毕业设计-音频功率放大器

毕业设计-音频功率放大器
毕业设计-音频功率放大器

音频功率放大器的设计

内容提要:

本文介绍了音频功率放大器构成、功能、及工作原理等。关键词:LM1875 功率芯片音频功率放大器

Audio power amplifier Abstract:

Keywords: LM1875 power chip Audio amplifier

目录

一、音频功率放大器简介 (1)

(一)早期的晶体管功放 (1)

(二)晶体管功放的发展和互调失真 (1)

(三)功放输入级——差动与共射-共基 (3)

(四)放大器的电源与甲类放大器 (4)

(五)其他类型的放大器 (5)

二、放大器常见名词 (6)

(一)灵敏度 (6)

(二)阻尼系数 (6)

(三)反馈 (6)

(四)动态范围 (6)

(五)响应 (6)

(六)信噪比(S/N) (7)

(七)屏蔽 (7)

(八)阻抗匹配 (7)

三、音频放大器的设计 (7)

(一)设计要求: (7)

(二)设计过程 (7)

四、LM1875的简介 (16)

(一)LM1875的参数简介 (16)

(二)LM1875的工作原理: (16)

(三)LM1875的电路特点 (17)

五、电路设计 (17)

(一)典型应用电路 (17)

(三)双电源音频功率放大器PCB图 (19)

六、电路制作与调试 (20)

(一)利用PCB制作电路板 (20)

(二)装配与调试: (20)

七、电路图的绘制与制板中应注意的问题 (21)

(一)Sch原理图应注意常见问题 (21)

(二)PCB设计中应注意的问题 (22)

(三)焊盘应注意的常见问题 (23)

八、总结 (23)

参考文献 (25)

音频功率放大器的设计

一、音频功率放大器简介

在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放而言,应该达到电气指标与实际听音指标的平衡与统一。

音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。(一)早期的晶体管功放

半导体技术的进步使晶体管放大器向前迈进了一大步。自从有了晶体管,人们就开始用它制造功率放大器。

早期的放大器几乎全用锗管来制作,但由于锗管工艺上的一些原因,使得放大器中所用的晶体管,尤其是功放管性能指标不易做得很高,例如,共发射极截止频率fh的典型值为4kHz,大电流管的耐压值一般在30V一40V左右。这样,放大器的频率响应也就很狭窄,其3dB截止频率通常在10kHz左右,大大影响了音乐中高频信号的重现。再加上功放管的耐压、电流和功耗三个指标相互制约,制作较大功率的 OTL或OCL放大器不易寻到三个指标都满足要求的管子,所以不得不采用变压器耦合输出。变压器的相移又使电路中加深度负反馈变得很困难,谐波失真得不到充分的抑制,因此这一时期的晶体管放大器音质是很差的。“还是胆机规声”,这种看法的确事出有因。

(二)晶体管功放的发展和互调失真

随着半导体工艺的逐渐成熟,大电流、高耐压的晶体管品种日益增加,越来越多的功率放大器采用了无输出变压器的 OCL电路或 OTL电路(图一)。最初的大功率 PNP 管是锗管,而 NPN管是硅管,两者的特性差别非常显著,电路的对称性很差,人们更多采用的是图二所示的准互补电路,通过小功率硅管 Q1与一只大功率的 NPN硅管 Q2复合,得到一只极性与PNP管类似的大功率管,降低了电路因对称性差而招至的失真。

到了六十年代末,大功率的 PNP硅管商品化的时候,互补对称电路才得到

广泛的应用。元器件的进步使晶体管功率放大器的技术指标产生了质的飞跃,在主观音质评价方面,也改变了过去人们对晶体管功放的看法,无论是在厅堂扩音、电台节目制作还是家庭重放,晶体管功放都被大量地采用,首次在数量上以压倒性的优势超过了电子管功放。在商品化的晶体管扩音机中,相继出现了一些摧琛夺目的名机,如 JBL的SA600,Marantz互补对称电路MOdel15等等。

尽管电子管的拥护者仍大量存在,人们毕竟能够比较公正地看待晶体管放大器了,认为晶体管机频响宽阔,层次细腻,与电子管机比较起来有一种独特的舱力,而不是简单的谁取代谁的问题。

瞬态互调失真的提出是认识上的一次飞跃七十年代,功率放大器的发展史中出现了一件最引人注目的事情,这就是瞬态互调失真 (Transient lntermodulation)及其测量方法的提出。1963年,芬兰 Helvar工厂的一名工程师在制作一台晶体管扩音机时,由于接线失误,使电路的负反馈量减少了,后来却意外地发现负反馈量减少后的音质非常好,客观技术指标较差,而更正错误以后的线路尽管技术指标提高了,音质反而比误接时明显下降。这一现象引起了当时同一工厂的 Mr.Otala的重视,之后,他对此进行了悉心研究,于1970年首先发表了关于晶体管功率放大器瞬态互调失真(TIM)的论文。至1971年,Otala博士及其研究小组就 TIM失真理论发表的论文已经超过20篇,引起了电声界准互补电路人士的广泛反响。

瞬态互调失真的大意是这样的:

在直接耦合的晶体管放大电路中,为了得到很小的谐波失真度和宽阔平坦的频率响应,通常对整体电路施加深达40dB一60dB的负反馈,倘若在加负反馈前放大器的开环失真为10%,那么加上40dB的负反馈后,失真即可降低至0.1%,这是电子管功效难以做到的。晶体管功放由于要施加40dB。60dB的负反馈,所以对一台增益要求为26dB 的放大器,它的开环增益就要达到66、86dB。如此高的增益之下引入深度负反馈,电路势必会产生自激振荡,因而需要进行相位补偿,一般是在推动级晶体管的集电极——基极之间接接一个小电容 C,破坏自激振荡的相位条件,形成所谓“滞后补偿”,当放大器输入端输入持续时间非常短的过渡性脉冲时,由于电容 C需要充电时间,所以推动管集电极电压要经过一段时间延迟方能达到最大值,见图四。显然,在电容 C充、放电期间,输出电压 V。将达不到应有的电压值,输入级也不可能得到应有的反馈电压 Vf,因而,在过渡脉冲通过输入级的瞬间,输入级将处于负.反馈失控状态,致使输入级严重过载,输出将严重削波(图三 a点),引起过渡脉冲瞬时失真(图五)。如果过渡脉冲波形上还叠加有正弦信号,输出端还会得到很多输入信号频谱不存在的互调频率成份,这就是 TIM失真。

TIM失真和音乐信号也有密切关系,音量大、频率高的节目信号容易诱发 TIM失真。严重的 TIM失真反映在听感上类似高频交选失真,而较弱的 TIM失真给人以“金属声”的不快感觉,导致音质劣化。至今,音响界对于 TIM失真都还有争议,但这毕竟是人们认识的深化,它使后来放大器的设计思想发生了根本性的变化,即更加注重放大器的动

态性能而不是仅仅满足于静态技术指标的提高。

(三)功放输入级——差动与共射-共基

对称和平衡是电路发展的方向对称和平衡也许是世上事物完美的标志之一。

音乐讲究各声部之间的乎衡与统一,美术以色彩搭配均衡、和谐为美,在服装设计中,常常采取看似不对称的设计,其实质也是为了取得视觉上的均衡。上面所说的都是艺术,对称和平衡给人一种安定、完美的感觉。有意思的是,在功率放大器中,对称和平衡也有类似的效果。

最初采用对称设计的例子要算互补对称电路了,一上一下的两只异极性晶体管作推挽输出,不仅可以免除笨重的输出变压器,而且电路的偶次谐波失真在推挽的过程中被抵消了,保真度有了很大提高。稍后,人们从运算放大器的设计中得到启迪,将左右对称的差动式电路用于功率放木器的输入级,电路的稳定性和线性都得到改善,这时的电路结构如图六所示,这一结构直至今天都还有人采用。如果以现代的眼光来审评,这一电路是显得过时了一点。电路的主要缺陷在于电压推动级,因为 Q1承担了提供电压增益的主要任务,必然是开环失真很大,频带狭窄。此图六典型的 OCL放大器外,单管放大的过载能力也很差,这一系列的缺点是不利于电路的动态性能的。围绕着改进电压推动级的性能,人们相继提出了多种结构,共射——共基电路就是一个典型的例子。

共射—共基电路又叫“猩尔曼”电路,它原先是高频电路中广为采用的结构,但用于音频电路中同样可以发挥出色的性能。首先是它的宽频响,由于共基放大管Qs非常低的输入阻抗,使 Q,丧失了电压增益,弥勒效应的影响就非常微弱。宽频响的推动级拉开了与输入级极点的距离,相位补偿变得很’容易,而且电容 C的容量可以大大减小,这对于改善 TIM失真是很有利的。第二个优点是电路的高度线性:共基极电路的输出特性也可以清楚地显示出这一点,有人作过测试,共射一共基电路的失真度比单管共射电路要低一个数量级。依然是一种不平衡的设计,这一限制来源于输入级。如果把输入级变动一下,从互补推挽的 Q:和Qg的集电极输出信号,那么电压推动级就可以在图7的基础上再增加一组 NPN管构成的共射一共基电路,做到推挽输出,这时电路也就非常对称平衡了,几乎达到了完美的程度。

当今许多最先进的功率放大器采用的也是这种电路结构。图八是另一种电压推动级的形式,其输入信号来自图六中的 Ql和 Qs,当然此时 Qz必须加上集电极负载电阻。电压推动级也采用对称的差动放大,这不仅可以改善输入级的平衡性,提高放大能力和共模抑制比,而且同样可以降低推动级的失真,因为差动式放大电路当输入在一定的范围内时具有线性的传输特性,有的电路还在 Qn、 Qz的发射极串人负反馈反阻,更加扩

大了线性范围。 Q2和Qd构成镜像电流源,把 Q,的集电极电流转移到 Qz上,所以尽管是单端输出,电流推动能力却比原来增大了一倍。 PIONEER的M22K功率放大器就是采用的这种电路结构,取得了非常好的效果。对称和平衡不仅体现在电路的结构上,还表现于元器件的参数上。差动电路是集成运放中广泛采用的结构,其性能是建立在两只差分管 Hrs和 Vss精确匹配的基础之上。同样,推挽电路中,如果两只异极性的晶体管特性不一致时,对波形的两个半周就不能做到一视同仁地放大,这将增力D电路的失真度。

随着节目源的变化,音乐中包含大量瞬变、高能量的成份,要完美地重现这些细节,就要求放大器具有良好的动态响应,对晶体管配对的要求就不仅是静态的 HrR和 VBE 匹配,而且在动态时也要高度匹配,这无疑对元器件参数的平衡提出了更苛刻的要求。幸运的是,半导体技术的进步为我们提供了这种可能,各种各样的差分对管、晶体管阵列陈出不穷,单个的晶体管一致性也得到较大提高。

正是这些优质的元器件,让对称电路设计的优点得以充分体现,今天看到一台全无负反馈的电路也不会觉得惊讶,因为已经有足够好的开环性能了,又何必为了几个仪器上的数据去牺牲放大电路的动态响应呢?

(四)放大器的电源与甲类放大器

极端重视电源的现代放大器“放大器不过是电源的调制器”,这句话道出了放大的实质。

既然如此,又有什么理由不引起对电源的高度重视呢。电源部份作为推动扬声器发声的源泉,再也不应象过去那样随便找个整流电源接上了事。对电源的要求有两个方面,即纹波噪声小,输出能力强。噪声小比较容易办到,只要加大滤波电容器的容量就可以,但是要做到输出能力强却不简单。

首先要加大电源变压器的容量,这是过去一些放大器生产厂所不乐意的,因为加大电源变压器容量会使成本大量增加,整机的重量和体积也会加大;但现在听小喇叭的人越来越多,这些小喇叭大多效率很低,有些名牌音箱如 Celestion SI一6O0或 Ro3ers LS3/5a,十分大食难推,再加上现代节目信号中常常出现一些炮弹爆炸,锣鼓敲击的声音,对放大器是一个极为严峻的考验,同样两台100W的放大器,一台可能让你感觉到大炮地动山摇的震撼力,而另一台可能象是破鼓在“咐咐”作响。所以现代优质的功率放大器的电源储备量十分惊人,往往采用巨大的环形变压器,再配合容量达数万甚至数十万徽法的电容器,以提高电源的瞬时供应能力。

KRELI的功率放大器号称“功率发动机”,如 KSA一250功效,在8Ω时输出功率为

250W/每声道,4Ω时为5O0W,2Ω时为1000W,lΩ时为2000W,而且任何状态下失真均小于0.1%,真是惊人! MarkLevi2zson的产品也是极端重视电源的典范。提高电源的质量,不仅是量的加大,还有质的提高。滤波电容是一个关键,它除了起平滑滤波和储能的作用以外,还是音频信号的通路,因此优质放大器中常常采用专门为音响用途而生产的电容器,以求获得更好的音质。 KRELLKAS放大器中,电源部份竟然采用稳压电源供电,这台机器可以在纯甲类状态下输出400W的功率,为此,其电源部份也付出了采用60只大功率晶体管的代价。

重视电源的一个副产物就是甲类放大器再度成为时尚(这并不是贬意)。甲类放大器一直因为耗电多,效率低而未能在大功率的放大器中得到应用,但它天然的优点是无交越失真,无开关失真,并且谐波分量中主要是偶次谐波,在听感上十分讨好听众,故而一些极度发烧的爱好者和厂家仍不惜代价地制作甲类放大器,电源储备量的提高更是为制作甲类放大器提供了有利的条件。

(五)其他类型的放大器

最好的功率放大器还没有出现人们对功率放大器的研究一刻也没有停止过,新的元器件、新的电路形式、新的理论不断出现,放大器的研究也针对这三个方面全面地铺开。不器件上, VMOS管的使用是八十年代以来的一个新动向。

VMOS管频响宽、线性好、无二次击穿以及电压推动等一系列优点吸引了越来越多的使用者,它的音色也与电子管很接近,投合了胆机迷的口味。现在主要是缺乏品种众多的 P沟道互补管,这个问题相信很快就能解决。

IGBT也是值得注意的一种新器件,它由 MOS管与双极晶体管复合构成,兼有 VMOS 管的电压激励和双极晶体管压降低的优点,很有发展前途。电路的研究以日本的各家公司最为活跃,近年来,一些公司从全新的角度提出了一系列电路,如YAMAHA的 ALA,SONY的电流传输,Technics的 CLASS AA, DENON的双超线性,还有英国 Quad的电流倾注,都试图消除失真的产生,可是人们更欣赏的却是以精良元件和精湛工艺制作的不带这些附加措施的放大器。

此外,对电路的客观技术指标与主观音质之间的精确关系还有待弄清,这需要有新的理论作为指导。国内外的学者们从不同的角度提出了全新的理论,有的认为人耳的动态听觉上限超过了20kHz,有的提出了计权失真度的概念,认为人耳对不同频率的失真具有不同的感知阂值,从10%到0.01%,并给出了实验得出的阂值曲线。在上述的观点指导下,必然要制作频带更宽,全频带失真都极低的功率放大器,而且节目源也有待改进,当然这些理论的正确性需要通过实践的检验。

新的技术飞跃往往是新材料、新理论、新方法的出现之后产生的,音频放大器同样也不会例外。在科技日新月异的时代,我们有理由期待更完美的功率放大器的出现。

二、放大器常见名词

(一)灵敏度

对放大器来说,灵敏度一般指达到额定输出功率或电压时输入端所加信号的电压大小,因此也称为输入灵敏度;对音箱来说,灵敏度是指给音箱施加1W的输入功率, 在喇叭正前方1米远处能产生多少分贝的声压值.

(二)阻尼系数

负载阻抗与放大器输出阻抗之比。使用负反的晶体管放大器输出阻抗极低,仅零点几欧姆甚至更小,所以阻尼系数可达数十到数百。

(三)反馈

也称为回授,一种将输出信号的一部分或全部回送到放大器的输入端以改变电路放大倍数的技术.

负反馈

导致放大倍数减小的反馈称为负反馈。负反馈虽然使放大倍数蒙受损失,但能够有效地拓宽频响,减小失真,因此应用极为广泛。

正反馈

使放大倍数增大的反馈称为正反馈。正反馈的作用与负反馈刚好相反,因此使用时应当小心谨慎。

(四)动态范围

信号最强的部分与最微弱部分之间的电平差.对器材来说,动态范围表示这件器材对强弱信号的兼顾处理能力.

(五)响应

频率响应

简称频响,衡量一件器材对高,中,低各频段信号均匀再现的能力.对器材频响的要求有两方面,一是范围尽量宽,即能够重播的频率下限尽量低,上限尽量高;二是频率范围内各点的响应尽量平坦,避免出现过大的波动。

瞬态响应

器材对音乐中突发信号的跟随能力。瞬态响应好的器材应当是信号一来就立即响应,信号一停就嘎然而止,决不拖泥带水。

(六)信噪比(S/N)

又称为讯噪比,信号的有用成份与杂音的强弱对比,常常用分贝数表示。设备的信噪比越高表明它产生的杂音越少。

(七)屏蔽

在电子装置或导线的外面覆盖易于传导电磁波的材料,以防止外来电磁杂波对有用信号产生干扰的技术。

(八)阻抗匹配

一件器材的输出阻抗和所连接的负载阻抗之间所应满足的某种关系,以免接上负载后对器材本身的工作状态产生明显的影响。对电子设备互连来说,例如信号源连放大器,前级连后级,只要后一级的输入阻抗大于前一级的输出阻抗5-10倍以上,就可认为阻抗匹配良好;对于放大器连接音箱来说,电子管机应选用与其输出端标称阻抗相等或接近的音箱,而晶体管放大器则无此限制,可以接任何阻抗的音箱。

三、音频放大器的设计

功率放大器不仅仅是消费产品(音响)中不可缺少的设备,还广泛应用于控制系统和测量系统中。

(一)设计要求:

1.输出功率:20W。

2.负载阻抗:8Ω。

3.通频带Δfs: 为20HZ–20KHZ。

4.音调控制要求:1KHZ(0dB),10KHZ(±12dB),100HZ(±12dB)

5.灵敏度:话筒输入:5mV。

线路输入:0.775V。

(二)设计过程

1. 拟定总体方案:

甲类功放的主要优点就是电路简单易行,非线性失真小,适用于小功率的线性音频放大器,现在甲类功放主要用在高档功放产品中。而乙类功放与甲类功放最主要的不同点就是静态电流小,因此无信号时消耗功率小,可获得较高的效率;但是,乙类功放在工作时,由于两只晶体管交替导通与截止,因而,在两管输出信号波形的衔接处,会产生交越失真;而且功放管在从反偏到零偏再转为正偏转换时,随着信号频率升高,输出信号就会在时间上延迟,出现所谓的开关转换失真。因此,在

实际Hi-Fi 高保真放音系统中,一般不采用乙类功放,而采用线性失真小的甲类功

放或甲乙类功放。甲乙类功放是通过改变偏置的方法来减少交越失真,它将甲类功

放的高保真度与乙类功放折衷,从而在一定程度上解决了上述效率高与失真大之间

的矛盾。而且甲乙类功放的效率可达到78.5% ,故本次设计采用甲乙类功放。

通过对设计要求和设计方案的分析,本课题觉得采用LM1875作为功率放大器。

图1 系统组成框图 确定各级的增益分配

放大倍数Vs. dB 数0dB :一般将信号电平(0dB )即0.775V 作为衡量放大器灵敏

度的参考标准。

5mV 的dB 数为:dB 44)775.0/005.0lg(20-=。

因为采用的集成芯片LM1875,其输出功率为20W ,则负载上的电压 :为

V R P U L o L 136.12≈==

又话筒输入为5mV ,则整个电路的增益为20lg (13/0.005)=68dB 。考虑到音调级

必要的衰减,增益为-2dB 左右。所以取整个电路的增益为70dB 。则各级的增益如下:

* 功放级:26dB (厂家给定的)

* 音调控制级:-2dB 。

* 前置放大级:44dB 。

2. 单元电路的设计

(1)前置放大级

① 电路形式的选择

由于信号远输入的信号幅度较小。不足以推动以后的功放电路。因此要用电压

放大电路对信号输入的音频信号电压进行放大,对于信号源,其负载约为47K Ω,

所以选用电压串联负反馈方式的同相比例放大器,它可以使输入电阻增大,输出电

阻减小,且输入输出电压同相。又因为前置放大级的增益为44dB,即158倍,取160倍,前置放大级电路采用二级,第一级与第二级采用电容耦合方式,总的电压放大倍数为Auf=160,设计中选用Auf1=1,Auf2=160。

其中第一级实际上是一个电压跟随器,它提高了带负载的能力。

图2 前置放大器电路图

电路中二极管D1作用是:当线路输入是0.775V时,D1导通,此时LF353(2)也为一个电压跟随器,信号不经过放大直接到音调控制级的输入端。当输入为5mV 时,不足以让二极管导通,此时LF353(2)为放大器,信号将放大160倍后到音调控制级的输入端。

②集成运放的选择

因为Auf2=160,根据通频带20HZ–20KHZ,其上线频率为20KHZ,则集成运放的放大倍数带宽积应满足下列关系:

GB≥Auf2fh = 180*20KHZ = 3.2MHZ

从运放的资料手册中可查出LF353的单位放大倍数带宽GB=4MHZ,满足要求。

③各元件的参数选择和计算

电路中电容C11是用作噪声去耦合的,可以用小体积大容量的钽电容

或普通电解电容,一般选为10μF,R11可选用较大的电阻,取1MΩ,电阻R12取10K,LF353(2)构成的是放大倍数为160的电压放大电路,同相交流放大电路的平衡电阻可尽量选得大一些,一般为10K以上,这样有利于提高放大电路的输入电阻,由于输入电阻为47K,故选RP2的阻值为47K,R21取1K,耦合电容C12为10μF。由Auf2 = 1+R23/R22 及R21=R23//R22,Auf2=180可得R21=R22=1K,R23=160K。C21,

C22,C23,C24,主要用于电源旁路滤波,一般C21,C23用电解电容,其值为220μF,C22,C24用普通的电容,一般取值为22μF。LF353的电源为±15V的直流稳压电源。

(2)音调控制级

音调控制器主要是控制,调节音响放大器的幅频特性,他只对低频与高频的增益进行提升与衰减,中音频的增益保持0dB 不变。因此,音调控制器的电路可以由低通滤波器和高通滤波器构成。由运算放大器构成的音调控制器,电路调节简单,元器件少,因此,我们选用这种电路形式。

图3 音调控制级电路图

RP用来调节音量的大小,即为音量控制电路。

图中,电位器33

设电容C31=C32 >>C33,在中,底音频区,C33可视为开路,在中,高音频区,C31,C32可视为短路。

工作状态及元件参数计算:

第一:低频时的情况:

低频提升与衰减,电路图如下图4(a)和图4(b)所示:

=-[(RP31+R32)/R31]*[1+(jω)/ω2]/[1+(jω)/ω1] 式中:ω1=1/(RP31*C32),ω2=(RP31+R32)/(RP31*R32*C32)

当f

AVL=(RP31+R32)/R31

在f=fL1时,因为fL2=10fL1,故可得

AV1=(RP31+R32)/2R31

此时,电压增益 AV1相对于 AVL下降了3dB。

在f=fL1时,可得AV1=[(RP31+R32)/R31]*(2/10)=0.14 AVL 此时,电压增益 AV2相对于 AVL下降了17dB。

同理可得低频衰减的相应表达式。

第二:高频提升与衰减:

高频等效电路如图5所示:

Rb=R34+R32+(R34R32/R31)

Rc=R31+R32+(R32R31/R34) i 4b 式中,])/[(133333C R R a +=ω, )/(133334C R =ω

1H f f <时,33C 视为开路,电压增益AV0=1(0dB )。在f=fH1时

AV3=2AV0

此时电压增益AV3相对于AV0高3dB 。在f=fH2时,

AV4=210

AV0

此时电压增益 AV4相对于AV0提高了17dB 。

当2H f f >时,33C 视为端路,此时电压增益

AVH=(Ra+R33)∕R33

同理可以得图示电路的相应表达式,其增益相对于中频增益为衰减量。

又已知.12,10,100dB x KHZ f HZ f H x Lx ===,由计算式得:

HZ f f x Lx L 4002*6/2==,则 HZ f f L L 4010/21==;

KHZ f f x H x H 5.22/6/1==,则 KHZ f f H H 251012== AVL=(RP31+R32)/R31≧20dB

其中,R31,R32,RP31不能取得太大,否则运放漂移电流的影响不可忽视。

但也不能太小,否则流过它们的电流将超过运放的输出能力。通常取几千欧姆至

几百千欧姆。现取RP31=470K Ω,则

AVL=(RP31+R32)/R31=11(20.8dB )

F f RP C L μπ008.02113132== 取标称值0.01F μ,即F C C μ01.03231==

取 R34=R31=R32=47K ,则

Ω==K R R a 141334

Ω==K R R a 1.1410/33, 取标称值ΩK 13

PF f R C H 4902123333==π , 取标称值470PF 取Ω==K RP RP

4703132, Ω=K RP 1033,级间耦合电容F C C μ103534== (3)功率放大级

电路形式的选择:

芯片选用LM1875,而一个LM1875的输出功率最大只能达到20W ,已能满足本

课题的设计要求,故本设计采用单片LM1875。如果要把输出功率提高到50W ,可选择

BTL 电路,按照如下方法进行设计:

加重,因此其特性必然不好。

由BTL的工作原理及特点可知,要满足输出功率为50W的要求,可用两个LM1875组成BTL电路,要想获得好的输出特性,关键是要获得BTL电路所需的两个大小相等,相位相反的音频信号。通过查询资料(3),可知,可以用一个倒相电路来提供此信号。如下图所示:

图8倒相电路

图中VT 组成的单管放大电路没有电压放大作用,它采用分压式偏置供给VT

关静态工作电流,从集电极和发射极输出的音频信号大小分别为IcRc 和IeRe ,由

于Ic≈Ie,Rc=Re ,所以两路的信号大小相等而极性相反,可将它们分别通过电容

耦合到BTL 电路的两个同乡相输入端。则功率放大电路如下图所示:

3. (1)反馈网络电阻值的选取

LM1875的增益为26dB ,即有:

201401403401403=≈+=R R R R A V

所以有: 40140320R R ≈,通常取401R =1K 左右, 则403R =20K 。

(2)隔直电容402C ,403C 应满足在下限频率上(HZ f L 20=)的容抗远小于R1,取

402C =403C =10μ。

电源旁路电容:

F C C C C μ220412*********====, F C C C C μ22413411409407====

四、LM1875的简介

(一)LM1875的参数简介

LM1875采用TO-220封装结构,形如一只中功率管,体积小巧,外围电路简单,且

输出功率较大。该集成电路内部设有过载过热及感性负载反向电势安全工作保护。

LM1875主要参数:

电压范围: 16~60V

静态电流: 50mA

输出功率: 25W

谐波失真: <0.02%,当f=1kHz ,RL=8Ω,P0=20W 时

额定增益: 26dB ,当f=1kHz 时

工作电压: ±25V

转换速率: 18V/μS

LM1875极限参数:

电源电压(Vs) 60 V

输入电压(Vin) -VEE-Vcc V

工作结温(Tj) +150 ℃

存储结温(Tstg) -65-+150 ℃

(二)LM1875的工作原理:

LM1875功放板由一个高低音分别控制的衰减式音调控制电路和LM1875放大电路

以及电源供电电路三大部分组成,音调部分采用的是高低音分别控制的衰减式音调电

路,其中的R02,R03,C02,C01,W02组成低音控制电路;C03,C04,W03组成高音控

制电路;R04为隔离电阻,W01为音量控制器,调节放大器的音量大小,C05为隔直电容,

防止后级的LM1875直流电位对前级音调电路的影响。放大电路主要采用LM1875,由

1875,R08,R09,C06等组成,电路的放大倍数由R08与R09的比值决定,C06用于稳定LM1875的第4脚直流零电位的漂移,但是对音质有一定的影响,C07,R10的作用是防止放大器产生低频自激。本放大器的负载阻抗为4→16Ω。

为了保证功放板的音质,电源变压器的输出功率不得低于80W,输出电压为2*25V,滤波电容采用2个2200UF/25V电解电容并联,正负电源共用4个2200UF/25V的电容,两个104的独石电容是高频滤波电容,有利于放大器的音质。

(三)LM1875的电路特点

LM1875功率较TDA2030及TDA2009都为大,电压范围为16~60V。不失真功率为20W(THD=0.08%),THD=1%时,功率可达40W(人耳对THD<10%一下的失真没什么明显的感觉),保护功能完善。笔者是一个不错的选择。其接法同TDA2030相似,也有单双电源两种接法。

LM1875是美国国家半导体器件公司生产的音频功放电路,采用V型 5 脚单列直插式塑料封装结构。如图1所示,该集成电路在±25V电源电压RL=4Ω可获得20W 的输出功率,在±30V电源8Ω负载获得30W的功率,内置有多种保护电路。广泛应用于汽车立体声收录音机、中功率音响设备,具有体积小、输出功率大、失真小等特点。电路特点:

(1)单列5脚直插塑料封装,仅5只引脚。

(2)开环增益可达90dB。

(3)极低的失真,1kHz,20W时失真仅为0.015%。

(4)AC和DC短路保护电路。

(5)超温保护电路。

(6)峰值电流高达4A

(7)极宽的工作电压范围(16-60V)。

(8)内置输出保护二极管。

(9)外接元件非常少,TO-220封装。

(10)输出功率大,Po=20W(RL=4Ω)。

五、电路设计

(一)典型应用电路

音频功率放大器的典型应用电路分为两种:一种为单电源供电,另一种为双电源

供电。两种典型应用电路电路图如下:

图10 单电源接法

图11 双电源接法

LM1875单电源供电与双电源供电的基本工作原理相同,不同之处在于:单电源供电时,采用R1、R2分压,取1/2VCC作为偏置电压经过R3加到1脚,使输出电压以1/2VCC为基准上下变化,因此可以获得最大的动态范围。但在本课题中,我们希望能对音频放大器的音量和音频进行调节,即得到更理想更直观的设计,在此次设计中采用双电源供电的方法。

(二)双电源音频功率放大器原理图

综合以上讨论,利用protel 99软件画出双电源音频功率放大器原理图:

音频功率放大器电路

TDA2030集成电路功率放大器设计 一、设计题目集成电路功率放大器 二、给定条件 设计一款额定输出功率为10 ~ 20W的低失真集成电路功率放大器,要求电路简洁,制作方便、性能可靠。性能主要指标: 输出功率:10 ~ 20W(额定功率); 频率响应:20Hz ~ 100kHz(≤3dB) 谐波失真:≤1% (10W,30Hz~20kHz); 输出阻抗:≤0.16Ω; 输入灵敏度:600mV(1000Hz,额定输出时) 三、设计内容 1.根据具体电路图计算电路参数 2.选取元件、识别和测试。包括各类电阻、电容、变压器的数值、质量、电器性能的准确判断、解决大功率放大器散热的问题。 3.了解有关集成电路特点和性能资料情况 4.根据实际机壳大小设计1:1印刷板布线图 5.制作印刷线路板 6.电路板焊接、调试(调试步骤可以参考《模拟电子技术实验指 导书》有关放大器测试过程 7.实训期间必须遵守实训纪律、听从老师安排和注意用电安全。 四、功率放大电路的测试基本内容 注意:将输入电位器调到最大输入的情况。 1.测量输出电压放大倍数A u 测试条件:直流电源电压14v,输入信号1KHz 70 mv(振幅值100mv),输出负

载电阻分别为4Ω和8Ω。 2.测量允许的最大输入信号(1KHz)和最大不失真输出功率测试条件:①直流电源电压14v,负载电阻分别为4Ω和8Ω。 ②直流电源电压10v,负载电阻为8Ω。 3.测量上、下限截止频率f H 和f L 测试条件:直流电源电压14v,输入信号70mv(振幅值100mv),改变输入信号频率、负载电阻为8Ω。 五、参考资料 TDA2030简介:TDA 2030 是一块性能十分优良的功率放大集成电路,其主要特点是上升速率高、瞬态互调失真小,在目前流行的数十种功率放大集成电路中,规定瞬态互调失真指标的仅有包括TDA 2030 在内的几种。我们知道,瞬态互调失真是决定放大器品质的重要因素,该集成功放的一个重要优点。 TDA2030 集成电路的另一特点是输出功率大,而保护性能以较完善。根据掌握的资料,在各国生产的单片集成电路中,输出功率最大的不过20W,而TDA 2030的输出功率却能达18W,若使用两块电路组成BTL电路,输出功率可增至35W。另一方面,大功率集成块由于所用电源电压高、输出电流大,在使用中稍有不慎往往致使损坏。然而在TDA 2030集成电路中,设计了较为完善的保护电路,一旦输出电流过大或管壳过热,集成块能自动地减流或截止,使自己得到保护(当然这保护是有条件的,我们决不能因为有保护功能而不适当地进行使用)。 TDA2030 集成电路的第三个特点是外围电路简单,使用方便。在现有的各种功率集成电路中,它的管脚属于最少的一类,总共才5端,外型如同塑封大功率管,这就给使用带来不少方便。 TDA2030 在电源电压±14V,负载电阻为4Ω时输出14瓦功率(失真度≤0.5%);在电源电压±16V,负载电阻为4Ω时输出18瓦功率(失真度≤0.5%)。该电路由于价廉质优,使用方便,并正在越来越广泛地应用于各种款式收录机和高保真立体声设备中。该电路可供低频课程设计选用。 双电源供电BTL音频功率放大器 工作原理:用两块TDA2030 组成如图1所示的BTL功放电路,TDA 2030(1)为同相放大器,输入信号V in通过交流耦合电容C1馈入同相输入端①脚,交流闭环增益为K VC①=1+R3 / R2≈R3 / R2≈30dB。R3 同时又使电路构成直流全闭环组态,确保电路直流工作点稳定。TAD 2030(2)为反相放大器,它的输入信号是由TDA 2030(1)输出端的U01经R5、R7分压器衰减后取得的,并经电容C6 后馈给反相输入端②脚,它的交流闭环增益K VC②=R9 / R7//R5≈R9/R7≈30dB。由R9=R5,所以TDA 2030(1)与TDA 2030(2)的两个输出信号U01 和U02 应该是幅度相等相位相反的,即: U01≈U in·R3 / R2

音频功率放大器设计详解

音频功率放大器设计 一、设计任务 设计一个实用的音频功率放大器。在输入正弦波幅度≤5mV,负载电阻等于8Ω的 条件下,音频功率放大器满足如下要求: 1、最大输出不失真功率P OM≥8W。 2、功率放大器的频带宽度BW≥50Hz~15KHz。 3、在最大输出功率下非线性失真系数≤3%。 4、输入阻抗R i≥100kΩ。 5、具有音调控制功能:低音100Hz处有±12dB的调节范围,高 音10kHz处有±12dB的调节范围。 二、设计方案分析 根据设计课题的要求,该音频功率放大器可由图所示框图实现。 下面主要介绍各部 分电路的特点及要求。 图1 音频功率放大器组成框图 1、前置放大器 音频功率放大器的作用是将声音源输入的信号进行放大,然后输

出驱动扬声器。声音源 的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低

音频功率放大器设计实验报告

题目:音频功率放大器电路 音频功率放大器设计任务 1、基本要求 (1)频带范围 200Hz —— 10KHz,失真度 < 5%。 (2)电压增益 >= 20dB。 (3)输出功率 >= 1 W (8欧姆负载)。 (4)功率放大电路部分使用分立元件设计。 发挥部分 (1)增加音调控制电路。 (2)增加话筒输入接口,灵敏度 5mV,输入阻抗 >> 20 欧姆。 (3)输出功率 >= 10W (8欧姆负载)。 (4)其他。 目录 1 引言····························································· 2 总体设计方案·····················································2.1 设计思路······················································· 2.2 总体设计框图··················································· 3 设计原理分析·····················································3.1设计总原理图 3.2设计的PCB电路图 ··· 1 引言 在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放而言,应该达到电气指标与实际听音指标的平衡与统一。

音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。本次设计旨在熟悉设计流程,达到基本指标。 2 总体方案 根据实验要求,本次设计主要是也能够是用集成功放TDA2030为主的电路 一、电路工作原理 图1所示电路为音频功率放大器原理图,其中TDA2030是高保真集成功率放大器芯片,输出功率大于10W,频率响应为10~1400Hz,输出电流峰值最大可达3.5A。其内部电路包含输入级、中间级和输出级,且有短路保护和过热保护,可确保电路工作安全可靠。TDA2030使用方便、外围所需元器少,一般不需要调试即可成功。 RP是音量调节电位器,C1是输入耦合电容,R1是TDA2030同相输入端偏置电阻。 R2、R3决定了该电路交流负反馈的强弱及闭环增益。该电路闭环增益为 (R2+R3)/R2=(0.68+22)/0.68=33.3倍,C2起隔直流作用,以使电路直流为100%负反馈。静态工作点稳定性好。 C4、C5为电源高频旁路电容,防止电路产生自激振荡。R4、R5称为茹贝网路,用以在电路接有感性负载扬声器时,保证高频稳定性。VD1、VD2是保护二极管,防止输出电压峰值损坏集成块TDA2030。 2.电流反馈 电流反馈是指在一个反馈电路中,若反馈量与输出电流成正比则为电流反馈;若反馈量与输出电压成正比则为电压反馈。通常可以采用负载短路法来判断。 从概念上说,若反馈量与输出电压(有时不一定是输出电压,而是取样处的电压)成正比则为电压反馈;若反馈量与输出电流(有时不一定是输出电流,而是取样处的电流)成正比则为电流反馈。在判断电压反馈和电流反馈时,除了上述方法外,也可以采用负载短路法。负载短路法实际上是一种反向推理法,假设将放大电路的负载电阻RL短路(此时,),若

功率放大器原理功率放大器原理图

袁蒁膃蚇腿肀肃功率放大器原理功率放大器原理 图 芃蚆葿艿袂薇蒆要说功率放大器的原理,我们还是先来看看功率放大器的组成:射频功率放大器(RF PA)是各种无线发射机的重要组成部分。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大一缓冲级、中间放大级、末级功率放大级,获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。 射频功率放大器是发送设备的重要组成部分。射频功率放大器的主要技术指标是输出功率与效率。除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。 螆肇葿蚄蚆芈羁功率放大器原理 衿蚈膂袆袆膁螁高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出。在“低频电子线路” 课程中已知,放大器可以按照电流导通角的不同,将其分为甲、乙、丙三类工作状态。甲类放大器电流的流通角为360o,适用于小信号低功率放大。乙类放大器电流的流通角约等于180o;丙类放大器电流的流通角则小于180o。乙类和丙类都适用于大功率工作。丙类工作状态的输出功率和效率是三种工作状态中最高者。 高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。除了以上几种按电流流通角来分类的工作状态外,又有使电子器件工作于开关状态的丁类放大和戊类放大。丁类放大器的效率比丙类放大器的还高,理论上可达100%,但它的最高工作频率受到开关转换瞬间所产生的器件功耗(集电极耗散功率或阳极耗散功率)的限制。如果在电路上加以改进,使电子器件在通断转换瞬间的功耗尽量减小,则工作频率可以提高。这就是戊类放大器。 我们已经知道,在低频放大电路中为了获得足够大的低频输出功率,必须采用低频功率放大器,而且低频功率放大器也是一种将直流电源提供的能量转换为交流输出的能量转换器。高频功率放大器和低频功率放大器的共同特点都是输出功率大和效率高,但二者的工作频率和相对频带宽度却相差很大,决定了他们之间有着本质的区别。低频功率放大器的工作频率低,但相对频带宽度却很宽。例如,自20至20000 Hz,高低频率之比达1000倍。因此它们都是采用无调谐负载,如电阻、变压器等。高频功率放大器的工作频率高(由几百kHz一直到几百、几千甚至几万MHz),但相对频带很窄。例如,调幅广播电台(535-1605 kHz的频段范围)的频带宽度为10 kHz,如中心频率取为1000 kHz,则相对频宽只相当于中心频率的百分之一。中心频率越高,则相对频宽越小。因此,高频功率放大器一般都采用选频网络作为负载回路。由于这后一特点,使得这两种放大器所选用的工作状态不同:低频功率放大器可工作于甲类、甲乙类或乙类(限于推挽电路)状态;高频功率放大器则一般都工作于丙类(某些特殊情况可工作于乙类)。 近年来,宽频带发射机的各中间级还广泛采用一种新型的宽带高频功率放大器,它不采用选频网络作为负载回路,而是以频率

音频小信号功率放大

摘要 本次电路设计课题是音频小信号放大电路,它属于模拟电路课程设计,所以实验中就需要用到大量的模拟电路知识。对于音频小信号放大电路它是由两级放大电路组成,第一部分是运用到了两级负反馈放大电路,旨在放大电压,第二部分OCL功率放大电路采用复合三极管,目的放大电路电流。两部分放大电路的设计根本目的就是为了将小信号放大为一个大信号而不失真。失真这是设计音频放大电路中的一个难点,电路的巧妙设计可以有效的避免失真,电容的运用是解决失真的关键。

目录 1 选题背景 (2) 1.1 指导思想 (2) 1.2 方案论证 (2) 1.3 基本设计任务 (2) 1.4 发挥设计任务 (2) 1.5电路特点 (3) 2 电路设计 (3) 2.1 总体方框图..................................... 错误!未定义书签。 2.2 工作原理 (3) 3 各主要电路及部件工作原理 (3) 3.1 第一级—输入信号放大电路 (4) 3.2 NE5532简要说明................................. 错误!未定义书签。 3.3 第二级—功率放大电路........................... 错误!未定义书签。 3.4 直流信号过滤电路 (6) 4 原理总图 (7) 5 元器件清单 (7) 6 调试过程及测试数据(或者仿真结果) (7) 6.1 仿真检查 (8) 6.1.1第一级仿真检查 (8) 6.1.2第二级仿真检查 (9) 6.2 通前电检查 (10) 6.3 通电检查 (10) 6.3.1第一级电路检查 (10) 6.3.2第二级电路检查 (10) 6.3.3完整电路检查 (10) 6.4 结果分析 (10) 7 小结 (10) 8 设计体会及今后的改进意见 (11) 8.1 体会 (11) 8.2 本方案特点及存在的问题 (11) 8.3 改进意见 (11) 参考文献 (12)

音频功率放大电路报告

一、设计题目:音频功率放大电路 二、设计的任务和要求 1、主要要求:设计并制作用晶体管和集成运算放大器组成的音频功率放大电路, 负载为扬声器,阻抗8Ω。 2、性能指标:频带宽50H Z ~20kH Z ,输出波形基本不失真;电路输出功率大于8W; 输入灵敏度为100mV,输入阻抗不低于47KΩ。 三、原理电路和程序设计 3.1、方案的确定及论证 1、OTA互补对称功率放大器 OTL 电路通常由两个对称的异型管构成,因此又称为互补对称电路,图 3-1 为单电源 OTL 互补对称功率放大电路。电路中 T1 是推动级(电压放大,也叫激励级),其中Rb1、Rb2是 T1 的基极偏置电阻,Re为 T1发射极电阻,Rb为T1集电极负载电阻,它们共同构成 T1 的稳定静态工作点;T2、T3 组成互补对称功率放大电路的输出级,且 T2、T3工作在乙类状态;C2 为输出耦合电容。功率放大器采用射极输出器,提高了输入电阻和带负载的能力。 性能分析: 乙类互补推挽功放(OTL)的输出功率的计算公式如下: 输出功率:P o =U o I o =U o 2/R L 输出最大功率:P om =U o I o =U o 2/R L =U om 2/2R L =V CC 2/8R L

显然P 与电源电压及负载有关 om 2/8R 当输入功率为8w,阻抗8w时,有Pom=V CC V =8*8*8≈22.6v 则电路所需的电源为22.6v。 CC 2、用集成器件实现 Tda2030简介:TDA2030是德律风根生产的音频功放电路,采用V型5 脚单列直插式塑料封装结构。该集成电路广泛应用于汽车立体声收录音机、中功率音响设备,具有体积小、输出功率大、失真小等特点。并具有内部保护电路。 电路特点: [1].外接元件非常少。(基本应用电路图3-2) [2].输出功率大,Po=18W(RL=4Ω)。 [3].采用超小型封装(TO-220),可提高组装密度。 [4].开机冲击极小。 [5].内含各种保护电路,因此工作安全可靠。主要保护电路有:短路保护、热保护、地线偶然开路、电源极性反接(Vsmax=12V)以及负载泄放电压反冲等。 [6].TDA2030A能在最低±6V最高±22V的电压下工作在±19V、8Ω阻抗时能够输出16W的有效功率,THD≤0.1%。用它来做电脑有源音箱的功率放大部分或小型功放再合适不过了。 图3-2使用单电源供电的tda2030基本应用电路

高效率音频功率放大器设计文献综述【文献综述】

文献综述 电子信息工程 高效率音频功率放大器设计文献综述 一、前言 为了节约电路的成本,提高放大器的效率,采用普通的电子元器件设计高 效率音频功率放大器的方法,使用基本的运算放大器,构成PWM路,形成D 类功率放大器,实现了高效率,低失真的设计要求。为了提高电路的抗干扰性能,在设计中使用了电压跟随器,差动放大器,有源带通滤波器等。使设计获 得了良好的效果。 二、主题 在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的 不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放 而言,应该达到电气指标与实际听音指标的平衡与统一。 音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。 (一)早期的晶体管功放 半导体技术的进步使晶体管放大器向前迈进了一大步。自从有了晶体管,人们就开始用它制造功率放大器。  早期的放大器几乎全用锗管来制作,但由于锗管工艺上的一些原因,使得放大器中所用的晶体管,尤其是功放管性能指标不易做得很高,例如,共发射极截止频率fh的典型值为4kHz,大电流管的耐压值一般在30V一40V左右。这样,放大器的频率响应也就很狭窄,其3dB截止频率通常在10kHz左右,大大影响了音乐中高频信号的重现。再加上功放管的耐压、电流和功耗三个指标相互制约,制作较大功率的OTL或OCL放大器不易寻到三个指标都满足要求的管子,所以不得不采用变压器耦合输出。变压器的相移又使电路中加深度负反馈变得很困难,谐波失真得不到充分的抑制,因此这一时期的晶体管放大器音质是很差的。“还

音频功率放大电路内容(新)

第一章、绪论 功率放大器的作用是给音响放大器的负载(扬声器)提供一定的输出概率。当负载一定时,希望输出的功率尽可能大,输出信号的非线性失真尽可能小,效率尽可能高。功放常见的电路形式有OTL(Output Transformer less)和OCL(Output Capacitor less)电路。有用集成运算放大器和晶体管组成的功放,也有专用集成电路功放。 LM386是美国国家半导体公司生产的音频功率放大器,主要应用于低电压消费类产品。为使外围元件最少,电压增益内置为20。但在1脚和8脚之间增加一只外接电阻或电容,便可将电压增益调为任意值,直至200。输入端以地位参考,同时输出端被自动偏置到电源电压的一半,工作电压范围宽,4-12V or 5-18V,在6V电源电压下,它的静态功耗仅为24mW, 且外围元件少。 设计功放电路由输入级、中间级和输出级三部分组成的:输入级是由100uF的耦合电容及100 k的电位器组成的,它具有隔直、调节音量及增益的作用; 中间级是由集成运放LM386以及由R1、RV4、C2等组成的可调增益放大电路; 输出级是由低通滤波器及扬声器组成的,其中L1为高频扼流圈; 由于该电路为双声道功率放大器,所以下部分电路与上部分电路完全对称,故电路原理同上。

第二章、系统组成与工作原理 功率放大电路由前置放大器、功率放大器、以及电源部分组成。如图1所示。功率放大器的前臵放大器主要作用是电压放大,这部分包括音调控制,音量控制等电路。功率放大器也叫主放大器,它可以把几十毫伏的信号电压放大到要求的功率。电源部分的作用是把220V交流电变成低压直流电,供给各级放大电路使用。 Lm386原理与说明: LM386是美国国家半导体公司生产的音频功率放大器,主要应用于低电压消费类产品。为使外围元件最少,电压增益内置为20。但在1脚和8脚之间增加一只外接电阻和电容,便可将电压增益调为任意值,直至200。输入端以地位参考,同时输出端被自动偏置到电源电压的一半,在6V电源电压下,它

D 类放大高效率音频功率放大器电路图原理

D类放大高效率音频功率放大器电路图原理为提高功放效率,以适应现代社会高效、节能和小型化的发展趋势,以D类功率放大器为核心,以单片机89C51和可编程逻辑器件(FPGA)进行控制及时数据的处理,实现了对音频信号的高效率放大。系统最大不失真输出功率大于1W,可实现电压放大倍数1~20连续可调,并增加了短路保护断电功能,输出噪声低。系统可对功率进行计算显示,具有4位数字显示,精度优于5%。 传统的音频功率放大器主要有A类(甲类)、B类(乙类)和AB(甲乙类)。A类功率放大器在整个输入信号周期内都有电流连续流过功率放大器件,它的优点是输出信号的失真比较小,缺点是输出信号的动态范围小、效率低,理想情况下其最高效率为50%.B类功率放大器在整个输入信号周期内功率器件的导通时间为50%,它的优点是在理想情况下效率可达78.5%,但缺点是会产生交越失真,增加噪声。AB类(甲乙类)功率放大器是以上两种放大器的结合,每个功率器件的导通时间在50%~100%之间,兼有甲类失真小和乙类效率高的特点,其工作效率介于二者之间。传统音频功率放大器效率偏低,体积偏大的缺点与音频功率放大高效、节能和小型化的发展趋势的矛盾,催生了D类(丁类)音频功率放大器出现和发展。本系统即采用D类功率放大实现,并用单电源供电,符合现代社会对电源小巧、便携要求的实际需要。 1系统方案论证与选择 1.1整体方案 方案①:数字方案。输入信号经前置放大调理后,即由A/D采入单片机进行处理,三角波产生及与音频信号的比较均由软件部分完成,然后由单片机输出两路完全反向的PWM 波给入后级功率放大部分,进行放大。此种方案硬件电路简单,但会引入较大数字噪声。 方案②:硬件电路方案。三角波产生及比较、PWM产生仍由硬件电路实现,此方案噪声较小、且幅值能做到更大,效果较好,故采用此方案。 1.2三角波产生电路设计 方案①:利用NE555产生三角波。该电路的特点是采用恒流源对电容线性冲、放电产生三角波,波形线性度较好、频率控制简单,信号幅度可通过后加衰减电位器控制。 方案②:对方波积分产生三角波。积分器与比较器级联,通过对比较器产生的方波积分得到三角波,频率与幅值控制只需调整某些电阻值,控制简单。但考虑积分电路存在积分漂移。 此处采用选择方案①。

音频功率放大器设计(明细)

电气与电子信息工程学院《电子线路设计与测试B》报告 设计题目:多级音频放大电路的设计与测试专业班级:电子信息工程技术2013(1)班学号: 201330230118 姓名: 指导教师: 设计时间: 2015/07/13~2015/07/17 设计地点:K2—306

电子线路设计与测试B成绩评定表 姓名学号 专业班级电子信息工程技术2013级(1)班 课程设计题目:多级音频放大电路的设计与测试 课程设计答辩或质疑记录: 1、对一个音频功率放大器的前置级有什么要求? 答:要求:一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。 2、试画出利用TDA2030/2030A实现的OTL功率放大器电路? 答: 3、何为D类功率放大器?D类功率放大器有什么特点? 答:(1)D类功放也叫丁类功放,是指功放管处于开关工作状态的功率放大器。 (2)特点:效率高、功率大、失真小、体积小。 成绩评定依据: 实物制作(40%): 课程设计考勤情况(10%): 课程设计答辩情况(20%): 完成设计任务及报告规范性(30%): 最终评定成绩: 指导教师签字: 年月日

目录 《电子线路设计与测试B》课程设计任务书 (4) 一、课程设计题目:多级音频放大电路的设计与测试 (4) 二、课程设计内容 (4) 三、进度安排 (4) 四、基本要求 (5) 五、课程设计考核办法与成绩评定 (5) 六、课程设计参考资料 (5) 多级音频功率放大电路的设计与测试 (6) 一、设计任务 (6) 二、设计方案分析 (6) 1、前置放大器 (6) 2、音调控制电路 (7) 3、功率放大器 (11) 三、主要单元电路参考设计 (11) 1、前置放大器电路 (12) 2、音调控制器电路 (12) 3、功率放大器电路 (14) 四、软件的仿真与调试 (15) 五、原理图与PCB的制作 (16) 六、音频功率放大器的调试 (17) 七、心得体会 (18) 八、附录 (19) 1、元件清单 (19) 2、实物图 (19) 3、文献 (19)

LM3886功率放大器原理图及PCB

LM3886原理图: LM3886 _PCB: LM3886 3D效果图:

元器件清单: 说明封装序号0.1U R AD0.2 C14 0.1U R AD0.2 C13 0.1U R AD0.2 C12 0.1U R AD0.2 C11 0.47U RAD0.2 C4 0.47U RAD0.2 C2 0.47U RAD0.2 C3 0.47U RAD0.2 C1 0.7UH AXIAL0.6 L2 0.7UH AXIAL0.6 L1 10 AXIAL0.6 R12 10 AXIAL0.6 R11 100U RB.2/.4 C18 100U RB.2/.4 C17 10A BRIDGE-H1 DBR1 10K AXIAL0.4 R8 10K AXIAL0.4 R7 1K AXIAL0.4 R4 1K AXIAL0.4 R2 1K AXIAL0.4 R3 1K AXIAL0.4 R1 2.7 AXIAL0.5 R10 2.7 AXIAL0.5 R9 20K AXIAL0.4 R16

20K AXIAL0.4 R15 20K AXIAL0.4 R13 20K AXIAL0.4 R14 220P RAD0.2 C16 220P RAD0.2 C15 22K AXIAL0.4 R6 22K AXIAL0.4 R5 22U RAD0.2 C20 22U RAD0.2 C19 4.7U R AD0.2 C10 4.7U R AD0.2 C9 470U RB.2/.4 C8 470U RB.2/.4 C6 470U RB.2/.4 C7 470U RB.2/.4 C5 50P RAD0.2 C22 50P RAD0.2 C21 6800U RB.3/.6 C26 6800U RB.3/.6 C25 6800U RB.3/.6 C24 6800U RB.3/.6 C23 LM3886 ZIP-11V U2 LM3886 ZIP-11V U1 Output PORT2 J1 POWER FLY3 J3 SIG_INPUT PHONE J2

音频功率放大器实验报告

一、实验目的 1)了解音频功率放大器的电路组成,多级放大器级联的特点与性能; 2)学会通过综合运用所学知识,设计符合要求的电路,分析并解决设计过程中遇到的问题,掌握设计的基本过程与分析方法; 3)学会使用Multisim、Pspice等软件对电路进行仿真测试,学会Altium Designer使用进行PCB制版,最后焊接做成实物,学会对实际功放的测试调试方法,达到理想的效果。 4)培养设计开发过程中分析处理问题的能力、团队合作的能力。 二、实验要求 1)设计要求 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 2)实物要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出;

(5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 三、实验内容与原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1)前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,

音频功率放大器课程设计--OTL音频功率放大器的设计与制作-精品

学号: 课程设计 题目OTL音频功率放大器的设计与制作 学院信息工程学院 专业通信工程 班级通信1302 姓名 指导教师 2014 年 1 月23 日

课程设计任务书 题目:OTL音频功率放大器的设计与制作 初始条件: 元件:集成功放TDA2030A、集成稳压器LM7812、电阻、电容、电位计若干。 仪器:万用表、示波器、交流毫伏表、函数信号发生器、学生电源要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、课程设计工作量:1周。 2、技术要求: ①要求设计制作一个音频功率放大器频率响应20~20KHZ,效率>60﹪,失真小。完成对音频功率放大器的设计、仿真、装配与调试,并自制直流稳压电源。 ②确定设计方案以及电路原理图并用multisim进行电路仿真。 时间安排: 序号设计内容所用时间 1 布置任务及调研1天 2 方案确定0.5天 3 制作与调试 1.5天 4 撰写设计报告书1天 5 答辩1天 合计1周 指导教师签名: 系主任(或责任教师)签名:年月日

目录 摘要 (1) Abstract (2) 音频功率放大器的设计与制作 (3) 1. 设计原理及参数 (3) 1.1音频功放电路的设计 (3) 1.1.1设计原理 (3) 1.1.2 参数计算 (5) 1.2直流稳压电源的设计 (6) 1.2.1设计原理 (6) 1.2.2参数计算 (7) 2.仿真结果及分析 (8) 2.1音频功率放大电路 (8) 2.1.1仿真原理图 (8) 2.1.2仿真效果图 (9) 2.2直流稳压电源电路 (11) 2.2.1电路原理图仿真 (11) 2.2.2仿真效果图 (11) 3.实物制作与性能测试 (12) 3.1音频功放实物制作 (12) 3.2性能测试 (13) 3.2.1功率性能测试 (13) 3.2.2频率响应测试 (14) 3.3直流稳压电源制作 (14) 3.4直流稳压电源的测试 (15) 4.收获以及体会 (15)

功率放大器原理图

电路图中的放大电路 发布:2011-8-30|作者:——|来源:caihuiliu|查看:482次|用户关注: 电路图中的放大电路能够把微弱的信号放大的电路叫做放大电路或放大器。例如助听器里的关键部件就是一个放大器。放大电路的用途和组成放大器有交流放大器和直流放大器。交流放大器又可按频率分为低频、中源和高频;接输出信号强弱分成电压放大、功率放大等。此外还有用集成运算放大器和特殊晶体管作器件的放大器。它是电子电路中最复杂多变的电路。但初学者经常遇到的也只是少数几种较为典型的放大电路。读放大电路图时也还是按照“ 电路图中的放大电路 能够把微弱的信号放大的电路叫做放大电路或放大器。例如助听器里的关键部件就是一个放大器。 放大电路的用途和组成 放大器有交流放大器和直流放大器。交流放大器又可按频率分为低频、中源和高频;接输出信号强弱分成电压放大、功率放大等。此外还有用集成运算放大器和特殊晶体管作器件的放大器。它是电子电路中最复杂多变的电路。但初学者经常遇到的也只是少数几种较为典型的放大电路。 读放大电路图时也还是按照“逐级分解、抓住关键、细致分析、全面综合”的原则和步骤进行。首先把整个放大电路按输入、输出逐级分开,然后逐级抓住关键进行分析弄通原理。放大电路有它本身的特点:一是有静态和动态两种工作状态,所以有时往往要画出它的直流通路和交流通路才能进行分析;二是电路往往加有负反馈,这种反馈有时在本级内,有时是从后级反馈到前级,所以在分析这一级时还要能“瞻前顾后”。在弄通每一级的原理之后就可以把整个电路串通起来进行全面综合。 下面我们介绍几种常见的放大电路。 低频电压放大器 低频电压放大器是指工作频率在20赫~20千赫之间、输出要求有一定电压值而不要求很强的电流的放大器。 (1)共发射极放大电路

高保真音频功率放大器设计

电子技术课程设计报告——高保真音频功率放大器 上海大学机自学院自动化系 自动化 姓名:吴青耘 学号:16121324 指导老师: 李智华 2018年6月29日

一、项目名称 高传真音频功率放大器 二、用途 家庭、音乐中心装置中作主放大器 三、主要技术指标 1. 正弦波不失真输出功率Po>5W (f=1kHz,RL=8Ω) 2. 电源消耗功率P E<10W ( Po>5W ) 3. 输入信号幅度VS=200~400mV (f=1kHz,RL=8Ω, Po>5W ) 4. 输入电阻Ri>10kΩ( f=1kHz ) 5. 频率响应BW=50Hz~10kHz ( R L=8Ω,Po>5W) 四、设计步骤 1.电路形式

电路特点分析: 较典型的OTL 电路,局部反馈稳定了工作点,总体串联电压负反馈控制了放大倍数并提高输入电阻和展宽频带,退耦滤波电容及校正电容是为防止寄生振荡而设。 功率放大器通常由功率输出级、推动级(中间放大级)和输入级三部分组成。 功率输出级由互补对称电路组成。推动级(中间放大级)一般都是共射极放大电路,具有一定的电压增益。输入级的目的是为了增大开环增益,以便引入深度负反馈,改进电路的各项指标。 2.设计计算: 设计计算工作由输出级开始,逐渐反推到推动级、输入级。 (1) 电源电压的确定 输出功率 W P 50> )(228588 .01 V V cc =??= (2) 输出级(功率级)的计算 W P P V Vcc V A RL V I M M C ce cc CM 12.0112 1 375.18/112/0======= 功率管需推动电流:mA I I CM M b 5.2750/375.1/3===β 耦合电容:uF R f C L L 200021 ) 5~3(6≈=π,现取2200uF/25V 稳定电阻R 12:过大则损失功率过大,过小温度稳定性不良,通常取0.5~1欧姆。

音频功率放大电路课程设计报告

, 课程设计 课程名称_模拟电子技术课程设计 题目名称音频功率放大电路 $ 学生学院 专业班级 学号 学生姓名__ 指导教师 : 2010 年 6 月 20 日

— 音频功率放大电路课程设计报告 一、设计题目 题目:音频功率放大电路 二、设计任务和要求 ` 1)设计任务 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。 2)设计要求 频带宽50H Z ~20kH Z ,输出波形基本不失真;电路输出功率大于8W; 输入灵敏度为100mV,输入阻抗不低于47KΩ。 三、原理电路设计 功率放大电路: % 功率放大电路通常作为多级放大电路的输出级。功率放大器的常见电路形式有OTL电路和OCL电路。在很多电子设备中,要求放大电路的输出级能够带动某种负载,例如驱动仪表,使指针偏转;驱动扬声器,使之发声;或驱动自动控制系统中的执行机构等。也就是把输入的模拟信号经被放大后,去推动一个实际的负载工作,所以要求放大电路有足够大的输出功率,这样的放大电路统称为功率放大电路。而音频功率放大器的作用就是给音响放大器的负载RL(扬声器)提供一定的输出功率。当负载一定时,希望输出的功率尽可能大,输出的信号的非线形失真尽可能地小,效率尽可能的高。随着半导体工艺,技术的不断发展,输出功率几十瓦以上的集成放大器已经得到了广泛的应用。功率VMOS管的出现,也给功率放大器的发展带来了新的生机。总之,功率放大器的主要任务是向负载提供较大的信号功率,故功率放大器应具有以下几个主要特点: 1. 输出功率要足够大 工作在大信号状态下,输出电压和输出电流都很大.要求在允许的失真条件下,

音频功率放大器的设计与实现

模拟电子电路实验课程设计 ——音频功率放大器的设计与实现 一、设计任务 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8 。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 二、设计要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出; (5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 根据以上设计要求编写设计报告,写出设计的全过程,附上有关资料和图纸。设计报告格式请参见附录一。 三、实验原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于

对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1.前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,采用低噪声场效应管组成放大器是合理的选择。如果采用集成运算放大器构成前置放大器,一定要选择低噪声、低漂移的集成运算放大器。对于前置放大器的另外一要求是要有足够宽的频带,以保证音频信号进行不失真的放大。 常用的前置放大器按结构划分有五种类型: (1)单管前置放大器 (2)双管阻容耦合前置放大器

相关文档
最新文档