第3章-概率统计实例分析及MatlAb求解

第3章-概率统计实例分析及MatlAb求解
第3章-概率统计实例分析及MatlAb求解

第3章概率统计实例分析及MatlAb求解

第3章概率统计实例分析及MatlAb求解 (1)

3.1 随机变量分布与数字特征实例及MA TLAB求解 (1)

3.1.1 MATLAB实现 (1)

3.1.2 相关实例求解 (2)

3.2 数理统计实例分析及MATLAB求解 (4)

3.1.1 MATLAB实现 (4)

3.1.2 相关实例求解 (4)

3.3参数估计与假设检验实例分析及MATLAB求解 (5)

3.1.1 MATLAB实现 (5)

3.1.2 相关实例求解 (5)

3.4 方差分析实例求解 (10)

3.1.1 MATLAB实现 (10)

3.1.2 相关实例求解 (10)

3.5 判别分析应用实例及求解 (14)

3.1.1 MATLAB实现 (14)

3.1.2 相关实例求解 (14)

3.6 聚类分析应用实例及MATLAB求解 (16)

3.1.1 MATLAB实现 (16)

3.1.2 相关实例求解 (16)

3.1 随机变量分布与数字特征实例及MATLAB求解

3.1.1 MATLAB实现

用mvnpdf和mvncdf函数可以计算二维正态分布随机变量在指定位置处的概率和累积分布函数值。

利用MATLAB统计工具箱提供函数,可以比较方便地计算随机变量的分布律(概率密度函数)、分布函数及其逆累加分布函数,见附录2-1,2-2,2-3。

MATLAB中矩阵元素求期望和方差的函数分别为mean和var,若要求整个矩阵所有元素的均方差,则要使用std2函数。

随机数生成函数:rand( )和randn( )两个函数

伪随机数生成函数:

A=gamrnd(a,lambda,n,m) % 生成n*m的 分布的伪随机矩阵

B=raylrnd(b,n,m) %生成rayleigh的伪随机数

3.1.2 相关实例求解

例2-1 计算服从二维正态分布的随机变量在指定范围内的累积分布函数值并绘图。

程序:

%二维正态分布的随机变量在指定范围内的累积分布函数图形 mu=[0 0];

sigma=[0.25 0.3;0.3 1];%协方差阵 x=-3:0.1:3;y=-3:0.2:3;

[x1,y1]=meshgrid(x,y);%将平面区域网格化取值 f=mvncdf([x1(:) y1(:)],mu,sigma);%计算累积分布函数值 F=reshape(f,numel(y),numel(x));%矩阵重塑 surf(x,y,F);

caxis([min(F(:))-0.5*range(F(:)),max(F(:))]);%range(x)表示最大值与最小值的差,即极差。

axis([-3 3 -3 3 0 0.5]); xlabel('x'); ylabel('y');

zlabel('Probability Density');

图1 二维正太分布累积分布函数值图

例2-2 设X 的概率密度为????

?????

<<-≤≤=其他。0;30001500,1500

3000;15000,

1500)(2

2x x

x x x f ,求)(X E 。

求解程序:

syms x

f1=x/1500^2;

f2=(3000-x)/1500^2;

Ex=int(x*f1,0,1500)+int(x*f2,1500,3000)

运行结果:

Ex =1500

Ex =1/3

例2-3:绘制 =0.5,1,3,5,10 时Poisson 分布的概率密度函数与概率分布函数曲线。

代码如下:

x=[0:15]'; y1=[]; y2=[]; lam1=[0.5,1,3,5,10];

for i=1:length(lam1)

y1=[y1,poisspdf(x,lam1(i))]; y2=[y2,poisscdf(x,lam1(i))];

end

plot(x,y1), figure; plot(x,y2)

图2 泊松分布概率密度函数图

图3 泊松分布概率分布函数

3.2 数理统计实例分析及MATLAB 求解

3.1.1 MATLAB 实现

在MATLAB 中各种随机数可以认为是独立同分布的,即简单随机样本。

常用分布的随机数产生方法,可用分布英文名称缩写加上rnd ,例如:

x=betarnd(a,b,m,n) 参数为a,b 的beta 分布; x=binornd(N,p,m,n) 参数为N,p 的二项分布;

3.1.2 相关实例求解

例2-4:设总体密度函数

cos ,,2

2

2()0,.

x

x f x π

π

?-

<<

?

=???

其他 试从该总体中抽取容量为1000的简单随机样本。

解 利用MATLAB 编辑窗口保存以下程序,保存为ex11.m

n=1000; x=zeros(1,n); k=0; while k

a=rand*pi-pi/2; b=rand/2;

if b<(cos(a)/2)

k=k+1;

x(k)=a;

end

end

hist(x,-pi/2:0.2:pi/2)

保存完成之后,在命令窗口执行ex11,则x被赋值,且可以得到这个容量为1000的样本的直方图。

图7 直方图

3.3参数估计与假设检验实例分析及MATLAB求解

3.1.1 MATLAB实现

3.1.2 相关实例求解

例3-5:对某型号的20辆汽车记录其5L汽油的行驶里程(公里),观测数据如下:

29.8 27.6 28.3 27.9 30.1 28.7 29.9 28.0 27.9 28.7

28.4 27.2 29.5 28.5 28.0 30.0 29.1 29.8 29.6 26.9

试估计总体的均值和方差。

求解程序:

%矩法估计

x1=[29.8 27.6 28.3 27.9 30.1 28.7 29.9 28.0 27.9 28.7];

x2=[28.4 27.2 29.5 28.5 28.0 30.0 29.1 29.8 29.6 26.9];

x=[x1 x2]';

muhat=mean(x)

sigma2hat=moment(x,2)%样本二阶中心矩

var(x,1);

运行结果:

muhat = 28.6950

sigma2hat =0.9185

例3-6:对某型号的20辆汽车记录其5L汽油的行驶里程(公里),观测数据如下:

29.8 27.6 28.3 27.9 30.1 28.7 29.9 28.0 27.9 28.7

28.4 27.2 29.5 28.5 28.0 30.0 29.1 29.8 29.6 26.9

设行驶里程服从正态分布,试用最大似然估计法估计总体的均值和方差。

求解程序:

%最大似然估计

x1=[29.8 27.6 28.3 27.9 30.1 28.7 29.9 28.0 27.9 28.7];

x2=[28.4 27.2 29.5 28.5 28.0 30.0 29.1 29.8 29.6 26.9];

x=[x1 x2]';

p=mle('norm',x);

muhatmle=p(1)

sigma2hatmle=p(2)^2

运行结果:

muhatmle =28.6950

sigma2hatmle =0.9185

例3-7设两台车床加工同一零件,各加工8件,长度的误差为:

A:-0.12 -0.80 -0.05 -0.04 -0.01 0.05 0.07 0.21 B:-1.50 -0.80 -0.40 -0.10 0.20 0.61 0.82 1.24 求方差比的置信区间。

解:用Matlab计算如下:

x=[-0.12,-0.80,-0.05,-0.04,-0.01,0.05,0.07,0.21];

y=[-1.50,-0.80,-0.40,-0.10,0.20,0.61, 0.82,1.24];

v1=var(x); v2=var(y);

c1=finv(0.025,7,7); c2=finv(0.975,7,7);

a=(v1/v2)/c2; b=(v1/v2)/c1; [a,b]

计算结果为: [0.0229 0.5720]

结论:方差比小于1的概率至少达到了95%,说明车床A 的精度明显高。 例3-8 下面列出的是某工厂随机选取的20只零部件的装配时间(分): 9.8 10.4 10.6 9.6 9.7 9.9 10.9 11.1 9.6 10.2 10.3 9.6 9.9 11.2 10.6 9.8 10.5 10.1 10.5 9.7

设装配时间的总体服从正态分布,标准差为0.4,是否可以认为装配时间的均值在0.05的水平下不小于10。

解:

0H :10<μ vs 1H :10≥μ

程序:

%正态总体的方差已知时的均值检验

x1=[9.8 10.4 10.6 9.6 9.7 9.9 10.9 11.1 9.6 10.2]; x2=[10.3 9.6 9.9 11.2 10.6 9.8 10.5 10.1 10.5 9.7]; x=[x1 x2]';

m=10;sigma=0.4;a=0.05;

[h,sig,muci]=ztest(x,m,sigma,a,1) 运行结果: h =1

sig =0.01267365933873 muci =

10.05287981908398 Inf

因此,在0.05的水平下,可以认为装配时间的均值不小于10。

例3-9 某种电子元件的寿命X (以小时计)服从正态分布,μ和2σ均未知。现测得16只元件的寿命如下:

159 280 101 212 224 379 179 264 222 362 168 250 149 260 485 170 问是否有理由认为元件的平均寿命大于225(小时)? 解:

0H :225≤μ vs 1H :225>μ

程序:

%正态总体的方差未知时的均值检验

x=[159 280 101 212 224 379 179 264 222 362 168 250 149 260 485 170]; m=225;a=0.05;

[h,sig,muci]=ttest(x,m,a,1) 运行结果: h=0 sig=0.2570

198.2321 Inf

由于sig=0.257,因此没有充分的理由认为元件的平均寿命大于225小时。 而对于

0H :225≥μ vs 1H :225<μ

程序:

%正态总体的方差未知时的均值检验

x=[159 280 101 212 224 379 179 264 222 362 168 250 149 260 485 170]; m=225;a=0.05;

[h,sig,muci]=ttest(x,m,a,-1) 运行结果: h=0 sig=0.7430 muci =

-Inf 284.7679

由于sig=0.743,因此更没有充分的理由认为元件的平均寿命小于225小时。 例3-10某厂铸造车间为提高铸件的耐磨性而试制了一种镍合金铸件以取代铜合金铸件,为此,从两种铸件中各独立地抽取一个容量分别为8和9的样本,测得其硬度(一种耐磨性指标)为:

镍合金 76.43 76.21 73.58 69.69 65.29 70.83 82.75 72.34 铜合金 73.66 64.27 69.34 71.37 69.77 68.12 67.27 68.07 62.61

根据专业经验,硬度服从正态分布,且方差保持不变,试在显著性水平05.0=α下判断镍合金的硬度是否有明显提高。

解:

0H :铜镍μμ≤ vs 1H :铜镍μμ>

程序:

%正态总体的方差齐但求知时的均值检验

x=[76.43 76.21 73.58 69.69 65.29 70.83 82.75 72.34]'; y=[73.66 64.27 69.34 71.37 69.77 68.12 67.27 68.07 62.61]'; a=0.05;

[h,sig,ci]=ttest2(x,y,a,1) 运行结果: h=1 sig=0.0142

1.4148 Inf

因此,在显著性水平05.0=α下,可以判断镍合金的硬度有明显提高。 例3-11 q-q 图 程序:

%分布拟合检验(q-q 图法)

x=normrnd(0,1,100,1);%生成服从正态分布的随机数 y=normrnd(0.5,2,50,1);

z=weibrnd(2,0.5,100,1);%生成服从威布尔分布的随机数 subplot(2,2,1)%说明生成子图的位置 qqplot(x);hold on

subplot(2,2,2);qqplot(x,y);hold on subplot(2,2,3);qqplot(z);hold on subplot(2,2,4);qqplot(x,z); hold off

运行结果见下图:

图12 q-q 分布图

结论:上面的q-q 图中第1个子图用x 的数据绘图,因为服从正态分布,图中数据点呈直线分布;第2个子图用x 数据和y 数据(均服从正态分布),数据点的主体部分呈直线;第3个子图用z 数据绘图,由于它服从威布尔分布,所以数据点不在一条直线上;第4个子图是用x 数据和z 数据绘制的,因为它们不是

同分布的,图中数据点不呈直线分布。

例3-12:诸X 为 1.1,3.3,5.5,7.7,诸Y 为2.2,4.4,6.6,以下列表给出混合样本及秩

混合样本

1.1

3.3

5.5

7.7

2.2

4.4

6.6

秩 1 3 5 7 2 4 6

24612W =++=.

若H0成立,则W 的值应该适中。注意到每个秩序的平均值为(1)2n +,故H0成立时,E(W)=n(N+1)2,W 的值在此值附近应该是正常的。若W 的值异常偏大,说明第二个总体确有增加效应。利用MATLAB 自身的函数

p = ranksum(X,Y)

可以进行双侧的秩和检验。返回的p 值小于给定的α则拒绝原假设,认为H1:

0?≠成立。

H0成立时,可以证明W 关于E(W)=n(N+1)2对称,要检验H1:0?>,只要判定(1)2n N W +>,并且p = ranksum(X,Y)2α<即可。

3.4 方差分析实例求解

3.1.1 MATLAB 实现 3.1.2 相关实例求解

例3-13 某化工产品的产量是衡量经济效益的重要指标。为了考察反应温度(因子A )对该化工产品产量y 是否有显著影响,我们选取因子A 的5个水平为

1A :60℃,2A :65℃,3A :70℃,4A :75℃,5A :80℃。每个水平下各作5次重复试验,试验结果如下表所示:

表8 反应温度观测值

设该试验的线性统计模型为:

2

,

1,,5;5...(0,).ij i ij ij

y i j i i d N μεεσ=+?==?? 诸 程序:

%等重复的单因子试验的方差分析

y1=[90 87 92 91 88]';y2=[97 91 93 95 92]'; y3=[96 92 93 96 95]';y4=[84 82 86 83 88]'; y5=[84 81 85 86 82]';y=[y1 y2 y3 y4 y5]; p=anova1(y)%y 的列表示重复观测值。 运行结果:

图13 运行结果

图14 水箱平衡图

结论:

可见,反应温度(因子A)对该化工产品产量y有显著影响。

例3-14 为了考察某种电池的最大输出电压受板极材料与使用电池的环境温度的影响,材料类型(因子A)取3个水平(即3种不同的材料),温度(因子B)也取3个水平,每个水平组合下重复4次试验,数据如下:

表 9 实验数据

解:程序

1).%两因子等重复试验(方差分析)

y1=[130 155 174 180 34 40 80 75 20 70 82 58]';

y2=[150 188 159 126 136 122 106 115 25 70 58 45]';

y3=[138 110 168 160 174 120 150 139 96 104 82 60]';

y=[y1 y2 y3];

p=anova2(y,4)

运行结果:

图15 运行结果图

结论:列因子A、行因子B以及其交互作用均显著。

2).再作列因子的多重比较,程序如下:

%两因子等重复试验(列因子的多重比较)

y1=[130 155 174 180 34 40 80 75 20 70 82 58]';

y2=[150 188 159 126 136 122 106 115 25 70 58 45]';

y3=[138 110 168 160 174 120 150 139 96 104 82 60]';

y=[y1 y2 y3];

[p,table,stats]=anova2(y,4)

multcompare(stats,0.05)

运行结果:

Note: Your model includes an interaction term that is significant at the level you specified. Testing main effects under these conditions is questionable.

图16 分布示意图

可见,列因子A、行因子B以及其交互作用均显著。

3.5 判别分析应用实例及求解

3.1.1 MATLAB实现

3.1.2 相关实例求解

例3-15我国山区某大型化工厂,在厂区及邻近地区挑选有代表性的15个大气取样点,每日4次同时抽取大气样品,测定其中含有的6种气体的浓度,前后共4天,每个取样点每种气体实测16次。计算每个取样点每种气体的平均浓度,数据如下表所示,气体数据对应的污染地区分类如下表中最后一列所示。现有两个取自该地区的4个气体样本,气体指标如表中后4行所示,试判别这4个样品的污染分类。

表10 指标分布表

解:首先将数据保存在文件example12_4.mat中,然后再编写程序。

注意:对于样本数据的每一种分类,要求其对应的观测案例数(即training 的行数)必须大于观测的变量个数(即training的列数)。例如本例中,变量个数为6,则对应于第1类和第2类的观测案例数必须大于6,否则将出错。

代码如下:

sample=xlsread('b.xls','B2:G20');% 读取文件全部数据

training=xlsread('b.xls','B2:G16');% 已知组别的样本数据

group=xlsread('b.xls','H2:H16');%样本的分组信息数据

obs=[1:19]';样本编号

%距离判别,判别函数类型为mahalanobis,返回判别结果向量C和判误概率err [C,err] = classify(sample,training,group,'mahalanobis');

[obs, C] % 查看判别结果

err % 查看误判概率

运行结果:

ans =1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 1 1 1

2 2 1 1 2 2 2 2 2 2 1 1 1 2 2

err =

由此可知,气体样品1和样品2污染分类属于第一类,而气体样品3和样品4则属于污染分类的第二类,且判误概率极小,约等于0,这说明该分类结果是可行的。

3.6 聚类分析应用实例及MATLAB求解

3.1.1 MATLAB实现

3.1.2 相关实例求解

例3-16为了研究世界各国森林、草原资源的分布规律,共抽取了21个国家的数据,每个国家4项指标,原始数据见下表。试用该数据对国别进行聚类分析。

表 16 世界绿化情况表

MATLAB提供了两种方法进行聚类分析。

一种是一次聚类。它的优点是可利用clusterdata函数对样本数据进行一次聚类。其缺点是可供用户选择的面比较窄,不能更改距离的计算方法。

另一种是分步聚类。可以分以下步骤进行分步聚类:

⑴找到数据集合中变量两两之间的相似性和非相似性,用pdist函数计算变

量之间的距离;

⑵用linkage函数定义变量之间的连接;

⑶用Cophenetic函数评价聚类信息;

⑷cluster函数创建聚类。

1、一次聚类

X=xlsread('d.xls','B2:E22');

T=clusterdata(X,0.9)

通过分析T =[10,10,3,8,2,9,8,10,10,7,1,8,1,8,8,1,4,9,9,5,6],可知最后21个国家的绿化情况可分为5类:{中国,美国,法国,澳大利亚,印度尼西亚,尼日尼亚},{德国,意大利,波兰,南斯拉斯,罗马尼亚},{墨西哥,巴西},{印度,日本},{英国,捷克,匈牙利,保加利亚}。

2、分步聚类

⑴.寻找变量之间的相似性

用pdist函数计算相似矩阵,有多种方法可以计算距离,进行计算之前最好先将数据用zscore函数进行标准化。

X2=zscore(X); %标准化数据

Y2=pdist(X2); %计算距离

⑵.定义变量之间的连接

Z2=linkage(Y2);

⑶.评价聚类信息

C2=cophenet(Z2,Y2);

运行结果C2=0.9470,可见,其聚类效果较佳。

⑷.创建聚类,并作出谱系图

T=cluster(Z2,6);

H=dendrogram(Z2);

分类结果:{中国,美国,法国,澳大利亚,印度尼西亚,尼日尼亚},{德国,意大利,波兰,南斯拉斯,罗马尼亚},{墨西哥,巴西},{印度,日本},{英国,捷克,匈牙利,保加利亚}。

4

71512 414111613 5 61819 31720 1 9 2 82110

图17 聚类图

Matlab 概率论与数理统计

Matlab 概率论与数理统计一、matlab基本操作 1.画图 【例01.01】简单画图 hold off; x=0:0.1:2*pi; y=sin(x); plot(x,y,'-r'); x1=0:0.1:pi/2; y1=sin(x1); hold on; fill([x1, pi/2],[y1,1/2],'b'); 【例01.02】填充,二维均匀随机数 hold off; x=[0,60];y0=[0,0];y60=[60,60]; x1=[0,30];y1=x1+30; x2=[30,60];y2=x2-30; xv=[0 0 30 60 60 30 0];yv=[0 30 60 60 30 0 0]; fill(xv,yv,'b'); hold on; plot(x,y0,'r',y0,x,'r',x,y60,'r',y60,x,'r'); plot(x1,y1,'r',x2,y2,'r'); yr=unifrnd (0,60,2,100); plot(yr(1,:),yr(2,:),'m.') axis('on'); axis('square'); axis([-20 80 -20 80 ]);

2. 排列组合 C=nchoosek(n,k):k n C C =,例nchoosek(5,2)=10, nchoosek(6,3)=20. prod(n1:n2):从n1到n2的连乘 【例01.03】至少有两个人生日相同的概率 公式计算n n n n N N n N N N N n N N N C n p )1()1(1)! (! 1!1+--?-=--=- = 365364 (3651)365364 3651 11365365365365 rs rs rs ?-+-+=- =-? rs=[20,25,30,35,40,45,50]; %每班的人数 p1=ones(1,length(rs)); p2=ones(1,length(rs)); % 用连乘公式计算 for i=1:length(rs) p1(i)=prod(365-rs(i)+1:365)/365^rs(i); end % 用公式计算(改进) for i=1:length(rs) for k=365-rs(i)+1:365 p2(i)=p2(i)*(k/365); end ; end % 用公式计算(取对数) for i=1:length(rs)

Matlab 概率论与数理统计

Matlab 概率论与数理统计一、m atlab基本操作 1.画图 hold off; x=0:0.1:2*pi; y=sin(x); plot(x,y,'-r'); x1=0:0.1:pi/2; y1=sin(x1); hold on; fill([x1, pi/2],[y1,1/2],'b'); hold off; x=[0,60];y0=[0,0];y60=[60,60]; x1=[0,30];y1=x1+30; x2=[30,60];y2=x2-30; xv=[0 0 30 60 60 30 0];yv=[0 30 60 60 30 0 0]; fill(xv,yv,'b'); hold on; plot(x,y0,'r',y0,x,'r',x,y60,'r',y60,x,'r'); plot(x1,y1,'r',x2,y2,'r'); yr=unifrnd (0,60,2,100); plot(yr(1,:),yr(2,:),'m.') axis('on'); axis('square'); axis([-20 80 -20 80 ]);

2. 排列组合 C=nchoosek(n,k):k n C C =,例nchoosek(5,2)=10, nchoosek(6,3)=20. prod(n1:n2):从n1到n2的连乘 【例01.03】至少有两个人生日相同的概率 公式计算n n n n N N n N N N N n N N N C n p )1()1(1)! (! 1!1+--?-=--=- = 365364 (3651)365364 3651 11365365365365 rs rs rs ?-+-+=- =-? rs=[20,25,30,35,40,45,50]; %每班的人数 p1=ones(1,length(rs)); p2=ones(1,length(rs)); % 用连乘公式计算 for i=1:length(rs) p1(i)=prod(365-rs(i)+1:365)/365^rs(i); end % 用公式计算(改进) for i=1:length(rs) for k=365-rs(i)+1:365 p2(i)=p2(i)*(k/365); end ; end % 用公式计算(取对数)

Matlab概率统计工具箱(3)

Matlab概率统计工具箱(3) 4.8 假设检验 4.8.1 已知,单个正态总体的均值μ的假设检验(U检验法) 函数ztest 格式h = ztest(x,m,sigma) % x为正态总体的样本,m为均值μ0,sigma为标准差,显著性水平为0.05(默认值) h = ztest(x,m,sigma,alpha) %显著性水平为alpha [h,sig,ci,zval] = ztest(x,m,sigma,alpha,tail) %sig为观察值的概率,当sig为小概率时则对原假设提出质疑,ci为真正均值μ的1-alpha置信区间,zval为统计量的值. 说明若h=0,表示在显著性水平alpha下,不能拒绝原假设; 若h=1,表示在显著性水平alpha下,可以拒绝原假设. 原假设:, 若tail=0,表示备择假设:(默认,双边检验); tail=1,表示备择假设:(单边检验); tail=-1,表示备择假设:(单边检验). 例4-74 某车间用一台包装机包装葡萄糖,包得的袋装糖重是一个随机变量,它服从正态分布.当机器正常时,其均值为0.5公斤,标准差为0.015.某日开工后检验包装机是否正常,随机地抽取所包装的糖9袋,称得净重为(公斤)

0.497, 0.506, 0.518, 0.524, 0.498, 0.511, 0.52, 0.515, 0.512 问机器是否正常 解:总体μ和σ已知,该问题是当为已知时,在水平下,根据样本值判断μ=0.5还是.为此提出假设: 原假设: 备择假设: >> X=[0.497,0.506,0.518,0.524,0.498,0.511,0.52,0.515,0.512 ]; >> [h,sig,ci,zval]=ztest(X,0.5,0.015,0.05,0) 结果显示为 h = 1 sig = 0.0248 %样本观察值的概率 ci = 0.5014 0.5210 %置信区间,均值0.5在此区间之外 zval = 2.2444 %统计量的值 结果表明:h=1,说明在水平下,可拒绝原假设,即认为包装机工作不正常.

概率特性仿真实验与程序-Matlab仿真-随机数生成-负指数分布-k阶爱尔兰分布-超指数分布

概率特性仿真实验与程序-Matlab 仿真-随机数生成-负指数分布-k 阶 爱尔兰分布-超指数分布 使用Java 中的SecureRandom .nextDouble()生成一个0~1之间的随机浮点数,然后使用反函数法生成一个符合指数分布的随机变量(反函数求得为λ) 1ln(R x --=)。指数分布的 参数λ为getExpRandomValue 函数中的参数lambda 。生成一个指数分布的随机变量的代码如下,后面都将基于该函数生成一组负指数分布、K 阶爱尔兰分布、2阶超指数分布随机变量,然后将生成的随机数通过matlab 程序进行仿真,对随机数的分布特性进行验证。 生成一组参数为lambda (λ)的负指数分布的随机变量 通过下面的函数生成一组λ参数为lambda 的随机变量,其中size 表示随机变量的个数。通过该函数生成之后,可以将这些随机值保存在文件中,以备分析和验证,比如保存在exp.txt 文件中,供下面介绍的matlab 程序分析。 通过genExp (1000000, 0.2)生成1000000个参数为0.2的随机变量,然后保存到exp.txt 中,然后使用下面的matlab 程序对这些随机数的性质进行验证,如果这些随机数符合λ=0.2的负指数分布,则其均值应为1/λ,即1/0.2=5,其方差应为1/λ2=1/(0.2*0.2)=25。然后对这些随机数的概率分布进行统计分析,以长度为1的区间为统计单位,统计各区间内随机数出现的频数,求出在各区间的概率,绘制图形,与参数为λ的真实负指数分布曲线进行对比。下图为matlab 代码

如下图所示,均值为4.996423,约等于5,方差为24.96761,约等于25,与实际情况相符。此外,通过matlab统计的概率密度函数曲线与真实曲线基本重合(其中在0-1之间没有重合的原因是,实际情况是在0-1之间有无数个点,而matlab统计时以1为一个区间进行统计,只生成了一个统计项,而这无数个点的概率全部加到1点处,因此两条线没有重合,而且1点处的值远大于实际值,如果统计单位划分越细,0-1之间的拟合度更高),表明生成的随机数符合负指数分布。

matlab在统计数据的描述性分析的应用

统计数据的描述性分析 一、实验目的 熟悉在matlab中实现数据的统计描述方法,掌握基本统计命令:样本均值、样本中位数、样本标准差、样本方差、概率密度函数pdf、概率分布函数df、随机数生成rnd。 二、实验内容 1 、频数表和直方图 数据输入,将你班的任意科目考试成绩输入 >> data=[91 78 90 88 76 81 77 74]; >> [N,X]=hist(data,5) N = 3 1 1 0 3 X = 75.7000 79.1000 82.5000 85.9000 89.3000 >> hist(data,5)

2、基本统计量 1) 样本均值 语法: m=mean(x) 若x 为向量,返回结果m是x 中元素的均值; 若x 为矩阵,返回结果m是行向量,它包含x 每列数据的均值。 2) 样本中位数 语法: m=median(x) 若x 为向量,返回结果m是x 中元素的中位数; 若x 为矩阵,返回结果m是行向量,它包含x 每列数据的中位数3) 样本标准差 语法:y=std(x) 若x 为向量,返回结果y 是x 中元素的标准差; 若x 为矩阵,返回结果y 是行向量,它包含x 每列数据的标准差

std(x)运用n-1 进行标准化处理,n是样本的个数。 4) 样本方差 语法:y=var(x); y=var(x,1) 若x 为向量,返回结果y 是x 中元素的方差; 若x 为矩阵,返回结果y 是行向量,它包含x 每列数据的方差 var(x)运用n-1 进行标准化处理(满足无偏估计的要求),n 是样本的个数。var(x,1)运用n 进行标准化处理,生成关于样本均值的二阶矩。 5) 样本的极差(最大之和最小值之差) 语法:z= range(x) 返回结果z是数组x 的极差。 6) 样本的偏度 语法:s=skewness(x) 说明:偏度反映分布的对称性,s>0 称为右偏态,此时数据位于均值右边的比左边的多;s<0,情况相反;s 接近0 则可认为分布是对称的。 7) 样本的峰度 语法:k= kurtosis(x) 说明:正态分布峰度是3,若k 比3 大得多,表示分布有沉重的尾巴,即样本中含有较多远离均值的数据,峰度可以作衡量偏离正态分布的尺度之一。 >> mean(data) ,

西安交大概率论实验报告

班级:土木01 姓名:赵翔宇 学号:2010072023 概 论 实 验 报 告

实验名称:考试录取问题 实验目的:1. 掌握正态分布的有关计算 2. 掌握正态分布在实际问题处理中的应用 3. 掌握MATLAB软件在概率计算中的应用 实验要求:掌握综合使用MATLAB的命令解决实际问题的方法 一.试验问题 1. 某公司准备通过招聘考试招收320名职工,其中正式工280名,临时工40名;报考的人数是1821人,考试满分是400分。考试后得知,考试平均成绩μ=166分,360分以上的高分考生有31人。王瑞在这次考试中得了256分,问他能否否录取?能否被聘为正式工? 二,问题分析 运算任务:只要求出王瑞的成绩排名即可,假设成绩分布为正态分布,已知均值,须先求出方差,获得两个正态分布参数后,可以估计出王瑞的考试情况。 三,程序设计 1.求方差命令:

这里利用了一般的正态分布向标准正态分布转换的公式: σ u x x -=' 求出了本次考试成绩的方差是91.5310,下面求王瑞的名次: 其中normcdf(256,166,91)=0.8387是小于256分的概率,1821*(1-ans)=293是分数大于256分的人数,即王瑞的排名。所以王瑞不能成为正式工,可以成为临时工。 题目二:某单位招聘2500人,按考试成绩从高分到低分依次录取,共有10000人报名.假设报名者的考试成绩X近似服从正态分布N(μ,σ2)。已知90分以上有359人,60分以下有1151人。问被录用者中最低分为多少? 问题分析:本题的思路和上题一样,我们可以得到两个上位分位数,利用非标准正态分布向标准生态分布的方法列出两个方程解出本次考试的平均分,方差。

MATLAB计算概率

一、实验名称 已知随机向量(X ,Y )独立同服从标准正态分布,D={(x,y)|a0&&e<6 if e==1

p=erchong(a,b,c,d) end if e==2 p=wangge(a,b,c,d); end if e==3 p=fenbu(a,b,c,d); end if e==4 p=mente(a,b,c,d); end if e==5 [X,Y]=meshgrid(-3:0.2:3); Z=1/(2*pi)*exp(-1/2*(X.^2+Y.^2)); meshz(X,Y,Z); end e=input('请选择: \n'); end % ===============================用二重积分计算function p=erchong(a,b,c,d) syms x y; f0=1/(2*pi)*exp(-1/2*(x^2+y^2)); f1=int(f0,x,a,b); %对x积分 f1=int(f1,y,c,d); %对y积分 p=vpa(f1,9); % ================================等距网格法function p=wangge(a,b,c,d) syms x y ; n=100; r1=(b-a)/n; %求步长 r2=(d-c)/n; za(1)=a;for i=1:n,za(i+1)=za(i)+r1;end %分块 zc(1)=c;for j=1:n,zc(j+1)=zc(j)+r2;end for i=1:n x(i)=unifrnd(za(i),za(i+1));end %随机取点 for i=1:n y(i)=unifrnd(zc(i),zc(i+1));end s=0; for i=1:n for j=1:n s=1/(2*pi)*exp(-1/2*(x(i)^2+y(j)^2))+s;%求和end end p=s*r1*r2;

(完整版)Matlab概率论与数理统计

Matlab 概率论与数理统计 、matlab 基本操作 1. 画图 【例01.01】简单画图 hold off; x=0:0.1:2*pi; y=sin (x); plot(x,y, '-r'); x1=0:0.1:pi/2; y1=s in( x1); hold on; fill([x1, pi/2],[y1,1/2], 'b'); 【例01.02】填充,二维均匀随机数 hold off ; x=[0,60];y0=[0,0];y60=[60,60]; x1=[0,30];y1=x1+30; x2=[30,60];y2=x2-30; plot(x,y0, 'r' ,y0,x, plot(x1,y1, 'r' ,x2,y2, yr=u nifrnd (0,60,2,100); plot(yr(1,:),yr(2,:), axis( 'on'); axis( 'square' ); axis([-20 80 -20 80 ]); xv=[0 0 30 60 60 30 0];yv=[0 30 60 60 30 0 0]; fill(xv,yv, 'b'); hold on ; 'r' ,x,y60, 'r' ,y60,x, 'r') 'r'); 'm.')

2. 排列组合 k C=nchoosek(n,k) : C C n ,例 nchoosek(5,2)=10, nchoosek(6,3)=20. prod(n1:n2):从 n1 至U n2 的连乘 【例01.03】至少有两个人生日相同的概率 365 364|||(365 rs 1) rs 365 365 364 365 rs 1 365 365 365 rs=[20,25,30,35,40,45,50]; %每班的人数 p1= on es(1,le ngth(rs)); p2=on es(1,le ngth(rs)); %用连乘公式计算 for i=1:le ngth(rs) p1(i)=prod(365-rs(i)+1:365)/365A rs(i); end %用公式计算(改进) for i=1:le ngth(rs) for k=365-rs(i)+1:365 p2(i)=p2(i)*(k/365); end ; end %用公式计算(取对数) for i=1:le ngth(rs) p1(i)=exp(sum(log(365-rs(i)+1:365))-rs(i)*log(365)); end 公式计算P 1 n!C N N n N! 1 (N n)! 1 N n N (N 1) (N n 1)

概率论与数理统计实验报告

概率论与数理统计 实验报告 概率论部分实验二 《正态分布综合实验》

实验名称:正态分布综合实验 实验目的:通过本次实验,了解Matlab在概率与数理统计领域的应用,学会用matlab做概率密度曲线,概率分布曲线,直方图,累计百分比曲线等简单应用;同时加深对正态分布的认识,以更好得应用之。 实验内容: 实验分析: 本次实验主要需要运用一些matlab函数,如正态分布随机数发生器normrnd函数、绘制直方图函数hist函数、正态分布密度函数图形绘制函数normpdf函数、正态分布分步函数图形绘制函数normcdf等;同时,考虑到本次实验重复性明显,如,分别生成100,1000,10000个服从正态分布的随机数,进行相同的实验操作,故通过数组和循环可以简化整个实验的操作流程,因此,本次实验程序中要设置数组和循环变量。 实验过程: 1.直方图与累计百分比曲线 1)实验程序 m=[100,1000,10000]; 产生随机数的个数 n=[2,1,0.5]; 组距 for j=1:3 for k=1:3 x=normrnd(6,1,m(j),1); 生成期望为6,方差为1的m(j)个 正态分布随机数

a=min(x); a为生成随机数的最小值 b=max(x); b为生成随机数的最大值 c=(b-a)/n(k); c为按n(k)组距应该分成的组数 subplot(1,2,1); 图形窗口分两份 hist(x,c);xlabel('频数分布图'); 在第一份里绘制频数直方图 yy=hist(x,c)/1000; yy为各个分组的频率 s=[]; s(1)=yy(1); for i=2:length(yy) s(i)=s(i-1)+yy(i); end s[]数组存储累计百分比 x=linspace(a,b,c); subplot(1,2,2); 在第二个图形位置绘制累计百分 比曲线 plot(x,s,x,s);xlabel('累积百分比曲线'); grid on; 加网格 figure; 另行开辟图形窗口,为下一个循 环做准备 end end 2)实验结论及过程截图 实验结果以图像形式展示,以下分别为产生100,1000,10000个正态分布随机数,组距分别为2,1,0.5的频数分布直方图和累积百分比曲线,从实验结果看来,随着产生随机数的数目增多,组距减小,累计直方图逐渐逼近正态分布密度函数图像,累计百分比逐渐逼近正态分布分布函数图像。

概率统计实验报告

概率统计实验报告 班级16030 学号16030 姓名 2018 年1 月3 日

1、 问题概述和分析 (1) 实验内容说明: 题目12、(综合性实验)分析验证中心极限定理的基本结论: “大量独立同分布随机变量的和的分布近似服从正态分布”。 (2) 本门课程与实验的相关内容 大数定理及中心极限定理; 二项分布。 (3) 实验目的 分析验证中心极限定理的基本结论。 2、实验设计总体思路 2.1、引论 在很多实际问题中,我们会常遇到这样的随机变量,它是由大量的相互独立的随机 因素的综合影响而形成的,而其中每一个个别因素在总的影响中所起的作用是微小的,这种随机变量往往近似的服从正态分布。 2.2、 实验主题部分 2.2.1、实验设计思路 1、 理论分析 设随机变量X1,X2,......Xn ,......独立同分布,并且具有有限的数学期望和方差:E(Xi)=μ,D(Xi)=σ2(k=1,2....),则对任意x ,分布函数 满足 该定理说明,当n 很大时,随机变量 近似地服从标准正 态分布N(0,1)。因此,当n 很大时, 近似地服从正 态分布N(n μ,n σ2). 2、实现方法(写清具体实施步骤及其依据) (1) 产生服从二项分布),10(p b 的n 个随机数, 取2.0=p , 50=n , 计算n 个随 机数之和y 以及 ) 1(1010p np np y --; 依据:n 足够大,且该二项分布具有有限的数学期望和方差。 (2) 将(1)重复1000=m 组, 并用这m 组 ) 1(1010p np np y --的数据作频率直方图进 行观察. 依据:通过大量数据验证随机变量的分布,且符合极限中心定理。

概率论与数理统计实验报告

概率论与数理统计实验报告 一、实验目的 1.学会用matlab求密度函数与分布函数 2.熟悉matlab中用于描述性统计的基本操作与命令 3.学会matlab进行参数估计与假设检验的基本命令与操作 二、实验步骤与结果 概率论部分: 实验名称:各种分布的密度函数与分布函数 实验内容: 1.选择三种常见随机变量的分布,计算它们的方差与期望<参数自己设 定)。 2.向空中抛硬币100次,落下为正面的概率为0.5,。记正面向上的次数 为x, (1)计算x=45和x<45的概率, (2)给出随机数x的概率累积分布图像和概率密度图像。 3.比较t(10>分布和标准正态分布的图像<要求写出程序并作图)。 程序: 1.计算三种随机变量分布的方差与期望 [m0,v0]=binostat(10,0.3> %二项分布,取n=10,p=0.3 [m1,v1]=poisstat(5> %泊松分布,取lambda=5 [m2,v2]=normstat(1,0.12> %正态分布,取u=1,sigma=0.12 计算结果: m0 =3 v0 =2.1000 m1 =5 v1 =5 m2 =1 v2 =0.0144 2.计算x=45和x<45的概率,并绘图 Px=binopdf(45,100,0.5> %x=45的概率 Fx=binocdf(45,100,0.5> %x<45的概率 x=1:100。 p1=binopdf(x,100,0.5>。 p2=binocdf(x,100,0.5>。 subplot(2,1,1>

plot(x,p1> title('概率密度图像'> subplot(2,1,2> plot(x,p2> title('概率累积分布图像'> 结果: Px =0.0485 Fx =0.1841 3.t(10>分布与标准正态分布的图像 subplot(2,1,1> ezplot('1/sqrt(2*pi>*exp(-1/2*x^2>',[-6,6]> title('标准正态分布概率密度曲线图'> subplot(2,1,2> ezplot('gamma((10+1>/2>/(sqrt(10*pi>*gamma(10/2>>*(1+x^2/10>^(-(10+1>/2>',[-6,6]>。b5E2RGbCAP title('t(10>分布概率密度曲线图'> 结果:

概率论与数理统计数学实验

概率论与数理统计数学实验 目录 实验一几个重要的概率分布的MATLAB实现 p2-3 实验二数据的统计描述和分析 p4-8 实验三参数估计 p9-11 实验四假设检验 p12-14 实验五方差分析 p15-17 实验六回归分析 p18-27

实验一 几个重要的概率分布的MATLAB 实现 实验目的 (1) 学习MATLAB 软件与概率有关的各种计算方法 (2) 会用MATLAB 软件生成几种常见分布的随机数 (3) 通过实验加深对概率密度,分布函数和分位数的理解 Matlab 统计工具箱中提供了约20种概率分布,对每一种分布提供了5种运算功能,下表给出了常见8种分布对应的Matlab 命令字符,表2给出了每一种运算功能所对应的Matlab 命令字符。当需要某一分布的某类运算功能时,将分布字符与功能字符连接起来,就得到所要的命令。 例1 求正态分布()2,1-N ,在x=1.2处的概率密度。 解:在MATLAB 命令窗口中输入: normpdf(1.2,-1,2) 结果为: 0.1089 例2 求泊松分布()3P ,在k=5,6,7处的概率。 解:在MATLAB 命令窗口中输入: poisspdf([5 6 7],3) 结果为: 0.1008 0.0504 0.0216 例3 设X 服从均匀分布()3,1U ,计算{}225P X .-<<。 解:在MATLAB 命令窗口中输入: unifcdf(2.5,1,3)-unifcdf(-2,1,3) 结果为: 0.75000

例4 求概率995.0=α的正态分布()2,1N 的分位数αX 。 解:在MATLAB 命令窗口中输入: norminv(0.995,1,2) 结果为: 6.1517 例5 求t 分布()10t 的期望和方差。 解:在MATLAB 命令窗口中输入: [m,v]=tstat(10) m = 0 v = 1.2500 例6 生成一个2*3阶正态分布的随机矩阵。其中,第一行3个数分别服从均值为1,2,3;第二行3个数分别服从均值为4,5,6,且标准差均为0.1的正态分布。 解:在MATLAB 命令窗口中输入: A=normrnd([1 2 3;4 5 6],0.1,2,3) A = 1.1189 2.0327 2.9813 3.9962 5.0175 6.0726 例7 生成一个2*3阶服从均匀分布()3,1U 的随机矩阵。 解:在MATLAB 命令窗口中输入: B=unifrnd(1,3,2,3) B = 1.8205 1.1158 2.6263 2.7873 1.7057 1.0197 注:对于标准正态分布,可用命令randn(m,n);对于均匀分布()1,0U ,可用命令rand(m,n)。

Matlab概率论与数理统计

Matlab 概率 论与数理统 计 、matlab 基本操作 1.画图 【例01.01】简单画图 hold off; x=0:0.1:2*pi; y=sin (x); plot(x,y, '-r'); x1=0:0.1:pi/2; y1=s in( x1); hold on; fill([x1, pi/2],[y1,1/2], 'b'); 【例01.02】填充,二维均匀随机数 hold off ; x=[0,60];y0=[0,0];y60=[60,60]; x1=[0,30];y1=x1+30; x2=[30,60];y2=x2-30; plot(x,y0, 'r' ,y0,x, plot(x1,y1, 'r' ,x2,y2, yr=u nifrnd (0,60,2,100); plot(yr(1,:),yr(2,:), axis( 'on'); axis( 'square' ); xv=[0 0 30 60 60 30 0];yv=[0 30 60 60 30 0 0]; fill(xv,yv, 'b'); hold on ; 'r' ,x,y60, 'r' ,y60,x, 'r') 'r'); 'm.')

axis([-20 80 -20 80 ]);

2. 排列组合 k C=nchoosek(n,k) : C C n ,例 nchoosek(5,2)=10, nchoosek(6,3)=20. prod(n1:n2):从 n1 至U n2 的连乘 【例01.03】至少有两个人生日相同的概率 365 364|||(365 rs 1) rs 365 365 364 365 rs 1 365 365 365 rs=[20,25,30,35,40,45,50]; %每班的人数 p1= on es(1,le ngth(rs)); p2=on es(1,le ngth(rs)); %用连乘公式计算 for i=1:le ngth(rs) p1(i)=prod(365-rs(i)+1:365)/365A rs(i); end %用公式计算(改进) for i=1:le ngth(rs) for k=365-rs(i)+1:365 p2(i)=p2(i)*(k/365); end ; end %用公式计算(取对数) for i=1:le ngth(rs) p1(i)=exp(sum(log(365-rs(i)+1:365))-rs(i)*log(365)); 公式计算P 1 n!C N N n N! 1 (N n)! 1 N n N (N 1) (N n 1)

概率统计计算及MATLAB实现.doc

《概率统计计算及其MATLAB实现》共分为六章和一个附录,前两章主要介绍概率论和随机变量的基本知识,第三章至第五章是数理统计内容,第六章是随机过程计算及其仿真,最后,附录部分对MATLAB的基本知识进行了简介。主要内容涉及概率及其计算、变量分布及其相关计算、数字特征和中心极限定理、描述统计、参数估计和假设检验、方差分析和回归分析、泊松过程、马氏链、布朗运动、风险模型等的计算和模拟。另外还涉及MATLAB矩阵的运算和操作、微积分运算、代数方程(组)求解、画图和程序流程控制等内容。 目录 1 概率计算及变量分布 1.1 概率定义及其计算 1.2 随机变量及其分布 1.3 随机变量函数及其分布 1.4有关古典概率实际问题的MATLAB模拟 习题1 2常见分布及数字特征 2.1 常见的离散型分布 2.2 常见的连续型分布 2.3 随机变量的数字特征 2.4 有关常见分布的MATLAB模拟 习题2 3样本描述及抽样分布 3.1 数据的整理和显示 3.2 数据预处理及其他描述分析 3.3抽样分布 习题3 4参数估计与假设检验 4.1 参数估计 4.2正态总体参数的假设检验 4.3 其他常用的假设检验 4.4几个常用的非参数假设检验 习题4 5方差分析与回归分析 5.1 单因素方差分析 5.2 双因素方差分析 5.3 线性回归分析 5.4 逐步回归与其他几个回归 习题5

6随机过程计算与仿真 6.1 随机过程的基本概念 6.2 泊松过程的计算与仿真6.3 马氏链的计算与仿真 6.4布朗运动计算与仿真 6.5 风险模型的计算与仿真习题6 附录MATLAB简介 1 矩阵与相关运算 2微积分与代数方程基本求解3 画图与编程

(完整word版)概率统计实验报告

概率统计实验报告 (1)实验内容说明:(验证性实验)使用Matlab软件绘制正态分布、指数分布、均匀分布密度函数图象。 (2)本门课程与实验的相关内容:本实验与教材中第二章“随机变量及其分布”相关,通过matlab中的函数来绘制第二章中学过的几种重要的连续型随机变量概率密度函数图像。(3)实验目的:通过本实验学习一些经常使用的统计数据的作图命令,提高进行实验数据处理和作图分析的能力。 2、实验设计总体思路 2.1、引论 利用教材中的相关知识,通过Matlab来绘制正态分布、指数分布、均匀分布密度函数图象,从而加深对概率统计知识的理解,并提高进行实验数据处理和作图分析的能力。 2.2、实验主题部分 2.2.1、实验设计思路 1、理论分析 1.参数为μ和σ2的正态分布的概率密度函数是: 可以用函数normpdf计算正态分布的概率密度函数值,调用格式: y=normpdf(x, mu, sigma) %输入参数可以是标量、向量、矩阵。 2.参数为μ的指数分布的概率密度函数是: 可以用函数exppdf计算指数分布的概率密度函数值,调用格式: y=exppdf(x, mu) % 输入参数可以是标量、向量或矩阵。 3.参数为a, b的均匀分布的概率密度函数是: 可以用函数exppdf计算均匀分布的概率密度函数值,调用格式: y=unifpdf(x, a, b) %输入参数可以是标量、向量、矩阵。 最后调用plot函数绘制图像。 1、实现方法

1.x=a:0.1:b % 将区间[a,b]以 0.1 为步长等分, 赋给变量 x 2.通过调用函数normpdf、exppdf、unifpdf分别计算出对应的概率密度函数。 3.调用函数plot绘制图像。 2.2.2、实验结果及分析 绘制分别服从均值是0, 标准差分别是0.5,1, 1.5的正态分布概率密度函数图像:

Matlab笔记——数值计算—概率篇017

17. 数值计算—概率篇 一、计算组合数、排列数 !n——factorial(n)或prod(1:n) k C——nchoosek(n,k) n k A——factorial(n)/factorial(n-k) n 二、生成随机数 1. rand(m,n) ——生成m×n的服从[0,1]上均匀分布的随机数; 用a + (b-a).*rand(m,n)生成m×n的服从[a,b]上均匀分布的随机数。 2. 二项分布与正态分布随机数 binornd(N,P,m,n)——生成m×n的服从二项分布B(N,P)的随机数; normrnd(MU,SIGMA,m,n) ——生成m×n的服从正态分布N(MU,SIGMA2)的随机数; 3. 通用格式: 分布缩写+rnd(分布参数, m,n) 或random(‘分布名或缩写’, 分布参数, m,n) 可以用来生成m×n该分布的随机数。各种分布名见下图:

4. 使用randsample和randsrc函数生成指定离散分布随机数 X=randsample(N, k, replace, w)

N相当于[1:N], 也可以是具有确定值的向量;k表示生成k个随机数;replace=’true’表示可重复,或’false’表示不可重复(默认);w是权重向量。 X= randsrc(m,n,[x; p]) 生成m×n的随机矩阵,服从取值为向量x, 对应概率为向量p的离散分布。 例1 设离散型随机变量X服从如下分布: 生成服从3×5的该分布的随机数。 代码: xvalue = [-2 -1 0 1 2]; xp = [0.05 0.2 0.5 0.2 0.05]; % 调用randsample函数生成100个服从指定离散分布的随机数 x = randsample(xvalue, 15, true, xp); reshape(x,[3 5]) % 调用randsrc函数生成10*10的服从指定离散分布的随机数矩阵 y = randsrc(3,5,[xvalue;xp]) 运行结果:ans = 0 0 1 0 0 0 0 0 -1 -1 1 1 0 0 1 y = -1 -1 1 1 -1 -1 0 0 2 0 -1 0 -1 0 0

概率论与数理统计实验报告

概率论与数理统计实验报告 应物12班郭帅 2110903026 一、实验内容:用蒙特卡洛方法估计积分值 ,,,2222xy,xxxdxsinedx1用蒙特卡洛方法估计积分,和edxdy的值,并将估计值与真,,,,2200xy1,, 值进行比较。 121xdxdy2用蒙特卡洛方法估计积分edx和的值,并对误差进行估 计。 ,,,4422,,xy10xy,,1 二、要求:(1)针对要估计的积分选择适当的概率分布设计蒙特卡洛方法; (2)利用计算机产生所选分布的随机数以估计积分值; (3)进行重复试验,通过计算样本均值以评价估计的无偏性;通过计算均方误差(针对第1类题)或样本方差(针对第2类题)以评价估计结果的精度。 1)能通过 MATLAB 或其他数学软件了解随机变量的概率密度、分布三、目的:( 函数及其期望、方差、协方差等; (2) 熟练使用 MATLAB 对样本进行基本统计,从而获取数据的基本信息; (3) 能用 MATLAB 熟练进行样本的一元回归分析。 蒙特卡洛方法:当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。 四、实验步骤: ,2 xxdxsin(1) ,0 方法:x在0至pi/2区间上随机取10000个数为均匀分布的简单随机样本,然后计算y的值一共计算二十次,即可用样本均值作为积分的估计值.

Y=pi/2*x.*sin(x) y*f(x)即为被积函数 2,,,,x[0,],fx(),2,, ,其他0,, clc clear x=rand(20,10000)*pi/2 y=(pi/2)*x.*sin(x) a=sum(y,2)/10000 u=sum(a,1)/20 H=1 E=abs(H-u) b=abs(H-u)^2 D=sum(b,1)/19 结果样本均值为u= 0.9987 E = 0.0013 D =8.971e-008=0.00000008971 真值计算: clc clear symsx f='x*sin(x)' int(f,x,0,pi/2) 结果真值为1 ,,2xedx(2),0 方法:x在负无穷到正无穷之间按标准正态分布取10000个样本,然后计算y值二十次,即可

matlab数学实验

《管理数学实验》实验报告 班级姓名 实验1:MATLAB的数值运算 【实验目的】 (1)掌握MATLAB变量的使用 (2)掌握MATLAB数组的创建, (3)掌握MA TLAB数组和矩阵的运算。 (4)熟悉MATLAB多项式的运用 【实验原理】 矩阵运算和数组运算在MA TLAB中属于两种不同类型的运算,数组的运算是从数组元素出发,针对每个元素进行运算,矩阵的运算是从矩阵的整体出发,依照线性代数的运算规则进行。 【实验步骤】 (1)使用冒号生成法和定数线性采样法生成一维数组。 (2)使用MA TLAB提供的库函数reshape,将一维数组转换为二维和三维数组。 (3)使用逐个元素输入法生成给定变量,并对变量进行指定的算术运算、关系运算、逻辑运算。 (4)使用MA TLAB绘制指定函数的曲线图,将所有输入的指令保存为M文件。 【实验内容】 (1)在[0,2*pi]上产生50个等距采样数据的一维数组,用两种不同的指令实现。 0:(2*pi-0)/(50-1):2*pi 或linspace(0,2*pi,50) (2)将一维数组A=1:18,转换为2×9数组和2×3×3数组。 reshape(A,2,9) ans = Columns 1 through 7 1 3 5 7 9 11 13 2 4 6 8 10 12 14 Columns 8 through 9 15 17 16 18 reshape(A,2,3,3) ans(:,:,1) = 1 3 5 2 4 6 ans(:,:,2) = 7 9 11 8 10 12 ans(:,:,3) = 13 15 17 14 16 18

大学本科概率论与数理统计实验报告

xx大学xx学院 数学类 课程实习报告 课程名称:概率论与数理统计实习题目:概率论与数理统计姓名: 系:信息与计算科学系专业:信息与计算科学年级:2010 学号: 指导教师: 职称:讲师 年月日

福建农林大学计算机与信息学院数学类课程实习报告结果评定

目录 1实习的目的和任务 (2) 2实习要求 (2) 3实习地点 (2) 4主要仪器设备(实验用的软硬件环境) (2) 5实习内容 (2) 5.1 MATLAB基础与统计工具箱初步 (2) 5.2 概率分布及应用实例 (4) 5.3 统计描述及应用实例 (5) 5.4 区间估计及应用实例 (8) 5.5 假设检验及应用实例 (11) 5.6 方差分析及应用实例 (13) 5.7 回归分析及应用实例 (15) 5.8 数理统计综合应用实例 (18) 6 结束语 (26) 7 参考文献 (27)

概率论与数理统计 (Probabilily theroy and Mathemathical Statistics) 1.实习的目的和任务 目的:通过课程实习,让学生巩固所学的理论知识并且能够应用MATLAB数学软件来解决实际问题。 任务:通过具体的案例描述,利用MATLAB软件计算问题的结果,作 出图形图象分析问题的结论。 2.实习要求 要求:学生能够从案例的自然语言描述中,抽象出其中的数学模型,能够熟练应用所学的概率论与数理统计知识,能够熟练使用MATLAB软件。3.实习地点:校内数学实验室,宿舍 4.主要仪器设备 计算机 Microsoft Windows XP Matlab 7.0 5.实习内容 5.1 MATLAB基础与统计工具箱初步 一、目的:初步了解和掌握MATLAB的操作和统计工具箱的简单应用. 二、任务:熟悉MATLAB的基本命令的调用和基本函数及其基本操作. 三、要求:掌握安装MATLAB的方法,并运用统计工具箱进行简单MATLAB编程. 四、项目: (一)、实例:产生一组试验,假设随机变量X的分布函数为X~N(10,42)的随机数,并绘出该正态分布的图像。 (二)、实验步骤: (1)、在MATLAB命令窗口中输入以下程序: >> R=normrnd(10,4,5,5) %返回均值为10,标准差为4的正态分布的5行5列个随机数据。

相关文档
最新文档