乳酸菌耐药性的研究(综述)

乳酸菌耐药性的研究(综述)
乳酸菌耐药性的研究(综述)

乳酸菌耐药性的研究(综述)

摘要乳酸菌是一种革兰阳性菌,其主要的发酵产物主要是乳酸。目前还没有对乳酸菌耐药性展开完全而系统的研究。大多数研究都是针对条件致病性肠球菌的,而乳酸杆菌和乳酸球菌则较少.

关键词乳酸菌;耐药性;转移

乳酸菌是一种革兰阳性菌,其主要的发酵产物主要是乳酸。根据乳酸菌种系进化过程中形成的不同生化指标可以分为:低GC含量的一群,例如,肠球菌属,乳酸杆菌属,乳酸球菌属明串珠菌属,足球菌属和链球菌属,以及高GC含量的双歧杆菌属乳酸菌是存在于人类和其他动物体内(肠道、鼻腔和阴道黏膜)以及环境中(以植物为主)的非常重要的一类微生物。乳酸菌已经作为益生菌广泛应用于食品以及药品领域中,例如发酵酸奶,乳饮料,肠道微生态制剂等。传统的乳酸菌种具有很长的使用历史,但随着人类生活水平的不断提高和食物种类的增多,乳酸菌应用所带来的安全问题也引起人们的注意,尤其是某些菌株对抗生素的耐药现象更是潜在的危险因素。

一般情况下,耐药性的传播主要发生在临床相关的菌株中。但也已经有体内实验证明,在肠道正常菌之间和肠道正常菌与致病菌之间也存在着耐药基因转移现象。食物链就是耐药基因在肠内传播的主要途径,尤其是发酵乳品和发酵肉食品。如果它们在使用前未经过加热处理,就可能使得其中的菌株进入人类的胃肠道,与肠道的正常菌群或者肠道的过路菌接触,并传播耐药性基因,使得原本敏感的菌表现出耐药的表型。许多研究者都指出,,商用乳酸菌菌株如果不经过严格的安全性检测,很有可能会扮演耐药性基因贮存宿主的角色。虽然大部分与食品有关的乳酸菌都已经获得GRAS(相对安全认证),但是它们仍存在着潜在的安全隐患,作为耐药性基因的贮存宿主,它们的耐药性基因可能会转移到人类肠道中的其他正常菌群或者致病菌中,但目前这些都只是猜测并未经过证实。

1抗生素耐药性的出现与耐药机制

自从50年前人们开始利用抗生素来治疗细菌性疾病以来,随着大量的新品种抗生素相继问世以及在治疗过程中的滥用现象,耐药性问题也逐渐的显现出来,使人们在治疗与防治感染性疾病时面临新的考验。

细菌产生耐药性的机制主要包括四个方面:(1)通过改变细胞膜的渗透性来改变药物的渗透能力。(2)通过产生抗生素的钝化酶(例如B-内酰胺酶,葡萄糖苷乙酰基转移酶,核苷酸转移酶和磷酸基转移酶),抑制抗生素的作用。(3)通过激活抗生素的转运系统(如在细胞膜上ATP依赖的转运系统),将抗生素转移到胞外。(4)通过目标修饰(例如23S rR A的甲基化修饰,拓扑异构酶的氨基酸顺序突变),改变抗生素作用的靶点。

细菌耐药性一般可以大致分为两种:一是固有性耐药,二是获得性耐药。固有性耐药一般不会发生转移。获得性耐药大多是由于抗生素的选择性压力所产生的,既可以是由自身基因突变产生耐药基因,也可以是从外界获得耐药基因。这种耐药性具有在细菌间水平转移的可能性。某些耐药基因是可以转移的,转移方式可以分为垂直转移和水平转移。垂直的基因转移方式是指通过具有耐药性的菌株克隆繁殖进行传播。这种方式较为普遍,但是危害性并不高。水平的基因转移是耐药性基因扩散的主要方式,包括三种机制:(1)天然转移,它包括从细胞外介质中吸收游离的DNA并整合到基因组中。(2)接合,是一种通过性菌毛的DNA(主

要是质粒)转移的方式,在大多数菌属中都可以发现。(3)转导,是以噬菌体为载体的转移D NA的方式,其中接合是主要的转移方式。原因之一就是很多耐药性基因都位于像质粒或者转座子之类的移动元件上。第二个原因就是接合作用能

DNA跨种属转移,而转化或者转导只能在同种之间进行。

抗生素的使用对出现耐药性细菌起到了关键的作用。只要将混合菌群暴露于抗生素,就会有能够耐受一定浓度的给定抗生素的细菌。而且一种抗生素不仅能选择出来针对该药物的耐药性菌株,还可以选择出其他与这种抗生素结构相近的化合物的耐药性菌株。例如具有四环素耐药性的基因tet的微生物就可以耐受氧化四环素,氯四环素,脱氧土霉素和米诺环素。这是由于不同的抗生素具有共同的作用位点,而这些位点都被耐药基因的产物所修饰,所以产生了对结构相近的抗生素的耐药性。然而在结构不同的抗生素中也存在着联合抗药性,例如erm 基因能够产生对大环内酯类、林可酰胺类抗生素和链阳性菌素B的耐药性。

2食品和药品乳酸菌分离株的耐药表型分析

近年来,已经有许多人对乳酸菌的抗生素敏感性进行了研究。有少部分研究者认为乳酸菌具有耐药性是有利的,当人们利用抗生素治疗疾病的时候不会将对人体有益的乳酸菌也一同杀灭。但是,有些乳酸菌有可能是潜在的致病菌,一旦成为致病原,由于它们具有耐药性将无法利用抗生素对其进行治疗。而且更重要的是,有些乳酸菌的耐药性具有可转移性,可能会转移到其它乳酸菌或致病菌中,对人类产生威胁。

明确乳酸菌的耐药性特点是十分重要的。一些研究者对几种主要的乳酸菌的耐药表型进行了检测,得出大部分乳酸菌对抗革兰阴性菌的抗生素具有耐药性,例如链霉素、庆大霉素和卡那霉素。此外,足球菌属,明串珠菌属,以及乳杆菌属中的嗜酸乳,植物乳杆菌,干酪乳杆菌。但是目前许多乳酸菌属都对万古霉素具有耐药性。尤其值得重视的是,某些肠球菌所具有的万古霉素耐药性还可以转移给其他菌属。

3乳酸菌耐药性的转移

乳酸菌具有主动或被动的通过接合质粒或转座子与其他细菌交换遗传物质的潜在能力,这种潜在的能力是其能够从其他细菌获得抗生素耐药性基因的前提。乳酸菌中普遍存在着质粒,区别就在于质粒的大小、功能和分布。至少有25种乳酸杆菌具有固有的质粒,而且有的一种菌株里有多个质粒,例如,具有广谱宿主接合性的耐药性质粒pAMB1和pIP501能够进行种间接合。而且在某些肠球菌、乳酸球菌和链球菌中还发现了接合性转座子的存在。这些可移动元件,为乳酸菌耐药基因的传播提供了遗传学基础。

3.1乳酸菌中携带耐药基因的质粒pK214是从奶酪中分离的乳酸乳

球菌K214株里分离出来的一个含有多种抗生素耐药性基因的质粒,包括链霉素、四环素和氯霉素耐药基因和编码药物泵出系统的基因m ef214。研究者还对从风干的香肠中分离出来的一些乳酸杆菌进行了检测,发现它们具有一些大小约为

10KB左右的质粒(少数大于25KB),在这些质粒上携带了四环素耐药基因tet(M)[24]。此外,从植物乳杆菌中从粪肠球菌中分别转移到大肠埃希菌和李斯

特单胞菌属

其他的乳酸菌属则很少发生遗传物质的接合性转移现象。

4结论

目前还没有对乳酸菌耐药性展开完全而系统的研究。大多数研究都是针对条件致病性肠球菌的,而乳酸杆菌和乳酸球菌则较少.

一些乳酸菌可能对某些抗生素具有固有的耐药性,例如嗜酸性乳杆菌对萘啶酸和氟哌酸具有固有的耐药性。固有性和获得性耐药性是很难区分的,因为我们无法研究菌株处于

获得性耐药性之前的状态。如果包括肠球菌、乳酸球菌和乳酸杆菌在内的乳酸菌在稳定接触抗生素的环境中(如人类的肠道,动物的肠道,牛的乳房)就容易发生获得性耐药。

在致病性乳酸菌(如链球菌)、潜在致病性乳酸菌(如肠球菌)和作为正常菌群成员的乳酸菌(如肠内的乳酸杆菌和乳球菌)之间的接触没有任何屏障,使得这些乳酸菌容易产生获得性耐药。如果在3类菌中发现同样的耐药基因则认为耐药性发生了转移,例如,在这3类菌中都发现了四环素耐药基因(如tetM),红霉素耐药基因(erm AM),氯霉素耐药基因(cat),链霉素耐药基因(str)以及链阳性菌素耐药基因(sat)。这些结果说明,在接触抗生素的过程中,使得乳酸菌像其他细菌一样具有跨越种属间传播耐药性的能力。

乳酸菌与其他细菌一样为了在抗生素条件下生存就会发生基因转移现象。因此食品微生物学家认为我们应该避免使用具有可转移性耐药性的细菌。我们可以通过一些方法来避免具有可转移耐药性的细菌从动物来源进入食物,例如对生肉生牛奶进行巴氏消毒或者热处理。此外对食用的动物和植物慎用抗生素可以将抗生素耐药性的细菌产生降低到最小程度。防止耐药性基因的传播需要从各个方面入手。欧盟和瑞士已经禁止将抗生素作为生长促进因子应用到畜牧业;如今用代谢特征作为标记。总之,无论出于何种原因,作为益生菌的乳酸菌都不应该具有耐药性。为了确保乳酸菌的生物安全性,一方面应该提出确切的标准、规范对其进行评估;另一方面应进行前期的生物安全测试和后期的跟踪监测。

参考文献

【1】梁萌萌,张柏林,赵紫华,韩俊华.几株益生乳杆菌耐药性的研究[J].河北工业科技,2011,(04).

【2】雅梅.酸马奶中乳酸菌的分离及耐环丙沙星的研究[J].食品科技, 2011,(11).

【3】李少英.奶牛源性双歧杆菌和乳杆菌的分离鉴定及耐药性研究[D].内蒙古农业大学,2008

【4】尚天翠.传统乳制品中潜在益生乳杆菌对抗生素敏感性研究[J].伊犁师范学院学报(自然科学版),2010,(04).

【5】张爱民.不同来源乳酸菌的耐药性分析及药敏性乳酸菌的应用[D].扬州大学,2008.

【6】张燕燕.乳酸菌对氟喹诺酮类药物耐药机制的研究[D].内蒙古农业大学, 2008.

【7】陈妍.小鼠肠道菌群及肺炎克雷伯菌对氟喹诺酮类药物的耐药性研究[D].郑州大学,2008.陈妍.小鼠肠道菌群及肺炎克雷伯菌对氟喹诺酮类药物的耐药性研究[D].郑州大学,2008.

【8】张宏梅,李发俊,刘学禄,谢丽斯.部分腌渍食品中乳酸菌的分离与耐药性分析[J].食品与发酵工业,2010,(04)。

【9】曾海英,秦礼康,江萍.食源性乳酸菌外获抗药性的研究进展[J].食品科学, 2004,(12).

【10】张丽芳,田洪涛,张玉兰,郭兴华,罗云波.健康人体及保健品中乳酸菌和双歧

杆菌的抗药性分析[J].中国食品学报,2009,(06).

【11】刘小青,万翠香,徐锋,熊凯华,夏慧玲,程波财,魏华,曾明.乳酸菌的安全性研究[J].中国微生态学杂志,2009,(10).

【12】王雪,袁杰利.乳酸菌制剂的研究进展[J].中国微生态学杂志,2010,(09).【13】周雨霞.内蒙古牧区传统乳制品中乳杆菌生物学特性及其益生作用的研究[D].内蒙古农业大学,2006.

【14】唐欢.抗生素所致肠道菌群失衡及乳杆菌对其调节作用的研究[D].第三军医大学,2007

【15】方梅.健康人肠道大肠埃希菌耐药性与Ⅰ类整合子关系的研究[D].四川大学,2006.

【16】张爱民.不同来源乳酸菌的耐药性分析及药敏性乳酸菌的应用[D].扬州大学,2008.

【17】钟转华.肝硬化患者肠生物机械屏障改变及微生态制剂干预价值[D].暨南大学,2010.

【18】杨梅.传统发酵乳制品中乳酸菌的抗生素抗性及相关抗性基因的研究[D].内蒙古农业大学,2010.

【19】王雪.嗜酸乳杆菌对Ⅱ型糖尿病小鼠预防与治疗效果的研究[D].大连医科大学,2010.

【20】黄聪亮,李凤林.乳酸菌制剂的研究及发展现状[J].安徽农学通报, 2007,(16).

多种细菌耐药的分析

2014年第三季度多重耐药菌监测情况分析与对策 院感科检验科药学部 2014年7-9月份共监测多重耐药感染或定植患者80例次,涉及22个科室。检出多重耐药菌96 株(含重复送检),占全院送检有临床意义的细菌总数阳性比例的16.45%,同比上升2.22个百分点;其中院内感染多重耐药菌17株,占多耐菌株的17.71%。 一、多重耐药菌分离通报 2014年7月至9月共计分离多重耐药菌71株。主要分布在ICU、泌尿外科、呼吸内科及神经外科等。 二、前五位的多重耐药菌株标本分布 表一:2014年第三季度前五位多耐菌株标本统计 细菌名称 标本名称 痰液尿液分泌物血液引流液脓液其他 金黄色葡萄球菌 3 1 15 2 1

三、多重耐药菌中发生院内感染科室分布 表二:2014年第三季度多耐院内感染菌种及感染部位科室统计 图二、2014年第二季度与第三季度常见多耐菌院内感染检出变化 四、多重耐药菌病例用药合理性情况 本季度共审核使用抗菌药物的多耐病例70份,其中用药合理病例66份,用药合理率为94.29%。病程中对多重耐药菌及抗菌药物使用情况有分析记录的病例57份,记录合格率81.43%。用药方面存在的问题有:(1)前期用药与药敏结果不一致,未做具体分析,也未更改用药,(2)将主要供全身应用的品

种(万古霉素)作局部用药。记录方面存在的问题有:未记录培养结果和用药情况、更改用药未记录分析、对多重耐药菌的性质未做具体分析(考虑为致病菌、定植菌或污染菌)。 表三:第三季度抗菌药物使用不合理原因和或记录存在问题 五、多重耐药菌患者临床科室管理存在问题: 1、第三季度多耐患者临床管理经督查仍存在许多问题,涉及科室有脑外、心胸、肝胆、骨二、泌外、肾内、东呼吸、西呼吸、东心血管、消化、内分泌、血液肿瘤、东神内、重症医学科、耳鼻喉、皮肤、微生物等18个科室。主要存在问题: (1)不能及时开立隔离医嘱;不能及时上报多耐报告卡; (2)抗菌药物使用、多耐培养结果无分析记录; (3)多重耐药患者解除隔离未进行讨论; (4)多耐患者隔离措施落实不到位(无隔离标识等); (5)MDRO定植或感染患者,转科、转院、出院时,未在转科交接单或出院小

抗生素耐药概况

抗生素耐药概况 当弗莱明发现能够杀灭细菌的青霉素后,人类拥有了抗生素这一对抗细菌感染的有效武器。弗莱明发现的青霉素是一种叫青霉菌的微生物产生的"毒素",能杀灭其他细菌,从而保证"青霉菌"种群的生存。自从人类发现并应用了这一生物间的武器,科学家又陆陆续续发现了许多种不同的抗生素。除了发现自然界已存在的抗生素外,还通过有机反应合成新的同样能够杀灭细菌的化合物,像环丙沙星等叫沙星的药品。经过几十年的不断发展,抗生素的种类很多,比如我们熟悉的青霉素类,如青霉素;头孢菌素类,如头孢氨苄;氨基糖苷类,如庆大霉素、链霉素;大环内酯类,如罗红霉素;四环素类,如四环素;喹诺酮类,如环丙沙星、氧氟沙星;硝咪唑类,如甲硝唑等等。抗生素不仅用于治疗细菌感染性疾病,使本世纪初危害人们健康最大的这类疾病得到有效的控制,并且使手术和某些肿瘤患者的感染得以预防和治疗,人的平均寿命得以延长,人类疾病谱从而发生了根本改变。 然而,正当人们为细菌感染性疾病的控制而欢欣鼓舞时,细菌为了自身的生存发展出各种各样办法对抗抗生素,有的生成水解抗生素的酶使之失效,有的改变自身某些蛋白质的结构使抗生素无法进入细菌细胞起作用。细菌的耐药性带来了现实的和潜在的危机,对人类健康提出了又一次严峻挑战。细菌耐药已成为一个" 全球性的问题,越来越多的细菌出现耐药,其耐药水平也越来越高。目前结核病死灰复燃,结核杆菌耐药的日趋严重是其原因之一;肺炎链球菌的耐药几乎使治疗此菌引起的呼吸道和中枢神经感染的第一线药物疗效尽失。由于多重耐药的发生,往往对付耐甲氧西林金黄色葡萄球菌(MRSA)的抗生素几乎只有万古霉素一种有效,而且对万古霉素耐药的金黄色葡萄球菌(VISA)也已经在日本和美国出现,引起世界范围内的关注,也引起各国政府的重视。近年,美国医学专家对国会提出多次报告,英国政府卫生部也为此下发专门文件,欧盟有关专家委员会在1999年5月专门为对付抗生素耐药问题向欧盟主席提呈报告。毫无疑问,细菌对抗生素的耐药问题已经成为下一个世纪科研的主要热点课题。

关于乳酸菌的分离与发酵的实验

乳酸菌的分离与发酵实验 生命科学学院2009级四班2组 傅盛晟 摘要:本文对乳酸菌的分离与发酵实验进行阐述,从市售酸乳中分离保加利亚乳杆菌和嗜热链球菌,并进行分离与鉴定,最后进行酸乳的发酵实验!实验主要是分离与纯化,鉴定与发酵,最后用分离的菌进行酸乳发酵在与市售酸乳混合菌种进行比较。 关键词:酸奶,乳酸菌,分离鉴定,发酵 微生物在厌氧条件下,分解己糖产生乳酸的作用,称为乳酸发酵。能够引起乳酸发酵的微生物种类很多,其中主要能利用可发酵糖生产乳酸的细菌,即乳酸细菌。常见的乳酸细菌属于链球菌属(Streptococcus)、乳杆菌属(Lactobacillus)、双歧杆菌属(Bifidobaterium)和明串珠菌属(Leuconostoc)等。乳酸细菌多是耐氧菌,只在厌氧条件下才进行乳酸发酵,所以在筛选乳酸茵或需要进行乳酸发酵的情况下,应保证提供厌氧条件。 酸奶是以全脂牛奶等为原料,经乳酸细菌发醇而成的一种具有较高营养价值和特殊风味的发醇制品,是具有一定保健作用的食品。酸奶发酵过程通常是由双菌或多菌的混合培养实现的。其中的杆菌先分解酪蛋白为氨基酸和小肽.由此促进了球菌的生长,而球菌产生的甲酸又刺激了杆菌产生大量乳酸和部分乙醛,此外球菌还产生了双乙酰这类风味物质,因此,达到了稳定状态的彻合发酵。酸乳发酵的基本原理是通过乳酸细菌发酵牛奶中的乳糖产生乳酸,乳酸使牛奶中的酪

蛋白(在全乳中的质量分数为2.9%,在乳蛋白中的质量分数为85%)变性凝固而使整个奶液呈凝乳状态。同时,通过发酵还可以形成酸奶特有的风味和香味(与形成乙醛、丁二酮等有关)。酸奶发酵中的主要生物化学变化是:乳酸菌将牛奶中的乳糖发酵成乳酸使其PH降至酪蛋白等电点(4.6)附近(4.0~4.6)从而使牛奶形成凝胶状;其次,乳酸菌还会促使部分酷蛋内降解、形成乳酸钙和产生一些脂肪、乙醛、双乙酰和丁二酮等风味物质。这就是酸奶具有良好的保健作用和适合广大乳糖不耐症患者饮用的主要原因。按凝固状态可将酸奶分为搅拌型酸奶和凝固型酸奶,两者工艺过程基本相似,本实验主要是凝固型酸奶的制作方法。 一,材料与方法 1.材料和用具 1)菌种,嗜热乳酸链球菌,保加利亚乳酸杆菌,这两类菌种可从市场销售的各种新鲜酸乳或酸乳饮料中分离。 2)培养基参照相关文献和老师的建议以及乳酸菌生长需要复杂营养物质和多种生长因子,我们选用如下培养基: 分离纯化培养基:脱脂乳平板培养基 鉴定培养基:脱脂乳试管 其他:脱脂乳粉或脱脂牛奶,蔗糖等 3)仪器及用具恒温培养箱,高压蒸汽灭菌锅,超净工作台,培养皿,试管,三角瓶若干 2.培养条件 培养温度:40℃ 厌氧条件:由于乳酸菌的发酵与分离纯化都需要厌氧条件,而实验室没有专门的厌氧培养箱,所以我们采用在培养皿和发酵杯上套上保鲜膜制造无氧环境。 培养时间:在培养基上分离培养的时间为2天左右,酸乳发酵为12个小时左右 方法和步骤 1)乳酸菌的分离纯化 101-~105-,取其中的 (1)分离。取市售新鲜酸乳或泡菜的酸液稀释 104-、105-2个稀释度的稀释液各0.1~0.2mL,分别接入脱脂乳琼脂培养基上,用无菌玻璃刮铲依次涂布,或者直接用接种环沾取原液,平板划线分离,置40℃下培养48h,如出现圆形稍扁平的淡黄色菌落及其周围培养基变为黄色者,可初步定为乳酸菌。 (2)鉴别。选取乳酸菌典型菌落转至脱脂乳试管中,40℃培养8~24h。若牛乳出现凝固,无气泡,呈酸性,涂片镜检细胞呈杆状或链球状(两种形状的菌种均分别选入),革兰氏染色阳性,则可将其接种到试管斜面上连续传代4~6次,最终选择出在3~6h能凝固的牛乳管,作菌种待用。 2)乳酸菌饮料—酸乳的发酵

(整理)抗生素耐药性

细菌的耐药性 1.细菌对抗生素的耐药性分类 耐药性分为两类,固有耐药性和获得性耐药性。前者是染色体介导的代代相传的天然耐药性;后者多由质粒介导,也可由染色体介导,当微生物接触抗菌药物后,通过改变自身的代谢途径,从而避免被药物抑制或杀灭。 1.2耐药基因 细菌特别是条件致病菌,因经常有机会与各种抗菌药物接触,故在细菌细胞内的质粒、染色体、转座子、整合子上可有耐药基因和多种耐药基因的积聚并借结合、转导和转化而在不同种细菌、革兰氏阳性菌和革兰氏阴性菌间彼此频繁交换,耐药基因一旦获得较长期存留,转座子和整合子(以及更小的DNA片段)由于分子量小和活动自如,所以在耐药基因转移和MDR形成中起主导作用。 1.3染色体和质粒介导产生的耐药菌 需要指出的是,在正常情况下,由染色体介导而产生耐药性的细菌往往有一定缺陷,而质粒介导产生的耐药菌则与敏感菌一样,可迅速生长繁殖。但质粒与染色体介导的耐药性,一般只发生于少数细菌中,难以与占压倒优势的敏感菌竞争,只有当敏感菌因抗菌药物的选择性压力而被大量杀灭后,耐药菌才得以迅速繁殖而成为优势菌,并导致各种感染的发生。 2.细菌耐药的机理 抗生素成功使用的同时,也带来了严重的细菌耐药性问题,目前已成为全球性的难题。细菌产生耐药性可能是基于以下几种机制。 2.1水解酶和修饰酶水解和修饰抗生素 ⑴水解酶:如β-内酰胺酶可水解β-内酰胺类抗生素 ⑵修饰酶(钝化酶或合成酶):可催化某些基团结合到抗生素

的羟基或氨基上,使抗生素灭活。多数对氨基糖甙类抗生素耐药的革兰氏阴性杆菌能产生质粒介导的钝化酶。 2.2细菌体内靶位结构的改变 如青霉素结合蛋白(PBPs) 的改变是革兰氏阳性菌耐药的主要机制;链霉素耐药株的细菌核蛋白体30s 亚基上链霉素受体P10 蛋白质发生改变等。 2.3其它原因 ⑴细菌泵出系统增多、增强,以排出已进入细菌内的药物; ⑵细胞膜主动转运减少; ⑶建立了新的代谢途径; ⑷细菌对磺胺类药的耐药则可能系对药物具有拮抗作用的底物PABA的产生增多所致。 3.近年来细菌耐药性发展的现状 3.1细菌耐药情况的变迁 ?1920~1960年G+菌葡萄球菌 ?1960~1970年G--菌铜绿假单胞菌等 ?70年代末至今G+,G--菌 _MRSA 耐甲氧西林葡萄球菌 _VRE 耐万古霉素肠球菌 _PRP 耐青霉素肺炎链球菌 _ESBLs 超广谱β-内酰胺酶(G--) _AmpC Ⅰ型β-内酰胺酶(G--) 3.2葡萄球菌的耐药现状 近年来,国内耐药严重的耐甲氧西林金葡菌(MRSA)在医院内的流行已引起临床微生物学、临床抗生素学和感染病学专家的广泛重视。MRSA株同时也不同程度的耐所有β-内酰胺类抗生素、卡巴配能类及配能类。这

乳酸菌菌种的分离筛选方法

乳酸菌菌种的分离筛选方法乳酸细菌是一类能利用发酵糖产生大量乳酸的细菌通称。为兼性厌氧菌,杆状或球状,革兰氏阳性菌,无芽孢,不运动。营养要求高,需要提供丰富的肽类氨基酸维生素。在琼脂表面或内层形成较小的白色或淡黄色的菌落。 通常用作为有益微生物的菌种有乳酸乳杆菌、干酪乳杆菌、植物乳杆菌、嗜酸乳杆菌、粪肠球菌、乳酸片球菌、双歧杆菌、屎肠球菌、戊糖片球菌等。 乳杆菌常用MRS琼脂作半选择培养基。当乳杆菌仅是复杂区系中的部分菌类 时,SL培养基常用作为选择性培养基。对于芽孢乳杆菌常用GYP培养基,链球菌有TYC培养基、MS培养基。M17培养基被用作乳球菌的分离培养基。 嗜酸乳杆菌属于乳杆菌属的一个种。其特性为:杆菌,两端圆,不运动,无 鞭毛。粪肠球菌为革兰氏阳性,圆形或椭圆形。 乳酸片球菌细胞呈球状,直径0.6~1.0μm,在直角两个平面交替形成四联状,一般细胞成对生,单生者罕见,不成链状排列。革兰氏阳性,不运动,兼性厌氧。在MRS培养基上菌落小,呈白色。沿洋菜穿刺线的生长物呈丝状。 乳酸菌在一般琼脂培养基上形成微小菌落,不易观察,所以分离时先富集培养并选择合适的培养基。分离培养基一般添加西红柿、酵母膏、吐温-80等物质,也常常加入醋酸盐,因醋酸盐能抑制部分细菌生长,对乳酸菌无害。 培养基中添加碳酸钙,乳酸溶解培养基中的碳酸钙形成透明圈,作为分离鉴别的依据,通过对生成的乳酸量进行性能鉴定。 乳酸菌生长繁殖时需要多种氨基酸,维生素及微氧,一般菌落比较小。分离培养基一般可添加西红柿酵母膏油酸吐温等物质,均具有促进生长作用。也常常添加醋酸盐抑制有些细菌的生长,对乳酸菌无害。 一.筛选方法: 1.溶钙圈法: 利用一些产酸类细菌在含CaCO3的培养基上产生CaCO3溶解圈,从而筛选出这些产酸类细菌,可用于乳酸菌的筛选。 其中培养基中加入CaCO3的作用是:①鉴别能产生酸的细菌;②中和产生的酸,以维持培养基的PH。 筛选过程:样品预处理→梯度稀释至10-6→选择合适的稀释度涂布→37℃培养

细菌耐药性机理分析

细菌耐药性机理分析 卢嘉程 1142042005

抗生素的杀菌机理简介 ?抑制细胞壁的合成 ?某些含有β-内酰胺环的抗生素,如青霉素类和头孢菌素类,能与细菌细胞壁上一种叫PBPS的特定蛋白结合,抑制分裂中的细菌细胞壁的形成,使细菌因失去细胞壁的保护作用而在渗透作用下裂解死亡。 ?改变细胞膜通透性 ?某些抗生素(多粘菌素和短杆菌素)能与细菌细胞膜相互作用,改变膜的通透性,让细菌因体内的有用物质大量流失到胞外或者电解质失调而死亡

?干扰蛋白质的合成(氨基糖苷类四环素类氯霉素类等) ?抗生素进入细菌体内后与细菌的核糖体或者是tRNA,mRNA等反应底物相互作用,抑制细菌蛋白质的合成,某些重要的蛋白如结构蛋白或酶等无法合成,则细菌必死 ?阻碍核酸的复制和转录(人工合成喹诺酮类抗生素) ?通过阻碍细菌DNA的复制,可以阻止其分裂繁殖。而阻碍DNA的转录则可以导致后续的翻译无法进行,使细菌因缺乏生存所必需的蛋白质而死亡

道高一尺,魔高一丈

细菌抗药性的五种机制 ?使抗生素分解或失去活性 ?有的细菌能产生相应的水解酶或钝化酶来水解掉或修饰抗生素,使之失去生物活性。如细菌产生的β-内酰胺酶就能使含β-内酰胺环的青霉素类抗生素被水解掉,而钝化酶(磷酸转移酶、核酸转移酶、乙酰转移酶)则可以使氨基糖苷类抗生素失去抗菌活性 ?改变抗生素的作用靶点 ?耐甲氧西林的金黄色葡萄球菌通过对细胞壁上的青霉素结合蛋白PBPS进行修饰,使抗生素无法和结构改变了的蛋白结合发挥作用。

?改变细胞膜特性 ?细菌发生突变后改变了质膜的通透性,某些原来需进入细菌细胞内发挥作用的抗菌药物被隔离在细胞外 ?改变代谢途径 ?通过大量增加某些代谢底物的产量,稀释抗生素的作用,让细菌对该种抗生素不再敏感。如磺胺药与对氨基苯甲苯酸(PABA),竞争二氢喋酸合成酶而产生抑菌作用。金黄色葡萄球菌多次接触磺胺药后,其自身的PABA 产量增加,可达原敏感菌产量的20~100 倍,后者与磺胺药竞争二氢喋酸合成酶,使磺胺药的作用下降甚至消失。

乳酸菌菌种的分离筛选办法

精心整理 乳酸菌菌种的分离筛选方法 乳酸细菌是一类能利用发酵糖产生大量乳酸的细菌通称。为兼性厌氧菌,杆状或球状,革兰氏阳性菌,无芽孢,不运动。营养要求高,需要提供丰富的肽类氨基酸维生素。在琼脂表面或内层形成较小的白色或淡黄色的菌落。 通常用作为有益微生物的菌种有乳酸乳杆菌、干酪乳杆菌、植物乳杆菌、嗜酸乳杆菌、粪肠球菌、乳酸片球菌、双歧杆菌、屎肠球菌、戊糖片球菌等。 时,SL 培养基、MS 对乳酸菌无害。一.筛选方法: 1.溶钙圈法: 利用一些产酸类细菌在含CaCO3的培养基上产生CaCO3溶解圈,从而筛选出这些产酸类细菌,可用于乳酸菌的筛选。 其中培养基中加入CaCO3的作用是:①鉴别能产生酸的细菌;②中和产生的酸,以维持培养基的PH 。 筛选过程:样品预处理→梯度稀释至10-6→选择合适的稀释度涂布→37℃培养48h →挑选产生溶

钙圈的菌落反复在MRS培养基上划线→挑起单菌落染色,经镜检确认为纯种→挑选革兰氏阳性单菌落→试管穿刺4℃冰箱保存。 2.溴甲酚绿指示剂法: 培养基:MRS培养基(含溴甲酚绿酒精溶液) 筛选过程:同上,不同之处是稀释涂布后长出菌落,挑取使溴甲酚绿变色的菌落。 二.菌种的分离筛选 1.培养基: ★1.1麦芽汁碳酸钙培养基:麦芽汁(10BX)1L预先灭菌碳酸钙5-10g/LPH自然(分离用) ★★1.2吐温 ★1.3 酵母膏(分离用) 1.4 1.5 MgSO 4 1.6 ★★1.7 蛋白胨 葡萄糖、琼 脂18.0g 酸钙, 1.8BCP 乳糖5.0g蛋白胨5.0g酵母膏3.0g0.5℅溴甲酚紫10ml自来水1000ml pH6.5-7.0(分离用) 1.9BCG牛乳营养琼脂:脱脂奶粉10g,溶于50ml水中,加入1.6℅溴甲酚绿酒 精溶液0.07ml,0.075Mpa20min。另取琼脂2.0g,溶于50ml水中,加酵母膏 1.0g溶解后调pH6.5-6.8,0.1Mpa20min.趁热在无菌操作下两者混合均匀, 倒平板,37℃培养24h,检查是否有杂菌。

呼吸道细菌对抗生素的耐药性与合理使用抗生素

呼吸道细菌对抗生素的耐药性与合理使用抗生素 【关键词】呼吸道细菌抗生素耐药性合理使用抗生素 20世纪末,呼吸道病原菌的耐药状况日益受到人们的关注,抗生素的广泛使用,无论其合理或不合理,无论何时何地对何对象使用,均可能诱导细菌耐药。儿童呼吸道感染发病率高,抗生素使用频率相当高,不合理使用抗生素甚至滥用将诱导细菌产生耐药,还可能产生选择性耐药菌,从而引起病程迁延、并发症产生、治疗失败等,也可能使耐药菌扩散,一旦发生在高危病区或高危人群,必将导致严重后果。为此,本文就儿童呼吸道细菌对抗生素的耐药性与合理使用抗生素探讨如下。 1 细菌对抗生素的耐药机制 自1967年发现第一株耐青霉素肺炎链球菌(PRSP),世界各地陆续发现并不断增多。欧美开展的Alexander 项目研究结果显示,1998~2000 年肺炎链球菌(Sp)的青霉素耐药率为18.2%,红霉素耐药率为24.6%。1996~1997 年亚洲地区病原监测网(ANSORP)的研究报道显示,韩国PRSP为80%,XX59%。而在1998~1999年ANSORP第二次监测结果显示,一些国家PRSP有所上升,XX 高达91.3%、韩国升至85%。2000~2001年、XX、XX和XX四地分离肺炎链球菌共654株,PRSP 发生率依次为XX55.0%、XX50.0%、XX45.0%、42.3%。目前全球X围内大约95%以上的金黄色葡萄球菌(Sa)对青霉素、氨苄西林耐药,近年美国已经报道5株耐万古霉素Sa(VRSA),国内迄今尚未发现。 1.1 β内酰胺类抗生素 1.1.1 作用机制是通过与青霉素结合蛋白(PBPs)结合阻碍细菌细胞壁合成以表现其抗菌活性。PBP按分子量不同可分为5种,每种又分若干亚型:肺炎链球菌的PBP可分为PBP1A、PBP1B、PBP2A、PBP2X、李昌崇,男,50岁,教授,主任医师,博士研究生导师,XX医学院附属第二医院、育英儿童医院副院长。中华儿科学会委员,中华医学会儿科呼吸学组副组长,XX省省儿科学会副主任委员,XX省儿童呼吸疾病诊疗研究中心主任,XX省儿科呼吸学组组长,XX儿童哮喘协作组组长,XX医学院儿科研究所所长,XX 市儿科学会主任委员。《中华儿科杂志》、《中华妇幼临床医学杂志》、《中国实用儿科杂志》、《中国循证儿科杂志》、《国际呼吸杂志》、《临床儿科杂志》、《中国小儿急救医学》等杂志编委。研究方向:儿童呼吸系统疾病基础和临床;变态反应和免疫;危重病医学。主持国家自

细菌主要耐药机制

细菌主要耐药机制 1.产生灭活抗生素的各种酶 1.1 β—内酰胺酶(β-lactamase) β—内酰胺类抗生素都共同具有一个核心β—内酰胺环,其基本作用机制是与细菌的青霉素结合蛋白结合,从而抑制细菌细胞壁的合成。产生β—内酰胺酶是细菌对β-内酰胺类抗菌药物产生耐药的主要原因。细菌产生的β-内酰胺酶,可借助其分子中的丝氨酸活性位点,与β—内酰胺环结合并打开β—内酰胺环,导致药物失活。迄今为止报道的β—内酰胺酶已超过300种,1995年Bush等将其分为四型:第1型为不被克拉维酸抑制的头孢菌素酶;第2型为能被克拉维酸抑制的β-内酰胺酶;第3型为不被所有β—内酰胺酶抑制剂抑制的金属β-内酰胺酶(需Zn2+活化)。可被乙二胺四乙酸和P-chloromercuribenzate所抑制;第4型为不被克拉维酸抑制的青霉素酶。临床常见的β—内酰胺酶有超广谱β—内酰胺酶、头孢菌素酶(AmpC酶)和金属酶。 1.1.1超广谱β-内酰胺酶(Extended-Spectrumβ-lactamases,ESBLs) ESBLs是一类能够水解青霉素类、头孢菌素类及单环类抗生素的β—内酰胺酶,属Bush分型中的2型β—内酰胺酶,其活性能被某些β—内酰胺酶抑制剂(棒酸、舒巴坦、他唑巴坦)所抑制。ESBLs主要由普通β-内酰胺酶基因(TEM—1,TEM—2和SHV—1等)突变而来,其耐药性多由质粒介导。自1983年在德国首次发现ESBLs以来,目前已报道的TEM类ESBIs已有90多种,SHV类ESBLs多于25种。TEM型和SHV型ESBLs主要发现于肺炎克雷伯菌和大肠埃希菌,亦发现于变形杆菌属、普罗威登斯菌属和其他肠杆菌科细菌。 国内近年来随着三代头孢菌素的广泛使用,产ESBLs菌的检出率逐年增加。NCCLs规定,凡临床分离的大肠埃希氏菌和克雷伯氏菌均应监测是否为产ESBLs菌株;若产生,无论体外对第三代头抱菌素、氨曲南的药敏结果如何,均应报告对三代头孢菌素及氨曲南耐药。另外,ESBLs菌株不仅对β-内酰胺类抗生素有很高的耐药率,而且对氨基糖苷类、喹喏酮类耐药率也在60%左右,因此,临床遇到由ESBLs引起的感染时,建议首选含β—内酰胺酶抑制剂的复方抗生素制剂或亚胺培南;对于头孢吡肟等四代头孢,尚有争议。 1.1.2头孢菌素酶(AmpC酶)届Bush分类中的1型(Ⅰ型) β—内酰胺酶。 通常将其分为由染色体介导产生的AmpC β—内酰胺酶和由质粒介导产生的AmpC β—内酰胺酶,前者的产生菌有阴沟肠杆菌、铜绿假单胞菌等,后者主要由肺炎克雷伯氏菌和大肠埃希氏菌产生。AmpC酶可作用于大多数青霉素,第一、二、三代头孢菌素和单环类抗生素。而第四代头孢菌素、碳青霉烯类不受该酶作用。该酶不能被β—内酰胺酶抑制剂所抑制。AmpCβ—内酰胺酶的产生有2种可能:①在诱导剂存在时暂时高水平产生,当诱导剂不存在时,酶产量随之下降,三代头孢菌素、棒酸和碳青霉烯类抗生素是诱导型AmpC酶的强诱导剂;②染色体上控制酶表达的基因发生突变,导致AmpC酶持续稳定高水平表达。由高产AmpC酶耐药菌引起的感染死亡率很高。 实际上,所有的革兰氏阴性菌都能产生染色体介导的AmpC头孢菌素酶,在多数情况下为低水平表达;在肠杆菌、柠檬酸杆菌、沙雷氏菌、铜绿假单胞菌中可高频诱导产生,且常为高产突

2016年第三季度细菌耐药监测预警分析

2016年第三季度细菌耐药监测预警分析 为加强细菌耐药监测预警工作和临床合理应用抗菌药物,根据《卫生部办公厅关于抗菌药物临床应用管理有关问题的通知》(卫办医政发[2009]38号)、《抗菌药物临床应用指导原则》的要求,结合检验科《2016年第三季度常见细菌耐药性统计、分析》报告,对我院的抗菌药物使用提出以下预警: 一、细菌培养情况 2016年07-09月临床共送检细菌培养标本1178份,共检出病原菌389株,阳性检出率为%。排在前五位的细菌是:肺炎克雷伯杆菌118株、大肠埃希菌75株、铜绿假单胞菌30株、金黄色葡萄球菌29株、鲍曼不动杆菌13株,其他细菌162株。 二、全院细菌耐药监测结果分析及用药建议 根据卫生部办公厅关于抗菌药物临床应用管理有关问题的[2009]38号文件和《抗菌药物临床应用管理办法》要求:1.主要目标细菌耐药率超过30%的抗菌药物,应当及时将预警信息通报本机构医务人员;2.主要目标细菌耐药率超过40%的抗菌药物,应当慎重经验用药;3.主要目标细菌耐药率超过50%的抗菌药物,应当参照药敏试验结果选用;4.主要目标细菌耐药率超过75%的抗菌药物,应当暂停针对此目标细菌的临床应用,根据追踪细菌耐药监测结果,再决定是否恢复临床应用。现根据我院第三季度细菌耐药监测情况,对检出率居前五位的细菌根据该要求及抗菌药物的特点进行推荐用药。 1、肺炎克雷伯氏菌

肺炎克雷伯菌是产质粒介导的超广谱β-内酰胺酶(ESBL)的代表菌种。本季度共检出118株,对抗菌药物耐药情况如下: ①对复方新诺明、妥布霉素、哌拉西林/他唑巴坦、头孢他啶、头孢吡肟、庆大霉素、左氧氟沙星、头孢西丁、氨曲南、呋喃妥因、环丙沙星的耐药率均低于30%,可以作为肺炎克雷伯氏菌的首选治疗用药。 ②对头孢曲松、头孢唑林、氨苄西林/舒巴坦的耐药率超过30%,将预警信息通报本机构医务人员。 ③对氨苄青霉素的耐药率达到99%,应暂停其对肺炎克雷伯氏菌感染的临床应用。 2、大肠埃希氏菌 本季度检出大肠埃希氏菌75株,其中,耐碳青霉烯类大肠埃希菌5例,其对抗菌药物耐药情况如下: ①对哌拉西林/他唑巴坦、头孢替坦、亚胺培南、阿米卡星、呋喃妥因、厄他培南的耐药率均低于30%,可作为初始经验治疗和首选用药。 ②对复方新诺明、妥布霉素的耐药率超过30%,将预警信息通报本机构医务人员。 ③对头孢曲松、头孢他啶、头孢吡肟、头孢西丁、氨曲南的耐药率超过40%,建议临床慎重经验用药。 ④对头孢唑林、庆大霉素、氨苄西林/舒巴坦的耐药率均高于50%,需参照药敏试验结果选用,在大肠埃希菌感染的病例中,不宜作为经验和治疗用药。

乳酸菌的分离纯化说课讲解

乳酸菌的分离纯化

乳酸菌的分离与纯化 1.实验目的 2.实验材料 2.1试验设备 天平、牛角匙、电炉、 pH试纸、刻度搪瓷杯、量筒、漏斗、漏斗架、玻璃棒、试管、棉塞、培养基、吸管、牛皮纸、线绳、标签、 500mL 锥形瓶两个、 250mL锥形瓶两个、试管20只、 500mL烧杯两个、 250mL 烧杯两个、 100mL烧杯两个、酒精灯、石棉网、接种针(环)。 2.2实验仪器 50L的高压蒸汽灭菌锅、恒压干热灭菌箱、超镜台、光学显微镜、 75%酒精棉、冰箱。 2.3实验药品 新鲜酸奶、脱脂奶粉或全脂奶粉、蔗糖、 1.6%溴甲酚绿乙醇溶液、酵母膏、琼脂、结晶紫染液、卢戈氏碘液、 95%乙醇、诗坛酸复红染液。 3.试验方法及操作过程 3.1BCG牛乳培养基配方及灭菌 (A)液:脱脂奶粉10克,水50ml,加入1.6%溴甲酚绿乙醇溶液1ml,80℃灭菌20min。 (B)液:酵母膏1克,水50克,琼脂2克,pH6.8,121℃灭菌2.min。 按照配方正确称取所需药品放于烧杯中,在搪瓷杯中加入所需水量,玻棒搅匀,加热溶解,用1N NaOH或1N HCl调pH,用pH试纸对照,加琼脂溶化,

加热过程要不断搅拌,可适当补水。琼脂完全溶解后倒入250mL的锥形瓶中,用纱布包扎好(注意不要污染纱布) 再用牛皮纸包扎,贴上标签(必须用铅笔写),注明何种培养基。在高压锅中,在1kg/cm2压力下维持30min。 3.2倒BCG培养基平板的方法 将灭好菌的A液和B液趁热充分混合,点燃酒精灯对周围的空气进行灭菌,并在酒精灯的附近用左手握着平板用拇指和小拇指打开一个小缝,趁热将培养液倒如平板内,倒入的量能使培养基刚要覆盖平板底部,倒好后把平板平放到实验台,轻轻晃动是培养基形成一个平面,等培养基冷却凝固后倒放并贴上标签。(注意:整个实验要在酒精灯附近做,以保证培养基不染菌) 3.3脱脂乳试管的配制与灭菌 直接选用脱脂乳液或按脱脂奶粉10克与蔗糖5克,水95克(蔗糖与水的比例在1:10的范围内)的比例配制,装量以试管的1/3为宜,115℃灭菌15min。 3.4乳酸菌的分离纯化 取市场销售的新鲜的酸奶,分别用接种针接入BCG牛培养基琼脂平板上,40℃培养48h,如出现圆形稍扁平的黄色菌落及其周围培养基变为黄色者初步定为乳酸菌。 选取乳酸菌典型菌落转致脱脂乳试管中,40℃培养8~24h若牛乳出现凝固,无气泡,显酸性,涂片镜检细胞杆状或链球状,革兰氏染色显阳性,则可将其连续传代3次,最终选择出在3~6h能凝固的牛乳管,作菌种待用。 3.5乳酸发酵及检查

抗生素耐药性的来源与控制对策

抗生素耐药性的来源与控制对策 抗生素的抗性1抗生素耐药性是指一些微生物亚群体能够在暴露于一种或多种抗生素的条件下得以生存的现象,其主要机制包括:(1)抗生素失活。通过直接对抗生素的降解或取代活性基团,破坏抗生素的结构,从而使抗生素丧失原本的功能;(2)细胞外排泵。通过特异或通用的抗生素外排泵将抗生素排出细胞外,降低胞内抗生素浓度而表现出抗性;(3)药物靶位点修饰。通过对抗生素靶位点的修饰,使抗 生素无法与之结合而表现出抗性。 微生物对抗生素的耐性是自然界固有的,因为抗生素实际上是微生物的次生代谢产物,因此能够合成抗生素的微生物首先应该具有抗性,否则这些微生物就不能持续生长。这种固有的抗生素耐药性,也称作内在抗性(intrinsic resistance),是指存在于环境微生物基因组上的抗性基因的原型、准抗性基因或未表达的抗性基因。这些耐药基因起源于环境微生物,并且在近百万年的时间里进化出不同的功能,如控制产生低浓度的抗生素来抑制竞争者的生长,以及控制微生物的解毒机制,微生物之间的信号传递,新陈代谢等,从而帮助微生物更好地适应环境。因此,抗生素耐药性的问题其实是自然和古老的。科学家在北极的冻土中提取到3万年前的古DNA,从中发现了较高多样性的抗生素抗性基因,而且部分抗性蛋

白的结构与现代的变体相似,也证实了抗生素耐药性问题是古老的。虽然一些抗生素抗性微生物和抗性基因很早就存在于自然界,但是抗生素大规模的生产和使用加速了固有抗性微生物和抗性基因的扩散,极大地增加了抗生素耐药性的发生频率。抗生素耐药基因的存在往往与抗生素的使用之间存在良好的相关性。由外源进入并残留在环境中的抗生素对环境微生物的耐药性产生选择压力,携带耐药基因的具有抗性的微生物能存活下来并逐渐成为优势微生物,并不断地将其耐药基因传播给其他微生物。众多研究证实抗生素耐药基因具有较高的移动性,主要是通过基因水平转移(Horizontal gene transfer,HGT)机制,又称基因横向转移(Lateralgene transfer)。即借助基因组中一些可移动遗传因子,如质粒(plasmids)、整合子(integrons)、转座子(transposons)和插入序列(insertion sequences)等,将耐药基因在不同的微生物之间,甚至致病菌和非致病菌之间相互传播。环境中拥有基因横向转移等内在机制的微生物组成一个巨大的 抗性基因储存库,并可能将抗生素耐药性转移到人类共生微生物和病原体中。医学专家很早就指出,抗生素的广泛使用导致了内源性感染和细菌耐药性的增加。而通过宏基因组学的研究方法,科学家在人类肠道微生物群中也发现了高丰度、高多样性的抗生素耐药基因,也印证了这一观点。 人类活动与耐药性2 已有文献和相关统计资料显示,我国

乳酸菌的分离及酸奶的制作

乳酸菌的分离及酸奶的 制作 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

乳酸菌的分离及酸奶的制作 生物科学091 研究背景及意义 乳酸菌是指一群通过发酵糖类,产生大量乳酸的细菌总称。乳酸从形态上可分为球菌和杆菌,并且均为革兰氏染色阳性、在缺少氧气的环境中生长良好的兼性厌氧性或厌氧性细菌。目前,对乳酸菌的应用研究,着重于食品(如发酵乳制品、发酵肉制品和泡菜)和医药工业等人类生活密切相关的领域。 近几年由于广谱和强力的抗菌素的广泛应用,使人体肠道内以乳酸菌为主的益生菌遭受到严重破坏,抵抗力逐步下降,导致疾病越治越多,健康受到极大的威胁。所以,有意增加人体肠道内乳酸菌的数量就显得非常重要。随着人们生活水平的提高和消费观念的转变,在我国生产销售的酸乳及酸乳饮品数量直线上升, 品种花样繁多, 很受消费者的青睐。酸奶是以新鲜牛乳经有效杀菌, 用不同乳酸菌发酵剂制成的乳制品, 味酸甜细腻, 营养丰富, 深受人们喜爱, 专家称它是“21 世纪的绿色食品”, 是一种“功能独特的营养品”。它对人体有较多的好处, 可以维持肠道正常菌群平衡, 调节肠道有益菌群到正常水平等。 因此,从发酵乳制品中分离性能优良的乳酸菌,制作真正的健康、绿色的食品,对促进我国发酵乳制品工业的发展具有重要的意义。 目前市售的各种酸奶制品中, 作为发酵剂的乳酸菌, 通常为保加利亚乳杆菌和嗜热链球菌这两株菌。用嗜热链球菌和保加利亚乳酸杆菌混合培养发酵的乳酸饮品能补充人体肠道内的有益菌,维持肠道的微生态平衡,且含有易于吸收的营养素,具有抑制腐败菌、提高消化率、防癌及预防一些传染病等功效,并能为食品提供芳香风味,使食品拥有良好的质地。 保加利亚乳杆菌():长杆形,直径1-3mm左右,能产生大量的乳酸。酸碱度方面,为耐酸或嗜酸性,因低 pH能防止一些微生物的生长;温度方面,为嗜温至少许嗜热,最适生长温度在37-45℃之间,对低温非常敏感。 嗜热链球菌():卵圆形,直径-微米,呈对或链状排列,无运动性。为健康人肠道正常菌群,可在人体肠道中生长、繁殖。可直接补充人体正常生理细菌,调整肠道菌群平衡,抑制并清除肠道中对人具有潜在危害的细菌。 本研究对市售主要品牌酸奶中乳酸菌进行了分离鉴定,并进一步探讨制备酸奶条件(温度、时间等),以达到最佳的天然酸奶质量效果,为广大消费者选购高品质酸奶提供理论支撑。

常见致病菌耐药机制与应对措施

2014年第二季度细菌耐药监测结果预警与应对策略 由于抗菌药物的广泛不合理应用。细菌耐药现象日益严峻,临床出现大量多耐药和泛耐药菌株,给医院感染预防控制带来挑战。细菌耐药有一定的区域性和时间性,及时了解和掌握本院常见多耐药菌的流行现状及耐药特征,有利于临床医师合理选择抗菌药物,提高治疗效果,以达到减少为耐药菌的产生。现对2014年第二季度病原菌分布情况和耐药率进行公布,并向临床科室提供细菌耐药应对措施。 12014年第2季度我院细菌耐药率及预警信息

备注:耐药率超过30%的抗菌药物,提示“预警抗菌药物”;耐药率超过40%的抗菌药物,提示“慎用抗菌药物”;耐药率超过50%的抗菌药物,提示“参照药敏试 验结果用药”;耐药率超过75%的抗菌药物,提示“暂停该类抗菌药物的临床应用”。2细菌产生耐药性机制 2.1铜绿假单胞菌耐药机制 铜绿假单胞菌对生存环境和营养条件要求很低,在自然界分布广泛,甚至在医院内环境经常可见,其具有多药耐药性及耐药机制:(1)该菌能够产生破坏抗菌药物活性的多种灭活

酶、钝化酶和修饰酶。(2)基因突变,作用靶位变异。(3)细胞膜通透性降低。(4)主动泵出机制将进入的药物排到体外。(5)产生生物膜,阻隔白细胞、多种抗体及抗菌药物进入细菌细胞内吞噬细菌。由于铜绿假单胞菌复杂的耐药机制导致其感染具有难治性和迁延性。 2.2大肠埃希氏菌耐药机制 大肠埃希菌是G-杆菌中分离率较高的机会致病菌,可引起人体所有部位的感染并且呈多重耐药性。 (1)怜内酰胺酶的产生 ①大肠埃希菌对P -内酰胺类抗菌药物耐药主要是由超广谱P -内酰胺酶(ESBLs)引起的,对头霉素类及碳青霉烯类药物敏感。ESBLs可分为五大类:TEM型、SHV型、 CTX-M型、OXA型和其他型,大肠埃希菌ESBLs酶以TEM型最常见。TEM型ESBLs 呈酸性,可水解头孢他啶、头孢噻肟。SHV型ESBLs呈碱性,有水解头孢噻吩的巯 基。CTX-M 型ESBLs 呈碱性,对头孢噻肟水解能力强于头孢他啶。OXA 型ESBLs 呈弱酸性或弱碱性,主要水解底物是苯唑西林,OXA 型酶主要见于铜绿假单胞菌中,在大肠埃希菌中的分离率较低。 ②AmpC怜内酰胺酶AmpC酶主要作用于头孢菌素类抗菌药物,且不能被克拉维酸抑制。它是水解酶,与怜内酰胺环羧基部分共价结合,在水分子作用下导致怜内酰胺环开环,破坏0内酰胺类抗菌药物抗菌活性。 ③对酶抑制剂药的耐药的0内酰胺酶对酶抑制剂药的耐药的0内酰胺酶(IRT)主要有TEM 系列衍变而来,又称为耐酶抑制剂TEM 系列酶。 (2)药物作用靶位的改变 (3)主动外排 (4)外膜通透性的下降 2.3肺炎克雷伯杆菌耐药机制肺炎克雷伯杆菌属于阴性杆菌,通常存在于人类肠道、呼吸道,是除大肠埃希氏菌外导致医源性感染的最重要的条件致病菌。由于抗菌药物的大量使用,在选择性压力下多药耐药肺炎克雷伯杆菌(KPN)菌株不断出现,耐药率日益上升,KPN 耐药机制包括:(1 )产抗菌药物灭活酶 ①0-内酰胺酶包括产超广谱0-内酰胺酶(ESBLs)、AmpC 酶、耐酶抑制剂0-内酰胺酶、碳青霉烯酶(KPC酶)及金属0内酰胺酶(MBLs)等。 ESBLs是耐药KPN产生的最主要的一类酶,由质粒介导,产ESBLsKPN对青霉素类、头孢菌素类及单环类药物耐药,但对头霉素类和碳青霉烯类及酶抑制剂敏感。

抗细菌抗生素及细菌耐药性的论述

抗细菌抗生素及细菌耐药性的论述微生物产生的次级代谢产物具有各种不同的生理活性,抗生素是由(包括、、属) 或高等动植物在生活过程中所产生的具有抗病原体或其它活性的一类,具有抗微生物、抗肿瘤作用和干扰其他生活发育功能的。其中抗细菌抗生素[1]是抗生素中发现最早,数量最多的一类。细菌在对抗抗菌药物的过程中,为了避免遭受伤害,形成了许多防卫机制,由此而产生的耐药菌得以生存和繁殖,大多数细菌对某种抗菌药物或对多种抗菌药物的抗性具有多种耐药机制。细菌对抗生素的耐药性尤其是多重药物耐药性已成为全球关注的医学与社会问题,严重地威胁着感染性疾病的治疗。本文就抗生素的发现,不同种类的抗生素以及其细菌耐药性,研究前景这四方面进行论述。 1抗生素的发现 很早以前,人们就发现某些微生物对另一些微生物的生长繁殖具有抑制作用,随着科学的发展人们终于揭示出了这种称为“抗生”现象的本质,从某些微生物内找到了具有抗生作用的物质,所以人们把由某些微生物在生活过程中产生的,对某些其他病原微生物具有抑制或杀灭作用,能抑制其它细胞增殖的一类化学物质称为抗生素。1929年细菌学家在培养皿中培养细菌时,发现从空气中偶然落在培养基上的青霉菌中长出的菌落周围没有细菌生长,他认为是青霉菌产生了某种化学物质,分泌到培养基里抑制了细菌的生长。这种化学物质便是最先发现的抗生素--青霉素。其中抗细菌抗生素是抗生素中发现最早,数量最多的一类。 2不同种类的抗细菌抗生素 2.1 氨基糖苷类抗生素 2.1.1 定义及发展 氨基糖苷类抗生素[2]是一类分子中含有一个环己醇型的配基、以糖苷键与氨基酸结合(有的与中性糖结合)的化合物,因此也常被称为氨基环醇类抗生素。微生物产生的天然氨基糖苷类抗生素有近200种,氨基糖苷类抗生素具有抗菌谱广、杀菌完全、与β-内酰胺等抗生素有很好的协同作用、对许多致病菌有抗生素后效应( PAE) 等特点。氨基糖苷类抗生素的历史起源于1944年链霉素的发现,链霉素的发现极大的刺激了世界范围内的无数学者开始系统地、有计划地筛选新抗生素。其后又成功地上市了一系列具有里程碑意义的化合物(卡那霉素、庆大霉素、妥布霉素),因此根据这类抗生素的结构特征,卡那霉素等被列为第一代氨基糖苷类抗生素。这一代抗生素的品种最多,应用范围涉及农牧业,其结构特征是分子中含有完全羟基化的氨基糖与氨基环醇相结合。以庆大霉素为代表的第二代氨基糖苷类抗生素的品种比第一代的少,但是抗菌谱更广,结构中含有脱氧氨基糖,对铜绿假单胞菌有抑杀能力。 2.1.2 抗生素的作用机制 氨基糖苷类抗生素的主要作用靶点是细菌30S核糖体,但直到近年来,随着核糖体的结构及核糖体RNA-AGs复合物结构的阐明,才得以在分子水平上真正了解这类抗生素是如何作用于核糖体的。由于细菌核糖体的沉降系数是70S,分为30S和50S这两个亚基,而真核生物的核糖体多由RNA分子构成,其沉降系数为80S,由40S和60S亚基组成,细菌和真核生物的核糖体存在差异,使得这类抗生素能有选择性地作用于细菌,而对真核细胞的影响极小。这类抗生素只要结合在30S核糖体的A位点上,例如在链霉素结合于30S核糖体的晶体结构中(无mRNA和tRNA分子),链霉素可通过氢键和盐桥与16SRNA结合,此外,链霉素还可直接作用于蛋白质S12,S12的K45残基可与

2017年1季度细菌耐药情况分析与对策报告

太和县人民医院2013年三季度细菌耐药情况分析与对策报告 一.标本送检及细菌检出情况 本季度细菌培养送检率为35.24%。微生物室共收到标本2068份,分离出病原菌496株,阳性率23.98%。其中革兰氏阴性菌412株、占83.06%,革兰氏阳性菌54株,占10.89%,白假丝酵母菌5株,占1.01%。科室分布前六位的是:重症医学科422例,儿科422例,肝胆外科112例,神经外科103例,呼吸内科80例,普外科62例,内分泌科59例。送检标本类型较多的依次是:痰581份、大便114份、尿液111份、渗出液111份、脓液75份、血液57份,阳性率最高的为血液,其它依次为:脓液、渗出液、痰液、尿液、大便。 标本中检出的常见菌如下:以肺炎克雷伯菌最多,其次是大肠埃希菌、产气肠杆菌、阴沟肠杆菌、铜绿假单胞菌、奇异变形杆菌。 共筛选出多重耐药菌20株,占总菌数的4.03%,其构成为:大肠埃希菌11株,占多重耐药菌菌株总数的55% 鲍曼不动杆菌3株,占多重耐药菌菌株总数的15%肺炎克雷伯菌2株,占多重耐药菌菌株总数的10%铜绿假单胞菌1 株,占多重耐药菌菌株总数的5%阴沟肠杆菌1株,占多重耐药菌菌株总数的5% 产气肠杆菌1株,占多重耐药菌菌株总数的5% 嗜麦芽寡食单胞菌1株,占多重耐药菌菌株总数的5% 第三季度主要标本类型分布情况 临床常见前几位病原菌 第三季度多重耐药菌菌株类型构成情况(%

二.常见临床分离细菌耐药情况与分析 1.革兰氏阳性菌 本次分离的革兰氏阳性菌较少,不具代表性,无法具体分析。 2.革兰氏阴性菌 本次分离出的大肠埃希菌对哌拉西林、头抱呋辛、头抱他啶耐药率高,应 暂停该类抗菌药物的临床应用;对庆大霉素、哌拉西林/他唑巴坦、头抱吡肟、 复合磺胺、环丙沙星的耐药率在50-75%之间,参照药敏实验结果选择用药;对氨苄西林/舒巴坦为中敏,提示医务人员慎重经验用药;对头抱西丁、阿米卡星耐药率在30-40%应及时将抗菌药物预警信息通报医务人员,对亚胺培南敏感性高。 本次分离的肺炎克雷伯菌对哌拉西林、头抱呋辛的耐药率高,根据细菌耐药预警机制,应暂停使用;对头抱唑林、头抱曲松、氨苄西林、氨苄西林/舒巴坦、头抱他啶、头抱吡肟、哌拉西林/他唑巴坦、复合磺胺耐药率在50-75%之间,提示医务人员参照药敏实验结果用药;对氨曲南、庆大霉素耐药率在40-50% 之间,提示医务人员慎重经验用药;对环丙沙星耐药率在30-40%应及时将抗菌 药物预警信息通报医务人员;对头抱西丁、左氧沙星、阿米卡星、亚胺培南均敏感,是肺炎克雷伯菌的治疗用药。 本次分离的产气肠杆菌对哌拉西林、头抱西丁、头抱呋辛、庆大霉素、复合磺胺耐药率在50-75%之间,提示医务人员参照药敏实验结果用药;对氨苄西林、哌拉西林/他唑巴坦耐药率在40-50%之间,提示医务人员慎重经验用药;对氨苄西林/舒巴坦耐药率在30-40%应及时将抗菌药物预警信息通报医务人员;对阿米卡星、头抱他啶、环丙沙星、头抱吡肟、头抱曲松、亚胺培南、氨曲南均敏感,是产气肠杆菌的治疗用药。 本次分离的阴沟肠杆菌对哌拉西林的耐药率高,根据细菌耐药预警机制,应暂停使用,避免耐药范围的扩大;对头抱西丁、氨苄西林、哌拉西林/他唑巴 坦耐药率大于50%提示医务人员参照药敏实验结果用药;对氨苄西林/舒巴坦、头抱他啶、庆大霉素耐药率在40-50%之间,提示医务人员慎重经验用药;对头抱吡肟、复合磺胺耐药率在30-40%之间,应及时将抗菌药物预警信息通报医务人员。对环丙沙星、阿米卡星、亚胺培南、头抱呋辛、左氧沙星、氨曲南均敏感,是阴沟肠杆菌的治疗用药。 本次分离出的铜绿假单胞菌对头抱西丁、复合磺胺、哌拉西林/他唑巴坦 的耐药率大于75%按照细菌耐药预警机制,应暂停该类抗菌药物的在铜绿假单胞菌感染中的临床应用,根据追踪细菌耐药监测结果,再决定是否恢复其的临床应用;对哌拉西林、

相关文档
最新文档