动能和动能定理(高三一轮)课件.ppt

动能和动能定理(高三一轮)课件.ppt
动能和动能定理(高三一轮)课件.ppt

高考物理总复习--物理动能与动能定理及解析

高考物理总复习--物理动能与动能定理及解析 一、高中物理精讲专题测试动能与动能定理 1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求: (1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ; (3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】 (1)在B 点时有v B = cos60? v ,得v B =6m/s (2)从B 点到E 点有2 102 B mgh mgL mgH mv μ--=- ,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有 2 1'202 B mgh mgh mg L mv μ--?=-,得h ′=1.2m

高中物理 动能 动能定理资料

动能动能定理 动能定理是高中教学重点内容,也是高考每年必考内容,由此在高中物理教学中应提起高度重视。 一、教学目标 1.理解动能的概念: (1)知道什么是动能。 制中动能的单位是焦耳(J);动能是标量,是状态量。 (3)正确理解和运用动能公式分析、解答有关问题。 2.掌握动能定理: (1)掌握外力对物体所做的总功的计算,理解“代数和”的含义。 (2)理解和运用动能定理。 二、重点、难点分析 1.本节重点是对动能公式和动能定理的理解与应用。 2.动能定理中总功的分析与计算在初学时比较困难,应通过例题逐步提高学生解决该问题的能力。 3.通过动能定理进一步加深功与能的关系的理解,让学生对功、能关系有更全面、深刻的认识,这是本节的较高要求,也是难点。 三、主要教学过程 (一)引入新课 初中我们曾对动能这一概念有简单、定性的了解,在学习了功的概念及功和能的关系之后,我们再进一步对动能进行研究,定量、深入地理解这一概念及其与功的关系。 (二)教学过程设计 1.什么是动能?它与哪些因素有关?这主要是初中知识回顾,可请学生举例回答,然后总结作如下板书: 物体由于运动而具有的能叫动能,它与物体的质量和速度有关。 下面通过举例表明:运动物体可对外做功,质量和速度越大,动能越大,物体对外做功的能力也越强。所以说动能是表征运动物体做功的一种能力。 2.动能公式 动能与质量和速度的定量关系如何呢?我们知道,功与能密切相关。因此我们可以通过做功来研究能量。外力对物体做功使物体运动而具有动能。下面我们就通过这个途径研究一个运动物体的动能是多少。 列出问题,引导学生回答: 光滑水平面上一物体原来静止,质量为m,此时动能是多少?(因为物体没有运动,所以没有动能)。在恒定外力F作用下,物体发生一段位移s,得到速度v (如图1),这个过程中外力做功多少?物体获得了多少动能?

高考物理动能与动能定理试题经典及解析

高考物理动能与动能定理试题经典及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。一质量m =1kg 的小滑块从A 点正上方h =1 m 处的P 点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10 m/s 2。 (1)求滑块第一次运动到B 点时对轨道的压力。 (2)求滑块在粗糙斜面上向上滑行的最大距离。 (3)通过计算判断滑块从斜面上返回后能否滑出A 点。 【答案】(1)70N ; (2)1.2m ; (3)能滑出A 【解析】 【分析】 【详解】 (1)滑块从P 到B 的运动过程只有重力做功,故机械能守恒,则有 ()21 2 B mg h R mv += 那么,对滑块在B 点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且 ()2 N 270N B mg h R mv F mg mg R R +=+=+= 故由牛顿第三定律可得:滑块第一次运动到B 点时对轨道的压力为70N ,方向竖直向下。 (2)设滑块在粗糙斜面上向上滑行的最大距离为L ,滑块运动过程只有重力、摩擦力做功,故由动能定理可得 cos37sin37cos370mg h R R L mgL μ+-?-?-?=() 所以 1.2m L = (3)对滑块从P 到第二次经过B 点的运动过程应用动能定理可得 ()21 2cos370.542 B mv mg h R mgL mg mgR μ'=+-?=> 所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出A 点。 【点睛】 经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。

高考物理动能与动能定理解题技巧及练习题(含答案)

高考物理动能与动能定理解题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

最新高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)

最新高考物理动能与动能定理常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

高考物理动能定理和能量守恒专题

弄死我咯,搞了一个多钟 专题四动能定理及能量守恒(注意大点的字) 一、大纲解读 本专题涉及的考点有:功和功率、动能和动能定理、重力做功和重力势能、弹性势能、机械能守恒定律,都是历年高考的必考内容,考查的知识点覆盖面全,频率高,题型全。动能定理、机械能守恒定律是力学中的重点和难点,用能量观点解题是解决动力学问题的三大途径之一。《大纲》对本部分考点要求为Ⅱ类有五个,功能关系一直都是高考的“重中之重”,是高考的热点和难点,涉及这部分内容的考题不但题型全、分值重,而且还常有高考压轴题。考题的内容经常及牛顿运动定律、曲线运动、动量守恒定律、电磁学等方面知识综合,物理过程复杂,综合分析的能力要求较高,这部分知识能密切联系生活实际、联系现代科学技术,因此,每年高考的压轴题,高难度的综合题经常涉及本专题知识。它的特点:一般过程复杂、难度大、能力

要求高。还常考查考生将物理问题经过分析、推理转化为数学问题,然后运用数学知识解决物理问题的能力。所以复习时要重视对基本概念、规律的理解掌握,加强建立物理模型、运用数学知识解决物理问题的能力。在09年的高考中要考查学生对于生活、生产中的实际问题要建立相关物理模型,灵活运用牛顿定律、动能定理、动量定理及能量转化的方法提高解决实际问题的能力。 二、重点剖析 1、理解功的六个基本问题 (1)做功及否的判断问题:关键看功的两个必要因素,第一是力;第二是力的方向上的位移。而所谓的“力的方向上的位移”可作如下理解:当位移平行于力,则位移就是力的方向上的位的位移;当位移垂直于力,则位移垂直于力,则位移就不是力的方向上的位移;当位移及力既不垂直又不平行于力,则可对位移进行正交分解,其平行于力的方向上的分位移仍被称为力的方向上的位移。 (2)关于功的计算问题:①W=FS cos α这种方法只适用于恒力做功。②用动能定理W=ΔE k 或功能关系求功。当F 为变力时,高中阶段往往 考虑用这种方法求功。 这种方法的依据是:做功的过程就是能量转化的过程,功是能的转化的量度。如果知道某一过程中能量转化的数值,那么也就知道了该过程中对应的功的数值。 (3)关于求功率问题:①t W P = 所求出的功率是时间t 内的平均功率。②功率的计算式:θcos Fv P =,其中θ是力及速度间的夹角。一般用于求某一时刻的瞬时功率。

高考物理动能定理的综合应用及其解题技巧及练习题(含答案)

高考物理动能定理的综合应用及其解题技巧及练习题(含答案) 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,倾角为37°的粗糙斜面AB 底端与半径R=0.4 m 的光滑半圆轨道BC 平滑相连,O 点为轨道圆心,BC 为圆轨道直径且处于竖直方向,A 、C 两点等高.质量m=1 kg 的滑块从A 点由静止开始下滑,恰能滑到与O 点等高的D 点,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求: (1)求滑块与斜面间的动摩擦因数μ; (2)要使滑块能到达C 点,求滑块从A 点沿斜面滑下时初速度v 0的最小值; (3)若滑块离开C 点的速度为4 m/s ,求滑块从C 点飞出至落到斜面上所经历的时间. 【答案】(1)0.375(2)3/m s (3)0.2s 【解析】 试题分析:⑴滑块在整个运动过程中,受重力mg 、接触面的弹力N 和斜面的摩擦力f 作用,弹力始终不做功,因此在滑块由A 运动至D 的过程中,根据动能定理有:mgR - μmgcos37° 2sin 37R ? =0-0 解得:μ=0.375 ⑵滑块要能通过最高点C ,则在C 点所受圆轨道的弹力N 需满足:N≥0 ① 在C 点时,根据牛顿第二定律有:mg +N =2C v m R ② 在滑块由A 运动至C 的过程中,根据动能定理有:-μmgcos37° 2sin 37R ?=2 12 C mv - 2 012 mv ③ 由①②③式联立解得滑块从A 点沿斜面滑下时的初速度v 0需满足:v 03gR =23 即v 0的最小值为:v 0min =3 ⑶滑块从C 点离开后将做平抛运动,根据平抛运动规律可知,在水平方向上的位移为:x =vt ④ 在竖直方向的位移为:y = 2 12 gt ⑤ 根据图中几何关系有:tan37°= 2R y x -⑥ 由④⑤⑥式联立解得:t =0.2s 考点:本题主要考查了牛顿第二定律、平抛运动规律、动能定理的应用问题,属于中档题.

高考物理动能与动能定理试题(有答案和解析)

高考物理动能与动能定理试题(有答案和解析) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

高考物理动能与动能定理练习题及解析

高考物理动能与动能定理练习题及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

高考物理专题汇编物理动能与动能定理(一)

高考物理专题汇编物理动能与动能定理(一) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。A 套在光滑水平杆上,定滑轮离水平杆的高度为h 。开始时让连着A 的细线与水平杆的夹角α。现将A 由静止释放(设B 不会碰到水平杆,A 、B 均可视为质点;重力加速度为g )求: (1)当细线与水平杆的夹角为β(90αβ<

2.如图,在竖直平面内,半径R =0.5m 的光滑圆弧轨道ABC 与粗糙的足够长斜面CD 相切于C 点,CD 与水平面的夹角θ=37°,B 是轨道最低点,其最大承受力F m =21N ,过A 点的切线沿竖直方向。现有一质量m =0.1kg 的小物块,从A 点正上方的P 点由静止落下。已知物块与斜面之间的动摩擦因数μ=0.5.取sin37°=0.6.co37°=0.8,g=10m/s 2,不计空气阻力。 (1)为保证轨道不会被破坏,求P 、A 间的最大高度差H 及物块能沿斜面上滑的最大距离L ; (2)若P 、A 间的高度差h =3.6m ,求系统最终因摩擦所产生的总热量Q 。 【答案】(1) 4.5m ,4.9m ;(2) 4J 【解析】 【详解】 (1)设物块在B 点的最大速度为v B ,由牛顿第二定律得: 2B m v F mg m R -= 从P 到B,由动能定理得 2 1()02 B mg H R mv += - 解得 H =4.5m 物块从B 点运动到斜面最高处的过程中,根据动能定理得: -mg [R (1-cos37°)+L sin37°]-μmg cos37°?L =2102 B mv - 解得 L =4.9m (3)物块在斜面上,由于mg sin37°>μmg cos37°,物块不会停在斜面上,物块最后以B 点为中心,C 点为最高点沿圆弧轨道做往复运动,由功能关系得系统最终因摩擦所产生的总热量 Q =mg (h +R cos37°) 解得 Q =4J 3.如图所示,光滑水平轨道距地面高h=0.8m ,其左端固定有半径R=0.6m 的内壁光滑的半圆管形轨道,轨道的最低点和水平轨道平滑连接.质量m 1=1.0kg 的小球A 以v 0=9m/s 的速度与静止在水平轨道上的质量m 2=2.0kg 的小球B 发生对心碰撞,碰撞时间极短,小球A 被

高考物理动能定理的综合应用技巧(很有用)及练习题及解析

高考物理动能定理的综合应用技巧(很有用)及练习题及解析 一、高中物理精讲专题测试动能定理的综合应用 1.小明同学根据上海迪士尼乐园游戏项目“创极速光轮”设计了如图所示的轨道。一条带有竖直圆轨道的长轨道固定在水平面上,底端分别与两侧的直轨道相切,其中轨道AQ 段粗糙、长为L 0=6.0m ,QNP 部分视为光滑,圆轨道半径R =0.2m ,P 点右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.5m 。一玩具电动小车,通电以后以P =4W 的恒定功率工作,小车通电加速运动一段时间后滑入圆轨道,滑过最高点N ,再沿圆轨道滑出。小车的质量m =0.4kg ,小车在各粗糙段轨道上所受的阻力恒为f =0.5N 。(重力加速度g =10m/s 2;小车视为质点,不计空气阻力)。 (1)若小车恰能通过N 点完成实验,求进入Q 点时速度大小; (2)若小车通电时间t =1.4s ,求滑过N 点时小车对轨道的压力; (3)若小车通电时间t≤2.0s ,求小车可能停在P 点右侧哪几段轨道上。 【答案】(1)22m/s ;(2)6N ,方向竖直向上;(3)第7段和第20段之间 【解析】 【分析】 【详解】 (1)小车恰能过N 点,则0N v =,Q →N 过程根据动能定理 2211222 N mg R mv mv -?= - 代入解得 22m/s v = (2)A →N 过程 2 011202 Pt fL mg R mv --?= - 代入解得 15m/s v = 在N 点时 2 1N mv mg F R += 代入解得 N 6N F = 根据牛顿第三定律可得小汽车对轨道压力大小6N ,方向竖直向上。 (3)设小汽车恰能过最高点,则

高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)及解析

高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37?角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。 (1)求小物块经过B 点时对轨道的压力大小; (2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。 【答案】(1)62N (2)60N (3)10m 【解析】 【详解】 (1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==? 解得:04 m /5m /cos370.8 A v v s s = ==? 小物块经过A 点运动到B 点,根据机械能守恒定律有: ()2211cos3722 A B mv mg R R mv +-?= 小物块经过B 点时,有:2 B NB v F mg m R -= 解得:()232cos3762N B NB v F mg m R =-?+= 根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有: 22011222 C B mgL mg r mv mv μ--?= - 在C 点,由牛顿第二定律得:2 C NC v F mg m r += 代入数据解得:60N NC F = 根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N

最新高考物理动能定理的综合应用解题技巧及练习题(含答案)

最新高考物理动能定理的综合应用解题技巧及练习题(含答案) 一、高中物理精讲专题测试动能定理的综合应用 1.由相同材料的细杆搭成的轨道如图所示,其中细杆AB 、BC 、CD 、DE 、EF ……长均为 1.5m L =,细杆OA 和其他细杆与水平面的夹角都为 ()37sin370.6,cos370.8β???===,一个可看成质点的小环套在细杆OA 上从图中离轨 道最低点的竖直高度 1.32m h =处由静止释放,小环与细杆的动摩擦因数都为0.2μ=,最大静摩擦力等于相同压力下的滑动摩擦力,在两细杆交接处都用短小曲杆相连,不计动能损失,使小环能顺利地经过,重力加速度g 取210m /s ,求: (1)小环在细杆OA 上运动的时间t ; (2)小环运动的总路程s ; (3)小环最终停止的位置。 【答案】(1)1s ;(2)8.25m ;(3)最终停在A 点 【解析】 【分析】 【详解】 (1)因为sin cos mg mg βμβ>,故小环不能静止在细杆上,小环下滑的加速度为 2sin cos 4.4m/s mg mg a m βμβ -= = 设物体与A 点之间的距离为0L ,由几何关系可得 0 2.2m sin37 h L ? = = 设物体从静止运动到A 所用的时间为t ,由2 012 L at = ,得 1s t = (2)从物体开始运动到最终停下的过程中,设总路程为s ,由动能定理得 cos3700mgh mgs μ?=-- 代入数据解得 s =8.25m (3)假设物体能依次到达B 点、D 点,由动能定理有 2 01(sin37)cos37()2 B mg h L mg L L mv μ??+= -- 解得 20B v < 说明小环到不了B 点,最终停在A 点处

高考物理动能定理的综合应用技巧(很有用)及练习题

高考物理动能定理的综合应用技巧(很有用)及练习题 一、高中物理精讲专题测试动能定理的综合应用 1.小明同学根据上海迪士尼乐园游戏项目“创极速光轮”设计了如图所示的轨道。一条带有竖直圆轨道的长轨道固定在水平面上,底端分别与两侧的直轨道相切,其中轨道AQ 段粗糙、长为L 0=6.0m ,QNP 部分视为光滑,圆轨道半径R =0.2m ,P 点右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.5m 。一玩具电动小车,通电以后以P =4W 的恒定功率工作,小车通电加速运动一段时间后滑入圆轨道,滑过最高点N ,再沿圆轨道滑出。小车的质量m =0.4kg ,小车在各粗糙段轨道上所受的阻力恒为f =0.5N 。(重力加速度g =10m/s 2;小车视为质点,不计空气阻力)。 (1)若小车恰能通过N 点完成实验,求进入Q 点时速度大小; (2)若小车通电时间t =1.4s ,求滑过N 点时小车对轨道的压力; (3)若小车通电时间t≤2.0s ,求小车可能停在P 点右侧哪几段轨道上。 【答案】(1)22m/s ;(2)6N ,方向竖直向上;(3)第7段和第20段之间 【解析】 【分析】 【详解】 (1)小车恰能过N 点,则0N v =,Q →N 过程根据动能定理 2211222 N mg R mv mv -?= - 代入解得 22m/s v = (2)A →N 过程 2 011202 Pt fL mg R mv --?= - 代入解得 15m/s v = 在N 点时 2 1N mv mg F R += 代入解得 N 6N F = 根据牛顿第三定律可得小汽车对轨道压力大小6N ,方向竖直向上。 (3)设小汽车恰能过最高点,则

高考物理复习:动能定理

动能 动能定理 一、动能 1.定义:物体由于□ 01______而具有的能. 2.表达式:E k =□ 02______. 3.单位:□03______,1 J =1 N·m =1 kg·m 2/s 2. 4.矢标性:□ 04____量. 5. 6.相对性:物体的动能相对于不同的参考系一般不同. 二、动能定理 1.内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的□ 05______. 2.表达式:W =E k2-E k1=□ 06____________. 3.适用范围 (1)动能定理既适用于直线运动,也适用于□ 07______运动. (2)既适用于恒力做功,也适用于□ 08______做功. (3)力可以是各种性质的力,既可以同时作用,也可以不同时作用.,1.(单选)关于某物体动能的一些说法,正确的是( ) A .物体的动能变化,速度一定变化 B .物体的速度变化,动能一定变化 C .物体的速度变化大小相同时,其动能变化大小也一定相同 D .选择不同的参考系时,动能可能为负值 2-1.(单选)下列关于运动物体所受合力、合力做功和动能变化的关系,正确的说法是( ) A .物体所受合力为零,其动能一定不变 B .物体所受合力不为零时,其动能一定发生变化 C .物体的动能保持不变,其所受合力做功可能不为零 D .物体的动能保持不变,则所受合力一定为零 2-2.(单选)人用手托着质量为m 的物体,从静止开始沿水平方向运动,前进距离s 后,速度为v (物体与手始终相对静止),物体与人手掌之间的动摩擦因数为μ,则人对物体做的功为( ) A .mgs B .0 C .μmgs D.1 2 m v 2 动能定理及其应用 1.对动能定理的理解 (1)动能定理公式中等号表明了合外力做功与物体动能的变化间的两个关系: ①数量关系:即合外力所做的功与物体动能的变化具有等量代换关系.可以通过计算物体动能的变化,求合外力的功,进而求得某一力的功. ②因果关系:合外力的功是引起物体动能变化的原因. (2)动能定理中涉及的物理量有F 、l 、m 、v 、W 、E k 等,在处理含有上述物理量的问题

高考物理复习专题动能和动能定理

专题19 动能和动能定理(测) 【满分:110分时间:90分钟】 一、选择题(本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中.1~8题只有一项符合题目要求; 9~12题有多项符合题目要求。全部选对的得5分,选对但不全的得3分,有选错的得0分。) 1.如图所示,光滑水平地面上固定一带滑轮的竖直杆,用轻绳系着小滑块绕过滑轮,用恒力F1水平向左拉滑块的同时,用恒力F2拉绳,使滑块从A点起由静止开始向右运动,B和C 是A点右方的两点,且AB=BC,则以下说法正确的是:() A.从A点至B点F2做的功小于从B点至C点F2做的功 B.从A点至B点F2做的功大于从B点至C点F2做的功 C.从A点至C点F2做的功等于滑块克服F1做的功 D.从A点至C点F2做的功一定大于滑块克服F1做的功 【答案】B 【名师点睛】判断一个力的变化,我们应该先把这个力运用物理规律表示出来,再根据关系式里的物理量的变化找出这个力的变化.本题分别从功的公式和动能定理分析功。 2.如图,两个小球分别被两根长度不同的细绳悬于等高的悬点,现将细绳拉至水平后由静止释放小球,当两小球通过最低点时,两球一定有相同的:()

A.速度B.角速度C.加速度D.机械能 【答案】C 【名师点睛】此题考查了动能定理的应用以及向心加速度及角速度的知识;解决本题的关键掌握动能定理和机械能守恒定律,知道摆球在最低点靠合力提供做圆周运动的向心力,列的式子即可解答;此题是基础题,意在考查基础知识的应用. 3.如图所示,在倾角为θ的光滑斜面上有一轻质弹簧,其一端固定在斜面下端的挡板上,另一端与质量为m的物体接触(未连接),物体静止时弹簧被压缩了x0.现用力F缓慢沿斜面向下推动物体,使弹簧在弹性限度内再被压缩2x0后保持物体静止,然后撤去F,物体沿斜面向上运动的最大距离为4.5x0,则在撤去F后到物体上升到最高点的过程中: () A.物体的机械能守恒 B.弹簧弹力对物体做功的功率一直增大 C.弹簧弹力对物体做的功为4.5mgx0sin θ D.物体从开始运动到速度最大的过程中重力做的功为2mgx0sin θ 【答案】C 【解析】在撤去F后弹簧的弹力对物体做正功,故物体的机械能增加,选项A错误;撤去F 后,物体向上运动做加速度减小的加速运动,当F弹=mgsinθ时,加速度为零,此时物体的速度最大,然后物体做减速运动,直到弹力减为零,根据P=Fv可知,弹力的功率先增大后减小为零,选项B错误;撤去F后,由动能定理可知:W弹-mgsinθ×4.5x0=0,则.弹簧弹力对物体做的功为4.5mgx0sin θ,选项C正确;当物体的速度最大时,F弹=mgsinθ=kx,由开始的状态可知:mgsinθ=kx0,可知此时弹簧被压缩了x0,则物体从开始运动到速度最大的过程

高考物理动能定理的综合应用解题技巧及练习题(含答案)及解析

高考物理动能定理的综合应用解题技巧及练习题(含答案)及解析 一、高中物理精讲专题测试动能定理的综合应用 1.一辆汽车发动机的额定功率P =200kW ,若其总质量为m =103kg ,在水平路面上行驶时,汽车以加速度a 1=5m/s 2从静止开始匀加速运动能够持续的最大时间为t 1=4s ,然后保持恒定的功率继续加速t 2=14s 达到最大速度。设汽车行驶过程中受到的阻力恒定,取g =10m/s 2.求: (1)汽车所能达到的最大速度; (2)汽车从启动至到达最大速度的过程中运动的位移。 【答案】(1)40m/s ;(2)480m 【解析】 【分析】 【详解】 (1)汽车匀加速结束时的速度 11120m /s v a t == 由P=Fv 可知,匀加速结束时汽车的牵引力 1 1F P v = =1×104N 由牛顿第二定律得 11F f ma -= 解得 f =5000N 汽车速度最大时做匀速直线运动,处于平衡状态,由平衡条件可知, 此时汽车的牵引力 F=f =5000N 由P Fv =可知,汽车的最大速度: v=P P F f ==40m/s (2)汽车匀加速运动的位移 x 1= 1 140m 2 v t = 对汽车,由动能定理得 21121 02 F x Pt fs mv =--+ 解得 s =480m 2.如图所示,AC 为光滑的水平桌面,轻弹簧的一端固定在A 端的竖直墙壁上.质量 1m kg =的小物块将弹簧的另一端压缩到B 点,之后由静止释放,离开弹簧后从C 点水平

飞出,恰好从D 点以10/D v m s =的速度沿切线方向进入竖直面内的光滑圆弧轨道 (DEF 小物体与轨道间无碰撞).O 为圆弧轨道的圆心,E 为圆弧轨道的最低点,圆弧轨道 的半径1R m =,60DOE ∠=o ,37.EOF ∠=o 小物块运动到F 点后,冲上足够长的斜面 FG ,斜面FG 与圆轨道相切于F 点,小物体与斜面间的动摩擦因数0.5.sin370.6μ==o , cos370.8=o ,取2 10/.g m s =不计空气阻力.求: (1)弹簧最初具有的弹性势能; (2)小物块第一次到达圆弧轨道的E 点时对圆弧轨道的压力大小; (3)判断小物块沿斜面FG 第一次返回圆弧轨道后能否回到圆弧轨道的D 点?若能,求解小物块回到D 点的速度;若不能,求解经过足够长的时间后小物块通过圆弧轨道最低点E 的速度大小. 【答案】()11 ?.25J ;()2 30N ;()3 2/m s . 【解析】 【分析】 【详解】 (1)设小物块在C 点的速度为C v ,则在D 点有:C D v v cos60o = 设弹簧最初具有的弹性势能为p E ,则:2P C 1E mv 2 = 代入数据联立解得:p E 1.25J =; ()2设小物块在E 点的速度为E v ,则从D 到E 的过程中有: () 22E D 11mgR 1cos60mv mv 22 -= -o 设在E 点,圆轨道对小物块的支持力为N ,则有:2 E v N mg R -= 代入数据解得:E v 25m /s =,N 30N = 由牛顿第三定律可知,小物块到达圆轨道的E 点时对圆轨道的压力为30 N ; ()3设小物体沿斜面FG 上滑的最大距离为x ,从E 到最大距离的过程中有: ()() 2E 1mgR 1cos37mgsin37μmgcos37x 0mv 2 o o o ---+=- 小物体第一次沿斜面上滑并返回F 的过程克服摩擦力做的功为f W ,则 f W 2x μmgcos37=o

高考物理动能与动能定理练习题及答案

高考物理动能与动能定理练习题及答案 一、高中物理精讲专题测试动能与动能定理 1.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s 的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求: (1)滑块对P 点压力的大小; (2)滑块返回木板上时,木板的加速度大小; (3)滑块从返回木板到滑离木板所用的时间. 【答案】(1)70 N (2)1 m/s 2 (3)1 s 【解析】 【分析】 【详解】 (1)滑块在木板上滑动过程由动能定理得: -μ1mgL = 12mv 2-12 20mv 解得:v =5 m/s 在P 点由牛顿第二定律得: F -mg =m 2 v r 解得:F =70 N 由牛顿第三定律,滑块对P 点的压力大小是70 N (2)滑块对木板的摩擦力F f 1=μ1mg =4 N 地面对木板的摩擦力 F f 2=μ2(M +m )g =3 N 对木板由牛顿第二定律得:F f 1-F f 2=Ma a = 12 f f F F M -=1 m/s 2 (3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v =5 m/s 对滑块有:(x +L )=vt -1 2 μ1gt 2 对木板有:x = 12 at 2

高考物理动能定理的综合应用解题技巧及经典题型及练习题(含答案)

高考物理动能定理的综合应用解题技巧及经典题型及练习题(含答案) 一、高中物理精讲专题测试动能定理的综合应用 1.质量 1.5m kg =的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开 始运动,运动一段距离撤去该力,物块继续滑行 2.0t s =停在B 点,已知A 、B 两点间的距 离 5.0s m =,物块与水平面间的动摩擦因数0.20μ=,求恒力F 多大.(2 10/g m s =) 【答案】15N 【解析】 设撤去力 前物块的位移为 ,撤去力 时物块的速度为,物块受到的滑动摩擦力 对撤去力后物块滑动过程应用动量定理得 由运动学公式得 对物块运动的全过程应用动能定理 由以上各式得 代入数据解得 思路分析:撤去F 后物体只受摩擦力作用,做减速运动,根据动量定理分析,然后结合动能定律解题 试题点评:本题结合力的作用综合考查了运动学规律,是一道综合性题目. 2.如图,I 、II 为极限运动中的两部分赛道,其中I 的AB 部分为竖直平面内半径为R 的 14 光滑圆弧赛道,最低点B 的切线水平; II 上CD 为倾角为30°的斜面,最低点C 处于B 点的正下方,B 、C 两点距离也等于R.质量为m 的极限运动员(可视为质点)从AB 上P 点处由静止开始滑下,恰好垂直CD 落到斜面上.求: (1) 极限运动员落到CD 上的位置与C 的距离; (2)极限运动员通过B 点时对圆弧轨道的压力; (3)P 点与B 点的高度差. 【答案】(1)4 5R (2)75mg ,竖直向下(3)15 R 【解析】 【详解】

(1)设极限运动员在B 点的速度为v 0,落在CD 上的位置与C 的距离为x ,速度大小为v ,在空中运动的时间为t ,则xcos300=v 0t R-xsin300= 12 gt 2 0 tan 30v gt = 解得x=0.8R (2)由(1)可得:02 5 v gR = 通过B 点时轨道对极限运动员的支持力大小为F N 20 N v F mg m R -= 极限运动员对轨道的压力大小为F N ′,则F N ′=F N , 解得' 7 5 N F mg = ,方向竖直向下; (3) P 点与B 点的高度差为h,则mgh=1 2 mv 02 解得h=R/5 3.我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图1-所示,质量m =60 kg 的运动员从长直助滑道AB 的A 处由静止开始以加速度a =3.6 m/s 2匀加速滑下,到达助滑道末端B 时速度v B =24 m/s ,A 与B 的竖直高度差H =48 m .为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C 处附近是一段以O 为圆心的圆弧.助滑道末端B 与滑道最低点C 的高度差h =5 m ,运动员在B 、C 间运动时阻力做功W =-1530 J ,g 取10 m/s 2. (1)求运动员在AB 段下滑时受到阻力F f 的大小; (2)若运动员能够承受的最大压力为其所受重力的6倍,则C 点所在圆弧的半径R 至少应为多大? 【答案】(1)144 N (2)12.5 m 【解析】 试题分析:(1)运动员在AB 上做初速度为零的匀加速运动,设AB 的长度为x ,斜面的倾角为α,则有 v B 2=2ax 根据牛顿第二定律得 mgsinα﹣F f =ma 又 sinα= H x

高考物理动能与动能定理技巧(很有用)及练习题

高考物理动能与动能定理技巧(很有用)及练习题 一、高中物理精讲专题测试动能与动能定理 1.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。一质量m =1kg 的小滑块从A 点正上方h =1 m 处的P 点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10 m/s 2。 (1)求滑块第一次运动到B 点时对轨道的压力。 (2)求滑块在粗糙斜面上向上滑行的最大距离。 (3)通过计算判断滑块从斜面上返回后能否滑出A 点。 【答案】(1)70N ; (2)1.2m ; (3)能滑出A 【解析】 【分析】 【详解】 (1)滑块从P 到B 的运动过程只有重力做功,故机械能守恒,则有 ()21 2 B mg h R mv += 那么,对滑块在B 点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且 ()2 N 270N B mg h R mv F mg mg R R +=+=+= 故由牛顿第三定律可得:滑块第一次运动到B 点时对轨道的压力为70N ,方向竖直向下。 (2)设滑块在粗糙斜面上向上滑行的最大距离为L ,滑块运动过程只有重力、摩擦力做功,故由动能定理可得 cos37sin37cos370mg h R R L mgL μ+-?-?-?=() 所以 1.2m L = (3)对滑块从P 到第二次经过B 点的运动过程应用动能定理可得 ()21 2cos370.542 B mv mg h R mgL mg mgR μ'=+-?=> 所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出A 点。 【点睛】 经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。

相关文档
最新文档