式的拉普拉斯变换是将一个n 阶行列式的计算转化为n 个1n -阶行列式的计算,但是它的计算时间是!n 级。所以拉普拉斯展开定理在理论上非常重要,但在计算上一般仅用于低阶或特殊的行列式。 判断一个算法的优劣,有很多标准,包括时间复杂度和空间复杂度,显然,时间复杂度越小,说明算法效率越高,因此算法也越有价值;而空间复杂度越小,说明算法越好。但主要考虑时间复杂度,因为人生苦短嘛哈哈。 对于一些常用的()f n ,成立下列重要关系: 23(1)(log )()(log )()() (2)(3)(!)()n n n O O n O n O n n O n O n O O O n O n <<<<<<<<< LU 分解就是致力于对降低对方程组求解的复杂度。LU 分解就是在可以的情况下,将矩阵A 分解成单位下三角矩阵和一个上三角的乘积。这样的话,对Ax b =求解,可以转化为对Ly b =求解,然后对Ux y =求解。但是,不是每一个矩阵都可以这样分解,是要满足一定的要求的,这个要求就是矩阵A 的顺序主子式均不为零。 但是不满足这个条件的矩阵就不能分解了吗?当然不是啦!加入一个方阵A 不是顺序主子式不全为零的时候,但是通过行变换,可以满足要求,这样就得了下面这个定理。 如果存在置换矩阵P 、单位下三角矩阵L 与上三角矩阵U ,使得方阵A 满足P A L U =,称作带置换的LU 分解。

矩阵理论作业

矩阵理论在钻柱力学分析方面的应用 摘要:钻柱力学是井眼轨道设计和控制、钻柱设计及钻井参数优选的基础。本文主要从钻柱力学与井眼轨迹控制出发,以弹塑性力学为基础,对多稳定器旋转钻下部钻具、带弯外壳下部钻具以及导向钻具力学性能进行了力学分析,并结合矩阵理论的方法将问题简化,最后对方程求解,并对计算结果进行了分析。 引言:钻柱力学是指应用数学、力学等基础理论和方法,结合实验以及井场资料等数据综合研究受井眼约束的钻柱的力学行为的工程科学。开展钻柱力学研究,对钻柱进行系统、全面、准确的力学分析,在井眼轨道设计与控制、钻柱强度校核、钻柱结构和钻井参数优化等方面都具有重要意义。 1下部钻具力学分析方法 钻柱力学研究从最初的解决防斜打直问题,发展到解决定向井轨迹控制问题,从一维、二维发展到三维,从静态发展到动态。最终形成了集中比较典型的研究方法,即:微分方程法、能量法、有限差分法、纵横弯曲连续梁法和有限元法。 1.1微分方程法 经典微分方程法是钻柱力学中应用最早的研究方法。该方法要求在满足经典材料力学的基本假设的前提下,建立钻柱线弹性的经典微分方程并求解。这种方法在考虑因素较多时,建立的微分方程很复杂,用经典微分方程法求解比较困难。 1.2能量法 能量法是一种求解简单的弹性力学问题的方法。它要求势能函数不仅要满足弹性力学的控制方程,而且要满足边界条件,通过解的形式的假设及有关参数的确定,可得到问题的解答。由于满足以上2个条件是一件非常困难的事情。因此,这一方法的应用受到了限制。

1.3有限差分法 有限差分法是一种近似方法。是通过对钻柱进行力学分析得到钻柱微分方程式,再通过适当的差分转换将位移控制方程转化为差分的形式求解。由于差分方程的系数是可变的,因此可以很容易考虑非线性的影响;同时,由于差分区间可以减小,可以比较容易考虑井眼的约束。但是要得到精确的解,答,差分区间必须取得很小,这样就使矩阵的维数增加,降低了计算速度。对于钻柱力学来说,有限差分法是一种有效的近似计算方法。 1.4纵横弯曲连续梁法 纵横弯曲连续梁法是一种精确解法,这种方法是将钻柱视为相互联系的纵横弯曲的连续梁,应用材料力学中的三弯矩方程建立一组非线性代数方程,该方程物理概念清楚,计算简单,且速度较快。由于这种方法是将三维空间问题分解成2个独立的二维问题求解,力学模型简化得太多,忽略了扭矩及可能的力和变形的耦合问题。这种方法在国内得到了推广和应用。 1.5有限元法 有限元法是一种近似数值计算方法,这种方法是通过将钻柱分解为有限的离散梁单元,再通过适当的合成方法将这些单元组合成一个整体,用以代表原来的钻柱状态,并最终得到一组以节点位移为未知量的代数方程组。有限元法的物理概念清楚、简单,实用性强。不限制钻柱的材料和几何形状,且对单元尺寸也无严格的要求;又可以较容易地考虑非线性的影响。目前发展的接触有限元法,考虑了钻柱、稳定器与井壁之间的初始接触摩擦力,力学模型比较准确,考虑因素较多,解题的速度虽然是这几种方法中最慢的,但也可满足需要。

北京交通大学研究生课程矩阵分析期末考试2011-12-16

北京交通大学 2011-2012学年第一学期硕士研究生矩阵分析考试试卷(A) 专业 班级 学号 姓名 一、(共12分,每小题3分)试对下列概念给出定义: (1)线性映射的值域和核;(2)线性变换的特征值和特征向量; (3)矩阵的最小多项式; (4)矩阵的诱导范数. 二、(共24分,每小题8分)设5R 空间中的向量 110212α????????=????????,201221α????????=????????,312012α?? ? ? ?= ? ? ???,413233α????????=????????,512013α????????=????????,623445α?? ???? ??=?? ?? ???? , Span V =1()1234,,,αααα,Span V =2()56,αα, (1)求矩阵()123456,,,,,A αααααα=的满秩分解; (2)求21V V +的维数及基; (3)求21V V 的维数及基. 三、(10分)求矩阵2000 0224400 2A ????? ?=?????? 的正交三角分解UR A =,其中U 是次酉矩阵,R 是正线上三角矩阵. 四、(10分)设13021i i A i i ??= ?---??24 C ?∈,计算12, , , F A A A A ∞. (这里12-=i ).

2 五、(共28分,每题7分)证明题: (1)设A 是正定Hermite 矩阵,B 是反Hermite 矩阵,证明:AB 的特征值的实部为0. (2)设A 为正规矩阵,证明:)(2A A ρ=. 这里)(A ρ为A 的谱半径. (3)设n n C B ?∈且1

【免费下载】控制中的矩阵理论习题

练习一: 1.设A 、是Hermite 矩阵,证明:AB 是Hermite 矩阵的充分必要条件是n n C B ?∈AB=BA 。2.设,若,则A 为反Hermite 矩阵。试证明:任意一个都n n C A ?∈A A H -=n n C B ?∈可以唯一地表示为一个Hermitet 矩阵与一个反Hermite 矩阵的和。3.证明反Hermite 矩阵的主对角线上的元素或为零,或为纯虚数。4.设是Hermite 矩阵,rank(A)=1,证明:矩阵A 的主对角线上凡不是零的元素n n C A ?∈都是具有同符号的实数;又设是反Hermite 矩阵,rank(B)=1,证明:矩阵B n n C B ?∈的主对角线上凡不是零的元素都是具有同符号的虚部之纯虚数。5.试求一酉矩阵P ,使为对角矩阵,这里AP P AP P H =-1(1)A=; (2)A=。??????????----10001i i i i ??????????-0010010i i 6. 设是Hermite 矩阵。证明A 是Hernite 正定矩阵的充分必要条件是,存在n n C A ?∈Hermite 正定矩阵B ,使得。2 B A =7.设是Hermite 矩阵,则下列条件等价:n n C A ?∈ (1)A 是Hernite 半正定矩阵; (2)A 的特征值全为非负实数; (3)存在矩阵,使得。n n C P ?∈P P A H =练习二:1.用初等变换化下列多项式矩阵为Smith 标准形:(1) ; (2);()???? ??+-=λλλλλλλ352223A ()??????????-+--=222211λλλλλλλλλλB (3) ;(4)()()220000 001C λλλλλ??+??=????+????。()()??????????????---=00000100000002222λλλλλλλD 2.求下多项式矩阵的不变因子:

相关文档
最新文档