2010 王中林 ZnO

2010 王中林 ZnO
2010 王中林 ZnO

Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array

Guang Zhu,?Rusen Yang,?Sihong Wang,and Zhong Lin Wang*

School of Materials Science and Engineering,Georgia Institute of Technology,Atlanta,Georgia 30332-0245

ABSTRACT We report here a simple and effective approach,named scalable sweeping-printing-method,for fabricating ?exible high-output nanogenerator (HONG)that can effectively harvesting mechanical energy for driving a small commercial electronic component.The technique consists of two main steps.In the ?rst step,the vertically aligned ZnO nanowires (NWs)are transferred to a receiving substrate to form horizontally aligned arrays.Then,parallel stripe type of electrodes are deposited to connect all of the NWs https://www.360docs.net/doc/3e14790768.html,ing a single layer of HONG structure,an open-circuit voltage of up to 2.03V and a peak output power density of ~11mW/cm 3have been achieved.The generated electric energy was effectively stored by utilizing capacitors,and it was successfully used to light up a commercial light-emitting diode (LED),which is a landmark progress toward building self-powered devices by harvesting energy from the environment.This research opens up the path for practical applications of nanowire-based piezoelectric nanogeneragtors for self-powered nanosystems.

KEYWORDS Nanogenerator,ZnO,nanowire,light-emitting diode,self-powering

E

nergy harvesting is critical to achieve independent and sustainable operations of nanodevices,aiming at building self-powered nanosystems.1-3Taking the

forms of irregular air ?ow/vibration,ultrasonic waves,body movement,and hydraulic pressure,mechanical energy is ubiquitously available in our living environment.It covers a wide range of magnitude and frequency from cell contrac-tion to ocean waves.The mechanical-electric energy conver-sion has been demonstrated using piezoelectric cantilever working at its resonating mode.4-7However,the applicabil-ity and adaptability of the traditional cantilever based energy harvester is greatly impeded by the large unit size,large triggering force and speci?c high resonance frequency.Recently,a series of rationally designed nanogenerators (NGs)with piezoelectric nanowires (NWs)have shown great potentialtoscavengetinyandirregularmechanicalenergy.8-15However,insuf?cient electric output hinders their practical applications.We report here a simple and effective ap-proach,named scalable sweeping-printing-method,for fab-ricating ?exible high-output nanogenerator (HONG).An open-circuit voltage of up to 2.03V and a peak output power density of ~11mW/cm 3have been achieved.The generated electric energy was effectively stored by utilizing capacitors,and it was successfully used to light up a commercial light-emitting diode (LED),which is a landmark progress toward building self-powered devices by harvesting energy from the environment.Furthermore,by optimizing the density of the NWs on the substrate and with the use of multilayer integra-tion,a peak output power density of ~0.44mW/cm 2and volume density of 1.1W/cm 3are predicted.

The mechanism of converting mechanical energy by a single ZnO NW that is laterally bonded to a substrate has been discussed in details in our previous report.13Owing to much smaller diameter of the NW compared to the substrate thickness,outward bending of the substrate induces a uniaxial tensile strain in the NW.Because of the piezoelectric property of the ZnO NW,the stress results in a piezoelectric ?eld along the length,which causes a transient charge ?ow in the external circuit.The Schottky contact at the bonded ends can regulate the charge ?ow.As a result,the bending and releasing of the single-wire-NG gives rise to an alternat-ing ?ow of the charges in the external circuit.In this work,the power output has been scaled up with the integration of hundreds of thousands of horizontally aligned NWs,which was made by a scalable sweeping-printing-method that is simple,cost-effective,and highly ef?cient.

The method consists of two main steps.In the ?rst step,the vertically aligned NWs are transferred to a receiving substrate to form horizontally aligned arrays.The major components of the transfer setup are two stages (Figure 1a).Stage 1has a ?at surface that faces downward and holds the vertically aligned NWs;stage 2has a curved surface and holds the receiving substrate.Polydimethylsiloxane (PDMS)?lm on the surface of stage 2is used as a cushion layer to support the receiving substrate and enhances the alignment of the transferred NWs.The radius of the curved surface of stage 2equals the length of the rod supporting the stage,which is free to move in circular motion (Supporting Infor-mation Figure S1).In the second step,electrodes are depos-ited to connect all of the NWs together.

Vertically aligned ZnO NWs on Si substrates were syn-thesized using physical vapor deposition method.16,17The dense and uniform NWs have the length of ~50μm,diameter of ~200nm,and growth direction along the c -axis

*To whom correspondence should be addressed.E-mail:zlwang@https://www.360docs.net/doc/3e14790768.html,.?

Authors with equal contribution Received for review:6/3/2010Published on Web:

07/21/2010

(Figure 1b,Supporting Information Figure S2).The same growth direction of NWs guarantees the alignment of the piezoelectric potentials in all of the NWs and a successful scaling up of the output,which will be elaborated later.A small piece of Si substrate with grown ZnO NWs was mounted onto stage 1(Figure 1a)and a piece of Kapton ?lm with the thickness of 125μm was attached to stage 2(Figure 1a).The distance between the receiving substrate and NWs was precisely controlled to form a loose contact between the two.The receiving substrate then counterclockwise swept across the vertical NWs arrays,which were detached from Si substrate and aligned on the receiving substrate along the direction of sweeping due to the applied shear force (Figure 1a).The as-transferred NWs are presented in Figure 2c with an estimated average density of 1.1×106cm -2.The length variation is probably due to the fact that not all of the NWs were broken off at the roots.

Next,the evenly spaced electrode pattern over the aligned NWs was ?rst de?ned using photolithography and then

followed by sputtering 300nm thick Au ?lm (Figure 1d).After lifting off the photoresist,600rows of stripe-shaped Au electrodes with 10μm spacing were fabricated on top of the horizontal NW arrays (Figure 1e).Au electrodes form Schottky contacts with the ZnO NWs,which are mandatory for a working NG.8,18Approximately 3.0×105NWs in an effective working area of 1cm 2,as pointed by an arrowhead in Figure 1d (inset),are in contact with electrodes at both ends.Finally,a PDMS packaging over the entire structure can further enhance mechanical robustness and protect the device from invasive chemicals.

The working principle of the HONG is illustrated by the schematic diagrams in Figure 2a,b.NWs connected in parallel collectively contribute to the current output;NWs in different rows connected in serial constructively improve the voltage output.The same growth direction of all NWs and the sweeping printing method ensure that the crystal-lographic orientations of the horizontal NWs are aligned along the sweeping direction.Consequently,the polarity of

FIGURE 1.Fabrication process and structure characterization of the HONG.(a)Experimental setup for transferring vertically grown ZnO NWs to a ?exible substrate to make horizontally aligned ZnO NW arrays with crystallographic alignment.(b)SEM image of as-grown vertically aligned ZnO NWs by physical vapor method on Si substrate.(c)SEM image of the as-transferred horizontal ZnO NWs on a ?exible substrate.(d)Process of fabricating Au electrodes on horizontal ZnO NW arrays,which includes photolithography,metallization,and lift-off.(e)SEM image of ZnO NW arrays bonded by Au electrodes.Inset:demonstration of an as-fabricated HONG.The arrowhead indicates the effective working area of the

HONG.

the induced piezopotential is also aligned,leading to a macroscopic potential contributed constructively by all of the NWs (Figure 2b).

To investigate the performance of the HONG,a linear motor was used to periodically deform the HONG in a cyclic stretching-releasing agitation (0.33Hz).The open-circuit voltage (V oc )and the short-circuit current (I sc )were measured with caution to rule out possible artifacts.19At a strain of 0.1%and strain rate of 5%s -1,peak voltage and current reached up to 2.03V and 107nA,respectively.Assuming that all of the integrated NWs actively contribute to the output,the current generated by a single NW is averaged to be ~200pA;and the voltage from each row is ~3.3mV in average.Considering the size of the working area of the nanogenerator (1cm 2)(Figure 1e,inset),a peak output power density of ~0.22μW/cm 2has been achieved,which is over 20-fold increase compared to our latest report based on a more complex design.14For nanowires with the diameter of ~200nm,the power volume density is ~11mW/cm 3,which is 12-22times of that from PZT based cantilever energy harvester.6,7The durability test and further characterization were performed,which prove the stability and robustness of the HONGs (Supporting Information Figure S3).Voltage linear superposition test veri?ed the proposed working principle of the HONGs (Supporting In-formation Figure S4).

Further scaling up the power output is expected to be technically feasible.If NWs can be uniformly and densely packed as a monolayer over the entire working area,and all can actively contribute to the output,the maximum power area density is expected to reach ~22μW/cm 2.The power volume density is anticipated to be improved up to ~1.1W/cm 3.With 20layers of such NW arrays stacked together,the power area density would be boosted up to ~0.44mW/cm 2.

The performance of the HONG is affected by strain and strain rate.For a given strain rate (5%s -1),an increase in strain leads to a larger output (Figure 3a,b).Likewise,at a constant strain (0.1%),the output is proportional to the strain rate (Figure 3c,d).Beyond a certain strain and strain rate,saturation of the magnitude occurs,probably due to the converse piezoelectric effect,which is the strain created by the piezopotential and it is opposite to the externally induced strain.It is noticed that 0.1%strain is suf?cient to induce effective output,which is much smaller than the 6%fracture strain of the ZnO NW predicted theoretically.20

Storing the generated energy and driving functional devices are extremely important steps toward practical applications of the nanogenerator.In this work,they were accomplished by using a charging-discharging circuit with two consecutive steps (Figure 4).The circuit function is determined by the status of a switch (Figure 4a inset).The

FIGURE 2.Working principle and output measurement of the HONG.(a)Schematic diagram of HONG’s structure without mechanical deformation,in which gold is used to form Schottky contacts with the ZnO NW arrays.(b)Demonstration of the output scaling-up when mechanical deformation is induced,where the “(”signs indicate the polarity of the local piezoelectric potential created in the NWs.(c)Open circuit voltage measurement of the HONG.(d)Short circuit current measurement of the HONG.The measurement is performed at a strain of 0.1%and strain rate of 5%s -1with the deformation frequency of 0.33Hz.The insets are the enlarged view of the boxed area for one cycle of

deformation.

switch is at position A for energy storage achieved by charging capacitors.Upon charging completion,the switch is switched to position B for energy releasing to power a functional device,such as a light emitting diode.

It is the key for a successful and effect energy storage to take full advantage of the alternating output.As a result,an integrated full wave rectifying bridge (Transys Electronics Limited,DI 102)was connected between a HONG and

FIGURE 3.Performance characterization of the HONG with increasing strain and strain rate.(a)Open circuit voltage measurement of the HONG with increasing strain at a given strain rate of 5%s -1.(b)Short circuit current measurement of the HONG with increasing strain at a given strain rate of 5%s -1.(c)Open circuit voltage measurement of the HONG with increasing strain rate at a constant strain of 0.1%.(d)Short circuit current measurement of the HONG with increasing strain rate at a constant strain of 0.1%.For all measurements,the mechanical deformation frequency is ?xed at 0.33Hz.

FIGURE 4.Application of the electric energy generated by the HONG to drive a commercial light emitting diode.(a)The electric output measured after a full wave rectifying bridge.Signals of negative signs are reversed,as pointed by the arrowhead.Inset:Schematic of the charging-discharging circuit for storing and releasing the energy generated by the HONG,respectively.(b)Image of a commercial LED,which is incorporated into the circuit.(c)Image of the LED in dim background before it was lit up.(d)Image of the LED in dim background at the moment when it was lit up by the energy generated from the

HONG.

capacitors(Vishay Sprague,Type430P,2μF(10%).The output of the HONG measured after the bridge exhibits only positive signals(Figure4a).Full wave recti?cation achieved by the bridge ensures energy storage at an enhanced ef-?ciency,although the recti?ed signal(as pointed by an arrowhead in Figure4a)has appreciably reduced magnitude due to the reverse current leakage of the diodes in the bridge; this reducing effect is rather notable at small output current. To facilitate the charging process,the output frequency of the HONG was tuned up to3Hz by reducing the periodicity of the mechanical deformation.Ten capacitors were con-nected in parallel such that they were simultaneously charged, and the voltage across a single capacitor?nally reached0.37 V.

Upon?nishing charging,the capacitors were recon?gured from parallel connection to series connection,leading to a total voltage source of3.7V.The stored electricity was used to drive a commercial red LED(Figure4b,Avago Technolo-gies US Inc.,HLMP-1700),which has an emission spectrum centered at635nm.The turn-on voltage and forward-biased resistance are1.7V and450?,respectively.The discharg-ing process was triggered,leading to a maximum discharg-ing current of4.5mA and the LED was lit up.The emitted light lasted0.1-0.2s and was clearly captured in dim background(Figure4c,d,video in Supporting Information). During the whole charging-discharging process,no other power sources were involved.The entire circuit is essentially a complete self-powered system,which consists of three components:an energy harvester(the HONG),storage units (capacitors),and a functional device(the LED).

An effective energy generation ef?ciency is de?ned as the ratio between the energy stored by the capacitors and the strain energy input to all of the active NWs,and it takes into account the performance of the electronic components in the circuit.The total electrical energy stored by the capacitor can be calculated as W stored)CU2n/2)1.37μJ,where C is the capacitance of a single capacitor,U is voltage across the capacitor,and n is the number of capacitors.Since the dominant strain in the ZnO NWs is tensile strain,with shear strain safely neglected,the total strain energy can be esti-mated as W strain)πD2L0Eε2ftn0/8)30μJ,where D is the diameter of the NW(200nm),L0is its original length(10μm),which is?xed by the electrode spacing,E is the Young’s modulus(30GPa),εis the strain of NWs(0.1%),f is the frequency of deformation(3Hz),t is the total charging time (7200s),and n0is the number of integrated NWs (300000).13Therefore,the effective energy generation ef-?ciency is estimated to be~4.6%.This value is naturally lower than the energy conversion ef?ciency of a single nano/ microwire(~7%),which is de?ned as the ratio between the generated electric energy(W generated)∫VI d t,where V is the voltage,and I is the current)and the mechanical input strain energy.13This is mainly attributed to the energy dissipation on rectifying bridge and capacitors,as elaborated in the Supporting Information.

In summary,we have successfully fabricated high-output ?exible nanogenerators using a sweeping-printing method. We managed to transfer vertically grown ZnO NWs to a ?exible substrate and achieved horizontally aligned NW arrays that have crystallographic alignment,based on which an innovatively designed HONG was fabricated.The electri-cal output of the HONG reached a peak voltage of2.03V and current of107nA with a peak power density of~11 mW/cm3,which is12-22times of that from PZT-based cantilever energy harvester.An effective energy generation ef?ciency of4.6%was demonstrated.The electric energy generated by the HONG was effectively stored by capacitors and used to light up a commercial LED.Furthermore,by optimizing the density of the NWs on the substrate and with the use of multilayer integration,a peak output power density of~0.44mW/cm2and volume density of1.1W/c m3 are redicted.This is a key step that is likely to bring nanogenerator based self-powering technology into people’s daily life with potential applications in mobile electronics, health monitoring,environmental inspection,cargo shipping tracking system,infrastructure monitoring,and even de-fense technology.

Acknowledgment.Research supported by NSF(DMS 0706436,CMMI0403671,ENG/CMMI112024),DARPA (Army/AMCOM/REDSTONE AR),BES DOE(DE-FG02-07ER46394),and DARPA/ARO W911NF-08-1-0249.The authors thank Cheng Li and Benjamin Hansen for their help on thin?lm deposition and electric circuit design,respectively. Supporting Information Available.Experimental setup, additional?gures,and video.This material is available free of charge via the Internet at https://www.360docs.net/doc/3e14790768.html,. REFERENCES AND NOTES

(1)Wang,Z.

L.Sci.Am.2007,298,82–87.

(2)Tian,B.Z.;et al.Nature2007,449,885–890.

(3)Pan,C.F.;et al.Adv.Mater.2008,20,1644–1648.

(4)Hausler,E.;et al.Ferroelectronics1984,60,277–282.

(5)Platt,S.R.;et al.IEEE-ASME T.Mech.2005,10,455–461.

(6)Round,S.;Wright,P.K.;Rabaey,https://www.360docs.net/doc/3e14790768.html,mun.2003,26,

1131–1144.

(7)Shen,D.N.;et al.Sens.Actuators,A2009,154,103–108.

(8)Wang,Z.L.;Song,J.H.Science2006,312,242–246.

(9)Wang,X.D.;Song,J.H.;Liu,J.;Wang,Z.L.Science2007,316,

102–105.

(10)Chang,C.;Tran,V.H.;Wang,J.;Fuh,Y.;Lin,L.Nano Lett.2010,

10,726–731.

(11)Qin,Y.;Wang,X.D.;Wang,Z.L.Nature2008,451,809–813.

(12)Qi,Y;et al.Nano Lett.2010,10,524–528.

(13)Yang,R.;Qin,Y.;Dai,L.;Wang,Z.L.Nat.Nanotechnol.2009,4,

34–39.

(14)Xu,S.;Qin,Y.;Xu,C.;Wei,Y.G.;Yang,R.;Wang,Z.L.Nat.

Nanotechnol.2010,5,367–273.

(15)Choi,D.;et al.Adv.Mater.2010,22,2187–2192.

(16)Pan,Z.W.;Dai,Z.R.;Wang,Z.L.Science2001,291,1947–1949.

(17)Kuo,T.;et al.Chem.Mater.2007,19,5143–5147.

(18)Polyakov,A.Y.;et al.Appl.Phys.Lett.2003,83,1575–1577.

(19)Yang,R.;Qin,Y.;Li,C.;Dai,L.;Wang,Z.L.Appl.Phys.Lett.2009,

94,No.022905.

(20)Agrawal,R.;Peng,B.;Espinosa,H.D.Nano Lett.2009,9,4177–

4183.

透明陶瓷 论文

透明陶瓷的制备与用途 摘要 一般陶瓷是不透明的,但是光学陶瓷像玻璃一样透明,故称透明陶瓷。目前制备透明陶瓷的方法主要有:透明32O Al 陶瓷制备;无水乙醇注浆成型制备YAG 透明陶瓷;32O Y 透明陶瓷等。主要的制备过程与传统陶瓷基本一致,大体上也要经过原料选择,成型,干燥,烧成等步奏。 透明陶瓷的透光性好,机械强度和硬度都很高,能耐受很高的温度,即使在一千度的高温下也不会软化、变形、析晶。电绝缘性能、化学稳定性都很高。决定了它的用途将比传统陶瓷更广泛,更先进。目前主要用于生产工业生产和军事上用于防止强光损伤眼睛的护目镜;透光的灯罩;红外测试仪的外壳;ALON 还可以用于防弹材料,超市条码扫描器窗口等方面;我国研制的激光透明陶瓷也广泛用于军事中。未来透明陶瓷必将在日用生活中发挥更广泛的作用。 关键词 透明陶瓷;烧结;制备;用途;未来 引言 一般陶瓷是不透明的,但是光学陶瓷像玻璃一样透明,故称透明陶瓷。一般陶瓷不透明的原因是其内部存在有杂质和气孔,前者能吸收光,后者令光产生散射,所以就不透明了。因此如果选用高纯原料,并通过工艺手段排除气孔就可能获得透明陶瓷。早期就是采用这样的办法得到透明的氧化铝陶瓷,后来陆续研究出如烧结白刚玉、氧化镁、氧化铍、氧化钇、氧化钇-二氧化锆等多种氧化物系列透明陶瓷。近期又研制出非氧化物透明陶瓷,如砷化镓、硫化锌、硒化锌、氟化镁、氟化钙等。它对原料以及制造工艺的要求相当严格,例如,原料必须要有很高的纯度和粒度。因此透明陶瓷的价格很昂贵,是现代陶瓷中的高级制品。 正文 1 几种先进的透明陶瓷的制备方法

透明32O Al 陶瓷制备的研究进展 1.1.1 放电等离子烧结(SPS ) 透明氧化铝陶瓷的SPS 烧结近几年也得到研究和探索。Dibyendu 】【1以平均粒径为100 nm 的高纯Al2O3为原料,在不使用任何添加剂的情况下采用SPS 烧结,工艺条件为压力275 MPa ,最高烧结温度1150℃,制备了平均晶粒尺寸为0. 3 μm ,硬度达到23 GPa 的透明氧化铝陶瓷。 Jiang 等】【2采用高纯纳米32O Al 粉( > 99. 995%) , wt% MgO( 以3)NO (Mg 形式加入) 作为烧结助剂,SPS 烧结工艺为真空条件下90 MPa 压力,在3min 内温度从室温升至600 ℃,然后快速升温至1300 ~ 1700℃,保温3 ~ 5 min 。结果表明,1300 ℃ × 5 min 条件SPS 烧结的试样达到完全致密化,晶粒尺寸仅为0.5 ~ 1μm ,在中红外区透光率可达85%,而经1700 ℃ × 3 min 条件下SPS 烧结试样,晶粒尺寸迅速增大至5μm 左右。Michael 等】【3同样采用SPS 烧结制备了透明氧化铝陶瓷,并研究SPS 过程中添加剂种类及含量对32O Al 透光性的影响。研究发现使用Mg 、Y 、La 三元复合添加剂,总质量为450 ppm 时,32O Al 陶瓷的直线透光率能达到57%。 1.1.2 微波快速烧结 微波烧结是利用材料在微波电磁场中的介电损耗使陶瓷及其复合材料整体加热至烧结温度而实现致密化的快速烧结技术。微波烧结速度快、时间短,从而避免了烧结过程中陶瓷晶粒的异常长大,最终可获得高强度和高致密度的透明陶瓷。Cheng 等】【4研究发现微波烧结氧化铝在加入百分比为0.05% 氧化镁烧结助剂的条件下烧结45 min 就可以得到密度为 3. 97 /cm3,平均粒径为40 μm 透明性能优异的氧化铝陶瓷。但是,微波烧结有其本身的问题,如控温准确度,温度场均匀性等,这往往会产生氧化铝晶体晶粒尺寸的差别非常大,从而影响材料质量的稳定性。 无水乙醇注浆成型制备YAG 透明陶瓷 实验所用原料为纯度%的国产微米32O Y 粉和亚微米32O AL 粉.实验流程如图1 所示, 精确称量(精确到32O Y (33.8715g)和32O AL (25.4903g)粉体, 把称量的粉体放入干净的装有Al2O3 磨球(球料比2:1)的32O AL 球磨罐中. 把%的正硅酸乙酯(TEOS, 分子式i S (52H OC )4)滴入28mL 无水乙醇中, 然后倒入球磨罐中, 封紧后以120r/min 的速度球磨12h. 球磨结束后打开球磨罐滴入一定量的氨水, 调节pH 值至9(32O Y 和32O AL 的等电点), 然后继续球磨10min 以混合均匀. 把球磨后的浆料倒入石膏模具中在低温下干燥48h, 随后在空气气氛下于600℃煅烧 2h, 除去残留的TEOS. 把得到的素坯置于真空炉中进行烧结,

2010.氧化钇透明陶瓷的研究进展_靳玲玲

沈宗洋等: (Na, K)NbO3基无铅压电陶瓷的研究进展· 521 · 第38卷第3期 氧化钇透明陶瓷的研究进展 靳玲玲1,蒋志君2,章健1,王士维1 (1. 中国科学院上海硅酸盐研究所,上海 200050;2. 科技部高技术研究发展中心,北京 100044) 摘要:Y2O3为立方结构,熔点高,化学和光化学稳定性好,光学透明性范围较宽,声子能量低,易实现稀土离子的掺杂。Y2O3透明陶瓷在高温窗口,红外头罩,发光介质(闪烁、激光和上转换发光)及半导体行业具有潜在应用价值,有些已获得实际应用。结合研究结果,本文重点介绍Y2O3透明陶瓷制备工艺的研究进展,综合评述Y2O3透明陶瓷在高压气体放电灯灯管、窗口材料、闪烁陶瓷、激光陶瓷、上转换发光等应用领域方面的研究,并对国内Y2O3透明陶瓷的研发提出看法。 关键词:氧化钇;透明陶瓷;制备工艺;稀土掺杂;综合评述 中图分类号:O61 文献标志码:A 文章编号:0454–5648(2010)03–0521–06 RESEARCH PROGRESS OF YTTRIA TRANSPARENT CERAMICS JIN Lingling1,JIANG Zhijun2,ZHANG Jian1,WANG Shiwei1 (1. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050; 2.The High Technology Research and Development Center, The Ministry of Science and Technology, Beijing 100044, China) Abstract: Because of the high melting point, chemical stability, high transmittance from ultraviolet rays to middle infra-red, and low phonon energy, yttria is a promising material for high temperature windows, infrared domes, optical matrix for scintillation, laser output and upconversion, and components of semiconductor devices. In this paper, the preparation process of yttria transparent ce-ramics and luminescence of the yttria transparent ceramics doped with rare earth elements are discussed in detail. And the applications in high-pressure gas discharge lamp, windows, scintillation ceramics, laser ceramics, upconversion luminescence, and so on are re-viewed. Finally, the views on the research of yttria transparent ceramics are put forward. Key words: yttria; transparent ceramics; preparation technology; rare-earth element doping; review 室温下,Y2O3为稳定的c型立方结构, 晶格常数为1.060nm, 空间群为T h7。每个单胞中包含32个Y3+和48个O2–。Y离子格位存在两种不同的晶格环境,有8个高对称性的S6(即C3i)格位和24个低对称性的C2格位。两种不同Y格位的配位数均为6。 Y2O3的物理化学性质的主要特点是: 1) 熔点高,化学和光化学稳定性好,光学透明性范围较宽(0.23~8.0μm); 2) 在1050nm处,其折射率高达1.89,使其具有80%以上的理论透过率; 3) Y2O3具有足以容纳大多数三价稀土离子发射能级的、较大的导带到价带的带隙,可以通过稀土离子的掺杂,实现发光性能的有效裁剪,从而实现其应用的多功能化; 4) 声子能量低,其最大声子截止频率大约为550cm–1,低的声子能量可以抑制无辐射跃迁的几率,提高辐射跃迁的几率,从而提高发光量子效率;[1] 5) 热导率高,约为13.6W/(m·K),高的热导率对其作为固体激光介质材料极为重要。[2] 上述特性使Y2O3透明陶瓷在高温窗口、红外探测、发光介质、半导体行业具有潜在应用价值。本 收稿日期:2009–06–16。修改稿收到日期:2009–08–08。基金项目:国家“863”计划(2006AA03Z535)资助项目。 第一作者:靳玲玲(1983—),女,博士研究生。 通信作者:王士维(1964—),男,博士,教授。Received date:2009–06–16. Approved date: 2009–08–08. First author: JIN Lingling (1983–), female, postgraduate student for doctor degree. E-mail: lljin@https://www.360docs.net/doc/3e14790768.html, Correspondent author: WANG Shiwei (1964–), male, Doctor, professor. E-mail: swwang51@https://www.360docs.net/doc/3e14790768.html, 第38卷第3期2010年3月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 38,No. 3 March,2010 DOI:10.14062/j.issn.0454-5648.2010.03.010

陶瓷材料科学论文

学号: 1004230213 专业素质教育 2012 ~ 2013 学年秋季学期 学院:材料学院 专业班级:无机10—02班 姓名:宋海彬 透明陶瓷的研究现状与发展展望 摘要:陶瓷具有广大的发展前景,透明陶瓷以其优异的综合性能已成为一种新型的、备受瞩目的功能材料。综述了透明陶瓷的分类,探讨了透明陶瓷的制备工艺,并展望了透明陶的应用前景。 关键词:性能透明材料前景组成陶瓷透光性制备工艺应用 前言:1962年RLC首次报导成功地制备了透明氧化铝陶瓷材料以来,为陶瓷材料开辟了新的应用领域。这种材料不仅具有较好的透明性,且耐腐蚀,能在高温高压下工作,还有许多其他材料无可比拟的性质,如强度高、介电性能优良、低电导率、高热导性等,所以逐渐在照明技术、光学、特种仪器制造、无线电子技术及高温技术等领域获得日益广泛的应用。 透明陶瓷的分类 透明陶瓷材料主要分为氧化物透明陶瓷和非氧化物透明陶瓷两类。 1氧化物透明陶瓷

对氧化物透明陶瓷的研究早于对非氧化物透明陶瓷的究,其制备工艺也相对成熟。到目前为止,已经先后研发出了多种材料:Be()、ScZ()3、Ti认、ZK):、Ca(〕、Th(矢、A12()3仁5·6〕、Mg()、AI()NL,」、YZ03[8·”〕、稀土元素氧化物、忆铝石榴石(3Y203·SA12()。)仁’0,”】、铝镁尖晶石(Mg()·A一2()。)〔’2,’3]和透明铁电陶瓷pLZ子川等。其中AiZ姚、M四、YZ姚以及忆铝石榴石以其自身优异的综合性能,现已经得到广泛的应用。2非氧化物透明陶瓷 对非氧化物透明陶瓷的研究是从20世纪80年代开始的。非氧化物透明陶瓷的制备比氧化物透明陶瓷的制备要困难得多,这是由于非氧化物透明陶瓷具有较低的烧结活性、自身含有过多的杂质元素(如氧等),这些都成为制约非氧化物透明陶瓷实现成功烧结并得到广泛应用的主要因素。但经过各国研究人员的共同努力和深人研究,现已经成功地制备出了多种透明度很高的非氧化物透明陶瓷,其中最典型的是AIN、GaAS、MgFZ、ZnS、CaFZ等透明陶瓷。 与氧化物透明陶瓷相比,大多数的非氧化物透明陶瓷不仅室温强度高,而且高温力学性能好,此外,还具有优良的抗急冷急热冲击性能。这些都使得对非氧化物透明陶瓷的研究势在必行。 透明陶瓷的制备工艺 透明陶瓷的制备过程包括制粉、成型、烧结及机械加工的过程。为了达到陶瓷的透光性,必须具备以下条件〔4〕:(1)致密度高;(2)晶界没有杂质及玻璃相,或晶界的光学性质与微晶体之间差别很小;(3)晶粒较小而且均匀,其中没有空隙;(4)晶体对入射光的选择吸收很小; (5)无光学各向异性,晶体的结构最好是立方晶系;(6)表面光洁度高。因此,对制备过程中的每一步,都必须精确调控,以制备出良好的透明陶瓷材料。

新型透明陶瓷材料研发成功填补我国空白

一种“晶莹剔透、性能优异”的新型透明陶瓷材料生产的产品上月底在河南洛阳研制成功。新型透明陶瓷材料的研制和成功应用,使我国在透明陶瓷材料领域大大缩短了与国外先进水平的差距,填补了我国特种材料领域的空 新型透明陶瓷材料研发成功填补我国空白 11月14日,由联合国开发计划署、联合国工业发展组织等国际组织与中国国际跨国公司研究会联合主办的中外跨国公司CEO圆桌会议在北京召开,来自山东淄博的统一防静电陶瓷在大会展出,这一曾经为神舟七号发射成功做出重要贡献的高新科技陶瓷一经亮相,立即在北京媒体界引发轰动效应,受到各大报社新闻记者关注。防静电陶瓷技术缔造者袁国梁先生一入场即被众多媒体记者“团团包围”,袁国梁先生在会展上向国内外专家、媒体记者、参会观众展示并详细讲解了这一高新科技防静电瓷砖,在采访中,袁国梁先生表示防静电瓷砖有望在未来几年内进入普通家庭,为百姓造福。 防静电陶瓷是一种高新科技陶瓷,具有永久、稳定的防静电性能,耐磨,耐腐蚀,耐高温达1200摄氏度导电性不变、防渗透。多年来,防静电陶瓷一直是欧美发达国家科学家的研究重点。经过山东淄博统一陶瓷集团两年多的潜心研究,2007年,这一世界性技术难题在我国取得突破性进展。经过我国自主研发成功的防静电瓷砖一经问世,就以其高标准的综合性功能引发陶瓷科技界的轰动,并迅速取代了传统PVC等其他材料防静电地板,进入神舟七号载人航天飞船控制装配中心,为我国航天航空事业做出了重要贡献,防静电陶瓷因此被誉为“太空”陶瓷。目前,该陶瓷广泛应用于高精尖技术研发场所,并逐渐由航天航空、国防军事等行业向高新电子行业、医疗医药行业、石油化工行业以及普通的科技办公大楼和高端写字楼扩散,应用范围不断扩大,引起了国内外一些高端地产企业和高新科技企业家们的关注。 不久前,中国电子仪器行业协会防静电装备分会的孙延林秘书长曾撰文指出,随着工业发展和人们生活的不断提高,静电对人们的不良影响和危害日益显著。静电在工业方面,尤其是计算机、通信、集成电路等高精尖技术行 神七防静电陶瓷亮相北京 业,经常引发种种生产事故,在美国机场电路大规模发展的初期,每年因静电造成电子工业直接经济损失达一百多亿美元,在人们日常生活中,静电也会产生诸多不良影响甚至危害,比如,医院重症监护室和安装心电起搏器的病人必须要注意到防静电,国外曾经发生过多起因静电放电引发心电起搏器误动作使心脏病人丧生的实例;在医院、医药生产车间、家居环境产生静电时,会大量吸附空气尘埃,使医院,家居环境的墙壁、办公用具很快变脏,环境空气质量变坏,洁净度降低,在医药生产车间洁净度降低的时,药品合格率就会大幅降低;据统计,家用微电子产品和高端精密家电使用中出现故障总数的65%以上是静电放电和静电感应引起的。 当代全球经济化的高科技活动和商务活动以及家庭活动时时刻刻体现在现代通讯、微电子技术、信息技术,使电磁波充斥了地球空间,人造化学品(绝缘材料)遍布我们的衣食住行,这种环境使人体与大地逐渐隔离,使现代都市人非常容易产生和积累过多的静电,破坏了人体的电能平衡和生理平衡,对健康造成了危害。静电在家居环境、家用电器方面产生的问题以及对人体的危害和影响在西方很早就受到注意,西方国家也纷纷开发出种种防静电产品,在我国,由于种种客观因素制约,只有高新科研场所采取了严密的防静电措施,防静电类产品并未真正走入寻常百姓的家庭之中。 受邀参加中外跨国公司CEO圆桌会议并作主题演讲的统一陶瓷董事长袁国梁先生在采访中告诉记者,目前这一新兴陶瓷产品还主要应用在高新科研场所、电讯大楼以及其他一些对防静电要求较高的场所和高档住宅区,但随着“绿色、健康、环保”观念的一步步深入,我国地产界也在提倡“生态家居”、“绿色家居”,无毒无污染的绿色健康住房和家居健康越来越成为购房者和媒体界关注的焦点问题,人们对静电放电对家居环境和人体产生的危害认识的不断加深,防静电陶瓷也在逐渐走向大众,不久的将来,防静电地板瓷砖这一高新科技产品将会走入寻常百姓 家庭,为广大百姓服务。 87 信息集锦

透明陶瓷材料

透明陶瓷材料 在我们《材料学导论》课上,何老师介绍了一种材料叫做无色透明陶瓷,这个让我惊奇,因为在我的潜意识里,我一直觉得陶瓷是白色的,又或者是镶嵌一些其他的色彩,比如我们日常生活里见到的碗、盘子、花瓶、酒盅之类的,都不是无色的,因此透明陶瓷引起了我的兴趣。 一般陶瓷是不透明的,但是光学陶瓷像玻璃一样透明,故称透明陶瓷。一般陶瓷不透明的,原因是其内部存在有杂质和气孔,前者能吸收光,后者令光产生散射,所以就不透明了。因此如果选用高纯原料,并通过工艺手段排除气孔就可能获得透明陶瓷。早期就是采用这样的办法得到透明的氧化铝陶瓷,后来陆续研究出如烧结白刚玉(Al2O3)、氧化镁{MgO)、氧化铍(BeO)、氧化钇(Y2O3)、氧化钇-二氧化锆(Y2O3-ZrO2)等多种氧化物系列透明陶瓷。近期又研制出非氧化物透明陶瓷,如砷化镓(GaAs)、硫化锌(ZnS)、硒化锌(ZnSe)、氟化镁(MgF2)、氟化钙(CaF2)等。 这些透明陶瓷不仅有优异的光学性能,而且耐高温,一般它们的熔点都在2000℃以上。如氧化钍-氧化钇透明陶瓷的熔点高达3100℃,比普通硼酸盐玻璃高1500℃。透明陶瓷的重要用途是制造高压钠灯,它的发光效率比高压汞灯提高一倍,使用寿命达2万小时,是使用寿命最长的高效电光源。高压钠灯的工作稳定高达1200℃,压力大、腐蚀性强,选用氧化铝透明陶瓷为材料成功地制造出高压钠灯。透明陶瓷的透明度、强度、硬度都高于普通玻璃,它们耐磨损、耐划伤,用透明陶瓷可以制造防弹汽车的窗、坦克的观察窗、轰炸机的轰炸瞄准器和高级防护眼镜等。透明陶瓷的制造是有意识地在玻璃原料中加入一些微量的金属或者化合物(如金、银、铜、铂、二氧化钛等)作为结晶的核心,在玻璃熔炼、成型之后,再用短波射线(如紫外线、X射线等)进行照射,或者进行热处理,使玻璃中的结晶核心活跃起来,彼此聚结在一起,发育成长,形成许多微小的结晶,这样,就制造出了玻璃陶瓷。用短波射线照射产生结晶的玻璃陶瓷,称为光敏型玻璃陶瓷,用热处理办法产生结晶的玻璃陶瓷,称为热敏型玻璃陶瓷。 透明陶瓷的机械强度和硬度都很高,能耐受很高的温度,即使在一千度的高温下也不会软化、变形、析晶。电绝缘性能、化学稳定性都很高。光敏型玻璃陶瓷还有一个很有趣的性能,就是它能象照相底片一样感光,由于这种透明陶瓷有这样的感光性能,故又称它为感光玻璃。并且它的抗化学腐蚀的性能也很好,可经受放射性物质的强烈辐射。它不但可以象玻璃那样透过光线,而且还可以透过波长10微米以上的红外线,因此,可用来制造立体工业电视的观察镜,防核爆炸闪光危害的眼镜,新型光源高压钠灯的放电管。 透明陶瓷的用途十分广泛,在机械工业上可以用来制造车床上的高速切削刀,汽轮机叶片,水泵,喷气发动机的零件等,在化学工业上可以用作高温耐腐蚀材料以代替不锈钢等,在国防军事上,透明陶瓷又是一种很好的透明防弹材料,还可以做成导弹等飞行器头部的雷达天线罩和红外线整流罩等;在仪表工业上可用作高硬度材料以代替宝石,在电子工业上可以用来制造印刷线路的基板和镂板,在日用生活中可以用来制作各种器皿,瓶罐,餐具等等。 透明陶瓷最早是使用在灯具上。高压钠灯是一种发光效率很高的电光源,但在钠蒸气放电时产生1000℃以上的高温,具有很强的腐蚀性,玻璃灯管根本没法耐受,所以高压钠灯一直没能问世,直到有了透明陶瓷,高庄钠灯才得到实际应用,除高压钠灯外,透明陶瓷还使用于其它新型灯具,如艳灯、铷灯、钾灯等。响尾蛇导弹头部的红外探测器,外面有一个整流罩,它不仅要有足够的强度,还要能透过红外线,以确保导弹能跟踪敌机辐射的红外线。担当此任的材料只有透红外陶瓷,响尾蛇导弹的整流罩就是用透红外陶瓷做的。电焊工人操作时,要不断地把面罩举起拿下,十分不方便。有一种锆钛酸铅镧透明铁电陶瓷,能透光,耐高温,用它造成具有夹层的护目镜,能根据光线的亮暗自动进行调节,有了这种护目镜,电焊工人工作起来就十分方便。这种护目镜,正在核试验工作人员和飞行员中得到广泛的作用。新型材料进入市场的商标为ALON,

透明陶瓷材料制备要点

透明陶瓷材料制备要点 1.透光应分成两种:直线透光和漫射(积分)透光,后者是用总透射光来决定的,这是光线通过透明的空心圆桶又从积分球表面反射回来而得。 2.陶瓷透光在很大程度上取决于其组成相的折射率之差,差值越大和陶瓷中二次相数量越多,则其透光率越低。 3.结晶的多相性,结构特性,晶体的相互排列,晶体尺寸,玻璃相和气孔的存在是严重影响陶瓷透明度的主要因素。 4.入射光波长相当于晶体大小的情况下。发生最大的散射,既陶瓷材料必须避免尺寸为 0.4-0.8的晶体存在。 5.氧化铝的折射率1.76,玻璃相折射率,空气折射率1.0 6.气孔体积占3%时,透光率1%,0.3时,透光率10%。 7.400瓦钠灯管有最广泛的应用,其发光效率117Im/W,工作6000小时后光通量下降不超过7%,总透光率90-92%。 8.烧结纯氧化物粉末时,如果不添加改性剂,甚至在接近于熔点温度下也不能获得高于97-98%理论密度的材料,因为在烧结最后阶段,晶体开始极快的生长而只留下封闭气孔之故。由于剧烈的再结晶,晶体捕获了大量的微小气泡,它们很快进入晶体内部而从晶界处消失。 9.添加剂由于生成固溶体而使晶格疏松或导致在晶格中生成空位,强化了烧结。 10.添加0.1%MgO的刚玉陶瓷是由正六方晶体组成,没有气孔和夹杂物。清晰的细晶粒主要以120度夹角相交,其理论密度3.98。 11.在空气中或惰性气体中烧结不能获得无气孔材料,因为惰性气体残留在气孔中并阻碍其生长。在真空或氢气中烧结氧化物时,伴随产生一些还原过程,即增加了材料的缺陷并从而增加了烧结的速度和完全程度。 12.氧化铝的烧成应放在能使阴离子空位浓度提高的氢界质中进行。 13.先在1270-1870K氧化气氛下烧结,然后在1870-2220K真空或氢气下烧结。14.多相透光陶瓷的要求是 (1)单相并具有理论密度 (2)立方晶格及尽可能大的晶体尺寸 (3)表面应经过精细的研磨和抛光 15.γ-Al2O3转变成α-Al2O3伴随体积缩小14.3%,若在氧化铝料中含有γ-Al2O3会导致烧成后制品的气孔率增高和收缩增大。 16.原始组分配合料的研磨是重要的工序,可用各种球磨机进行研磨,对研磨的总要求是保证材料的原始纯度和获得一定的分散度。 17.生产透明陶瓷材料时大部分采用振动研磨机 18.湿法研磨氧化铝到高度分散时,由于氧化铝的水化作用使其反应能力剧烈增大,当加热到620K时,氢氧化铝分解。 19.在等静压法压制瓷件情况下,湿法研磨是极有前途的,可用喷雾干燥来获得压制粉粒。有机粘接剂可引入该浆料中一起喷雾干燥 20.酸性泥浆具有较好的铸造性能,可行的PH值范围 Al2O3 2-4.5和12-14 ZrO2 1.2-2.5和7.5-9 21.一种不需要弹性模的等静压机已问世,它是在用任何方法获得的坯体上浸渍或喷涂

陶瓷材料论文

透明陶瓷的研究现状与发展展望 摘要:透明陶瓷以其优异的综合性能已成为一种新型的、备受瞩目的功能材料。 综述了透明陶瓷的分类,探讨了透明陶瓷的制备工艺,并展望了透明陶的应用前景。 关键词:透明陶瓷透光性制备工艺应用 前言:自1962年R.L.Coble首次报导成功地制备了透明氧化铝陶瓷材料以来, 为陶瓷材料开辟了新的应用领域。这种材料不仅具有较好的透明性,且耐腐蚀,能在高温高压下工作,还有许多其他材料无可比拟的性质,如强度高、介电性能优良、低电导率、高热导性等,所以逐渐在照明技术、光学、特种仪器制造、无线电子技术及高温技术等领域获得日益广泛的应用〔1〕。近38年来,世界上许多国家,尤其是美国、日本、英国、俄罗斯、法国等对透明陶瓷材料作了大量的研究工作,先后开发出了Al2O3、Y2O3、MgO、CaO、TiO2、ThO2、ZrO2等氧化物透明陶瓷以及AlN、ZnS、ZnSe、MgF2、CaF2等非氧化物透明陶瓷. 透明陶瓷的分类 透明陶瓷材料主要分为氧化物透明陶瓷和非氧化物透明陶瓷两类。 1氧化物透明陶瓷 对氧化物透明陶瓷的研究早于对非氧化物透明陶瓷的究,其制备工艺也相对成熟。到目前为止,已经先后研发出了多种材料:Be()、ScZ()3、Ti认、ZK):、Ca(〕、Th(矢、A12()3仁5·6〕、Mg()、AI()NL,」、YZ03[8·”〕、稀土元素氧化物、忆铝石榴石(3Y203·SA12()。)仁’0,”】、铝镁尖晶石(Mg()·A一2()。)〔’2,’3]和透明铁电陶瓷pLZ子川等。其中AiZ姚、M四、YZ姚以及忆铝石榴石以其自身优异的综合性能,现已经得到广泛的应用。 2非氧化物透明陶瓷 对非氧化物透明陶瓷的研究是从20世纪80年代开始的。非氧化物透明陶瓷的制备比氧化物透明陶瓷的制备要困难得多,这是由于非氧化物透明陶瓷具有较低的烧结活性、自身含有过多的杂质元素(如氧等),这些都成为制约非氧化物透明陶瓷实现成功烧结并得到广泛应用的主要因素。但经过各国研究人员的共同努力和深人研究,现已经成功地制备出了多种透明度很高的非氧化物透明陶瓷,其中最典型的是AIN、GaAS、MgFZ、ZnS、CaFZ等透明陶瓷。 与氧化物透明陶瓷相比,大多数的非氧化物透明陶瓷不仅室温强度高,而且高温力学性能好,此外,还具有优良的抗急冷急热冲击性能。这些都使得对非氧

透明陶瓷应用

透明陶瓷制备方法 一般陶瓷是不透明的,但是光学陶瓷像玻璃一样透明,故称透明陶瓷。一般陶瓷不透明的原因是其内部存在有杂质和气孔,前者能吸收光,后者令光产生散射,所以就不透明了。因此如果选用高纯原料,并通过工艺手段排除气孔就可能获得透明陶瓷。 应用 最早是使用在灯具上。高压钠灯是一种发光效率很高的电光源,但在钠蒸气放电时产生1000℃以上的高温,具有很强的腐蚀性,玻璃灯管根本没法耐受,所以高压钠灯一直没能问世,直到有了透明陶瓷,高庄钠灯才得到实际应用,除高压钠灯外,透明陶瓷还使用于其它新型灯具,如艳灯、铷灯、钾灯等。向尾蛇导弹头部的红外探测器,外面有一个整流罩,它不仅要有足够的强度,还要能透过红外线,以确保导弹能跟踪敌机辐射的红外线。担当此任的材料只有透红外陶瓷,响尾蛇导弹的整流罩就是用透红外陶瓷做的。电焊工人操作时,要不断地把面罩举起拿下,十分不方便。有一种锆钛酸铅镧透明铁电陶瓷,能透光,耐高温,用它造成具有夹层的护目镜,能根据光线的亮暗自动进行调节,有了这种护目镜,电焊工人工作起来就十分方便。这种护目镜,正在核试验工作人员和飞行员中得到广泛的作用。美国空军研究实验室与美国Surmet公司一起对以特殊透明陶瓷为基础的新型防弹护板进行了试验,最近几年Surmet公司一直坚持研究这种透明陶瓷。新型材料进入市场的商标为ALON,它是“氮氧化铝”的缩写,ALON是一种多晶体,并且完全是透明的,其晶粒大小为80~250微米。从外表看ALON板就像蓝宝石,ALON的化学公式为Al(64+x)/3O32-xNx,式中的X可以从2到5。在最近的试验中由几层ALON、玻璃和聚合物组成的双层中空玻璃出色地经受了从7.62毫米口径手枪连续射出的穿甲弹,同时双层中空玻璃的重量比普通防弹玻璃轻一半。ALON可以在各个领域找到广泛应用,例如利用它可以制成特别耐磨损的超市条码扫描器窗口。但是要大量推扩应用ALON的障碍是其价格比传统防弹玻璃贵3~5倍,此外还需要对建造新型炉子进行大量投资,以便能制取在工业规模中应用的大量材料。但是ALON的低重量与高强度比产品的价格更为重要,它已经显示出其不可替代的优点。

透明陶瓷

透明陶瓷 鲁成强 (山东轻工业学院) 摘要:简要地介绍了透明陶瓷的研究现状,同时探讨了透明陶瓷透光的原理以及影响透明性能的主要因素,叙述了透明陶瓷的制备方法,并展望了透明陶瓷研究发展趋势。 关键字:透明陶瓷现状原理制备发展趋势 1透明陶瓷的现状 透明陶瓷是二十世纪50年代末发展起来的。经过几十年的发展,已制备了一系列的透明陶瓷。如氧化铝透明陶瓷、氧化钇透明陶瓷、氮化铝透明陶瓷以及电光透明陶瓷和激光透明陶瓷等。 所谓透明陶瓷就是能透过光线的陶瓷。通常陶瓷是不透明的,其原因是陶瓷材料内部含有的微气孔等缺陷对光线产生折射和散射作用,使得光线几乎无法透过陶瓷体。1959年通用电气公司首次提出了一些陶瓷具有可透光性,随后美国陶瓷学家R.L.Coble制备得到透明氧化铝陶瓷证实了这一点。 这种材料不仅具有较好的透明性,且耐腐蚀,能在高温高压下工作,还有许多其他材料无可比拟的性质,如强度高、介电性能优良、低电导率、高热导性等,所以逐渐在照明技术、光学、特种仪器制造、无线电子技术及高温技术等领域获得日益广泛的应用[1]。 2影响透明陶瓷性能的主要因素 2.1气孔率 对透明陶瓷透光性能影响最大的因素是气孔率。普通陶瓷即使具有很高的致密度,往往也不是透明的,这是因为其中有很多封闭的气孔。文献指出,总气孔率超过1%的氧化物陶瓷基本是不透明的,因为气孔的折射率非常低(约为1.0),这些气孔在光线传播的过程中会使光线发生多次反射,从而大大降低材料的透明度。 陶瓷内部的气孔可存在于晶体之间和晶体内部。晶体之间的气孔处于晶界上容易排除,而晶体内部的气孔即使是小于微米级的也很难排除。 因此晶体内部气孔对于获得透明陶瓷是最危险的。因此要从每一个工艺阶段:原料粉体的制备、预烧、烧成。来防止气孔的产生。 2.2晶界结构 首先,晶界是破坏陶瓷体光学均匀性、从而引起光的散射、致使材料的透光

无机光学透明材料 透明陶瓷

无机光学透明材料——透明陶瓷 一、基本概念 透明陶瓷(Transparent ceramics)是指采用陶瓷工艺制备的具有一定透光性的多晶材料,又称光学材料。一般多晶陶瓷的不透明性是由于非等轴晶系的多晶晶粒在排列取向上的随机性,导致晶粒间折射系数不连续,以及晶界效应,气孔等引起的散射等原因所致。在制备透明陶瓷时,通过采用高纯超细原料,掺入尽可能少的添加剂和工艺上的严格控制,浆砌块石和杂质充分排出并适当控制晶粒尺寸,试制品接近于理理论密度,从而制备出透明陶瓷[1]。制备透明陶瓷的首要条件是组成陶瓷的单晶体本身是透明的,同时具有高的对称性,一般为立方晶系。某些非立方晶系的陶瓷材料如六方相的氧化铝,一定条件下可以制的半透明(translucent)陶瓷。 透明陶瓷通常采用压力烧结【包括热压,等离子体压力烧结(SPS),热等静压(HIP)等】和气氛烧结(包括氢气烧结,氧气烧结和真空烧结等)等方法制备而成。 二、透明陶瓷的种类 透明陶瓷的种类按材料体系分为氧化物、氟化物、氮化物、氧氮化物、氧硫化物、硫化物、硒化物等透明陶瓷,随着技术的发展很可能出现更多种类的透明陶瓷的材料体系[2]。按性能分类,可分为透明结构陶瓷、透明功能陶瓷(包括透明激光陶瓷、透明闪烁陶瓷、透明铁电陶瓷、红外透明陶瓷等)。

(一)按组划分 (1)氧化物透明陶瓷 氧化物透明陶瓷一般在可见光和近红外波段透明。这类透明陶瓷已经报道的有等材料,其中以透明到的研究最为成熟。可用于制作高压钠灯的灯管、微波集成电路用基片、轴承材料以及红外光学元件。透明氧化铝陶瓷1961年由美国首先研制成功,制作工艺是采用纯度为99.99%、平均尺寸为0.3微米的氧化铝细粉作原料,加入质量分数为0.3%的MgO添加剂,在H2保护的高温电炉中烧成[3-5]。高压钠灯用透明氧化铝陶瓷在高温下与钠蒸汽不发生作用,却能把90%以上的可见光透出来。 (2)氟化物透明陶瓷 主要是CaF和MgF2透明陶瓷,20世纪60年代开始,CaF透明陶瓷主要作为一种激光材料使用。 (3)氮化物透明陶瓷、氧化物透明陶瓷、硫化物透明陶瓷氮化物陶瓷主要是AlN,氧氮化物透明陶瓷主要是AlON和SiAlON,氧化硫透明陶瓷目前研究的主要是Gd2OS,是一种性能优异的闪烁材料。 (4)硫化物透明陶瓷、硒化物透明陶瓷和碲化物透明陶瓷这类材料主要的数量不多,比如ZnS,ZnSe,CdTe等。这几种材料作为激光材料目前已经得到了激光输出,同时它们还是很好的透红外陶瓷材料。 (二)按功能划分

透明陶瓷

透明陶瓷的研究现状与发展展望 前言 透明陶瓷以其优异的综合性能已成为一种新型的、备受瞩目的功能材料。 一般陶瓷是不透明的,但是光学陶瓷像玻璃一样透明,故称透明陶瓷。一般陶瓷透明的原因是其内部存在有杂质和气孔,前者能吸收光,后者令光产生散射,所以就不透明了。因此如果选用高纯原料,并通过工艺手段排除气孔就可能获得透明陶瓷。早期就是采用这样的办法得到透明的氧化铝陶瓷,后来陆续研究出如烧结白刚玉、氧化镁、氧化铍、氧化钇、氧化钇-二氧化锆等多种氧化物系列透明陶瓷。近期又研制出非氧化物透明陶瓷,如砷化镓、硫化锌、硒化锌、氟化镁、氟化钙等。 1.透明陶瓷材料分类 透明陶瓷材料主要分为氧化物透明陶瓷和非氧化物透明陶瓷两类。 1.1氧化物透明陶瓷 氧化物透明陶瓷是研究得最早的一类透明陶瓷也是研究较多的一类。因为非氧化物透明陶瓷的制备比氧化物透明陶瓷的制备要困难一些,这是由于非氧化物具有比较低的烧结活性以及非氧化物中杂质

含量高,尤其是氧含量高。 1.1.1氧化铝透明陶瓷 氧化铝透明陶瓷是最早投入生产的透明陶瓷材料。这种透明陶瓷不仅能有效透过可见光和红外线,而且具有较高的热导率、较大的高温强度、良好的热稳定性和耐腐蚀性。主要应用于高压钠灯灯管、高温红外探测窗、高频绝缘材料及集成电路基片材料等。 1.1.2氧化钇透明陶瓷 由于氧化钇是立方晶系晶体,具有光学各向同性的性质,使得其具有优越的透光性能。氧化钇透明陶瓷在宽广的频率范围内,特别是在红外区中,具有很高的透光率。由于高的耐火度,可用作高温炉的观察窗以及作高温条件应用的透镜。此外,氧化钇透明陶瓷还可用于微波基板、红外发生器管、天线罩等。 1.1.3透明铁电陶瓷 PLZT电光陶瓷是一种典型的透明铁电陶瓷,是掺镧的锆钛酸铅。这种材料具有较高的光透过率和电光效应,人工极化后还具有压电、光学双折射等特性。主要用于制作光调制器、光衰减器、光隔离器、光开关等光电器件,也可制成PLZT薄膜,在电光和光学方面具有较多的应用。 1.2非氧化物透明陶瓷 1.2.1氮化铝陶瓷透明陶瓷 氮化铝陶瓷具有高热导率、高电绝缘性、高硬度、低热膨胀系数、优良的光学性能和声波传播性能、优良的耐金属侵蚀性能,良好的耐

镁铝尖晶石透明陶瓷的制备与性能研究全解

摘要 摘要 本文主要综述了镁铝尖晶石透明陶瓷制备的研究进展;分别介绍了镁铝尖晶石透明陶瓷的抗钢包渣侵蚀性能研究和透光性能研究,同时介绍了不同的镁铝尖晶石的制备,还有镁铝尖晶石在各领域的应用,并对其发展前景做了展望。 关键词:镁铝尖晶石;透明陶瓷;镁铝尖晶石性能;镁铝尖晶石制备 MgAl2O4 transparent ceramic preparation and Properties Research Abstract This paper reviewed the research progress in MgAl2O4transparent ceramic preparation; then introduces the research study and transmittance properties of ladle slag resistance of mg Al spinel transparent ceramics erosion, also introduces the different preparation of magnesia alumina spinel, spinel and application in various fields, and has made the forecast to its development prospects. Keywords: Magnesia alumina spinel; Transparent ceramics; Magnesia alumina spinel properties; Preparation of magnesia alumina spinel

透明陶瓷材料(透明氧化铝)

一、透明陶瓷材料 透明陶瓷具有优良的热及机械性能,同时保持着良好的透光性,在激光、闪烁体、透明装甲、照明灯管等方面有着广泛的应用。开展了(半)透明氧化铝陶瓷、透明氧化钇、透明氧氮化铝及高折射率透明陶瓷材料的研究,取得了一定的成果。 各种透明陶瓷材料 高强度气体放电灯用(半)透明氧化铝陶瓷灯管 (半)透明氧化铝陶瓷对可见光和红外光具有良好的透过性,同时也具有高温强度大、耐热性好、耐腐蚀性强及电阻率大等特点,可应用于高压钠灯、金属卤化物灯等高强度气体放电灯的放电管以及透红外窗口材料。 各种规格(半)透明氧化铝陶瓷灯管

?透明氧化钇(Y2O3)陶瓷 透明氧化钇(Y2O3)陶瓷在可见光至中红外(0.2~8μm)波段具有很高的透过率,具有熔点高、化学和光化学稳定性好的优点,能应用在红外发生器管等方面,同时可以作为高温炉的观测窗以及高温条件应用的透镜。 透明氧化钇陶瓷(φ60×1mm)及可见和红外波段透过率曲线 ?透明氧氮化铝(AlON)陶瓷 透明氧氮化铝(AlON)陶瓷在可见光至中红外波段具有高的透过性能,同时兼有优异的物理、机械及化学性能。 透明AlON陶瓷(φ50×1mm)及中红外的透过率曲线 ?高折射率铪酸钇(Y2Hf2O7)透明陶瓷 Y2Hf2O7透明陶瓷具有高的密度,高有效原子序数,高射线吸收能力和高的折射率,是较为理想的稀土掺杂基体材料,在光学摄影领域有潜在的应用前景。

铪酸钇(Y2Hf2O7)透明陶瓷及不同波长下的折射率曲线 二、高热导氮化铝(AlN)陶瓷材料 在陶瓷材料中,AlN具有异常高的导热性(比Al2O3高3~10倍,与BeO接近)、低的电导率、介电常数及介电损耗。另外,AlN的热膨胀系数远比BeO与Al2O3的低,与硅的热膨胀系数相近,及其电性能优良、机械性能好且无毒性等特性,被认为是最理想的基片材料,成为高密度、大功率和高速集成电路基板的封装的理想材料,在通讯、微电子等领域内应用前景十分广阔。 各种规格氮化铝基片 三、上转换发光材料 透明陶瓷的上转换发光 透明陶瓷的上转换发光在诸如短波长全固化紧凑型上转换激光器、三维立体显示、生物分子荧光标记、光纤放大器、共聚焦显微镜双光子成像、防伪等领域具有潜在的应用前景。

透明陶瓷论文.docx

透明陶瓷的制备与用途 摘要 一般陶瓷是不透明的,但是光学陶瓷像玻璃一样透明,故称透明陶瓷。目前制备透明陶瓷的方法主要有:透明Al 2O 3陶瓷制备;无水乙醇注浆成型制备YAG 透明陶瓷; Y2 O 3透明陶瓷等。主要的制备过程与传统陶瓷基本一致,大体上 也要经过原料选择,成型,干燥,烧成等步奏。 透明陶瓷的透光性好,机械强度和硬度都很高,能耐受很高的温度,即使在 一千度的高温下也不会软化、变形、析晶。电绝缘性能、化学稳定性都很高。决定 了它的用途将比传统陶瓷更广泛,更先进。目前主要用于生产工业生产和军事 上用于防止强光损伤眼睛的护目镜;透光的灯罩;红外测试仪的外壳;ALON还 可以用于防弹材料,超市条码扫描器窗口等方面;我国研制的激光透明陶瓷也广 泛用于军事中。未来透明陶瓷必将在日用生活中发挥更广泛的作用。 关键词 透明陶瓷;烧结;制备;用途;未来 引言 一般陶瓷是不透明的,但是光学陶瓷像玻璃一样透明,故称透明陶瓷。一般 陶瓷不透明的原因是其内部存在有杂质和气孔,前者能吸收光,后者令光产生散射,所以就不透明了。因此如果选用高纯原料,并通过工艺手段排除气孔就可能获得透明陶瓷。早期就是采用这样的办法得到透明的氧化铝陶瓷,后来陆续研究出如烧结白刚玉、氧化镁、氧化铍、氧化钇、氧化钇 - 二氧化锆等多种氧化物系列透明陶瓷。近期又研制出非氧化物透明陶瓷,如砷化镓、硫化锌、硒化锌、氟 化镁、氟化钙等。它对原料以及制造工艺的要求相当严格,例如,原料必须要有很 高的纯度和粒度。因此透明陶瓷的价格很昂贵,是现代陶瓷中的高级制品。 正文 1几种先进的透明陶瓷的制备方法

透明 Al 2O 3 陶瓷制备的研究进展 1.1.1 放电等离子烧结( SPS ) 透明氧化铝陶瓷的 SPS 烧结近几年也得到研究和探索。 Dibyendu 【1】 以平均粒 径为 100 nm 的高纯 Al2O3 为原料,在不使用任何添加剂的情况下采用 SPS 烧结,工艺条件为压力 275 MPa ,最高烧结温度 1150℃,制备了平均晶粒尺寸为 0.3 μ m ,硬度达到 23 GPa 的透明氧化铝陶瓷。 Jiang 等【2】 采用高纯纳 米 Al 2O 3 粉 ( > 99 . 995%) , wt% MgO( 以 Mg ( NO )3 形式加入 ) 作为烧结助剂, SPS 烧结工艺为真空条件下 90 MPa 压力,在 3min 内温度从室温升至 600 ℃,然后快速升温至 1300 ~ 1700 ℃,保温 3 ~ 5 min 。结果表明, 1300 ℃ × 5 min 条件 SPS 烧结的试样达到完全致密化,晶粒 尺寸仅为 0.5 ~ 1 μm ,在中红外区透光率可达 85%,而经 1700 ℃ × 3 min 条件下 SPS 烧结试样,晶粒尺寸迅速增大至 5μm 左右。 Michael 【3】 等 同样采 用 SPS 烧结制备了透明氧化铝陶瓷,并研究 SPS 过程中添加剂种类及含量对 Al 2O 3 透光性的影响。研究发现使用 Mg 、Y 、 La 三元复合添加剂,总质量为 450 ppm 时, Al 2 O 3 陶瓷的直线透光率能达到。 57% 1.1.2 微波快速烧结 微波烧结是利用材料在微波电磁场中的介电损耗使陶瓷及其复合材料整体加热至烧结 温度而实现致密化的快速烧结技术。 微波烧结速度快、 时间短, 从而避免了烧结过程中陶瓷 晶粒的异常长大,最终可获得高强度和高致密度的透明陶瓷。 【4】 Cheng 等 研究发现微波烧 结氧化铝在加入百分比为 0.05% 氧化镁烧结助剂的条件下烧结 45 min 就可以得到密度为 3. 97 /cm3,平均粒径为 40 μ m 透明性能优异的氧化铝陶瓷。但是,微波烧结有其本身 的问题,如控温准确度, 温度场均匀性等, 这往往会产生氧化铝晶体晶粒尺寸的差别非常大, 从而影响材料质量的稳定性。 无水乙醇注浆成型制备 YAG 透明陶瓷 实验所用原料为纯度 %的国产微米 Y 2 O 3 粉和亚微米 AL 2O 3 粉. 实验流程如图 1 所示 , 精确称量 ( 精确到 Y 2 O 3 (33.8715g) 和 AL 2O 3 (25.4903g) 粉体 , 把称量的粉体放入干净的装有 Al2O3 磨球 ( 球料比 2:1) 的 AL 2O 3 球磨罐中 . 把%的正硅酸乙酯 (TEOS, 分子式 S i ( OC 2H 5 ) 4 ) 滴入 28mL 无水乙醇中 , 然后倒入球磨罐中 , 封紧后以 120r/min 的速度球磨 12h. 球磨结束后打开球磨罐滴入一定量 的氨水 , 调节 pH 值至 9( Y 2 O 3 和 AL 2 O 3 的等电点 ), 然后继续球磨 10min 以混 合均匀 . 把球磨后的浆料倒入石膏模具中在低温下干燥 48h, 随后在空气气氛 下于 600℃煅烧 2h, 除去残留的 TEOS. 把得到的素坯置于真空炉中进行烧结 ,

相关主题
相关文档
最新文档