变压器短路的原因是什么

变压器短路的原因是什么
变压器短路的原因是什么

因变压器出口短路导致变压器内部故障和事故的原因很多,也比较复杂,它与结构设计、原材料的质量、工艺水平、运行工况等因数有关,但电磁线的选用是关键。从近几年解剖变压基于变压器静态理论设计而选用的电磁线,与实际运行时作用在电磁线上的应力差异较大。

(1)目前各厂家的计算程序中是建立在漏磁场的均匀分布、线匝直径相同、等相位的力等理想化的模型基础上而编制的,而事实上变压器的漏磁场并非均匀分布,在铁轭部分相对集中,该区域的电磁线所受到机械力也较大;换位导线在换位处由于爬坡会改变力的传递方向,而产生扭矩;由于垫块弹性模量的因数,轴向垫块不等距分布,会使交变漏磁场所产生的交变力延时共振,这也是为什么处在铁心轭部、换位处、有调压分接的对应部位的线饼首先变形的根本原因。

(2)抗短路能力计算时没有考虑温度对电磁线的抗弯和抗拉强度的影响。按常温下设计的抗短路能力不能反映实际运行情况,根据试验结果,电磁线的温度对其屈服极限?0.2影响很大,随着电磁线的温度提高,其抗弯、抗拉强度及延伸率均下降,在250℃下抗弯抗拉强度要比在50℃时下降上,延伸率则下降40%以上。而实际运行的变压器,在额定负荷下,绕组平均温度可达105℃,最热点温度可达118℃。一般变压器运行时均有重合闸过程,因此如果短路点一时无法消失的话,将在非常短的时间内(0.8s)紧接着承受第二次短路冲击,但由于受第一次短路电流冲击后,绕组温度急剧增高,根据GBl094的规定,最高允许250℃,这时绕组的抗短路能力己大幅度下降,这就是为什么变压器重合闸后发生短路事故居多。

(3)采用普通换位导线,抗机械强度较差,在承受短路机械力时易出现变形、散股、露铜现象。采用普通换位导线时,由于电流大,换位爬坡陡,该部位会产生较大的扭矩,同时处在绕组二端的线饼,由于幅向和轴向漏磁场的共同作用,也会产生较大的扭矩,致使扭曲变形。如杨高500kV变压器的A相公共绕组共有71个换位,由于采用了较厚的普通换位导线,其中有66个换位有不同程度的变形。另外吴泾1l号主变,也是由于采用普通换位导线,在铁心轭部部位的高压绕组二端线饼均有不同翻转露线的现象。

(4)采用软导线,也是造成变压器抗短路能力差的主要原因之一。由于早期对此认识不足,或绕线装备及工艺上的困难,制造厂均不愿使用半硬导线或设计时根本无这方面的要求,从发生故障的变压器来看均是软导线。

(5)绕组绕制较松,换位处理不当,过于单薄,造成电磁线悬空。从事故损坏位置来看,变形多见换位处,尤其是换位导线的换位处。

(6)绕组线匝或导线之间未固化处理,抗短路能力差。早期经浸漆处理的绕组无一损坏。

(7)绕组的预紧力控制不当造成普通换位导线的导线相互错位。

(8)套装间隙过大,导致作用在电磁线上的支撑不够,这给变压器抗短路能力方面增加隐患。

(9)作用在各绕组或各档预紧力不均匀,短路冲击时造成线饼的跳动,致使作用在电

磁线上的弯应力过大而发生变形。

(10)外部短路事故频繁,多次短路电流冲击后电动力的积累效应引起电磁线软化或内部相对位移,最终导致绝缘击穿。

电力变压器有以下几项节能措施:

1、在一般情况下,电力变压器运行的负载在60~70%Se左右处于理想状态,此时变压器损耗较小,运行费用较低。

2、电力变压器的温升每超过8℃,寿命将减少一半。如果它的运行温度超过变压器绕组绝缘允许的范围,绝缘迅速老化,甚至使绕组击穿,烧毁变压器。所以要降低电力变压器运行温度实现节能。

3、电力变压器三相不平衡,负序电流最大不能超过正序电流的5%.如果变压器绕组YO接线,在中线流过的电流不应超过变压器的额定电流的25%.否则损耗将加大。

4、在电力系统中各种高次谐波会造成电能损耗,对于电力变压器要减少或消除供电系统的高次谐波。

5、合理分配电力变压器的负载,如果分配不当,重载有功损耗加大,轻载无功损耗加大,功率因数变差。

变压器行业kVSSS系列变压器损耗参数对照表

变压器行业10kV级S9、S11、S13系列变压器损耗参数对照表 S13-M型全密封电力变压器主要技术参数

负载损耗:即可变损失。与通过的电流的平方成正比。负载损耗是额定电流下与参考温度下的负载损耗。展开些说,所谓额定电流是指一次侧分接位置必须是主分接,不能是其它分接的额定电流。对参考温度而言,要看变压器的绝缘材料的耐热等级。对油浸式变压器而言,不论是自冷、风冷或强油风冷,都有是A级绝缘材料,其参考温度是根据传统概念加以规定的,都是75℃。 1 变压器损耗大致为两项:铁损和线损。其中铁损主要为变压器铁芯在工作时的磁滞损耗所造成的,其大小与电压相关较大,变压器空载还是带负载对于铁损影响不大; 2 负载电流流过变压器线圈,由于线圈本身的电阻,将有一部分功率损耗在线圈中,这部分损耗为“线损”,电流越大,损耗越大,所以负荷越大,线损也越大; 3 空载时,只有励磁电流流过变压器,所以线损很小; 4 上述“铁损”和“线损”之和就是变压器的大部分损耗,负载时的线损与铁损之和就是变压器的负载损耗,而空载损耗意义也是如此。 相关知识:1)推广使用低损耗变压器 (1)铁芯损耗的控制 变压器损耗中的空载损耗,即铁损,主要发生在变压器铁芯叠片内,主要是因交变的磁力线通过铁芯产生磁滞及涡流而带来的损耗。 最早用于变压器铁芯的材料是易于磁化和退磁的软熟铁,为了克服磁回路中由周期性磁化所产生的磁阻损失和铁芯由于受交变磁通切割而产生的涡流,变压器铁芯是由铁线束制成,而不是由整块铁构成。 1900年左右,经研究发现在铁中加入少量的硅或铝可大大降低磁路损耗,增大导磁率,且使电阻率增大,涡流损耗降低。经多次改进,用0.35mm厚的硅钢片来代替铁线制作变压器铁芯。 1903来世界各国都在积极研究生产节能材料,变压器的铁芯材料已发展到现在最新的节能材料——非晶态磁性材料如2605S2,非晶合金铁芯变压器便应运而生。使用2605S2制作的变压器,其铁损仅为硅钢变压器的1/5,铁损大幅度降低。 (2)变压器系列的节能效果 上述非晶合金铁芯变压器,具有低噪音、低损耗等特点,其空载损耗仅为常规产品的1/5,且全密封免维护,运行费用极低。 我国S7系列变压器是1980年后推出的变压器,其效率较SJ、SJL、SL、SL1系列的变压器高,其负载损耗也较高。 80年代中期又设计生产出S9系列变压器,其价格较S7系列平均高出20%,空载损耗较S7系列平均降低8%,负载损耗平均降低24%,并且国家已明令在1998年底前淘汰S7、SL7系列,推广应用S9系列。 S11是推广应用的低损耗变压器。S11型变压器卷铁心改变了传统的叠片式铁心结构。硅钢片连续卷制,铁心无接缝,大大减少了磁阻,空载电流减少了60~80,提高了功率因数,降低了电网线损,改善了电网的供电品质。连续卷绕充分利用了硅钢片的取向性,空载损耗降低20~35。运行时的噪音水平降低到30~45dB,保护了环境。 非晶合金铁心的S11系列配电变压器系列的空载损耗较S9系列降低75%左右,但其价格仅比S9系列平均高出30%,其负载损耗与S9系列变压器相等。

变压器相间短路后备保护

第五节变压器(发变组)相间短路后备保护 1.概述 变压器(发变组)相间短路后备保护有过流保护、复合电压启动的过流保护、负序过流保护和单元件低压启动过流保护、阻抗保护。 1.1过流保护 用于降压变压器,动作电流应考虑电动机自启动和变压器可能出现的最大过负荷时不误动。 1.2复合电压启动(负序电压和线电压)的过流保护 用于升压变压器、系统联络变压器,当降压变压器的过流保护灵敏度不够时也可采用此后备保护。整定原则如下: (1)过电流元件动作电流按下式计算。 op I = re rel K K gn I 式中rel K -可靠系数,rel K =1.2。 re K -返回系数,re K =0.85~0.90。 gn I -发电机额定电流。 (2)负序电压元件动作电压按避越正常运行时最大负序不平衡电压整定,根据经验取 式中gn U -发电机额定电压。 (3)线电压元件动作电压按两条原则整定: 1) 电动机自启动时不应误动; 2) 发电机失磁时不应误动。 对于汽轮发电机,取op U =0.6gn U ; 对于水轮发电机,取op U =0.7gn U 。 1.3负序过流保护和单元件低压启动过流保护 对于5000KW 及以上的发电机,不对称短路后备保护采用负序过流保护,对称短路后备保护采用单相低压启动过流保护。 负序过流保护的动作电流的整定原则是:假定值班人员在120s 内可能采取措施来消除产生负序电流的根源,而120s 内负序电流对转子表层的过热作用以A t I =2 *2表示,对于间接冷却式发电机,A =30(汽轮发电机)或40(水轮发电机),*2I 为以gn I 为基值的负序电流标么值,为简化计,以2I 表示。以120s 内不损坏转子表层的负序电流2I 作为负序过流保护的动作电流,即5.0120.2≈= A I op (汽轮发电机)或6.0.2=op I (水轮发电机)。此外还应考 虑与相邻元件保护装置在灵敏度方面的配合来决定其延时大小。 如灵敏度不满足要求,可改用阻抗保护。 1.4阻抗保护 当其他后备保护不满足灵敏度要求时,不得不改用阻抗保护作为发-变组相间短路的后备保护。 2.原理及其微机实现 2.1四方 2.1.1发电机(变压器)复合电压过电流保护(电流可带记忆) 保护原理 保护反应发电机或变压器电压、负序电压和电流大小,保护设一段两时限,保护动作于发信或跳闸。 逻辑框图

变压器突发短路故障的缺陷分析

变压器突发短路故障的 缺陷分析 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

变压器突发短路故障的缺陷分析引言 近年来变压器突发短路冲击后损坏几率大增,已占全部损坏事故的40%以上。变压器经受突发短路事故后状况判断、能否投运,成为运行单位经常要决策的问题。以前变压器发生突发短路事故以后,需要组织各方面专家分析事故成因,然后确定试验方法,根据试验结果继续分析或者追加试验。这种分析、抢修机制已不适应当前电网停电时间限制、高可靠性以及事故严重性等情况。北京供电局修试处总结300余台110kV 及以上电压等级变压器多年运行维护经验形成了一套固定的短路突发事故试验分析方法,即油色谱分析、绝缘电阻试验、绕组直阻试验和绕组变形试验“四项分析”。实践证明,“四项分析”基本能够满足变压器突发事故的分析要求。 1 分析项目

1.1 变压器油中溶解气体色谱分析 用于判断变压器内是否发生过热或者放电性故障。该项目对变压器突发事故的故障判断十分敏感,但需要仪器精度高,仅适于在试验室进行,故比较费时。实践中,多数情况下对缺陷的初步定性要依靠它,综合分析也要结合色谱分析结果进行,而且该方法能判断出很多别的试验无法发现的缺陷,例如中兴庄变电站35kV原#1变压器突发事故后,无载分接开关处放电,但直阻试验反映不出来,只有色谱分析才能发现。 1.2 绝缘电阻试验 变压器各绕组、铁心、夹铁、外壳相互之间的绝缘电阻是否正常,是常用的简易检查项目。如老君堂变电站220kV原#1变压器事故掉闸后首先进行绝缘电阻试验,很快发现三侧绕组和铁心对地的绝缘电阻几乎为0,马上就判断为纵绝缘击穿且铁心烧损,与吊罩检查结果相符;又如下面述及的110kV林河变电站#2变压器,也是借助绝缘电阻试验确定了缺陷位置。 1.3 绕组直阻试验

220kV变压器故障的电气试验分析

220kV变压器故障的电气试验分析 发表时间:2017-11-29T15:19:10.303Z 来源:《电力设备》2017年第23期作者:王庆1 王少鲁2 [导读] 摘要:变压器在用电高峰期过后进行本体排油,从检查窗进去对变压器内部检查验证后,发现B相低压线圈发生轻度变形,核实了本次试验结论的正确无误性。 (1.国网陕西省电力公司西安供电公司;2.国网陕西省电力公司检修公司陕西省西安市 710043) 摘要:变压器在用电高峰期过后进行本体排油,从检查窗进去对变压器内部检查验证后,发现B相低压线圈发生轻度变形,核实了本次试验结论的正确无误性。此次缺陷处理提醒大家,试验是电力设备运行和维护中的一个重要环节,用以发现运行中设备的隐患,预防事故的发生或设备的损坏,对设备进行检查、试验或监测,是保证电力系统安全运行的有效手段之一。不能有丝毫懈怠,一时的疏忽就可能放过一个故障,造成无法弥补的后果。这就要求对试验工作要抓细、抓严,善于对试验数据进行分析,建立样本档案,并且要不断积累经验,以便及时发现、了解设备缺陷,确保安全生产。 关键词:220kV;变压器故障;电气实验分析 一、电气试验分析 2010年10月25日,该主变进行了周期性预试,预试结果正常。2011年10月20日,该主变停止运行后,于10月28日进行了主变频谱试验、绕组电容量试验、低电压短路阻抗试验、直流电阻试验和绝缘电阻试验。 1.绕组电容量测试中高中对低地电容量变化达16%,低对高中电容量变化达13%,其余试验数据差异不大判断分析为2#主变中压侧绕组发生变形。 2.频谱试验中反映高压共同绕组部分三相一致性较好,中压、低压绕组的三相响应曲线差异性大,绕组极可能已发生局部变形现象。从绕组频响法变形试验结果及电容量变化量分析,基本判定变压器中压绕组存在严重变形情况。直流电阻值无异常,说明中压绕组虽然已严重变形,但尚未形成匝间短路。 3.2012年7月27日,在变压器油中乙炔的体积分数出现第1次跳变后进行油位、潜油泵检查,铁心接地电流监测,以及局部放电、高频局部放电试验,未发现明显放电信号。油箱液位检查,变压器本体油位一直指示在本体油箱60%位置,有载油位持续指示在储油柜50%位置,油位没有变化,对油枕进行红外测温,未见油位变化,排除分接开关油箱向本体油箱内漏引起油色谱超标的可能性;潜油泵启动检查,潜油泵手动运行1h并进行色谱分析,乙炔的体积分数没有明显变化,可以排除潜油泵绕组短路故障的可能;对该变压器铁心接地电流测试,为0.6mA,说明设备铁心没有多点接地的缺陷。2013年3月19日,对该变压器停电检修,检查高中压套管,进行例行试验和耐压及局部放电试验,均未发现异常。2013年5月,该变压器检修投入运行后乙炔的体积分数发生第2次跳变。对该变压器进行油位、潜油泵相关检查,并进行铁心接地电流监测,局部放电、高频局部放电试验,未发现异常。 4.变压器吊罩检查。2013年7月进行变压器吊罩检查。将变压器外罩吊开后,发现固定U相分接引线的支架与围屏表面发生局部放电故障。在U相中压侧围屏表面有树枝状放电痕迹,固定U相分接引线的支架上部、下部也有放电痕迹。在U相中压侧底部支架上发现掉落的胶垫残条,胶垫残条上有烧蚀痕迹。通过查找发现U相中压侧升高座底部法兰胶垫部分缺损,通过复原发现掉落的胶垫残条正是此处缺损的部分。法兰胶垫及掉落的残条。通过对变压器吊罩检查,认为变压器安装不良造成U相中压侧升高座底部法兰胶垫受力不均匀,导致部分胶垫挤压过度,在设备投入正常运行一段时间后,在设备启动或运行过程中,外界的轻微干扰造成挤压过度的U相中压侧升高座底部法兰胶垫残条掉落,恰好落到U相分接引线的支架上,与围屏表面搭连,造成局部瞬时放电故障。 二、常规试验检查 1.绝缘电阻试验。在大短路电流作用下,初始机械损伤的基本形式是变压器绕组变形,它们发展的典型方式是变形引起局部放电,匝、股间短路,整段主绝缘放电或完全击穿导致主绝缘破坏,测量变压器的绝缘电阻是变压器出口近区短路后一项必要的检测项目。在测量绝缘电阻中,严格执行了Q/CSG 114002-2011规程标准。采用2 500 V摇表,绝缘电阻值与前一次的测量结果进行了比较,无明显差别。 2.直流电阻试验。由于大电流冲击,电流流过薄弱环节,会造成分接开关、套管引线接头、将军帽与线圈引出线之间接触不良。如果未能及时发现处理,任其发展会使接触不良点发热熔化而烧断,进而烧坏变压器。接触不良,匝间和股间短路可通过测量绕组直流电阻来发现。对该变压器试验数据进行分析,直流电阻试验的结果没有明显异常,220 kV侧绕组直流电阻的三相不平衡率和变化率与往年试验数据较一致,由此初步确定低压绕组出现轻微的损伤。 3.气相色谱分析。确定目标后,需进一步核实。对近区短路这类突发性故障,因为由于故障突然,产气快,一部分气体来不及溶解于油中就进入气体继电器。为此对气体继电器的气体进行了色谱分析,并且根据气体继电器中气体颜色初步确定一下故障的大致情况。试验结果表明,各种气体含量未发现异常,其中甲烷(CH4)、乙烯(C2H4)相比以前有微量的增加,根据气体组份与内部故障特征关系,异常类型为过热或绝缘不良,但各项数据都在合格范围以内,可认为试验人员的测试误差,故不足以明确故障性质。 三、缺陷的判定及处理 1.缺陷的判定。近区短路后,绕组受到巨大电动力作用产生位移变形,绕组变形或位移后,即使没有立即损坏,也会留下严重故障隐患。通过绕组变形试验发现的差异,结合常规试验中直流电阻及气相色谱分析发现的微小变动,综合各个数据进行科学分析后,断定该变压器低压绕组B相存在轻微变形。 2.处理结果。变压器绕组变形后,要根据变压器的故障严重程度来决定能否继续运行,且运行时间的长短取决于变形的严重程度和部位。一是绝缘距离发生改变,固体绝缘受到损伤、击穿,导致突发性绝缘故障,甚至在正常运行电压下,因为局部放电而使绝缘击穿。二是绕组机械强度下降,其积累效应使绕组再一次遭受近区短路电流冲击时,将承受不住巨大电动力作用而发生损坏事故。为此根据本变压器故障性质,结合正值夏季用电高峰期,提出低压绕组受到近区短路冲击后有轻微变形,但不影响主变的运行。在制定了相关的技术安全措施和监视手段后,报上一级部门批准后主变顺利投运。运行期间特别执行了重点巡视、加强监测、减少负荷等。 四、处理措施及效果 1.处理措施。(1)对变压器U相中压侧围屏放电部分进行局部切割,并进行修补,对中压侧分接引线等部分进行绝缘处理。(2).更换变压器U相中压侧升高座底部法兰胶垫。(3)对变压器油箱进行滤油处理,直到绝缘油中特征气体的体积分数为零为止。 2.处理效果。2013年7月3日变压器检修投运后,通过油色谱在线监测装置对主变压器的油色谱数据进行监测在变压器投运半个月后,

变压器的常见故障及处理方法

浅议变压器常见故障及处理 令狐采学 摘要:变压器在电力系统的安全、平稳运行中起着至关重要的作用。本文从变压器的结构和原理入手,结合我场变压器的实际情况,针对实际变电运行中变压器的主要异常现象和原因进行分析,提出一些自己的观点。 关键词:变压器原理结构参数异常处理 引言:电力是现在工业的主要能源,并且电能的输送能量之大、距离之远也决定了必须采用超高压输送电能,以减少此过程中的损耗。而实际中由于发电机结构上的限制,通常只能发出10kv 的电压,因此,必须经过变压器的升压才可以完成电能的输送。变压器也理所应当成为电力系统中核心设备之一。如果变压器出现了故障,就会在很大程度上影响电能的输送以及正常的变电运行,所以能够掌握和分析变压器常见的故障和异常现象,及主要原因,提出防范解决措施,就显得尤为重要。 电力变压器是利用电磁感应原理制成的一种静止的电力设备。它可以将某一电压等级的交流电能转换成频率相同的另一种或几种电压等级的交流电能,是电力系统中重要电气设备。下面将从变压器的分类、结构、异常现象和原因分析等几个方面进行介绍: 一、变压器的分类、结构及主要参数

(一)、变压器的分类 根据用途的不同,变压器可以分为电力变压器(220kv以上的是超高压变压器、35-110kv的是中压变压器、10kv为配电变压器)、特种变压器(电炉变压器、电焊变压器)、仪用互感器(电压、电流互感器)。 根据相数分为,单相变压器和三相变压器。 根据冷却方式分为,油浸自冷式、强迫风冷式、强迫油冷式和水冷式变压器。 根据分接开关的种类分为有载调压变压器和无载调压变压器。 根据绕组数分为,单绕组变压器、双绕组变压器和三绕组变压器。 (二)、变压器的结构 虽然变压器的种类依据不同方式进行分类,有很多种,但是一般常用的变压器的结构都很相似: 1、绕组:变压器的电路部分。 2、铁芯:变压器的磁路部分。 3、油箱:变压器的外壳,内装满变压器油(绝缘、散热)。 4、油枕:对油箱里的油起到缓冲作用,同时减小油箱里的油与空气的接触面积,不易受潮和氧化。 5、呼吸器:利用硅胶吸收空气中的水分。 6、绝缘套管:变压器的出线从油箱内穿过油箱盖时必须经过绝缘套管以使带电的引线与接地的油箱绝缘。

关于变压器烧毁的事故分析示范文本

关于变压器烧毁的事故分 析示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

关于变压器烧毁的事故分析示范文本使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 致:重庆华德机械制造有限责任公司领导 来电收到,我公司对贵公司配电房2号变压器因短路 烧毁事件深表关切,接电后立即展开了事故分析工作,我 公司调阅所有的来图档案、技术部的设计资料和采购部采 购元器件的资料及产品合格证都显示符合设计院设计的图 纸要求(以上图纸合格证等贵公司工程部都有资料),况 且配电柜已经运行了3个多月了,可以排除因元器件质量 原因而造成短路的可能性。 现根据现场具体情况分析可能是由于谐波造成的瞬间 系统电压升高,再加上设计院选用的电流互感器是BH- 0.66的,电流互感的电压偏低,这样反复的系统电压瞬间升 高,造成了电流互感器的绝缘下降而引起的。当然这只是

分析,另外,根据我们了解,现场配电房是无人值班的,而且配电房门始终开着,任何人都能随便进入,所以也不排除现场其它因素或者小动物进入造成事故的可能性。 不管怎样,我公司将会积极配合贵公司做好事故的排查分析工作,并全力做好事故后的处理和善后工作。 谢谢 上海一电集团有限公司 20xx年7月8日 请在此位置输入品牌名/标语/slogan Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

变压器相间短路后备保护

第五节 变压器(发变组)相间短路后备保护 1.概述 变压器(发变组)相间短路后备保护有过流保护、复合电压启动的过流保护、负序过流保护和单元件低压启动过流保护、阻抗保护。 1.1 过流保护 用于降压变压器,动作电流应考虑电动机自启动和变压器可能出现的最大过负荷时不误动。 1.2 复合电压启动(负序电压和线电压)的过流保护 用于升压变压器、系统联络变压器,当降压变压器的过流保护灵敏度不够时也可采用此后备保护。整定原则如下: (1) 过电流元件动作电流按下式计算。 op I = re rel K K gn I 式中 rel K -可靠系数,rel K =1.2。 re K -返回系数,re K =0.85~0.90。 gn I -发电机额定电流。 (2) 负序电压元件动作电压按避越正常运行时最大负序不平衡电压整定,根据经验取 gn op U U )12.0~06.0(.2= 式中 gn U -发电机额定电压。 (3) 线电压元件动作电压按两条原则整定: 1) 电动机自启动时不应误动; 2) 发电机失磁时不应误动。 对于汽轮发电机,取op U =0.6gn U ; 对于水轮发电机,取op U =0.7gn U 。 1.3 负序过流保护和单元件低压启动过流保护 对于5000KW 及以上的发电机,不对称短路后备保护采用负序过流保护,对称短路后备保护采用单相低压启动过流保护。 负序过流保护的动作电流的整定原则是:假定值班人员在120s 可能采取措施来消除产生负序电流的根源,而120s 负序电流对转子表层的过热作用以A t I =2 *2表示,对于间接冷却式发电机,A =30(汽轮发电机)或40(水轮发电机),*2I 为以gn I 为基值的负序电流标么值,为简化计,以2I 表示。以120s 不损坏转子表层的负序电流2I 作为负序过流保护的动作电流,即5.0120.2≈= A I op (汽轮发电机)或6.0.2=op I (水轮发电机)。此外还应考 虑与相邻元件保护装置在灵敏度方面的配合来决定其延时大小。 如灵敏度不满足要求,可改用阻抗保护。 1.4 阻抗保护 当其他后备保护不满足灵敏度要求时,不得不改用阻抗保护作为发-变组相间短路的后备保护。 2.原理及其微机实现 2.1四方 2.1.1 发电机(变压器)复合电压过电流保护(电流可带记忆) 2.1.1.1 保护原理 保护反应发电机或变压器电压、负序电压和电流大小,保护设一段两时限,保护动作于发信或跳闸。 2.1.1.2 逻辑框图

变压器突发短路故障的缺陷分析详细版

文件编号:GD/FS-8626 (解决方案范本系列) 变压器突发短路故障的缺 陷分析详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

变压器突发短路故障的缺陷分析详 细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 引言 近年来变压器突发短路冲击后损坏几率大增,已占全部损坏事故的40%以上。变压器经受突发短路事故后状况判断、能否投运,成为运行单位经常要决策的问题。以前变压器发生突发短路事故以后,需要组织各方面专家分析事故成因,然后确定试验方法,根据试验结果继续分析或者追加试验。这种分析、抢修机制已不适应当前电网停电时间限制、高可靠性以及事故严重性等情况。北京供电局修试处总结300余台110kV及以上电压等级变压器多年运行维护经

验形成了一套固定的短路突发事故试验分析方法,即油色谱分析、绝缘电阻试验、绕组直阻试验和绕组变形试验“四项分析”。实践证明,“四项分析”基本能够满足变压器突发事故的分析要求。 1 分析项目 1.1 变压器油中溶解气体色谱分析 用于判断变压器内是否发生过热或者放电性故障。该项目对变压器突发事故的故障判断十分敏感,但需要仪器精度高,仅适于在试验室进行,故比较费时。实践中,多数情况下对缺陷的初步定性要依靠它,综合分析也要结合色谱分析结果进行,而且该方法能判断出很多别的试验无法发现的缺陷,例如中兴庄变电站35kV原#1变压器突发事故后,无载分接

变压器短路事故分析

变压器短路事故分析 变压器事故时有发生,而且有增长的趋势。从变压器事故情况分析来看,抗短路能力不够已成为电力变压器事故的首要原因,对电网造成很大危害,严重影响电网安全运行。 变压器经常会发生以下事故:外部多次短路冲击,线圈变形逐渐严重,最终绝缘击穿损坏;外部短时内频繁受短路冲击而损坏;长时间短路冲击而损坏;一次短路冲击就损坏。变压器短路损坏的主要形式有以下几种: 1、轴向失稳。这种损坏主要是在辐向漏磁产生的轴向电磁力作用下,导致变压器绕组轴向变形。 2、线饼上下弯曲变形。这种损坏是由于两个轴向垫块间的导线在轴向电磁力作用下,因弯矩过大产生永久性变形,通常两饼间的变形是对称的。 3、绕组或线饼倒塌。这种损坏是由于导线在轴向力作用下,相互挤压或撞击,导致倾斜变形。如果导线原始稍有倾斜,则轴向力促使倾斜增加,严重时就倒塌;导线高宽比例大,就愈容易引起倒塌。端部漏磁场除轴向分量外,还存在辐向分量,二个方向的漏磁所产生的合成电磁力致使内绕组导线向内翻转,外绕组向外翻转。 4、绕组升起将压板撑开。这种损坏往往是因为轴向力过大或存在其端部支撑件强度、刚度不够或装配有缺陷。 5、辐向失稳。这种损坏主要是在轴向漏磁产生的辐向电磁力作用

下,导致变压器绕组辐向变形。 6、外绕组导线伸长导致绝缘破损。辐向电磁力企图使外绕组直径变大,当作用在导线的拉应力过大会产生永久性变形。这种变形通常伴随导线绝缘破损而造成匝间短路,严重时会引起线圈嵌进、乱圈而倒塌,甚至断裂。 7、绕组端部翻转变形。端部漏磁场除轴向分量外,还存在辐向分量,二个方向的漏磁所产生的合成电磁力致使绕组导线向内翻转,外绕组向外翻转。 8、内绕组导线弯曲或曲翘。辐向电磁力使内绕组直径变小,弯曲是由两个支撑(内撑条)间导线弯矩过大而产生永久性变形的结果。如果铁心绑扎足够紧实及绕组辐向撑条有效支撑,并且辐向电动力沿圆周方向均布的话,这种变形是对称的,整个绕组为多边星形。然而,由于铁芯受压变形,撑条受支撑情况不相同,沿绕组圆周受力是不均匀的,实际上常常发生局部失稳形成曲翘变形。

变压器短路的原因是什么

因变压器出口短路导致变压器内部故障和事故的原因很多,也比较复杂,它与结构设计、原材料的质量、工艺水平、运行工况等因数有关,但电磁线的选用是关键。从近几年解剖变压基于变压器静态理论设计而选用的电磁线,与实际运行时作用在电磁线上的应力差异较大。 (1)目前各厂家的计算程序中是建立在漏磁场的均匀分布、线匝直径相同、等相位的力等理想化的模型基础上而编制的,而事实上变压器的漏磁场并非均匀分布,在铁轭部分相对集中,该区域的电磁线所受到机械力也较大;换位导线在换位处由于爬坡会改变力的传递方向,而产生扭矩;由于垫块弹性模量的因数,轴向垫块不等距分布,会使交变漏磁场所产生的交变力延时共振,这也是为什么处在铁心轭部、换位处、有调压分接的对应部位的线饼首先变形的根本原因。 (2)抗短路能力计算时没有考虑温度对电磁线的抗弯和抗拉强度的影响。按常温下设计的抗短路能力不能反映实际运行情况,根据试验结果,电磁线的温度对其屈服极限?0.2影响很大,随着电磁线的温度提高,其抗弯、抗拉强度及延伸率均下降,在250℃下抗弯抗拉强度要比在50℃时下降上,延伸率则下降40%以上。而实际运行的变压器,在额定负荷下,绕组平均温度可达105℃,最热点温度可达118℃。一般变压器运行时均有重合闸过程,因此如果短路点一时无法消失的话,将在非常短的时间内(0.8s)紧接着承受第二次短路冲击,但由于受第一次短路电流冲击后,绕组温度急剧增高,根据GBl094的规定,最高允许250℃,这时绕组的抗短路能力己大幅度下降,这就是为什么变压器重合闸后发生短路事故居多。 (3)采用普通换位导线,抗机械强度较差,在承受短路机械力时易出现变形、散股、露铜现象。采用普通换位导线时,由于电流大,换位爬坡陡,该部位会产生较大的扭矩,同时处在绕组二端的线饼,由于幅向和轴向漏磁场的共同作用,也会产生较大的扭矩,致使扭曲变形。如杨高500kV变压器的A相公共绕组共有71个换位,由于采用了较厚的普通换位导线,其中有66个换位有不同程度的变形。另外吴泾1l号主变,也是由于采用普通换位导线,在铁心轭部部位的高压绕组二端线饼均有不同翻转露线的现象。 (4)采用软导线,也是造成变压器抗短路能力差的主要原因之一。由于早期对此认识不足,或绕线装备及工艺上的困难,制造厂均不愿使用半硬导线或设计时根本无这方面的要求,从发生故障的变压器来看均是软导线。 (5)绕组绕制较松,换位处理不当,过于单薄,造成电磁线悬空。从事故损坏位置来看,变形多见换位处,尤其是换位导线的换位处。 (6)绕组线匝或导线之间未固化处理,抗短路能力差。早期经浸漆处理的绕组无一损坏。 (7)绕组的预紧力控制不当造成普通换位导线的导线相互错位。 (8)套装间隙过大,导致作用在电磁线上的支撑不够,这给变压器抗短路能力方面增加隐患。 (9)作用在各绕组或各档预紧力不均匀,短路冲击时造成线饼的跳动,致使作用在电

变压器空载损耗计算

变压器空载损耗计算 简介: 负载曲线的平均负载系数越高,为达到损耗电能越小,要选用损耗比越小的变压器;负载曲线的平均负载系数越低,为达到损耗电能越小,要选用损耗比越大的变压器。将负载曲线的平均负载系数乘以一个大于1的倍数,通常可取1-1.3,作为获得最佳效率的负载系数,然后按βb=(1/R)计算变压器应具备的损耗比。 关键字: 变压器 1、变压器损耗计算公式 (1)有功损耗: ΔP=P0+KTβ2PK-------(1) (2)无功损耗: ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗: ΔPZ=ΔP+KQΔQ----(3) Q0≈I0%SN,QK≈UK%SN 式中: Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA)

I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数: t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。

变压器损耗计算公式

变压器损耗 分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实是铁芯所产生的损耗(也称铁芯损耗,而铜损也叫负荷损耗,1、变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK-------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ----(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0+PC 变压器的损耗比=PC/P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。一、变损电量的计算:变压器的损失电量有铁损和铜损两部分组成。铁损与运行时间有关,铜损与负荷大小有关。因此,应分别计算损失电量。 1、铁损电量的计算:不同型号和容量的铁损电量,计算公式是:

电力变压器短路故障原因及处理办法

电力变压器短路故障原因及处理办法 发表时间:2018-04-13T11:36:55.193Z 来源:《电力设备》2017年第31期作者:张志伟 [导读] 摘要:近年来,随着我国经济水平的不断提高,各行各业均得到了快速发展,与此同时,人们对供电的可靠性也提出了更高的要求。 (国网河北省电力有限公司衡水供电分公司河北衡水 053000) 摘要:近年来,随着我国经济水平的不断提高,各行各业均得到了快速发展,与此同时,人们对供电的可靠性也提出了更高的要求。电力变压器作为整个电网中较为重要的设备之一,其运转的正常与否直接影响整个电网的安全可靠运转。变压器的短路故障可能造成变电站事故,影响电网正常运行。因而,有必要认真分析造成短路的原因,并采取相应的方法予以处理。基于此点,现就电力变压器短路故障原因及其完善措施进行分析。 关键词:电力变压器;短路故障;处理方法 引言 电力变压器是电力系统中最关键的设备之一,它承担着电压变换、电能分配和传输,造价高、制造周期长,一旦发生故障,将对整个供电系统及电力用户造成极大的影响。通过电力变压器运行状况和事故的统计分析,发现因外部短路故障引起的设备损坏事故逐年增多,扼制此类事故的上升势头,已成为提升电力变压器安全运行水平的关键。 1、变压器短路故障的原因分析 1.1电流引起的短路故障 短路电流的热效应会致使变压器元件之间的绝缘层过热损坏,引起绝缘故障过热:故障变压器突发短路时,通过几倍于额定电流的短路电流使变压器严重发热。当超过变压器承载短路电流的限定值时,变压器的热稳定性变差。 1.2过热性故障 变压器中的载流导体、铁心、结构件有可能发生局部过热。引起部分过热的原因有很多,主要是载流导体的触摸不好、螺栓衔接的螺栓发生松动,如分接开关动静触头接触不良、引线接头虚焊、线圈股间短路、引线过长或包扎绝缘损伤引起导体间相接产生环流发热,超负荷运行发热、线圈绝缘膨胀、油道堵塞而引起的散热不良等。变压器的漏磁场在引出线或元器件结构中产生环流;变压器是漏磁屏蔽的结构设计不当,使涡流损耗局部集中等;变压器的铁芯发生短路或许铁芯结构设计不合理引起变压器元器件发生部分过热。元器件的部分过热主要是因为结构设计过程中对漏磁场的处理方法不完善;变压器自身的结构设计不合理或许变压器的构件质量不符合要求。 1.3出口故障 经过分析发现有以下几个原因,第一,在变压器运转的过程中会有重合闸过程,如果短路电流没有消失,在极短的时间内会受到第二次短路冲击,因为第一次冲击变压器绕组的温度很高,绕组的抗短路能力下降非常明显,这时候会引起变压器的重合闸故障,这也是变压器重合闸后发生短路事故的主要原因;第二电压器的衔接导线采用普通的换位导线,抗机械强度相应地下降,在遇到抗机械强度降低时很容易造成变形、散股等现象或许电流过大,换位爬坡比较陡,就会在换位导线构成巨大的扭矩,发生歪曲变形进而出现故障;第三,变压器的绕组比较松懈、换位和纠位爬坡处理方法不到位或许过于单薄,会形成电磁线悬空;第四,绕组预紧力不均匀,短路冲击会造成线饼的不规则运动,因为弯应力过大而使变压器绕组发生变形。 2、变压器故障诊断的步骤 为了更快速、精确地判断变压器故障原因,依据Q/GDW168-2008输变电设备状况检修实验规程规定的实验项目及实验次序,结合以往变压器故障诊断经历,收集国内外相关资料,总结出以下几条变压器故障诊断的步骤:(1)变压器发生故障后,在到达现场之前与变电运维人员联系,先了解故障现场状况,掌握故障前后的维护信息,开始判断故障的类型。(2)到现场取变压器油样,进行油色谱剖析试验,在注意油中气体含量的同时,留意调查各种气体的产气速率,当某种气体短期内迅速增加时要特别留意。(3)当以为设备内部存在故障时,可用三比值法进行分析,对故障的类型进行开始判断。(4)在气体继电器内出现气体时,应该先将继电器内气样进行分析,根据分析出来的数据结果判断,与油中取出气体的分析成果作比较。(5)根据现场故障的情况来判断,进行具有针对性的变压器查看性试验。根据上述结果,分析判断变压器的故障类型、故障位置,并结合该设备的结构、运转状况、检修记录等状况,按照状况检修要求,对变压器进行状况评估,依据变压器状况检修导则进行评分,依据评估的成果对设备制定不同的检修策论,包含进行A类检修、B类检修、C类检修、D类检修。经过合理安排检修、执行针对性方法,快速处理设备故障,防止设备损坏事故的发生,保证设备安全运转。 3、电力变压器短路故障防治对策 1)相间短路是变压器最严重的故障类型,它包括变压器箱体内部的相间短路和引出线的相间短路。由于相间短路给电网造成巨大冲击,会严重地烧损变压器本体设备,严重时使得变压器整体报废,因此,当变压器发生这种类型的故障时,要求瞬间切除故障。而接地短路故障只会发生在中性点接地的系统一侧,这种故障的处理方式和相间短路故障是相同的,但必须考虑接地短路发生在中性点附近时的灵敏度。2)变压器的突然短路电流包括稳态分量和瞬态分量,稳态分量的大小决定于电源电压u1和短路阻抗Zk,瞬态分量不仅决定于u1和Zk,还与短路时电压的初相角有关,当时瞬态分量有最大幅值。短路电流数值很大,它可能造成变压器绕组的过热和在绕组中产生强大电磁力。因此,必须采取过热保护和加强绕组机械强度的措施,以防止绕组的过热和机械损坏。3)变压器空载合闸时,其铁芯中的磁通包含有稳态分量和瞬态分量。稳态分量的大小,主要决定于电源电压和平均电感,瞬态分量的大小还与合闸的初相角有关,当合闸初相角为0时,瞬态分量的幅值最大。这时总磁通将接近,激磁电流可达正常激磁电流的数百倍。空载合闸时的冲击电流虽较大,但对变压器本身不会造成直接危害,却可能造成继电保护的误动作,这应在变压器运行时加以防止。4)由于变压器内部电磁场分布不均匀、制造工艺水平差、绕组绝缘水平下降、铁芯绝缘损坏、铁芯两点接地等因素,会使铁芯局部发热和烧损,继而引发更严重的相间短路。因此,应积极开展红外检测,220kV及以上电压等级的变压器每年在夏季前后应至少各进行一次精确检测。在高温大负荷运行期间,对220kV及以上电压等级变压器应增加红外检测次数。精确检测的测量数据和图像应制作报告存档保存。5)加强变压器选型、订货、验收及投运的全过程管理,选择具有良好运行业绩和成熟制造经验生产厂家的产品;验收时,严格按照国家标准、行业标准和合同中规定的技术条件对采购的设备进行验收240MVA及以下容量变压器应选用通过突发短路试验验证的产品;500kV变压器和240MVA以上容量变压器,制造厂应提供同类产品突发短路试验报告或抗短路能力计算报告,计算报告应有相关理论和模型试验的技术支持。220kV及以上电压等级的变压器都应进行抗震

变压器空载损耗与负载损耗的计算方法及公式

变压器空载损耗与负载损耗的计算方法及公式 电力变压器损耗分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实际是铁芯所产生的损耗(也称铁芯损耗),而铜损也叫负荷损耗。 1、电力变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK-------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ------(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar;

(3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品出厂资料所示。 2、电力变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损https://www.360docs.net/doc/3e106655.html,/耗ΔP=P0+PC 变压器的损耗比=PC /P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。 变损电量的计算:变压器的损失电量有铁损和铜损两部分组成。铁损与运行时间有关,铜损与负荷大小有关。因此,应分别计算损失电量。 1、铁损电量的计算:不同型号和容量的铁损电量,计算公式是: 铁损电量(千瓦时)=空载损耗(千瓦)×供电时间(小时)

变压器相间短路后备保护整定计算

注:本节内容主要摘自《大型发电机变压器继电保护整定计算导则》。 16.3.1. 变压器相间短路后备保护 16.3.1.1 复合电压闭锁方向过流保护 16.3.1.1.1 电流元件的整定计算 a ) 过电流保护的动作电流计算。电流元件的动作电流应躲过变压器的额定电流,计算公式如下: e r rel op I K K I = 式中: rel K 为可靠系数,取1.2~1.3; r K 为返回系数,取0.85~0.95; e I 为变压器的额定电流,下同。 b ) 灵敏系数校验: op k sen I I K )2(min .= 式中:)2(min .k I 为后备保护区末端两相金属性短路时流过保护的最小短路电流,要求 1.3≥sen K (近后备), 1.2≥sen K (远后备)。 16.3.1.1.2 低电压启动元件的整定计算 低电压启动元件的整定应考虑以下情况: a )按躲过正常运行时可能出现的最低电压整定 r rel op K K U U min = 式中: rel K 为可靠系数,取1.1~1.2; r K 为返回系数,取1.05~1.25; min U 为变压器正常运行可能出现的最低电压,一般可取0.9Ue (额定线电 压,下同) b )按躲过电动机自起动时的电压整定: 当低电压继电器由变压器低压侧电压互感器供电时 e op U U )6.0~5.0(=

当低电压继电器由变压器高压侧电压互感器供电时 e op U U 7.0= c ) 灵敏系数校验: max .r op sen U U K = 式中:max .r U 为计算运行方式下,灵敏系数校验点发生金属性相间短路时,保护安装处的最高残压,要求 1.3≥sen K (近后备)或 1.2≥sen K (远后备)。 16.3.1.1.3 负序电压启动元件的整定计算 a )负序电压启动元件的电压整定计算。负序电压启动元件应躲过正常运行时出现的不平衡电压,不平衡电压值可实测确定。当无实测值时,根据现行规程的规定取 e op U U )08 .0~06.0(2=。 b ) 灵敏系数校验: 2 .min .2.op k sen U U K = 式中:min .2.k U 为后备保护区末端两相金属性短路时,保护安装处的最小负序电压值,要求 2.0≥sen K (近后备)或 1.5≥sen K (远后备)。 16.3.1.2 阻抗保护 16.3.1.2.1 升压变压器220~500kV 侧全阻抗继电器的整定计算 a )阻抗继电器的动作阻抗计算。在220~500kV 变压器高压侧装设全阻抗继电器时,阻抗继电器的动作值与母线上与之配合的引出线阻抗保护段相配合,其值按下式计算 Z K K Z rel op inf = (1) 式中:rel K -可靠系数,取0.8; inf K -助增系数,取各种运行方式下的最小值; Z -与之配合的高压侧引出线路距离保护段动作阻抗。 b )灵敏系数校验:按指定的保护区末端相间短路校验灵敏系数,如下式 Z Z K op sen = (2) 式中:Z -与指定保护区对应的阻抗。

相关文档
最新文档