高中数学复习教案:直线、平面垂直的判定及其性质

高中数学复习教案:直线、平面垂直的判定及其性质
高中数学复习教案:直线、平面垂直的判定及其性质

第五节直线、平面垂直的判定及其性质

[考纲传真] 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.

1.直线与平面垂直

(1)定义:如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α垂直.

(2)判定定理:如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.

(3)推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面.

(4)直线和平面垂直的性质:

①垂直于同一个平面的两条直线平行.

②直线垂直于平面,则垂直于这个平面内的任一直线.

③垂直于同一条直线的两平面平行.

2.直线和平面所成的角

(1)平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角.

(2)当直线与平面垂直和平行(或直线在平面内)时,规定直线和平面所成的角分别为90°和0°.

(3)直线和平面所成角的范围是0°≤θ≤90°.

3.二面角的有关概念

(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.

(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.

(3)二面角的范围是0°≤θ≤180°.

4.平面与平面垂直

(1)定义:如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直.

(2)平面与平面垂直的判定定理与性质定理

文字语言图形语言符号语言

定定理一个平面过另一个平面的垂

线,则这两个平面垂直

?

?

?

l⊥α

l?β

?α⊥β

性质定理两个平面垂直,则一个平面内

垂直于交线的直线与另一个平

面垂直?

?

?

α⊥β

l?β

α∩β=a

l⊥a

?l⊥α

[常用结论]

1.若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.

2.一条直线垂直于两平行平面中的一个,则这条直线与另一个平面也垂直.

3.两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.

4.过一点有且只有一条直线与已知平面垂直.

5.过一点有且只有一个平面与已知直线垂直.

[基础自测]

1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)

(1)直线l与平面α内的无数条直线都垂直,则l⊥α. ()

(2)垂直于同一个平面的两平面平行.()

(3)若两条直线与一个平面所成的角相等,则这两条直线平行.()

(4)若两个平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.() [答案](1)×(2)×(3)×(4)×

2.“直线a与平面M内的无数条直线都垂直”是“直线a与平面M垂直”的() A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

B[根据直线与平面垂直的定义知“直线a与平面M内的无数条直线都垂直”不能推出

“直线a与平面M垂直”,反之可以,所以是必要不充分条件.故选B.] 3.(教材改编)设α,β是两个不同的平面,l,m是两条不同的直线,且l?α,m?β.() A.若l⊥β,则α⊥βB.若α⊥β,则l⊥m

C.若l∥β,则α∥βD.若α∥β,则l∥m

A[∵l⊥β,l?α,∴α⊥β(面面垂直的判定定理),故A正确.]

4.如图所示,已知P A⊥平面ABC,BC⊥AC,则图中直角

三角形的个数为________.

4[∵P A⊥平面ABC,

∴P A⊥AB,P A⊥AC,P A⊥BC,

则△P AB,△P AC为直角三角形.

由BC⊥AC,且AC∩P A=A,

∴BC⊥平面P AC,从而BC⊥PC.

因此△ABC,△PBC也是直角三角形.]

5.边长为a的正方形ABCD沿对角线BD折成直二面角,则折叠后AC的长为________.a[如图所示,取BD的中点O,连接A′O,CO,

则∠A′OC是二面角A′-BD-C的平面角.

即∠A′OC=90°,又A′O=CO=

2 2a,

∴A′C=a2

2+

a2

2=a,

即折叠后AC的长(A′C)为a.]

直线与平面垂直的判定与性质

?

【例1】(2018·全国卷Ⅱ)如图,在三棱锥P-ABC中,AB=BC=22,P A=PB=PC=AC=4,O 为AC的中点.

(1)证明:PO⊥平面ABC;

(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.[解](1)证明:因为AP=CP=AC=4,O为AC的中点,

所以OP⊥AC,且OP=2 3.

连接OB.因为AB=BC=

2

2AC,所以△ABC为等腰直角三角形,且OB⊥AC,OB=

1

2AC=2.

由OP2+OB2=PB2知,OP⊥OB.

由OP⊥OB,OP⊥AC,OB?平面ABC,AC?平面ABC,OB∩AC=O,知PO⊥平面ABC. (2)作CH⊥OM,垂足为H.

又由(1)可得OP⊥CH,OP?平面POM,OM?平面POM,OP∩OM=O,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.

由题设可知OC=1

2AC=2,CM=

2

3BC=

42

3,∠ACB=45°.

所以OM=25

3,CH=

OC·MC·sin∠ACB

OM=

45

5.

所以点C到平面POM的距离为45 5.

?考法2直线与平面垂直的性质

【例2】(2017·江苏高考)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.

求证:(1)EF∥平面ABC;

(2)AD⊥AC.

[证明](1)在平面ABD内,因为AB⊥AD,EF⊥AD,

所以EF∥AB.

又因为EF?平面ABC,AB?平面ABC,

所以EF∥平面ABC.

(2)因为平面ABD⊥平面BCD,

平面ABD∩平面BCD=BD,

BC?平面BCD,BC⊥BD,

所以BC⊥平面ABD.

因为AD?平面ABD,所以BC⊥AD.

又AB⊥AD,BC∩AB=B,AB?平面ABC,BC?平面ABC,

所以AD⊥平面ABC.

又因为AC?平面ABC,

所以AD⊥AC.

[规律方法] 1.证明直线与平面垂直的常用方法

(1)利用线面垂直的判定定理.

(2)利用“两平行线中的一条与平面垂直,则另一条也与这个平面垂直”.

(3)利用“一条直线垂直于两个平行平面中的一个,则与另一个也垂直”.

(4)利用面面垂直的性质定理.

2.证明线线垂直的常用方法

(1)利用特殊图形中的垂直关系.

(2)利用等腰三角形底边中线的性质.

(3)利用勾股定理的逆定理.

(4)利用直线与平面垂直的性质.

如图所示,在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.证明:

(1)CD⊥AE;

(2)PD⊥平面ABE.

[证明](1)在四棱锥P-ABCD中,∵P A⊥平面ABCD,

CD?平面ABCD,∴P A⊥CD.

又∵AC⊥CD,且P A∩AC=A,

∴CD⊥平面P AC.而AE?平面P AC,∴CD⊥AE.

(2)由P A=AB=BC,∠ABC=60°,可得AC=P A.

∵E是PC的中点,∴AE⊥PC.

由(1)知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.

又PD?平面PCD,∴AE⊥PD.

∵P A⊥底面ABCD,∴P A⊥AB.

又∵AB⊥AD,且P A∩AD=A,∴AB⊥平面P AD,而PD?平面P AD,

∴AB⊥PD.

又AB∩AE=A,∴PD⊥平面ABE.

面面垂直的判定与性

【例3】(2018·全国卷Ⅰ)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°.以AC 为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.

(1)证明:平面ACD⊥平面ABC;

(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=2

3DA,求三棱锥Q-ABP的体积.

[解](1)证明:由已知可得,∠BAC=90°,BA⊥AC.又BA⊥AD,且AC?平面ACD,AD?平面ACD, AC∩AD=A,所以AB⊥平面ACD.

又AB?平面ABC,所以平面ACD⊥平面ABC. (2)由已知可得,DC=CM=AB=3,DA=3 2.

又BP=DQ=2

3DA,所以BP=2 2.

作QE⊥AC,垂足为E,则QE 1

3DC.

由已知及(1)可得DC⊥平面ABC,所以QE⊥平面ABC,QE=1.

因此,三棱锥Q-ABP的体积为V Q

-ABP =

1

3×QE×S△ABP=

1

3×1×

1

2×3×22sin 45°=1.

[规律方法]证明面面垂直的2种方法

(1)定义法:利用面面垂直的定义,即判定两平面所成的二面角为直二面角,将证明面面垂直问题转化为证明平面角为直角的问题.

(2)定理法:利用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线,把问题转化成证明线线垂直加以解决,

注意:三种垂直关系的转化

(2018·江苏高考)在平行六面体ABCD-A1B1C1D1中,AA1=AB,AB1⊥B1C1.

求证:(1)AB∥平面A1B1C;

(2)平面ABB1A1⊥平面A1BC.

[证明](1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB?平面A1B1C,A1B1?平面

A1B1C,所以AB∥平面A1B1C.

(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.

又因为AA1=AB,所以四边形ABB1A1为菱形,

因此AB1⊥A1B.

又因为AB1⊥B1C1,BC∥B1C1,

所以AB1⊥BC.

又因为A1B∩BC=B,A1B?平面A1BC,BC?平面A1BC,

所以AB1⊥平面A1BC.

因为AB1?平面ABB1A1,

所以平面ABB1A1⊥平面A1BC.

垂直关系中的存在性问

【例4】如图,2,∠BAC=60°.

(1)求三棱锥P-ABC的体积;

(2)在线段PC上是否存在一点M,使得AC⊥BM,若存在求PM

MC的值,并说明理由.

[解](1)由题设AB=1,AC=2,∠BAC=60°,

可得S

△ABC =

1

2·AB·AC·sin 60°=

3

2.

由P A⊥平面ABC,可知P A是三棱锥P-ABC的高,又P A=1,

所以三棱锥P-ABC的体积

V=1

3·S△ABC·P A=

3

6.

(2)在线段PC上存在一点M,使得AC⊥BM,此时PM MC=

1

3.

证明如下:如图,在平面P AC 内,过点M 作MN ∥P A 交AC 于N ,连接BN ,BM . 由P A ⊥平面ABC 知P A ⊥AC , 所以MN ⊥AC .

由MN ∥P A 知AN NC =PM MC =1

3. 所以AN =1

2,

在△ABN 中,BN 2=AB 2+AN 2-2AB ·AN cos ∠BAC =12+? ????

122

-2×1×12×12=34,

所以AN 2+BN 2=AB 2, 即AC ⊥BN .

由于BN ∩MN =N ,故AC ⊥平面MBN . 又BM ?平面MBN . 所以AC ⊥BM .

[规律方法] 1.对命题条件探索性的主要途径: (1)先猜后证,即先观察与尝试给出条件再证明;

(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.

2.平行(垂直)中点的位置探索性问题:一般是先根据条件猜测点的位置再给出证明,探索点存在问题,点多为中点或三等分点中某一个,也可以根据相似知识建点.

如图,四边形ABCD 为梯形,AB ∥CD ,PD ⊥平面ABCD ,∠BAD =∠ADC =90°,DC =2AB =2,DA = 3.

(1)线段BC 上是否存在一点E ,使平面PBC ⊥平面PDE ?若存在,请给出BE

CE 的值,并进行证明;若不存在,请说明理由.

(2)若PD =3,线段PC 上有一点F ,且PC =3PF ,求三棱锥A -FBD 的体积.

[解] (1)存在线段BC 的中点E ,使平面PBC ⊥平面PDE ,即BE

CE =1.证明如下: 连接DE ,PE ,∵∠BAD =∠ADC =90°,AB =1,DA =3,∴BD =DC =2, ∵E 为BC 的中点,∴BC ⊥DE , ∵PD ⊥平面ABCD ,∴BC ⊥PD , ∵DE ∩PD =D ,∴BC ⊥平面PDE , ∵BC ?平面PBC , ∴平面PBC ⊥平面PDE .

(2)∵PD ⊥平面ABCD ,且PC =3PF ,

∴点F 到平面ABCD 的距离为23PD =233,

∴三棱锥A -FBD 的体积V A -FBD =V F -ABD =13×S △ABD ×233=13×12×1×3×233=1

3.

平面图形的翻折问

【例5】 如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1

2AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图2中△A 1BE 的位置,得到四棱锥A 1-BCDE .

图1 图2

(1)证明:CD ⊥平面A 1OC ;

(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1-BCDE 的体积为362,求a 的值. [解] (1)证明:在题图1中,连接EC (图略), 因为AB =BC =1

2AD =a ,

E 是AD 的中点,∠BAD =π

2,所以BE ⊥AC .

即在题图2中,BE⊥A1O,BE⊥OC,

从而BE⊥平面A1OC.

又CD∥BE,所以CD⊥平面A1OC.

(2)由已知,平面A1BE⊥平面BCDE,

且平面A1BE∩平面BCDE=BE,

又由(1)可得A1O⊥BE,所以A1O⊥平面BCDE.即A1O是四棱锥A1-BCDE的高.

由题图1知,A1O=AO=

2

2AB=

2

2a,平行四边形BCDE的面积S=BC·AB=a

2,从而四棱锥

A1-BCDE的体积为V=1

3S·A1O=

1

3×a

2

2a=

2

6a

3.

2

6a

3=362,得a=6.

[规律方法]平面图形的翻折问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况.一般地,翻折后还在同一平面上的性质不发生变化,不在同一个平面上的性质发生变化.

且EF∥BC,将△AEF沿EF折起到△PEF的位置,使得二面角P-EF-B的大小为60°.

(1)求证:EF⊥PB;

(2)当点E为线段AB的靠近B点的三等分点时,求四棱锥P-EBCF的侧面积.

[解](1)证明:在Rt△ABC中,∵AB=BC=3,∴BC⊥AB.

∵EF∥BC,∴EF⊥AB,翻折后垂直关系没变,仍有EF⊥PE,EF⊥BE,

∴EF⊥平面PBE,∴EF⊥PB.

(2)∵EF⊥PE,EF⊥BE,∴∠PEB是二面角P-EF-B的平面角,

∴∠PEB=60°,又PE=2,BE=1,由余弦定理得PB=3,

∴PB2+BE2=PE2,∴PB⊥BE,∴PB,BC,BE两两垂直,

又EF⊥PE,EF⊥BE,

∴△PBE,△PBC,△PEF均为直角三角形.

由△AEF ∽△ABC 可得,EF =2

3BC =2,

S △PBC =12BC ·PB =332,S △PBE =12PB ·BE =32,S △PEF =1

2EF ·PE =2.

在四边形BCFE 中,过点F 作BC 的垂线,垂足为H (图略),则FC 2=FH 2+HC 2=BE 2+(BC -EF )2=2,∴FC = 2.

在△PFC 中,FC =2,PC =BC 2+PB 2=23,PF =PE 2+EF 2=22, 由余弦定理可得cos ∠PFC =PF 2+FC 2-PC 22PF ·FC =-

14, 则sin ∠PFC =

154,S △PFC =12PF ·FC sin ∠PFC =15

2

. ∴四棱锥P -EBCF 的侧面积为S △PBC +S △PBE +S △PEF +S △PFC =2+23+15

2.

1.(2018·全国卷Ⅲ)如图,矩形ABCD 所在平面与半圆弧︵

CD 所在平面垂直,M 是

CD 上异于C ,D 的点.

(1)证明:平面AMD ⊥平面BMC ;

(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.

[解] (1)证明:由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ?平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .

因为M 为︵

CD 上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM ?平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD . 证明如下:如图,连接AC 交BD 于O .

因为ABCD 为矩形,所以O 为AC 中点.连接OP ,因为P 为AM 中点,所以MC ∥OP .MC ?平面PBD ,OP ?平面PBD ,所以MC ∥平面PBD .

2.(2017·全国卷Ⅰ)如图,在四棱锥P -ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°。

(1)证明:平面P AB ⊥平面P AD ;

(2)若P A =PD =AB =DC ,∠APD =90°,且四棱锥P -ABCD 的体积为83,求该四棱锥的侧面积. [解] (1)证明:由已知∠BAP =∠CDP =90°, 得AB ⊥AP ,CD ⊥PD .

由于AB ∥CD ,故AB ⊥PD ,从而AB ⊥平面P AD . 又AB ?平面P AB , 所以平面P AB ⊥平面P AD .

(2)如图,在平面P AD 内作PE ⊥AD ,垂足为E . 由(1)知,AB ⊥平面P AD ,故AB ⊥PE ,AB ⊥AD , 可得PE ⊥平面ABCD .

设AB =x ,则由已知可得 AD =2x ,PE =22x . 故四棱锥P -ABCD 的体积 V P -ABCD =13AB ·AD ·PE =13x 3

. 由题设得13x 3=8

3,故x =2.

从而结合已知可得P A=PD=AB=DC=2,AD=BC=22,PB=PC=2 2.可得四棱锥P-ABCD的侧面积为

1

2P A·PD+1

2P A·AB+

1

2PD·DC+

1

2BC

2sin 60°=6+2 3.

高中数学专题讲义-直线与平面所成的角

【例1】 (全国2文7) 已知正三棱锥的侧棱长的底面边长的2倍,则侧棱与底面所成角的余弦值等于( ) A .3 B .3 C .22 D .3 【例2】 (全国2理7) 已知正三棱柱111ABC A B C -的侧棱长与底面边长相等,则AB 1与侧面11ACC A 所成角的正弦等于( ) A .6 B .10 C .2 D .3 【例3】 (福建卷6) 如图,在长方体ABCD 1111A B C D -中,2AB BC ==,11AA =,则1BC 与平面11BB D D 所成角的正弦值为( ) A . 63 B . 26 5 C . 155 D . 105 D C B A A 1 D 1 B 1 C 1 【例4】 (浙江) 在三棱柱111ABC A B C -中,各棱长相等,侧掕垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是 ( ) A .30° B .45° C .60° D .90° 典例分析 板块二.直线与平面所成的角

E A 1 C 1 B 1 D C B A 【例5】 (四川卷理13)在三棱锥O ABC -中,三条棱OA 、OB 、OC 两两互相垂直,且 OA =OB =OC ,M 是AB 边的中点,则OM 与平面ABC 所成的角的大小是 ( 用反三角函数表示) 【例6】 (全国Ⅰ)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内 的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( ) A .13 B C D . 23 【例7】 正三棱柱侧面的一条对角线长为2,且与底面成45o 角,求此三棱柱的体积. 【例8】 (四川卷15) 且对角线与底面所成角的余弦值 ,则该正四棱柱的体积等于________________. 【例9】 如图,在棱长为1的正方体1111ABCD A B C D -中, ⑴求1BC 与平面11ACC A 所成的角; ⑵求11A B 与平面11A C B 所成的角的余弦值. A B C D B 1 C 1 D 1 A 1

《直线与平面垂直的性质》教学设计

《直线与平面垂直的性质》教学设计 教学内容 人教版新教材数学第二册第二章第三节第3课 教材分析 直线与平面垂直问题是直线与平面的重要内容,也是高考考查的重点,求解的关键是根据线与面之间的互化关系,借助创设辅助线与面,找出符号语言与图形语言之间的关系把问题解决。通过对有关概念和定理的概括、证明和应用,使学生体会“转化”的观点,提高学生的空间想象力和逻辑推理能力。 学情分析 1.学生思维活跃,参与意识、自主探究能力较强,故采用启发、探究式教学。 2.学生的抽象概括能力和空间想象力有待提高,故采用多媒体辅助教学。 教学目标 1.知识与技能 (1)培养学生的几何直观能力和知识的应用能力,使他们在直观感知的基础上进一步学会证明. (2)掌握直线和平面垂直的性质定理和推论的内容、推导和简单应用。 (3)掌握等价转化思想在解决问题中的运用. 2.情感态度与价值观 (1)发展学生的合情推理能力和空间想象力,培养学生的质疑思辨、创新的精神. (2)让学生亲从问题解决过程中认识事物发展、变化的规律. 教学重、难点 1.重点:直线和平面垂直的性质定理和推论的内容和简单应用。 2.难点:直线和平面垂直的性质定理和推论的证明,等价转化思想的渗透。 教学理念 学生是学习和发展的主体,教师是教学活动的组织者和引导者. 设计思路 直线与平面垂直的性质定理是判定线线平行的有效方法,学生学习的重点是直线与平面垂直的性质定理以及直线与平面垂直的性质定理的应用,强调直线与平面垂直的性质定理证明中反证法的学习,应让学生清楚,对于一些条件简单而结论复杂的问题或正面较难证明的

问题,可考虑用反证法;教学中要引导学生认识到,定理的证明过程实质是应用转化思想的过程,将立体几何问题转化为平面几何问题来解决,线面垂直问题转化为线线垂直问题来解决,这种转化的数学思想方法在立体几何的证明和解题中体现的尤为明显。 教学过程 (一)复习引入 师:判断直线和平面垂直的方法有几种? 生:定义、例题2结论、判定定理。 师:各判定方法在何种条件或情形下方可熟练运用? 生:若能确定直线与平面内任意一直线垂直,则运用定义说明。 若能说明所证直线和平面内的一条直线平行,则可运用例题结论说明。 若能说明直线和平面内两相交直线垂直,则可运用判定定理去完成判定。 师:在空间,过一点,有几条直线与已知平面垂直?过一点,有几个平面与已知直线垂直? 判断下列命题是否正确: 1、在平面中,垂直于同一直线的两条直线互相平行。 2、在空间中,垂直于同一直线的两条直线互相平行。 3、垂直于同一平面的两直线互相平行。 4、垂直于同一直线的两平面互相平行。 师:直线和平面是否垂直的判定方法上节课我们已研究过,这节课我们来共同探讨直线和平面如果垂直,则其应具备的性质是什么? (二)创设情景 如图,长方体ABCD—A′B′C′D′中,棱A A′、B B′、 C C′、 D D′所在直线都垂直于平面ABCD,它们之间具有什 么位置关系? (三)讲解新课 例1 已知:aα ⊥。求证:b∥a ⊥,bα 师:此问题是在aα ⊥的条件下,研究a和b ⊥,bα 是否平行,若从正面去证明b∥a,则较困难。而利用反证 法来完成此题,相对较为容易,但难在辅助线b’的作出, 这也是立体几何开始的这部分较难的一个证明.在老师的知 道下,学生尝试证明,稍后教师指正.

直线和平面垂直的判定与性质

郸城二高高二年级集体备课教学案 直线和平面垂直的判定与性质(一) 一、素质教育目标 (一)知识教学点 1.直线和平面垂直的定义及相关概念. 2.直线和平面垂直的判定定理. 3.线线平行的性质定理(即例题1). (二)能力训练点 1.要善于应用平移手法将分散的条件集中到某一个图形中进行研究,特别是辅助线的添加.2.讲直线和平面垂直时,应注意引导学生把直线和平面关系转化为直线和直线的关系.如直线和平面垂直,只须这条直线垂直于这个平面内的两条相交直线,向学生渗透转化思想的应用.二、教学重点、难点、疑点 1.教学重点 (1)掌握直线和平面垂直的定义:如果一条直线和一个平面内的任何一条直线垂直,那么这条直线就和这个平面垂直. (2)掌握直线和平面垂直的判定定理: (3)掌握线线平行的性质定理: 若a∥b,a⊥α则b⊥α. 2.教学难点:在于线、面垂直定义的理解和判定定理的证明;同时还要解决好定理证明过程中,辅助线添加的方法和原因,及为何可用经过B点的两条直线说明“任意”直线的问题.3.教学疑点:判定定理的条件中,“相交”是关键,“两条”也是一个重要条件,对于初学立体几何的学生来讲,是不好理解的,教师应该用实例说明这两个条件缺一不可. 三、课时安排本课题共安排2课时,本节课为第一课时. 四、学生活动设计(略) 五、教学步骤 (一)温故知新,引入课题 1.空间两条直线有哪几种位置关系? (三种:相交直线、平行直线、异面直线) 2.经过一点和一条直线垂直的直线有几条? (从两条直线互相垂直的定义可知:经过一点有无数多条直线和已知直线垂直) 3.空间一条直线与一个平面有哪几种位置关系? (直线在平面内、直线和平面相交、直线和平面平行.) 4.怎样判定直线和平面平行? 我们已经知道,判定直线和平面平行的问题可以转化为考察直线和直线平行的关系.今天我们转入学习直线和平面相交的一种特殊情形——直线和平面垂直,这个问题同样可以从两条直线垂直的关系入手. (板书课题:§1.9直线和平面垂直) 郸城二高杨雅莉- 1 -

高中数学直线与平面的夹角题库

3.2.3直线与平面的夹角 3.2.4二面角及其度量 学习目标 1.理解斜线和平面所成的角的定义,体会夹角定义的唯一性、合理性.2.会求直线与平面的夹角θ.3.掌握二面角的概念,二面角的平面角的定义,会找一些简单图形中的二面角的平面角.4.掌握求二面角的基本方法、步骤. 知识点一直线与平面所成的角 1.直线与平面所成的角 2.最小角定理 知识点二二面角及理解 1.二面角的概念 (1)二面角的定义:平面内的一条直线把平面分成两部分,其中的每一部分都叫做半平面.从一条直线出发的两个半平面所组成的图形叫做二面角.如图所示,其中,直线l叫做二面角的棱,每个半平面叫做二面角的面,如图中的α,β.

(2)二面角的记法:棱为l ,两个面分别为α,β的二面角,记作α—l —β.如图,A ∈α,B ∈β,二面角也可以记作A —l —B ,也可记作2∠l . (3)二面角的平面角:在二面角α—l —β的棱上任取一点O ,在两半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α—l —β的平面角,如图所示.由等角定理知,这个平面角与点O 在l 上的位置无关. (4)直二面角:平面角是直角的二面角叫做直二面角. (5)二面角的范围是[0°,180°]. 2.用向量夹角来确定二面角性质及其度量的方法 (1)如图,分别在二面角α—l —β的面α,β内,并沿α,β延伸的方向,作向量n 1⊥l ,n 2⊥l ,则〈n 1,n 2〉等于该二面角的平面角. (2)如图,设m 1⊥α,m 2⊥β,则角〈m 1,m 2〉与该二面角大小相等或互补. 1.直线与平面所成的角α与该直线的方向向量与平面的法向量的夹角β互余.( × ) 2.二面角的大小范围是??? ?0,π 2.( × ) 3.二面角的大小等于其两个半平面的法向量的夹角的大小.( × ) 题型一 求直线与平面的夹角 例1 已知正三棱柱ABC-A 1B 1C 1的底面边长为a ,侧棱长为2a ,求AC 1与侧面ABB 1A 1所成的角. 解 建立如图所示的空间直角坐标系Axyz ,

高中数学-直线与平面的夹角练习

高中数学-直线与平面的夹角练习 课后导练 基础达标 1.直线a与平面α内任一条线所成最小的角为θ,a是平面α的斜线,b是平面α内与a 异面的任意直线,则a与b所成的角() π A.最小值为θ,最大值为π-θ B.最小值为θ,最大值为 2 π C.最小值为θ,无最大值 D.无最小值,最大值为 2 答案:B 2.如右图所示,在正方体ABCD-A1B1C1D1中,求直线A1C1与平面ABC1D1所成的角 () A.30° B.60° C.45° D.90° 答案:A 3.正方体ABCD-A1B1C1D1中,A1B和面BB1D1D所成的角为() A.15° B.45° C.60° D.30° 答案:D 4.如左下图,正方体ABCD-A1B1C1D1中,E是CC1的中点,求BE与平面B1BD所成角的余弦值________________. 15 答案: 5 5.如右上图,S是△ABC所在平面外一点,SA,SB,SC两两垂直,判断△ABC的形状_________. 答案:锐角三角形 6.四面体S-ABC中,SA、SB、SC两两垂直,∠SBA=45°,∠SBC=60°,M为AB的中点,求:(1)BC与平面SAB所成的角; (2)SC与平面ABC所成角的正弦值. 解析:(1)如右图,∵SA、SB、SC两两垂直,

∴SC⊥面SAB. ∴∠CBS 是BC 与平面SAB 所成的角. ∵∠CBS=60°, ∴BC 与平面SAB 所成的角为60°. (2)连结MC,在Rt△ASB 中,∠SBA=45°,则SM⊥AB. 又SC⊥面SAB, ∴SC⊥AB, ∴AB⊥面SMC.过S 作SO⊥MC 于点O,则SO⊥AB, ∴SO⊥面ABC, ∴∠ SCM 是SC 与平面ABC 所成的角. 设SB=a,则SC=3a,SM= 2 2a, 在Rt△CSM 中,CM= 2 14a, ∴sin∠SCM= 7 7 =MC SM . 7.在Rt△ABC 中,∠A=90°,AB=3,AC=4,PA 是平面ABC 的斜线,∠PAB=∠PAC=60°, (1)求PA 与平面ABC 所成角的大小; (2)PA 的长等于多少时,点P 在平面ABC 上的射影O 恰好在BC 边上? 解:(1)如右图,过P 作PO⊥平面ABC 于O,则∠PAO 为PA 与平面ABC 所成的角, 易证AO 为∠BAC 的平分线,则∠OAB=45°. 由公式cosθ=cosθ1·cosθ2可得 cos∠PAO= OAB PAB ∠∠cos cos =22 45 cos 60cos =ο ο, ∴∠PAO=45°. ∴PA 与平面ABC 所成的角为45°.

直线和平面垂直的性质定理

直线和平面垂直的性质定理 (1课时)李忠志 三维目标: 知识与技能 1、掌握直线与平面垂直的性质。 2、能运用性质定理解决一些简单问题。 3、了解垂直的判定定理与性质定理间的相互联系。 过程与方法 培养学生的直观能力,让学生在观察物体模型的基础上,进行操作确认,获得对性质定理正确性的认识,通过探索发现线面垂直的性质定理,培养学生的空间想象能力、发散思维和类比的能力。 情感、态度与价值观 通过实物模型或学生自己制作模型进行操作演示,让学生参与到教学活动中来,激发学生的学习欲望和探究精神。 教学重点 直线与平面垂直的性质。 教学难点 性质定理的探求及证明中反证法的学习和掌握。 教学过程 一、问题引入: 问1:垂直于同一条直线的两条直线是否平行?为什么? 问2:平行于同一条直线的两条直线是否平行?为什么?

问3:平行于同一平面的两条直线是否平行?为什么? 问4:垂直于同一平面的两条直线是否平行?为什么? 问5:若a α⊥,b α?,则a b ⊥吗? 问6:若a b ∥,a α⊥,则b α⊥吗? 问7:问5的逆命题成立吗?即 a α⊥,b α⊥,则a b ∥吗? 二、推进新课: 直线和平面垂直的性质定理:如果两条 直线同垂直于一个平面,那麽这两条直线平行。 已知:如图,,a b αα⊥⊥ 求证://a b 证明:(反证法)假定b 不平行于a ,则b 与a 相交或异面; (1)若a 与b 相交,设a b A = , ∵,a b αα⊥⊥ ∴过点A 有两条直线与平面α垂直, 此与“过一点有且只有一条直线垂直于已知平面”矛盾, ∴a 与b 不相交; (2)若a 与b 异面,设b O α= ,过O 作//b a ', ∵a α⊥ ∴b α'⊥ 又∵b α⊥且b b O '= , ∴过点O 有直线b '和b 垂直于α与过一点有且只有一条直线一已知平面垂直矛盾, ∴b 与a 不异面,综上假设不成立, ∴//a b .

2.3直线、平面垂直的判定及其性质 教案设计1

直线和平面垂直的判定与性质(一) 一、素质教育目标 (一)知识教学点 1.直线和平面垂直的定义及相关概念. 2.直线和平面垂直的判定定理. 3.线线平行的性质定理(即例题1). (二)能力训练点 1.要善于应用平移手法将分散的条件集中到某一个图形中进行研究,特别是辅助线的添加. 2.讲直线和平面垂直时,应注意引导学生把直线和平面关系转化为直线和直线的关系.如直线和平面垂直,只须这条直线垂直于这个平面的两条相交直线,向学生渗透转化思想的应用. (三)德育渗透点 引导学生认识到,定理的证明过程实质是应用转化思想的过程:立体几何的问题转化为平面几何的问题来解决,线、面垂直问题转化为线、线垂直问题来解决.转化思想是重要的数学思想方法,在立体几何的证明和解题中,是一种常用的思想方法. 二、教学重点、难点、疑点及解决方法 1.教学重点 (1)掌握直线和平面垂直的定义:如果一条直线和一个平面的任何一条直线垂直,那么这条直线就和这个平面垂直. (2)掌握直线和平面垂直的判定定理: (3)掌握线线平行的性质定理: 若a∥b,a⊥α则b⊥α.

2.教学难点:在于线、面垂直定义的理解和判定定理的证明;同时还要解决好定理证明过程中,辅助线添加的方法和原因,及为何可用经过B点的两条直线说明“任意”直线的问题. 3.教学疑点:判定定理的条件中,“相交”是关键,“两条”也是一个重要条件,对于初学立体几何的学生来讲,是不好理解的,教师应该用实例说明这两个条件缺一不可. 三、课时安排 本课题共安排2课时,本节课为第一课时. 四、学生活动设计(略) 五、教学步骤 (一)温故知新,引入课题 1.空间两条直线有哪几种位置关系? (三种:相交直线、平行直线、异面直线) 2.经过一点和一条直线垂直的直线有几条? (从两条直线互相垂直的定义可知:经过一点有无数多条直线和已知直线垂直) 3.空间一条直线与一个平面有哪几种位置关系? (直线在平面、直线和平面相交、直线和平面平行.) 4.怎样判定直线和平面平行? 师:我们已经知道,判定直线和平面平行的问题可以转化为考察直线和直线平行的关系.今天我们转入学习直线和平面相交的一种特殊情形——直线和平面垂直,这个问题同样可以从两条直线垂直的关系入手. (板书课题:§1.9直线和平面垂直) (二)猜想推测,激发兴趣 1.教师演示课本上的实例并指出书脊(想象成一条直线)、各书页与桌面的交线,由于书脊和书页底边(即与桌面接触的一边)垂直,得出书脊和桌面上所有直线垂直,书脊和桌面的位置关系给了我们以直线和平面垂直的形象.从而引入概念:一条直线和平面的任何一条直线都垂直,我们说这条直线和这个平面互相垂直,直线叫做平面的垂线,平面叫做直线的垂面.

高中数学 空间点,直线和平面的位置关系公式

空间点,直线和平面的位置关系 一,线在面内的性质: 定里1. 如果一条直线的两点在一个平面内,那么这条直线上所有点都在这个平面内。 二,平面确定的判定定理: 定里2. 经过不在同一直线上的三点有且只有一个平面。 定里3.经过一条直线和直线外一点,有且只有一个平面。 定里4. 经过两条相交直线有且只有一个平面。 定里5.经过两条平行直线有且只有一个个平面。 三,两面相交的性质: 定里6. 如果两个平面有一个公共点,那么还有其它公共点,则这些公共点的集合是一条直线。 四,直线平行的判定定理: 定里7. 平行于同一直线的两直线平行。 五,等角定理: 定里8.如果一个角的两边和另一个角的两边分别平行且同向,那么这两个角相等。 六,异面直线定义: 不同在任何一个平面内的两条直线叫异面直线。(异面直线间的夹角只能是:锐角或直角) 七,直线和平面平行的判定定理: 定理9. 平面外一条直线与平面内一条直线平行,那么这条直线与这个平

面平行。

符合表示: β ββ////a b a b a ???????? 推理1. 如果一条直线与平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 符号表示: b a b a a a ////??? ?????=??βαβαα 八,平面与平面平行判定定理: 定理1. 如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面平行。 符号表示: β αββαα//////??????????=??b a M b a b a 推论1:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。 九,平面与平面平行的性质: 定理1. 如果两个平面平行同时与第三个平面相交,那它们的交线平行。

高中数学-学生-空间直线与平面的位置关系

教学内容 知识精要 1.直线和平面的位置关系 (1)直线在平面内(无数个公共点);符号表示为:a α?, (2)直线和平面相交(有且只有一个公共点);符号表示为: a A α=I , (3)直线和平面平行(没有公共点)——用两分法进行两次分类. 符号表示为: //a α. 2.线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行. 推理模式:,,////l m l m l ααα???. 3 线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行. 推理模式://,,//l l m l m αβαβ=?I ?. 4.平行平面:如果两个平面没有公共点,那么这两个平面互相平行. 5.图形表示:画两个平面平行时,通常把表示这两个平面的平行四边形的相邻两边分别画成平行的. 6.平行平面的判定定理: 如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面互相平行. 推理模式::a β?,b β?,a b P =I ,//a α,//b α//βα?. 7平行平面的判定定理推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面互相平行. 推理模式: ,,,,,,//,////a b P a b a b P a b a a b b ααββαβ'''''''==?I I 刎刎. 8.平行平面的性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行. 推理模式://,,//a b a b αβγαγβ==?I I . 9面面平行的另一性质:如果两个平面平行,那么其中一个平面内的直线平行于另一个平面. 推理模式://,//a a αβαβ??. 热身练习 1设有平面α、β和直线m 、n ,则m ∥α的一个充分条件是 A α⊥β且m ⊥β B α∩β=n 且m ∥n C m ∥n 且n ∥α D α∥β且m β 2设m 、n 是两条不同的直线,α、β、γ是三个不同的平面给出下列四个命题,其中正确命题的序号是 ①若m ⊥α,n ∥α,则m ⊥n ②若α∥β,β∥γ,m ⊥α,则m ⊥γ ③若m ∥α,n ∥α,则m ∥n ④若α⊥γ,β⊥γ,则α∥β A ①② B ②③ C ③④ D ①④ 3一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是 A 异面 B 相交

直线与平面垂直性质定理练习题

, 直线与平面垂直的性质 一、选择题 1.下列说法正确的是( ) A .若l 上有无数个点不在平面α内,则l ∥α B .若直线l 与平面α垂直,则l 与α内的任一直线垂直 C .若E 、F 分别为△ABC 中AB 、BC 边上的中点,则EF 与经过AC 边的所有平面平行 D .两条垂直的直线中有一条和一个平面平行,则另一条和这个平面垂直 2.若M 、n 表示直线,α表示平面,则下列命题中,正确命题的个数为( ) , ① ?????m ∥n m ⊥α?n ⊥α; ② ? ????m ⊥αn ⊥α?M ∥n ; ③ ?????m ⊥αn ∥α?M ⊥n; ④ ?????m ∥αm ⊥n ?n ⊥α. A .1 B .2 C .3 D .4 3.已知直线PG ⊥平面α于G ,直线EF ?α,且PF ⊥EF 于F ,那么线段PE ,PF ,PG 的大小关系是( ) A .PE >PG >PF B .PG >PF >PE C .PE >PF >PG D .PF >P E >PG 4.PA 垂直于以AB 为直径的圆所在平面,C 为圆上异于A ,B 的任一点,则下列关系不正确的是( ) . A .PA ⊥BC B .B C ⊥平面PAC C .AC ⊥PB D .PC ⊥BC 5.下列命题: ①垂直于同一直线的两条直线平行; ②垂直于同一直线的两个平面平行; ③垂直于同一平面的两条直线平行; ④垂直于同一平面的两平面平行. 其中正确的个数是( ) ' A .1 B .2 C .3 D .4 6.在△ABC 所在的平面α外有一点P ,且PA =PB =PC ,则P 在α内的射影是△ABC 的( ) A .垂心 B .内心 C .外心 D .重心 二、填空题 7.线段AB 在平面α的同侧,A 、B 到α的距离分别为3和5,则AB 的中点到α的距离为________. 8.直线a 和b 在正方体ABCD -A 1B 1C 1D 1的两个不同平面内,使a ∥b 成立的条件是________.(只填序号) ①a 和b 垂直于正方体的同一个面;②a 和b 在正方体两个相对的面内,且共面;③a 和b 平行于同一条棱;④a 和b 在正方体的两个面内,且与正方体的同一条棱垂直. 9.如图所示,平面ABC ⊥平面ABD ,∠ACB =90°,CA =CB ,△ABD 是正三角形,O 为AB 中点,则图中直角三角形的个数为________. 、

第11讲空间中垂直关系的判定与性质

空间中垂直关系的判定与性质 一.基础知识整合 1.直线与平面存垂直 (1)定义:如果直线l 与平面α内的任意一条直线都垂直,就说直线l 与平面α互相垂直,记作l ⊥α.直线l 叫作平面 α的垂线,平面α叫作直线l 的 垂面.直线与平面垂直时,它们唯一的公共点P 叫作垂足. (2)画法:通常把直线画成与表示平面的平行四边形的一边垂直,如图 (3)判定定理 文字语言 符号语言 图形语言 如果一条直线和一个平面内的两 条相交直线都垂直,那么该直线与 此平面垂直 ?????l ⊥a l ⊥b a αb αa ∩b =P ?l ⊥α )二面角:从一条直线出发的两个半平面所组成的图形,叫作二面角,这条直 线叫作二面角的棱,这两个半平面叫作二面角的面. (2)二面角的记法:如图,记作:二面角α-AB -β,也可记作2∠α—AB —β. (3)二面角的平面角:以二面角的棱上任意一点为端点,在两个半平面内分别作垂直于棱

的两条射线,这两条射线所成的角叫作二面角的平面角,其中平面角是直角的二面角叫作直二面角. 3.平面与平面垂直 (1)定义:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直. (2)判定定理 文字语言 符号语言 图形语言 如果一个平面经过另一个平面的 一条垂线,那么这两个平面互相垂 直 ?????a αa ⊥β?α⊥β 4.直线与平面垂直的性质定理 文字语言 图形语言 符号语言 如果两条直线同时垂直于一个平 面,那么这两条直线平行 ?? ???a ⊥αb ⊥α?a ∥b 5.平面与平面垂直的性质定理 文字语言 图形语言 符号语言 如果两个平面互相垂直,那么在一 个平面内垂直于它们交线的直线 垂直于另一个平面 ? ????α⊥βα∩β=l a αa ⊥l ?a ⊥β 题型一:线面垂直的判定

直线、平面垂直的判定及其性质

直线、平面垂直的判定及其性质 最新考纲 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题 . 知 识 梳 理 1.直线与平面垂直 (1)直线和平面垂直的定义 如果一条直线l 与平面α内的任意直线都垂直,就说直线l 与平面α互相垂直. (2)判定定理与性质定理 (1)定义:一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角,一条直线垂直于平面,则它们所成的角是直角;一条直线和平面平行或在平面内,则它们所成的角是0°的角. (2)范围:??? ???0,π2. 3.二面角 (1)定义:从一条直线出发的两个半平面所组成的图形叫做二面角;

(2)二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫做二面角的平面角. (3)二面角的范围:[0,π]. 4.平面与平面垂直 (1)平面与平面垂直的定义 两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直. (2)判定定理与性质定理 1.两个重要结论 (1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面. (2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法). 2.使用线面垂直的定义和线面垂直的判定定理,不要误解为“如果一条直线垂直于平面内的无数条直线,就垂直于这个平面”. 基 础 自 测 1.判断下列结论正误(在括号内打“√”或“×”) (1)直线l 与平面α内的无数条直线都垂直,则l ⊥α.( ) (2)垂直于同一个平面的两平面平行.( ) (3)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.( )

平面与平面垂直的性质(教案)

平面与平面垂直的性质(教案) 教学目的 通过对面面垂直性质定理的探索、证明,培养学生的观察、分析、论证等思维能力 教学目标: 1 理解掌握面面垂直的性质定理 2 能初步运用性质定理解决问题 教学重点难点: 重点:理解掌握面面垂直的性质定理 难点:运用性质定理解决实际问题 教学过程: (一) 复习提问 师:请大家回顾一下,怎样判断线面垂直和面面垂直?(提问) 生:线面垂直判定定理: 如果一条直线和一个平面内两条相交直线都垂直,则这条直线垂直于这个平面. 生:面面垂直判定定理: 如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直. (二)引入新课 师:今天我们要学习“两个平面垂直的性质”,先来看下面问题:如图,长方体ABCD﹣A′B′C′D′中,判断下面结论的正误。 1)平面ADD′A′⊥平面ABCD 2) DD′⊥面ABCD 3)AD′⊥面ABCD

师:我们发现:平面ADD′A′⊥平面ABCD,平面ADD′A′∩平面ABCD = AD,D′是平面ADD′A′内一点,过D′点可作无数条直线,这些直线中有与平面ABCD垂直的,也有不垂直的,那么,满足什么条件的直线能与平面ABCD垂直呢? (提出问题,引发思维,并引导学生积极寻找这些直线与交线AD的关系)生:(略) 师:平面ADD′A′⊥平面ABCD,平面ADD′A′内的任一点,平面内过该点且垂直于交线的直线垂直于平面ABCD。 (三)新课 已知:面α⊥面β,α∩β = a, AB α , AB⊥a于B, 求证:AB⊥β (让学生思考怎样证明) 师:(分析:要证明直线垂直于平面,须证明直线垂直于 平面内两条相交直线,而题中条件已有一条, 故可过该直线作辅助线) 证明:在平面β内过B作BE⊥a,又∵AB⊥a, ∴∠ABE为α﹣a﹣β的二面角,又∵α⊥β, ∴∠ABE = 90° , ∴AB⊥BE 又∵AB⊥a, BE∩a = B, ∴AB⊥β 1.面面垂直的性质定理: 两平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. (用符号语言表述)若α⊥β,α∩β = a, AB α , AB⊥a于B,则AB⊥β 师:从面面垂直的性质定理可知,要证明线垂直于面可通过面面垂直来证明,而前面我们知道,面面垂直也可通过线面垂直来证明。这种互相转换的证明方法是常用的数学思想方法。同学们在学习中要认真理解和体会。 2. 例题分析 例1.空间四边形ABCD中,ΔABD与ΔBCD都为 正三角形,面ABD⊥面BCD,试在平面BCD 内找一点,使AE⊥面BCD 解:在ΔABD中,∵AB=AD,取BD的中点E, 连结AE,则AE为BD的中线

直线、平面垂直的判定及其性质(二)(讲义)含答案

直线、平面垂直的判定及其性质(二)(讲义) ?知识点睛 一、直线与平面垂直(线面垂直) 性质定理:垂直于同一个平面的两条直线_____________. a b α ∵_________,b⊥α, ∴___________. 其他性质: 如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面; 如果一条直线垂直于两个平行平面中的一个平面,那么这条直线也垂直于另一个平面. 二、平面与平面垂直(面面垂直) 性质定理:两个平面垂直,则一个平面内_____________的直线与另一个平面垂直. α a l β ∵α⊥β,α∩β=l,________,________, ∴a⊥β. 其他性质: 如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面; 如果一平面垂直于两平行平面中的一个平面,那么它必垂直于另一个平面.

?精讲精练 1.已知直线l垂直于直线AB和AC,直线m垂直于直线BC和AC,则直线l, m的位置关系是() A.平行B.异面C.相交D.垂直 2.对于直线m,n和平面α,β,能得出α⊥β的一组条件是() A.m∥n,m∥α,n∥β B.m⊥n,α∩β=m,n?α C.m∥n,n⊥β,m?α D.m∥n,m⊥α,n⊥β 3.若m,n,l是互不重合的直线,α,β,γ是互不重合的平面,给 出下列命题: ①若α⊥β,α∩β=m,m⊥n,则n⊥α或n⊥β; ②若α∥β,α∩γ=m,β∩γ=n,则m∥n; ③若m不垂直于α,则m不可能垂直于α内的无数条直线; ④若α∩β=m,m∥n,且n?α,n?β,则n∥α且n∥β; ⑤若α∩β=m,β∩γ=n,α∩γ=l,且α⊥β,α⊥γ,β⊥γ,则m⊥n,m ⊥l,n⊥l.其中正确命题的序号是________________. 4.边长为a的正方形ABCD沿对角线BD折成直二面角,则AC 的长为() B C D A A B. 2 a C. 2 a D.a

《平面与平面垂直的性质》教学设计

《平面与平面垂直的性质》教学设计 一、教材分析: 直线与平面垂直问题是直线与平面的重要内容,也是高考考查的重点,求解的关键是根据线与面之间的互化关系,借助创设辅助线与面,找出符号语言与图形语言之间的关系把问题解决。通过对有关概念和定理的概括、证明和应用,使学生体会“转化”的观点,提高学生的空间想象力和逻辑推理能力。 二、学情分析: 1.学生思维活跃,参与意识和自主探究能力较强,故采用启发、探究式教学方法;通过一系列的问题及层层递进的的教学活动,引导学生进行主动的思考、探究。帮助学生实现从具体到抽象、从特殊到一般的过度,从而完成定义的建构和定理的发现。 2.学生抽象概括能力和空间想象能力有待提高,故采用多媒体辅助教学。让学生在认知过程中,着重掌握原认知过程,使学生把独立思考与多向交流相结合。 三、根据本课教材的特点,新大纲对本节课的教学要求,结合学生身心发展的合理需要,确定了以下教学目标: (1)知识与技能目标: ①让学生在观察物体模型的基础上,进行操作确认,获得对性质定理的正确认识; ②能运用性质定理证明一些空间位置关系的简单命题,进一步培养学生空间观念. (2)过程与方法目标: ①了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互联系,掌握等价转化思想在解决问题中的运用. ②通过“直观感知、操作确认,推理证明”,培养学生逻辑推理能力。 ③发展学生的合情推理能力和空间想象力,培养学生的质疑思辨、创新的精神. (3)情感、态度与价值观目标: 让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣. 四、教学重点与难点: (1)教学重点:理解掌握面面垂直的性质定理和内容和推导。 (2)教学难点:运用性质定理解决实际问题。 五、教学设计思路: 1、复习导入: (1)线面垂直判定定理: 如果一条直线和一个平面内两条相交直线都垂直,则这条直线垂直于这个平面. (2)面面垂直判定定理: 如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直. 2、探究发现: (1)创设情境:已知黑板面与地面垂直,你能在黑板面内找到一条直线与地面平行、相交或垂直吗这样的直线分别有什么性质?试说明理由! 设计说明: 感知在相邻的两个相互垂直的平面内,有哪些特殊的直线和平面关系,然后通过操作,确定两个平面垂直的性质定理的合理性,引导学生通过模型观察,讨论在两个平面相互垂直的情况下,能够推出一些什么样的结论。

直线与平面垂直性质定理练习题

2.3.3 直线与平面垂直的性质 一、选择题 1.下列说法正确的是( ) A .若l 上有无数个点不在平面α内,则l ∥α B .若直线l 与平面α垂直,则l 与α内的任一直线垂直 C .若E 、F 分别为△ABC 中AB 、BC 边上的中点,则EF 与经过AC 边的所有平面平行 D .两条垂直的直线中有一条和一个平面平行,则另一条和这个平面垂直 2.若M 、n 表示直线,α表示平面,则下列命题中,正确命题的个数为( ) ① ?????m ∥n m ⊥α?n ⊥α; ② ? ????m ⊥αn ⊥α?M ∥n ; ③ ?????m ⊥αn ∥α?M ⊥n; ④ ? ????m ∥αm ⊥n ?n ⊥α. A .1 B .2 C .3 D .4 3.已知直线PG ⊥平面α于G ,直线EF ?α,且PF ⊥EF 于F ,那么线段PE ,PF ,PG 的大小关系是( ) A .PE >PG >PF B .PG >PF >PE C .PE >PF >PG D .PF >P E >PG 4.P A 垂直于以AB 为直径的圆所在平面,C 为圆上异于A ,B 的任一点,则下列关系不正确的是( ) A .P A ⊥BC B .B C ⊥平面P AC C .AC ⊥PB D .PC ⊥BC 5.下列命题: ①垂直于同一直线的两条直线平行; ②垂直于同一直线的两个平面平行; ③垂直于同一平面的两条直线平行; ④垂直于同一平面的两平面平行. 其中正确的个数是( ) A .1 B .2 C .3 D .4 6.在△ABC 所在的平面α外有一点P ,且P A =PB =PC ,则P 在α内的射影是△ABC 的( ) A .垂心 B .内心 C .外心 D .重心 二、填空题 7.线段AB 在平面α的同侧,A 、B 到α的距离分别为3和5,则AB 的中点到α的距离为________. 8.直线a 和b 在正方体ABCD -A 1B 1C 1D 1的两个不同平面内,使a ∥b 成立的条件是________.(只填序号) ①a 和b 垂直于正方体的同一个面;②a 和b 在正方体两个相对的面内,且共面;③a 和b 平行于同一条棱;④a 和b 在正方体的两个面内,且与正方体的同一条棱垂直. 9.如图所示,平面ABC ⊥平面ABD ,∠ACB =90°,CA =CB ,△ABD 是正三角形,O 为AB 中点,则图中直角三角形的个数为________.

直线与直线直线与平面平面与平面垂直的判定与性质汇总

【课题】9.4 直线与直线、直线与平面、平面与平面垂直的判定与性质 【教学目标】 知识目标:(1)了解空间两条直线垂直的概念; (2)掌握与平面垂直的判定方法与性质,平面与平面垂直的判定方法与性质.能力目标:培养学生的空间想象能力和数学思维能力. 【教学重点】直线与平面、平面与平面垂直的判定方法与性质. 【教学难点】判定空间直线与直线、直线与平面、平面与平面垂直. 【教学设计】 在平面内,过一点可以作一条且只能作一条直线与已知直线垂直;在空间中,过一点作与已知直线垂直的直线,能作无数条. 例1是判断异面直线垂直的巩固性题目,根据异面直线垂直的定义,只要判断它们所成的角为90即可. 在判定直线与平面垂直时,要特别注意“平面内两条相交的直线”的条件.可举一些实例,以加深学生对条件的理解. 两个平面互相垂直是两个平面相交的特殊情况.在日常生活和工农业生产中,两个平面互相垂直的例子非常多,教学时可以多结合一些实例,以引起学生的兴趣. 例4是判断平面与平面垂直的巩固性题目,关键是在平面 B AC内找到一条直线AC与平面B1BDD1 1 垂直.例5是巩固平面与平面垂直的性质的题目. 【教学备品】教学课件. 【课时安排】2课时.(90分钟) 【教学过程】

过 程 行为 行为 意图 间 *巩固知识 典型例题 【知识巩固】 例1 如图9-43,长方体ABCD -A 1B 1C 1D 1中,判断直线AB 和DD 1是否垂直. 解 AB 和DD 1是异面直线,而BB 1∥DD 1,AB ⊥BB 1,根据异面直线所成的角的定义, 可知AB 与DD 1成直角.因此1AB DD . 图9-43 说明 强调 引领 讲解 说明 观察 思考 主动 求解 通过例题进一步领会 10 *运用知识 强化练习 1.垂直于同一条直线的两条直线是否平行? 2.在图9?43所示的正方体中,找出与直线AB 垂直的棱,并指出它们与直线1AA 的位置关系. 提问 指导 思考 解答 了解 知识 掌握 情况 14 *创设情境 兴趣导入 【问题】 前面我们学过直线与平面垂直的概念.根据定义判断直线与平面垂直,需要判定直线与平面内的任意一条直线都垂直,这是比较困难的.那么,如何判定直线和平面垂直呢? 【观察】 我们来看看实践中工人师傅是如何做的. 如图9?44所示,检验一根圆木柱和板面是否垂 直.工人师傅的做法是,把直角尺的一条直角边放在板面 上,看曲尺的另一条直角边是否和圆木柱吻合,然后把直角尺换个位置,照样再检查一次(应当注意,直角尺与板面的交线,在两次检查中不能为同一条直线).如果两次检查,圆木柱都能和直角尺的直角边完全吻合,就判定圆木柱和板面垂直. 质疑 引导 分析 思考 带领 学生 分析 17 *动脑思考 探索新知 【新知识】 从大量的实践与观察中,归纳出直线与平面垂直的判定方法:如果一条直线与一个平面内的两条相交直线都垂直,那么这条直线与这个平面垂直. 讲解 说明 理解 带领 学生 分析 图9?44

直线、平面垂直的判定及其性质-练习题1(答案)

】 直线、平面垂直的判定及其性质 一、选择题 1、“直线l垂直于平面内的无数条直线”是“l⊥”的() A、充分条件 B、必要条件 C、充要条件 D、既不充分也不必要条件 2、如果一条直线l与平面的一条垂线垂直,那么直线l与平面的位置关系是() A、l B、l⊥ C、l∥ D、l或l∥ 3、若两直线a⊥b,且a⊥平面,则b与的位置关系是() A、相交 B、b∥ C、b D、b∥,或b · 4、a∥α,则a平行于α内的( ) A、一条确定的直线 B、任意一条直线 C、所有直线 D、无数多条平行线 5、如果直线a∥平面α,那么直线a与平面α内的 ( ) A、一条直线不相交 B、两条直线不相交 C、无数条直线不相交 D、任意一条直线都不相交 6、若直线l上有两点P、Q到平面α的距离相等,则直线l与平面α的位置关系是( ) A、平行 B、相交 — C、平行或相交 D、平行、相交或在平面α内 二、填空题 7、过直线外一点作直线的垂线有条;垂面有个;平行线有条;平行平面 有个. 8、过平面外一点作该平面的垂线有条;垂面有个;平行线有条;平行平面有个. 9、过一点可作________个平面与已知平面垂直. . 10、过平面α的一条斜线可作_________个平面与平面α垂直.

11、过平面α的一条平行线可作_________个平面与平面α垂直. 三、解答题 ( 12、求证:如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面 13、过一点和已知平面垂直的直线只有一条 ] 14、有一根旗杆AB高8m,它的顶端A挂一条长10m的绳子,拉紧绳子并把它的下端放在地面上的两点(和旗杆脚不在同一直线上),C D,如果这两点都和旗杆脚B的距离是6m,那么旗杆就和地面垂直,为什么 > 15、已知直线l⊥平面α,垂足为A,直线AP⊥l 求证:AP在α内

高中数学第一册(上)直线与平面所成的角

直线与平面所成的角 教学目标:理解线面角概念,熟练运用三垂线定理及其逆定理找出线面角。 教学过程: 1.直线和平面所成的角 (1)平面的斜线和它在平面内的射影所成的锐角,叫做这条直线和平面所成的角。 (2)平面的垂线和平面所成的角是直角。 (3)平面的平行线和平面所成的角是?0角。 (4)平面内的直线和平面所成的角是?0角。 2.直线与平面所成的角的范围是{}?≤≤?900|θθ 3.最小角定理:平面的一条斜线与平面所成的角,是这条直线和平面内过斜足的直线所成的一切角中最小的角。 典型例题: 例1 正方体ABCD —A 1B 1C 1D 1中,(1)分别指出对角线A 1C 与六个面所成的角;(2)E 、F 分别是直线AA 1、A 1D 1的中点,求直线EF 与平面ABCD 所成角的大小。 例2 正四面体ABCD 中,Q 是AD 的中点,求CQ 与平面DBC 所成的角的正弦值。 例3 AO 是平面OCB 的斜线,O 是斜足,AB ⊥平面OCB ,B 为垂足,?OD 平面OCB ,OD 与OB 不重合,α=∠AOB ,锐角β=∠BOD ,锐角γ=∠AOD ,求证:βαγcos cos cos ?=。 例4 线段AB 的两端点在平面α的同侧,斜线段AM 、BN 所在的直线分别与平面α成??60,30角,且AM ⊥AB ,BN ⊥AB ,AM=6,BN=32,AB=6。(1)求证:AB//α;(2)求MN 的长。 作业: 1.从平面α外一点P 向平面α引垂线PO 和斜线PA 、PB ,垂足为O ,斜足为A 、B 。若PA 、PB 与平面α所成的角的差为?45,且在平面α上的射影长分别为2和12,试求P 到平面α的距离。 2.空间四边形ABCD 中,α?AB ,AB BC AD ⊥⊥,α,BC 与α成?30角,AB=a,AD=BC=b 。求直线CD 与α所成的角的正弦值。 3.直角三角形ABC 中,斜边AB 在平面α内,AC 、BC 与α所成的角分别为?30、?45,求斜边上的高CD 与α所成的角。 4.空间四边形ABCD 中,α?AB ,AB BC AB AD ⊥⊥,,AB=9。AD=28,226=BC ,AD 、BC 与α所成的角分别为?60、?45。试求直线CD 与α所成的角的正切值。 5.直线α?AB ,线段AB=3,点C 、D 在α的同侧,且,α⊥AC 直线BD 与α成?30的角,BD ⊥AB ,AC=BD=4。试求线段CD 的长。

相关文档
最新文档