高炉风口小套频繁烧损的原因分析及探讨(精制甲类)

高炉风口小套频繁烧损的原因分析及探讨(精制甲类)
高炉风口小套频繁烧损的原因分析及探讨(精制甲类)

480m3 高炉风口小套频繁烧损的原因分析及探讨

第一炼铁厂生产科李霏

风口小套频繁烧损的生产现状始终是困扰我公司炼铁厂生产指标的瓶颈问题。为解决此问题,公司各层领导及技术人员对此进行过多次的研讨分析,进行过相关措施进行预防,但收效甚微。现笔者根据老区480m3高炉7、8月的风口套烧损情况及风口套烧损机理探讨如下,仅为个人观点,不足之处在所难免,仅供参考。

一、风口套烧损的情况分类。

风口套烧损机理可分为熔损、破损和磨损三类。实际观察来看,我单位大部分为渣铁侵蚀滴落后造成的熔损,少部分为本身材质或焊接质量不合格造成的破损和磨损。风口所处的工作环境恶劣,部分质量过关的风口套在热梯度的作用下,也有可能造成裂纹或渗漏,从而导致漏水。而破损多发生在风口套本身焊接缝部位,同时可根据烧损后打磨观察,内孔大外孔小的状态即可断定为本身破损,而熔损多为外孔大,内孔小。因我公司烧损风口的现状绝大部分为铁水滴落熔损,故着重探讨熔损情况的分析及预防。

二、造成风口小套熔损的机理。

造成风口套烧损的原因很多,但最基本的烧损机理即是:风口受热超负荷,冷却介质难以及时传导散热,从而导致风口套温度高于铜质固液相反应的700℃界限温度,当达到铜剧烈氧化的900℃界限温度时,风口很快在高温高压下烧坏漏水。而影响导热的因素大致有如下几个方面:

1)风口套本身的材质结构。这包括风口套铜质的纯度、性能,本身结构的合理性。我单位大都是铜质99%以上的贯流式风口,基本应能满足本级别高炉的风口要求。

2)冷却介质的压力、流量以及流速。当前各地区的高炉均在强化生产,尤其是民营企业的高炉利用系数和指标都日趋提高。之前的许多设计参数已难以满足强化冶炼的需求。我单位的风口套水压0.9-0.8Mpa,水量16-15t/h,均同部分高冶强的同级高炉来比较,只能说是在下限水平。而对于流速来说,应该保持在7-16m/s,才能满足我单位的高炉生产需求。(尚未计算,预计为下限值)3)炉缸状况。高炉炉缸活跃、稳定顺行是炼铁生产顺畅的基本要求。所以说炉缸无论是产生哪种堆积,对风口套烧损都产生了巨大的影响。造成炉缸堆积的原因主要有三种:一是低炉温堆积,二是高碱度堆积,三是石墨碳堆积。在我单位的原燃料条件下,焦炭热强度一般,基本在50-53左右,反应性在30左右,同时入炉矿的转鼓强度较低,基本都在70左右徘徊,由此来看,在原燃料方面有对中心死焦柱不利因素。另外因烧结碱度波动较大范围(1.5-2.2不等),为保证铁水质量,长期采取碱度上限操作,从而使中心料柱更容易堆积,造成料柱透气透液性变差。

三、操作制度。

1、炉顶布料。为了保障高炉顺行,在我单位的原燃料条件下,之前各高炉都执行的是有意识的发展边缘的操作方针。高炉操作人员在布料时在焦矿布料方面基本都是负角差多环布料。这虽然维持了顺行,但是由于煤气边缘发展,煤气利用率偏低,导致炉内化学热无法充分利用,高炉负荷难以提升,燃料比固然难

以降低,这在成本方面有很大的损失。同时因边缘煤气的发展,导致炉墙温度升高,渣皮难以稳定,风口回旋区不能纵深到炉缸中心内,炉内料柱必然透气性较差。更直接的后果就是冷却设施加重了负荷,受气流冲刷严重而难以维持长时间的正常使用。

2、风温。高风温操作是高炉冶炼工作者追求的目标。但是如何合理的使用同样要引起重视。我单位考核风温的混风全关使用率指标,在某种角度上导致高炉操作人为影响炉况波动。因热风炉的状态不同,透气保温的能力不同,全关混风操作造成了个别高炉在换炉前后的风温风压均波动幅度较大,这样导致高温区变化,渣带波动,渣皮不稳。

3、富氧喷煤。我单位高炉入炉风量为1450-1480m3/min,风温1150-1180℃,喷煤比约在130-140kg/t水平,按照首钢的风口理论燃烧温度计算公式可知我单位此项参数处于略高水平。因富氧达2500-3000m3/h即可满足2150℃的合理风口理论燃烧温度值。超过此数值,将加剧风口前渣铁生成的温度和速度,从而加剧风口前热流交换剧烈,如处于渣铁难以及时渗透过死料柱到达炉缸时,风口前高速的气流将带动积蓄的渣铁对风口套的接触冲刷,从而导致风口套迅速磨损和烧熔。而稳定的喷煤和富氧使用,避免过多的富氧导致的风口前氧过剩系数过大(超过1.15),对保护风口套有积极意义。

4、渣铁外排。因客观条件的制约,我单位各高炉的出铁正点率大大低于正常值。高炉内渣铁不能及时的排出炉外,导致炉内渣铁积攒空间减小,从而导致炉料透气性紧张,而随着渣铁的不均匀不及时的排出,炉内极易在出铁前后料速变化,难行、崩料、低料线等导致软熔带上下波动,渣皮脱落,脱落的渣皮对风口区的冷却设备造成的热负荷波动,机械冲刷等大大提高了风口烧损的机率。

5、碱金属影响。高炉配吃烧结机头除尘灰,导致碱金属富集循环。虽然碱金属对风口套无过多的直接影响,但是对焦炭的破损影响不容低估。而焦炭的强度降低后加剧了炉内料柱的透气性影响,导致渣铁难以及时渗透,从而影响风口区域的传热导热,造成风口套烧损具备了前提。虽然公司控制了此项因素,但碱金属的及时外排,不是一蹴而就的短期工作,仍需引起足够的重视,应采取措施定期排碱。

6、连续及长期休风的影响。在这方面的影响下,高炉料柱内呆滞,透液透气性变差,渣铁温度不足,流动性差等都可能造成风口套烧损。

7、其他因素。包括煤粉的质量、喷煤的风口均匀度等等,都不作为主要因素,但是同样要引起足够的重视,以便为高炉整体稳定顺行提供外部条件的保证。

以上仅是本人在6月底到公司第一炼铁厂工作后,对7月、8月份发生的连续风口套频繁烧损(个数均为60以上)的粗浅分析,现就此分析根据我单位实际提议部分可控措施。

四、预防及改进措施。

1、加强原燃料的筛分。对高炉入炉料进行全程筛分监控考核。严格制定和执行槽下清理筛底的工作。尤其是在雨季,最大限度的避免大量粉末炉料入炉。减少由此造成的炉料透气性差,炉内压差偏高,边缘气流发展的原料条件。

2、改变布料思路,坚决控制边缘气流。发展中心气流,控制边缘气流,提高煤气利用率。这是降成本、稳顺行的重要布料手段。打透中心,控制边缘,稳定渣皮,严格执行“压边”操作,高炉顺行才有保证。当然,具体手段及幅度视各炉的具体情况而定。

关于高炉风口面积调节方法的探讨解读

第17卷第12期2007年12月 中国冶金 China M e ta llur gy V ol .17,N o .12Decembe r .2007 作者简介:吴狄峰(1982-,男,硕士生; E -mail :w udifeng 0121083@https://www.360docs.net/doc/3d9247079.html, ;修订日期:2007-09-13 关于高炉风口面积调节方法的探讨 吴狄峰1,程树森1,赵宏博1,王子金2 (1.北京科技大学冶金与生态工程学院,北京100083;2.莱芜钢铁股份有限公司炼铁厂,山东莱芜271104摘要:通过建立高炉送风系统模型,模拟了风口尺寸对风口速度、流量和鼓风动能的影响,纠正了高炉操作认识上的一些错误。研究表明,缩小少数几个风口面积会减小鼓风动能,但却增大了其它风口的鼓风动能;只有减小多个风口的面积,才会增大所有风口的鼓风动能。减小少数几个风口的操作之所以能抑止边缘气流是其风量明显减少所致。 关键词:高炉;风口;风量;面积调节 中图分类号:T F54文献标识码:A 文章编号:1006-9356(200712-0055-05 Discussion of Tuyere Area Adjusting Method for Blast Furnace WU Di -feng 1,CH ENG Shu -sen 1,ZH AO H ong -bo 1,WANG Zi -jin 2 (1.Scho ol of M etallurg ical a nd Eco lo gical Eng ineering ,U nive rsity o f Science and Technology Beijing ,Beijing 100083China ;2.I ronmaking P lant of Laiw u I ron and Steel Co L td ,Laiwu 271104,Shandong ,China Abstract :A djusting tuye re area is an impor tant me tho d fo r blast furnace bo ttom adjustment .By building the bla st sending

电动机轴承烧损及防止措施

电动机轴承烧损及防止措施 新疆红雁池第二发电有限责任公司运行部五值金健 【摘要】:文章介绍了采用滚动轴承的大中型电动机轴电流产生的原因及其对电动机轴瓦造成的损害,并结合实践经验介绍了轴电流烧伤轴瓦的特征及处理方法。 【关键词】:轴承烧损;电动机;分析;轴电流;措施 前言 某电厂一台新电机为沈阳电机股份有限公司生产,型号为YKK500-4,额定容量为800 kW,额定电压6 kV,额定转速1 490 r/min,额定电流94 A,F级绝缘,其电机轴承为滚动轴承,安装在某炉的二次风机上。自2002年8月24日首次投运后,电机驱动端轴承温度出现异常,至9月1日,温度达到86 ℃,电机6个测温点报警,同时驱动端振动增大,用远红外测温装置测量电机本体温度为60 ℃,国产黄油润滑脂大量以液体形式流出。因特殊原因,当时该炉不能停运,故只能采取紧急措施,用轴流风机对电机通风降温,电机驱动端轴承温度有所下降。 1、检修及试运情况 2002年9月9日,停炉后对电机进行解体检查,发现转子驱动端NU228E、6228E 2套轴承严重过热、变黑,轴承及轴承盒内已无润滑油脂,轴承盒内套磨出0.5 mm左右的沟槽,轴承盒外盖止口磨掉1 mm左右,轴承盒内分布着大量黑色铁末;同时,轴承内套轨道存在大量麻坑,电机本体内外存有大量溢出的黄油,非驱动端NU228E轴承内套轨道上磨出多道划痕。电机轴承小盖及轴承盒磨损严重。 由于电机有振动现象,轴承小盖及轴承盒磨损也非常严重,当时检修人

员认为是转子轴承机械配合不好。检修中更换了转子驱动端NU228E、6228E 2套轴承,非驱动端NU228轴承;更换了与轴承配套的耐高温润滑脂,重新制作了轴承盒并加装新内套。检查电机通风道未发现问题。 检修完毕,电机通电运行30 min后,发现驱动端轴承温度已达86 ℃,决定立即停运。解体后发现轴承内套轨道有大量麻点,已不能使用。 2、电机轴承烧损原因分析 从2次损坏的轴承内套看,其轨道上都存在大量麻点。仔细观察,发现这些麻点都是由放电产生。引起放电的原因是电机转子存在较大轴电压,在此电压下电机产生严重的轴电流,电流通过转子和轴承时发生放电现象,使轴承内套产生麻点。麻点又使轴承与转子间的摩擦阻力加大,轴承温度迅速上升。在电机首次投运后,曾出现轴承温度异常现象,此温度异常与轴电流引起的麻点有关,温度升高造成了轴承盒与轴承外套配合出现问题,引起轴承与轴承外套相对运动并磨损轴承盒外盖和内套;同时也使得轴承温度继续升高,黄油受热熔化溢出。由于磨损严重,电机驱动端轴承出现位移,造成转子驱动端与非驱动端不同心,轴承径向受力不均,致使轴承滚柱与内套磨出划痕。在第一次检修时,由于轴承小盖及轴承盒磨损非常严重,电机振动明显,机械划伤的痕迹掩盖了大部分放电麻点,再加上轴电流在电机轴承上引起的烧损事故较少,从而使检修人员忽略了轴电流的存在。 由于滚动轴承维护方便、运行可靠,因此在中小型电机中得到广泛应用。但随着滚动轴承制造技术的发展,现代中型、大型电机在制造时也多采用滚动轴承。实际上,采用此种轴承的大、中型电机,只要有轴电流存在,滚动轴承的使用寿命就极其短暂。有的运行1~2月,有的运行几d甚至几h便出现轴承温度高、振动或噪音。因此,必须高度重视此类新投入运行的大、中型电机的轴电流。 3、产生轴电流的原因 造成产生轴电流的原因之一是制造厂在制造电机时,由于制造的定子、

电动机三种典型振动故障的诊断(1)

电动机三种典型振动故障的诊断 1 引言 某造纸厂一台电动机先后出现了三种典型的振动故障: (1) 基础刚性差; (2) 电气故障; (3) 滚动轴承损坏。 现将诊断分析及处理过程进行简单的描述和总结: 此电动机安装于临时混凝土基础上,基础由四根混凝土支柱支撑于二楼楼板横梁上,基础较为薄弱。电动机运行时振动较大,基础平台上感觉共振强烈。没有发现其他异常。 电动机结构型式及技术参数如下: 三相绕线型异步电动机 型号:yr710-6 额定功率:2000kw 额定转速:991r/min 工作频率:50hz 额定电压:10kv 极数:6 滚动轴承:联轴节端nu244c3; 6244c3 末端: nu244c3 (fag) 针对本电动机的特点,采用entek data pactm 1500数据采集器+9000a-lbv加速度传感器; enmoniter odyssey软件进行振动数据的采集和分析: 2 电动机基础刚性弱的诊断过程 2001年8月21日,采用entek data pactm 1500数据采集器对此电动机进行测试。首先,

断开联轴节,进行电动机单试。测量电动机两端轴承座处水平、垂直、轴向三个方向的振动速度有效值(mm/s rms)、振动尖峰能量(gse)幅值及频谱;测量电动机地脚螺栓、基础、基础邻近台板各点及台板下支撑柱上各点的振动位移峰峰值(μm p-p); 测量电动机两侧轴承座 水平、垂直方向的工频(1×n)振动相位角。将电动机断电,采集断电瞬间前后电动机振动频谱瀑布图。 之后,重新找正对中,带负荷运行进行测试,测试内容同上。 测点位置如图1所示;对电动机基础、地脚螺栓及台板各点振动幅值进行测量的数据如图2、图3所示。 图1 图2 振动数据侧视图

高炉风口小套频繁烧损的原因分析及探讨(精制甲类)

480m3 高炉风口小套频繁烧损的原因分析及探讨 第一炼铁厂生产科李霏 风口小套频繁烧损的生产现状始终是困扰我公司炼铁厂生产指标的瓶颈问题。为解决此问题,公司各层领导及技术人员对此进行过多次的研讨分析,进行过相关措施进行预防,但收效甚微。现笔者根据老区480m3高炉7、8月的风口套烧损情况及风口套烧损机理探讨如下,仅为个人观点,不足之处在所难免,仅供参考。 一、风口套烧损的情况分类。 风口套烧损机理可分为熔损、破损和磨损三类。实际观察来看,我单位大部分为渣铁侵蚀滴落后造成的熔损,少部分为本身材质或焊接质量不合格造成的破损和磨损。风口所处的工作环境恶劣,部分质量过关的风口套在热梯度的作用下,也有可能造成裂纹或渗漏,从而导致漏水。而破损多发生在风口套本身焊接缝部位,同时可根据烧损后打磨观察,内孔大外孔小的状态即可断定为本身破损,而熔损多为外孔大,内孔小。因我公司烧损风口的现状绝大部分为铁水滴落熔损,故着重探讨熔损情况的分析及预防。 二、造成风口小套熔损的机理。 造成风口套烧损的原因很多,但最基本的烧损机理即是:风口受热超负荷,冷却介质难以及时传导散热,从而导致风口套温度高于铜质固液相反应的700℃界限温度,当达到铜剧烈氧化的900℃界限温度时,风口很快在高温高压下烧坏漏水。而影响导热的因素大致有如下几个方面: 1)风口套本身的材质结构。这包括风口套铜质的纯度、性能,本身结构的合理性。我单位大都是铜质99%以上的贯流式风口,基本应能满足本级别高炉的风口要求。 2)冷却介质的压力、流量以及流速。当前各地区的高炉均在强化生产,尤其是民营企业的高炉利用系数和指标都日趋提高。之前的许多设计参数已难以满足强化冶炼的需求。我单位的风口套水压0.9-0.8Mpa,水量16-15t/h,均同部分高冶强的同级高炉来比较,只能说是在下限水平。而对于流速来说,应该保持在7-16m/s,才能满足我单位的高炉生产需求。(尚未计算,预计为下限值)3)炉缸状况。高炉炉缸活跃、稳定顺行是炼铁生产顺畅的基本要求。所以说炉缸无论是产生哪种堆积,对风口套烧损都产生了巨大的影响。造成炉缸堆积的原因主要有三种:一是低炉温堆积,二是高碱度堆积,三是石墨碳堆积。在我单位的原燃料条件下,焦炭热强度一般,基本在50-53左右,反应性在30左右,同时入炉矿的转鼓强度较低,基本都在70左右徘徊,由此来看,在原燃料方面有对中心死焦柱不利因素。另外因烧结碱度波动较大范围(1.5-2.2不等),为保证铁水质量,长期采取碱度上限操作,从而使中心料柱更容易堆积,造成料柱透气透液性变差。 三、操作制度。 1、炉顶布料。为了保障高炉顺行,在我单位的原燃料条件下,之前各高炉都执行的是有意识的发展边缘的操作方针。高炉操作人员在布料时在焦矿布料方面基本都是负角差多环布料。这虽然维持了顺行,但是由于煤气边缘发展,煤气利用率偏低,导致炉内化学热无法充分利用,高炉负荷难以提升,燃料比固然难

电机烧坏原因及判断方法 防范措施

电机烧坏原因及判断方法、防范措施 1 缺相运行 造成电机缺相的原因很多,如控制回路的热继电器或磁力启动器的触头由于温度高而氧化,导致接触不良缺相;电机引线或电缆一相断开;电源动力保险一相烧融断开;电机绕组接头焊接不好,过热后融化断开等。 1.2 长期过电流运行 最为常见的是机械装置与电动机的不匹配,就是平时所说的小马拉大车现象;机械部分瞥压、堵转或卡涩后过负荷运行;机械与电机连接处同心度不好;电机本身轴承严重卡涩或损坏;电机绕组选择不合理或接线错误,空载电流就偏大;定子绕组匝间有短路;电源电压过高;电动机在检修过程中取过定子铁芯,造成容量不足等。1.3 电机冷却系统故障 常见的低压电动机一般采用风冷。如果周围环境条件太差、灰尘太大、油污严重,就会导致电动机的表面通风散热槽堵塞;电动机的冷却风叶太小、与转轴存在相对运动或有叶片损坏;电动机冷却风叶安装错误,正向吹风变成反向吸风,冷却效果明显下降等。 1.4 电机绕组接线错误 绕组接线错误常见的原因有三个:①星形接法接成了三角形接法,造成单相绕组承担高电压而过流运行;②电机引出线的首尾搞反,不满足三相交流电互差120电角度的要求,造成启动瞬间定子绕组冒烟;③定子绕组一路接法误接成两路或两路接法误接成四路,造成空载电流偏大或烧损。 1.5 定子绕组制作工艺及绝缘强度不符合要求 低压电动机在烧损后,在定子绕组修复的过程中,存在造成工艺和强度不符合要求的原因。①没有专用的电机绕线、嵌线、划线、接线和焊接的专用工具;②没有按照绕组绕线、嵌线、划线、接线和焊接的标准执行,造成匝间短路;③电机绕组浸漆没有严格按照“三烘两浸”的程序和标准进行; ④绕组层间、相间绝缘没垫好;五是电机绕组端部整形不好,端部太大碰触端盖造成接地。 1.6 运行人员操作不当 连续工作制的电动机频繁启动,由于启动电流过大,加速电机绕组绝缘老化而烧损,尤其是电机热态情况下频繁启动;运行人员在不关闭泵或风机出入口门的情况下带负荷启动电机;对长期停运的电机,未进行绝缘测试和盘车,启动电动机。 2 技术防范措施 针对归纳总结出来的电动机定子绕组烧损原因,结合从事电机检修与维护的工作经验,并参照相关规程,提出如下一些防止低压电动机烧损的技术措施。 2.1 加装缺相保护 依据《电力工程电气设计手册》电气二次部分规定:应装设两相保护,条件

造成高压电动机烧毁的原因及防范措施

造成高压电动机烧毁的原因及防范措施 发电厂的安全生产除控制重大人身及设备责任事故外,主要是控制障碍和异常的发生率,努力降低非计划停运的次数,使机组安全、经济、可靠的运行,发挥出较大的经济效益。而近年来高压异步电动机的屡次烧毁是直接构成二类障碍发生次数的主要因素,同时也威胁着电厂的安全生产,所以,对高压异步电动机的科学、合理的使用以及正确的检修、监测与维护显得至关重要,下面笔者对陡河电厂近几年来高压异步电动机的烧毁原因进行分析,并提出防范的对策。 1 现状的分析 近年来该厂发生高压异步电动机烧毁的次数较为频繁,从1999年的安全统计情况看,8次二类障碍中有6次是高压电动机烧毁,进入2000年以来又有5次二类障碍是高压电动机烧毁,而且都集中表现为电动机定子线圈的局部接地、线间短路或匝间短路、引线、连线烧断,转子断笼条和转子熔铝。 导致上述现象发生的原因有:客观上,设备长期运行存在一定的老化现象,同时电动机的制造质量、工艺、绝缘强度等存在局部缺陷,以及检修维护不当等;主观上,运行中缺乏科学合理的使用,频繁启动加速了高压电动机定子线圈绝缘老化的程度,导致了高压电动机转子笼条的金属疲劳,从而发生转子笼条断裂或熔铝现象,乃致断裂的笼条将定子线圈扫坏,造成电机烧毁。表1是2000年一季度部分高压异步电机的启动次数统计,从表中看出部分高压异步电动机启动最短的间隔为30 min,而运行最短的时间为10 min,基本上是热状态下的频繁启动。 2 运行方式分析 从运行监调及倒换方式上分析,造成频繁启动的原因有两种因素:一是为争制粉单耗,保持交班时的高粉位,增加了制粉系统的启动次数;二是由于绞笼存在着落粉挡板不严,容易发生断轴等缺陷,运行人员尽量减少使用绞笼或不使用绞笼,而靠启、停磨煤机来调整粉仓的粉位。当一台磨煤机检修时,所对应的粉仓只有一台磨煤机,因此无法倒换运行,只有靠运行的磨煤机的启、停来调整粉位,也增加了制粉系统的启动次数。 3 转子断笼条的分析 高压电动机由于启动频繁,特别是启动重负荷的电动机,启动时间长,发生断笼条故障的几率也就较高些,高压电动机启动电流由零升到持续最大值的这个时间区段内,端环短路电流迅速达到最大,端环发热膨胀,这势必产生径向位移,笼条端部亦随之产生径向弯曲。启动时间越长,启动电流愈大,弯曲愈利害。在启动电流由最大值下降到正常运行值这段时间内,笼条由于集肤效应的作用,较大的启动电流将集中在转子槽口处,从而又使笼条发生“弓”型向心弯曲变形。笼条在启动和运行工况下,又受到离心力的作用。由于短路环是厚壁的,在转动情况下的离心力径向增量相对笼条的离心位移是较小的,笼条端部势必发生弯

水轮发电机组振动原因分析

水轮发电机组振动原因 分析 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

水轮发电机组振动原因分析水轮发电机组的振动问题与一般动力机械的振动有一定差异,除了机器本身转动或固定部分引起的振动外,尚需考虑发电机的电磁力以及作用于水轮机过流部分的流动压力对系统及其部件振动的影响。在机组运转的状态下,流体—机械—电磁三部分是相互影响的。例如,当水流流动激起机组转动部分振动时,在发电机转子与定子之间会导致气隙不对称变化,由此产生的磁拉力不平衡也会造成机组转动部分的振动,而转动部分的运动状态出现某些变化后,又会对水轮机的水流流场及发电机的磁场产生影响。因此,水轮机的振动是电气、机械、流体等多种原因引起的。可见,完全按照这三者的相互关系来研究系统的振动是不够的。鉴于问题的复杂性,将引起水轮机组振动原因大致分为机械、水力、电气三方面的因素来研究,为水电厂生产管理、运行、检修人员提供参考意见,以便制定出相应的预防和消振措施。 1水轮发电机组振动的危害振动是旋转机械不可避免的现象,若能将其振幅限制在允许范围内,就能确保机组安全正常运行。但较大振动对机组安全是不利的,会造成如下危害:

a)使机组各连接部件松动,使各转动部件与静止部件之间产生摩擦甚至扫膛而损坏; b)引起零部件或焊缝的疲劳、形成并扩大裂缝甚至断裂; c)尾水管低频压力脉动可使尾水管壁产生裂缝;当其频率与发电机或电力系统的自振频率接近时,将发生共振,引起机组出力大幅度波动,可能会造成机组从电力系统中解列,甚至危及厂房及水工建筑物。下面简单介绍几起天桥水电厂机组振动引起的事故,以便从中了解机组振动的起因。 a)20世纪80年代初,天桥水电站多次发生因振动摆度过大而引起的设备损坏事故。1980年8月3号机由于上导轴承摆度大导致4个上导瓦背垫块断裂;1982年10月3号机发生发电机扫膛严重事故,上导瓦架与上机架固定螺栓8只中的5只被剪断,1只定位销剪断、瓦架变形。上机架振幅达022mm,水导轴承处振幅达020mm。水轮机轴与发电机大轴法兰联接处摆度为074mm,后经测量分析为机组轴承中心不正,发电机转子外圆度超标,空气间隙不匀等原因所致。

电机烧毁的原因汇总

电机烧毁得原因汇总 电机得运转离不开正常得电源输入,合理得电机负荷,良好得散热与绕组漆包线绝缘层得保护。 电机烧毁得原因: (1)异常负荷与堵转;润滑失效,摩擦阻力增大,就是负荷异常得首要原因。 (2)金属屑引起得绕组短路; (3)接触器问题; (4)电源缺相与电压异常; (5)冷却不足; 电动机烧坏主要原因 电动机烧坏得直接原因就是温度高。 电动机常见故障分为机械故障与电气故障两大类,电气故障包括:定子与转子绕组得短路、断路、及启动设备故障;机械故障包括:振动过大、轴承过热、定子与转子相互摩擦及有不正常噪音等。 电动机温度过高得原因 1、电动机本身内部得原因 (1)安装与维修电动机时,误将△形接法得电动机绕组接成了Y形接法,或者误将Y形接法得接成了△形。 (2)绕组相间、匝间短路或接地,导致绕组电流增大,三相电流不平衡,使电动机过热。 (3)极相组线圈连接不正确或每相线圈数分配不均,造成三相空载电流不平衡,并且电流过大;电动机运行时三相电流严重不平衡,产生噪声与振动,电动机过热。 (4)定、转子发生摩擦发热。

(5)异步电动机得笼型转子导条断裂,或绕线转子绕组断线。电动机出力不足而过热。 (6)电动机轴承过热。 2、电动机负载方面得原因 (1)电动机长时间过负载运行,定子电流大大超过额定电流,电动机过热。 (2)电动机启动于频繁,启动时间过长或者启动间隔时间太短,都会引起电动机温升过高。 (3)被拖动机械故障,使电动机出力增大,或被卡住不转或转速急剧下降,使电动机电流猛增而过热。 (4)电动机得工作制式与负载工作制不匹配,例如短时周期工作制得电动机用于带动连续长期工作得负载。 3、环境与通风散热方面得原因 (1)电动机工作环境与通风过高,电动机得不到良好得通风散热而过热。 (2)电动机内得灰尘、油垢过多,不利于电动机得散热。 (3)风罩或电动机内挡风板未装,导致风路不畅,电动机散热不良。 (4)风扇破损、变形、松脱,或者未装或装反,使电动机通风散热不良。 (5)封闭式电动机外壳散热筋片缺损过多,散热面积减少;或者防护式电动机风扇堵塞,都会造成电动机通风散热不良而温升过高。 1、缺相 2、负载过大 3、短路 4、过热

高炉风口参数的设计探讨(百度文库)

高炉风口参数的设计探讨 郭俊奎马铁林 摘要风口是高炉送风系统的重要设备之一,通过对高炉风口参数进行分析、论述、探讨,阐述了风口数目,风口高度, 风口角度、长度,风口直径对高炉冶炼操作、生产技术经济指标的影响,并从设计角度提出了风口参数的设计、计算参考 数据和建议。 关键词高炉风口参数设计探讨 0 前言 高炉炼铁是一个综合的工艺过程,每一项工艺参数设计对高炉生产都有不同程度的影响,高炉风口是炼铁高炉重要的送风设备之一,有高炉炼铁生产工艺以来就存在风口,高炉鼓风、喷吹的燃料都是通过风口进入高炉内的。风口参数主要包括风口数量、高度、直径、角度和长度等数据,风口参数对其本身寿命及炼铁高炉生产技术经济指标有重要影响,是高炉下部调剂的重要手段之一。本文结合节能减排、降低能耗及新工艺的需要,更重要的是通过工业实践,对风口参数进行分析总结、论述探讨,提出了自己的看法,并从设计角度提出了风口参数的设计、计算参考数据和建议,希望使风口参数更加科学合理,做好风口参数设计,从而进一步提高炼铁生产技术经济指标。 1 风口数目的确定 高炉风口数目是高炉工艺设计的重要参数之一,主要取决于炉缸直径大小和鼓风机能力,高炉风口数目增多目前是一种趋势,增加风口数目有利于高炉的强化冶炼。风口数目在满足炼铁工艺要求的同时,还应符合风口的安装尺寸和结构要求。 风口数目的计算有多种方法,但还没有严格的理论计算公式,一般按经验公式粗略计算后确定。设计手册要求风口弧长间距在1200mm~1400mm,国内曾采用如下公式[1]: f=2d+1 式中:f—风口数目,个; d—炉缸直径,m。 式中计算出来的风口数目较少。国外一般采用如下公式[1]: f=πd/(1.0~1.2)或f=3d 风口数目一般为双数。高炉风口数目的合理设计与高炉操作、技术指标有很大关系。风口数目增多,风口弧长间距就小,高炉圆周进风相对均匀,可改善煤气流、温度分布,减少风口之间的“死料区”,炉缸燃烧均匀,可活跃炉缸,利于炉况顺行,有节焦、增产等作用,更有利于节能减排。中小高炉其效果十分明显,大高炉次之。 通过某140m3级高炉工业试验,风口由8个改为10个,和同等条件高炉相比,可提高日产量80 t~100 t,降低焦比10~15 kg/t.Fe。高炉炉缸8个风口时,风口中心线水平间夹角为45°,高炉改为10个风口时风口中心线水平夹角为36°,两者相差9°,也就是说8个风口时,相当于高炉炉缸内圆周72°(9°×8)范围内“无风口”,极大影响了炉缸的工作制度,对高炉技术经济指标影响较大。 上述试验表明,增加风口数目,炉缸燃料燃烧相对均匀、有效,有利于炉内煤气流的初始分布、温度分布、热量分布,可以活跃炉缸,利于炉况顺行,降低能耗,提高产量,有利于提高高炉的技术经济指标和经济效益,是节能减排的重要手段之一。 风口数目的增加,必须与风量、风压及风口直径等参数紧密配合,才能体现出增加风口数目的意义所在,否则,也会带来负面影响,达不到预期效果,反而影响高炉的强化冶炼。 笔者建议风口数目的确定应以炉缸风口之间的弧长间距为依据,以缩小风口弧长距离为原则,确定风口数目。建议风口弧长距离控制在1000 mm~1100 mm,不超过1200 mm。

常见异步电机损坏原因及处理

导致异步电动机绕组损坏的五大元凶及处理 经统计,生产上使用的三相异步电动机,在运行中的故障属绕组烧坏的电气故障约85%,机构及其他故障约15%,绕组烧坏的原因多为缺相运行或过载运行、绕组接地及绕组相间或匝间短路。其次是定、转子摩擦、断条等机械方面的原因。这里着重从电气角度分析电机绕组烧损的故障原因,并提出相应的处理方法 一、缺相运行 1. 故障现象 电机不能起动,即使空载能起起动,转速慢慢上升,有嗡嗡声;电机冒烟发热,并伴有烧焦味。 2. 检查结果 拆下电机端盖,可看到绕组端部有1/3或2/3的极相绕组或变焦或变成深棕色。 3. 故障原因及处理方法 (1)电动机供电回路熔丝回路接触不良或受机械损伤,致使某相熔丝熔断。 (2)电动机供电回路三相熔丝规格不同,容量小的熔丝烧断。应根据电动机功率大小,更换为规格相同的熔丝。 (3)电动机供电回路中的开关(隔离开关、胶盖开关等)及接触器的触头接触不良(烧伤或松脱)。修复并调整动、静触头,使之接触良好。(4)线路某相缺相。查出断线处,并连接牢固。

(5)电动机绕组连线间虚焊,导致接触不良。认真检查电动机绕组连接线并焊牢。 二、过载运行 1. 故障现象 电动机电流超过额定值;电动机温升超过额定温升。 2. 检查结果 电机三组绕组全部烧毁;轴承无润滑脂或砂架损坏;定、转子铁心相磨擦,俗称扫膛。 3. 故障原因及处理方法 (1)负载过重时,要考虑适当减载或更换容量合适的电动机。(2)电源电压过高或过低,需加装三相电源稳压补偿柜。 (3)电机长期严重受潮或有腐蚀性气体侵蚀,绝缘电阻下降。应根据具体情况,进行大修或更换同容量、同规格的封闭电动机。 (4)轴承缺油、干磨或转子机械不同心,导致电动机转子扫膛,使电动机电流超过额定值。首先应认真检查轴承磨损情况,若不合格需更换新轴承;其次,清洗轴承并注入适量润滑脂。然后检查电动机端盖,若端盖中心孔因磨损致使转子不同心,应对端盖进行处理或更换。(5)机构传动部分发生故障,致使电动机过载而烧坏电机绕组。检查机械部分存在的故障,采取措施处理解决,使之转动灵活。 三、绕组接地 1. 故障现象 电机空载无法起动;电动机供电回路熔丝熔断或开关跳闸。

电机烧损的原因及防范措施

电机烧损的原因及防范措施 1缺相运行 造成电机缺相的原因很多,如控制回路的热继电器或磁力启动器的触头由于温度高而氧化,导致接触不良缺相;电机引线或电缆一相断开;电源动力保险一相烧融断开;电机绕组接头焊接不好,过热后融化断开等。 1.2长期过电流运行 最为常见的是机械装置与电动机的不匹配,就是平时所说的小马拉大车现象;机械部分瞥压、堵转或卡涩后过负荷运行;机械与电机连接处同心度不好;电机本身轴承严重卡涩或损坏;电机绕组选择不合理或接线错误,空载电流就偏大;定子绕组匝间有短路;电源电压过高;电动机在检修过程中取过定子铁芯,造成容量不足等。 1.3电机冷却系统故障 常见的低压电动机一般采用风冷。如果周围环境条件太差、灰尘太大、油污严重,就会导致电动机的表面通风散热槽堵塞;电动机的冷却风叶太小、与转轴存在相对运动或有叶片损坏;电动机冷却风叶安装错误,正向吹风变成反向吸风,冷却效果明显下降等。 1.4电机绕组接线错误 绕组接线错误常见的原因有三个: ①星形接法接成了三角形接法,造成单相绕组承担高电压而过流运行;②电机引出线的首尾搞反,不满足三相交流电互差120电角度的要求,造成启动瞬间定子绕组冒烟;③定子绕组一路接法误接成两路或两路接法误接成四路,造成空载电流偏大或烧损。 1.5定子绕组制作工艺及绝缘强度不符合要求 低压电动机在烧损后,在定子绕组修复的过程中,存在造成工艺和强度不符合要求的原因。①没有专用的电机绕线、嵌线、划线、接线和焊接的专用工具;②没有按照绕组绕线、嵌线、划线、接线和焊接的标准执行,造成匝间短

路;③电机绕组浸漆没有严格按照“三烘两浸”的程序和标准进行;④绕组层间、相间绝缘没垫好;五是电机绕组端部整形不好,端部太大碰触端盖造成接地。 1.6运行人员操作不当 连续工作制的电动机频繁启动,由于启动电流过大,加速电机绕组绝缘老化而烧损,尤其是电机热态情况下频繁启动;运行人员在不关闭泵或风机出入口门的情况下带负荷启动电机;对长期停运的电机,未进行绝缘测试和盘车,启动电动机。 2技术防范措施 针对归纳总结出来的电动机定子绕组烧损原因,结合从事电机检修与维护的工作经验,并参照相关规程,提出如下一些防止低压电动机烧损的技术措施。 2.1加装缺相保护 依据《电力工程电气设计手册》电气二次部分规定: 应装设两相保护,条件是: 当电动机由熔断器作为短路保护时,应装设本保护,保护装置用热继电器作为断相保护,容量>3kW的电动机应尽量使用带专用断相保护的热继电器。依据《电力工程电工手册》第二部分关于热继电器的选用条件: 长期或间断长期工作电动机保护用热继电器的选用中强调,对三角形接线的电动机应选用带断相保护装置的热继电器,其电流整定值应于电动机额定电流相等。 2.2强化运行使用的规范性 在启动电机前,必须测试电机的绝缘电阻合格,并盘车灵活;确定电机是在冷态下还是热态下启动,做到冷态启动不超过两次,间隔时间>5min;热态启动不超过两次,间隔时间>30min;检查电机接线及附件完好、测量绝缘合格、电机周围干净清洁没有杂物时送电,送电后必须检查电源电压波动在额定

120m_3高炉风口小套的研制

120m 3 高炉风口小套的研制 莱芜钢铁集团股份有限公司炼铁厂(简称莱钢炼铁厂)4×120m 3高炉所用风口小套原来全部外购。风口装置是高炉送风系统的关键设备,风口小套工作环境恶劣,且因其结构设计和制造工艺不合理,随着高炉冶炼强度的提高,故障率上升,使用寿命低,影响了高炉的生铁产量,风口小套成为制约高炉生产的“瓶颈”问题。为此,在分析了风口小套工作环境及生产使用情况后,改进结构设计及制造工艺,研制出了高寿命的风口小套。1 工艺结构设计 (1)单腔式改为双腔贯流式。原单腔式风口小套为一个通道,空腔较大,冷却水在空腔内滞留时间长,带走的热量少。并且冷却水易走近路,造成冷却死角区,降低了冷却效果。特别是对风口小套前端的高温区冷却效果更差,是造成风口小套寿命低的直接原因。设计改为双腔贯流式,这种结构冷却水从风口小套进口直接进入小套前端的空腔,循环一周后进入外循环空腔反向绕一周后从出口流出。这样,冷却水在小套内流速快、滞留时间短,带走的热量多,对小套前端的高温冲刷部位冷却效果好。 (2)壁厚由12mm 改为20mm 。风口小套损坏的部位总是在露出的风嘴部分,特别是前端面由于受到焦炭、熔融物料及煤气流的冲刷,使风口小套的前端面磨损严重直至破坏。为此,为提高风口抵抗摩擦和热冲击能力,前端壁厚由12mm 增加到20m m 。 (3)进风角度由15°改为10°。原风口小套进风角度为15°,向下倾斜。随着鼓风机的改造,入炉风量、风压都有所提高,风口前回旋区扩大。进风角度改为10°,使风口前回旋区在扩大的情况下适当上移,有利于炉缸的活跃,提高生铁产量,并可减轻风口内壁的磨损。 (4)内径由 90mm 扩大到 95mm 。随着120m 3 高炉实现喷吹煤粉和富氧,高炉冶炼强度的逐步提高,送风制度随之调整。因此,为保持炉缸内合理均匀的煤气流分布,维持适宜的回旋区,必须适当增大风口的面积。在风口个数不变的情况下,必须扩大风口直径。改变风口直径是高炉生产中调节送风制度的主要手段。 (5)长度由240mm 增加到260mm 。由于有3座120m 3高炉到了炉龄后期,炉墙侵蚀严重。虽然风口小套的内径由 90mm 扩大到 95mm ,适应了高炉高冶炼强度的需要,但对于后期高炉的炉墙维护不利,边缘煤气发展将增大。为此,适当将风口小套长度由240m m 增加到260mm ,以便使风口前的回旋区向炉缸中心推移。风口小套改造前后的结构、尺寸如图1 所示。 图1 风口小套改造前后结构 2 制造工艺 (1)采用腹膜砂(酚醛树脂)铸造成型。腹膜砂工艺可提高风口小套铸造型腔表面光洁度,减少水流阻力,增强冷却效果。 (2)为保证风口小套的导热性和铸造成品率,材料选用较高纯度电解铜。采用快速融化、低温浇注的原则(浇注温度1120~1200℃),磷铜脱氧,另加入少量的锌和锡以改善铸造性能并增加铸件的强度。 (3)风口小套铸造、加工完成后,进行耐水压试验,用1.0M Pa 的压力保压30m in 无渗漏及冒汗现象,并且流速恒定。3 使用效果 4×120m 3 高炉的应用实践证明,新研制的风口小套寿命达6个月,而原外购的风口小套使用寿命平均不到3个月,寿命提高了一倍以上。 新的风口小套使用后,适应了高炉高冶炼强度的需要。中心气流的适当发展,炉缸活跃,给高炉降[Si ],降低焦比,提供了充分的保证。由于炉缸的活跃,物理热充足、炉渣流动性好、脱硫能力增强,提高了生铁一级品率。且对炉役后期的高炉减少了边缘气流冲刷,延长了高炉的寿命。 风口小套外购一件费用为2600元,而自制一件的费用为500元,寿命按6个月计,莱钢炼铁厂4座120m 3高炉年用量为64件,年节约外购备件费用达13.44万元。且降低了高炉休风率,提高了生铁的产量和质量,经济效益更为明显。 (莱芜钢铁集团股份有限公司 炼铁厂 于仁波) 72 第24卷 第6期2002年12月 山 东 冶 金Shandong M etallurgy Vol.24,NO.6December 2002

大型泵类电机烧损原因

大型泵类电机烧损原因 摘要:通过我厂给水泵事故的发生及分析、处理过程,为同样拥有大型泵类电机的单位提供宝贵的经验。当其他有相似设备单位,出现类似问题能借鉴我厂处理经验,及时准确处理设备缺陷,确保事故处理不走弯路,缩短维修时间,以创造更大经济效益。 关键词:绝缘三相转子同心 1 事故经过及现象 2007年8月7日,我厂4号给水泵(参数见表一)检修后投入试运行时,上午9点10分联系运行送电,电气运行测4号给水泵电机绝缘150兆欧后,将小车开关送至工作位置。10点24分汽机合闸启动,给水泵主盘电流表数值达到300A(满量程),35秒后电流表指针不返回。汽机值班员拉闸停电检查电机没有启动且电机冒烟。 2 原因分析及查找经过 10点26分电气运行人员将小车开关拉至检修位置,测量电机绝缘(含电缆)150兆欧,合格。并在开关柜内小车下口处带电缆测电机相间均为零。由于近期我厂6KV小车开关发生过几次因行程导向端盖脱落而导致小车开关合闸后缺相现象,怀疑因此原因造成电机冒烟。电气分厂立即组织电气检修人员对开关进行检查,未发现异常,并对小车开关进行了4次分合试验,也未发现异常。分厂决定对给水泵电机做进一步检查。10点46分,电气检修班和高压班人员到现场继续对电机做进一步试验。打开电机接线盒后,发现接线端头三相均过热,接线端头高压胶布已酥烂,证明过流现象确实发生,且证明开关确无问题。拆头后,用2500V摇表测电机绝缘为500MΩ;测量直流电阻A相:119mΩB;相:120.2mΩ;C相:120.6mΩ;相间差:1.3%<2%,且与大修后试验数据( A相:118.7mΩ;B相:119.8mΩ;C 相:119.4mΩ;相间差:0.92%<2%)比较无大的差别。试验结论:合格。由于给水泵电机是我厂容量最大电机,分厂研究决定,对电机进行进一步检查。检修人员将电机下方观察孔打开,发现内有不规则铝块。判断转子出了问题。解体检查发现转子对称性烧毁:上下鼠笼条(各占总鼠笼条的近四分之一)全部融化,溅到对应的定字线圈上。转子端部左右均部分融化(见下图)。根据定子线圈所附着的铝块判断转子未转。 根据我厂设备情况导致转子烧损的可能原因有以下几点: 第一、转子原来有部分断条现象;

高炉风口开孔和风口法兰安装方法

高炉风口开孔和风口法兰安装方案 前言 马来西亚东钢炼铁一期一步工程,高炉本体风口法兰标高:10.800,风口数量16个,风口段炉壳钢板材质为Q345B,钢板厚度为40mm。送风装置是高炉能否正常运转和保持生产高效的关键部位,如果风口设备安装质量不好,气流就不会在炉内均匀分布,严重时会产生不正常的炉况产生故障,而风口的开孔和风口法兰安装的精度直接影响着送风装置的功能。可以说高炉工程中风口开孔和风口法兰安装关系着整个高炉的使用情况。风口开孔最主要的是要保证角度、风口中心线标高和高炉炉壳的坡口大小,这些数据直接影响着风口法兰安装后的精确度,这里所说的开孔标高是指风口法兰标高,一般风口法兰中心线和风口中心线会标于设备上,即风口开孔标高要与风口法兰中心线对齐。而我们最终要保证的数据是风口中线线标高。两个标高不属于同一个,在安装时应该加以注意(风口中心线标高比法兰中心线标高高7mm,开孔时应注意)。所分角度风口开孔角度与风口法兰角度理论上应该重合。大套法兰( 即风口法兰) 炉壳位置外径1156.5 mm,内径1130mm,法兰厚165mm,材质为ZG270-500 ;在风口带炉壳钢板上进行开孔( 孔径严格按照设计),然后焊接上风口法兰.由于炉壳与风口法兰均是炼铁重要设备结构件,故焊接质量的好坏对高炉炉体的结构稳定以至生产都有重要影响,尤需采取严格而周密的焊接工艺.风口法兰焊接有以下特点:1)异种材质相焊; 2 ) 炉壳板厚达40m m; 3 ) 焊接量大,易产生焊接变形; 4 ) 焊位

差;5 ) 最小剩余边距( 相邻两法兰之间)小,在焊接应力作用下炉壳容易开裂.这些特点决定了风口法兰的焊接是高炉施工中焊接工艺最复杂、也是最困难的一道工序。 1 、风口开孔 为防止开孔后安装变形,风口开孔工作在风口所在炉壳安装完成并且上面最少两带安装并焊接完成后进行。风口开孔前炉壳应准备好经校准的水准仪、经纬仪(或全站仪)以及盘尺钢直尺等工机具。先审核图纸,如果没有错误后方可进行工作。 1.1标高测量 首先利用炉心测量桥重新检测炉底中心点,在把吊盘升至高炉风口标高以下大约1.5米后将吊盘八个腿充分固定后,临时用角钢与炉壳固定焊死,用水准仪以炉底标高点为基准点把风口开孔标高(风口法兰炉壳内径标高10.787)反到炉皮上。以三点为一线连接成围炉壳内一周的圆,用石笔标于炉壳上。为防止晃动测量时除工作人员外其它人不要停留在吊盘上。(注意二次复查) 1.2角度划分 以炉炉中心点为中心用经纬仪或全站仪从吊盘上以00为起点(具体以图纸所定起点为准),每转22.50画一条竖线于炉壳上。再堆成反向画另外一条对称线。每条角度线与标高水平线交于上点,此点即为风口开孔中心。 1.3开孔 手工切割风口圆弧,切割分两次进行,以风口中心点为圆点用画

1#高炉风口灌渣及炉况失常事故通报

1#高炉风口灌渣及炉况失常事故通报 一、事故经过 2007年8月3日8:26-16:55,1#高炉计划检修,检修前加休风焦。复风后不久,18:20发现热风炉2#热风总管三叉口处有裂纹及漏风现象,高炉便组织出铁休风。由于热风压力低,铁口偏深,渣铁未出净,在减风过程中,多次出现风口来渣现象。20:10因为担心热风总管吹穿,高炉强行休风,9个弯头及所有吹管灌死。经过近10个小时的事故抢修,于8月4日5:50复风,复风前堵4~11#风口,加4车净焦(8t),批重12t,负荷2.9(正常3.05左右),炉温低,渣铁流动性差,炉况恢复差,不受风,压差控制在90Kpa,仍呈崩滑料行程。其后又多次间加净焦共计20车,5日视炉温仍无起色,共加净焦36车,直到5日中班后期,夜班集中加的32吨净焦到达炉缸后,炉温才起来,开始接受风量,视出渣铁情况,逐步开风口,于8月6日中班末期开全风口,炉况基本恢复。 二、分析 1.对计划休风后炉况恢复存在的困难估计不足。检修后复风前,未堵风口,导致炉况不顺,炉缸不透气、不活跃,不利于渣铁的顺利外排。 2.由于近期,1#高炉整体炉况状态水平还不是处于最佳,加之检修后复风加风过程不精细,未控制好压差,导致悬料发生,炉况顺行被破坏。 3.对热风炉2#三叉口裂缝情况认识、估计不准确,休风匆忙,未出净渣铁就休风。 4.渣中TiO2较高,料仓又无普球库存,致渣铁流动性差,大大

影响炉况恢复进程。 5.处理灌渣过程中,烧坏1、9、14#共3个风口小套,操作工责任心和操作技能有待提高。外加由于夜间作业及弯头备件远离风口平台,整个处理灌渣过程时间偏长,这给炉况恢复带来更大的困难。 6.处理灌渣共花近10个小时,属无计划休风,根据休风前的炉温、炉缸状态及炉况顺行程度,所加4车净焦太少,炉缸热量明显不足。在4日中后期加20车,5日共加36车后炉温才完全起来。 三、总结 1.休风时机的把握 对于冶炼钒钛矿和喷煤的高炉,作出休风决定要慎重,做到炉温不足不休,渣铁未放出不休,并且尽量避免无计划休风。本次事故中,涉及到的热风炉2#热风总管在年初检修时,是全部重新砌筑的,且三叉口采用了带自锁功能的组合砖,结构稳定性比较好,不会出现吹塌的现象。高炉完全有时间再出一次铁,排净渣铁,避免休风灌渣。 如果遇到紧急情况,必须立即休风,为避免风口灌渣,可先减风至30Kpa左右,同时迅速打开铁口、渣口,在安全地带(一般位于可放红渣的低/南渣口方向)选1-2个风口,用长钎子打开窥视孔端盖及倒门(注意人员穿戴好防护用品及站位合理以保证安全),将渣从此风口引出,待几分钟后,渣流完,即可休风,这样可以避免风口大面积灌渣。但此方法有一定的危险性,不主张工长单独操作。如遇特殊情况必须立即休风,可在炉长或值班长的指导下,在保证安全的前提下操作。 2.长期休风后的复风操作

025 10号高炉风口小套频繁漏水原因分析及处理措施

10号高炉风口小套频繁漏水原因分析及处理措施 胡永平杨召永封冬贯 (圣戈班穆松桥中国徐州基地炼铁厂) 摘要:对圣戈班徐州基地10号高炉在2008年10月12月期间风口频繁漏水进行原因分析,确定了冷却水的水质及水压是风口小套损坏的直接原因,高炉操作因素的影响亦是风口损坏不可忽视的因素,通过实施一系列的措施处理后,到目前为止己连续6个月无风口小套漏水现缘的发生。 关键词:高炉小套漏水处理措施 1 引言 圣戈班徐州基地10号(420m3)高炉是圣戈班中国区徐州基地铸管配套节能降耗技术改造项目,于2008年9月16日建成投产,14个风口,风口小套采用双腔式斜风口,小套冷却水采用高压水(0.95Mpa),高炉净环水系统采用高循环率运行,为保证循环水水质,严格控制循环水系统的腐蚀率及热污垢系数,使系统长期稳定地正常运行。在高炉净环水系统中设有投加水质稳定药剂的装置。高炉开炉1月后,出现风口小套频繁漏水现象,严重影响着高炉的各项经济指标。 2风口小套损坏的数量及位置描述 2.1 风口小套损坏的数量及分布 自2008年10月22日(即开炉后36天)至2008年12月26日,风口小套共计损坏31个,在11月14日至11月28日期间平均一天更换一个,严重的11月27日及12月1日每天更换3个,风口寿命最短的为8天,最长的亦仅为72天。平均寿命为28天。(风口更换的数量及位置分布如表1) 2.2风口损坏的位置描述 小套的损坏相对于风口位置无明显的规律性,各风口均有损坏现象。所有风口小套的损坏均在前端、上沿,其中小套内口损坏所占比例为20%,初期的损坏全是此种现象,烧损比例为55%,90%更换下来的风口小套存在龟裂现象,风口损坏形状如图1、图2、图3。 3原因分析 3.1加工制作质量因素

电动机常见故障及原因

异步电动机绕组损坏的原因及处理方法 作者:发布时间:2008-12-29 14:21:58 阅读次数:2054 经统计,生产上使用的三相异步电动机,在运行中的故障属绕组烧坏的电气故障约85%,机构及其他故障约15%,绕组烧坏的原因多为缺相运行或过载运行、绕组接地及绕组相间或匝间短路。其次是定、转子摩擦、断条等机械方面的原因。这里着重从电气角度分析电机绕组烧损的故障原因,并提出相应的处理方法。 一、缺相运行 1. 故障现象 电机不能起动,即使空载能起起动,转速慢慢上升,有嗡嗡声;电机冒烟发热,并伴有烧焦味。 2. 检查结果 拆下电机端盖,可看到绕组端部有1/3或2/3的极相绕组或焦或变成深棕色。 3. 故障原因及处理方法 (1)电动机供电回路熔丝回路接触不良或受机械损伤,致使某相熔丝熔断。 (2)电动机供电回路三相熔丝规格不同,容量小的熔丝烧断。应根据电动机功率大小,更换为规格相同的熔丝。 (3)电动机供电回路中的开关(隔离开关、胶盖开关等)及接触器的触头接触不良(烧伤或松脱)。修复并调整动、静触头,使之接触良好。 (4)线路某相缺相。查出断线处,并连接牢固。 (5)电动机绕组连线间虚焊,导致接触不良。认真检查电动机绕组连接线并焊牢。 二、过载运行 1. 故障现象 电动机电流超过额定值;电动机温升超过额定温升。 2. 检查结果 电机三组绕组全部烧毁;轴承无润滑脂或砂架损坏;定、转子铁心相磨擦,俗称扫膛。 3. 故障原因及处理方法 (1)负载过重时,要考虑适当减载或更换容量合适的电动机。 (2)电源电压过高或过低,需加装三相电源稳压补偿柜。 (3)电机长期严重受潮或有腐蚀性气体侵蚀,绝缘电阻下降。应根据具体情况,进行大修或更换同容量、同规格的封闭电动机。 (4)轴承缺油、干磨或转子机械不同心,导致电动机转子扫膛,使电动机电流超过额定值。首先应认真检查轴承磨损情况,若不合格需更换新轴承;其次,清洗轴承并注入适量润滑脂。然后检查电动机端盖,若端盖中心孔因磨损致使转子不同心,应对端盖进行处理或更换。

相关文档
最新文档