逆变电路作业参考答案

逆变电路作业参考答案
逆变电路作业参考答案

逆变电路电路作业参考答案

填空题

1、逆变电路,有源逆变,无源逆变

2、自然换流,电网换流,负载换流,器件换流,强迫换流

3、器件换流,直接耦合式强迫换流

4、电压源型逆变电路,电流源型逆变电路

5、1/2,全部

6、1800,1200,三

7、全控,器件换流,半控型器件,负载换流,强迫换流

8、负载,并联谐振,他励方式,自励方式

9、1200,600,强迫环流方式

简单题

12、

答:两种电路的不同主要是:

有源逆变电路的交流侧接电网,即交流侧接有电源。而无源逆变电路的交流侧直接和负载联接。

13、

答:换流方式有4种:

器件换流:利用全控器件的自关断能力进行换流。全控型器件采用此换流方式。电网换流:由电网提供换流电压,只要把负的电网电压加在欲换流的器件上即可。负载换流:由负载提供换流电压,当负载为电容性负载即负载电流超前于负载电压时,可实现负载换流。

强迫换流:设置附加换流电路,给欲关断的晶闸管强追施加反向电压换流称为强迫换流。通常是利用附加电容上的能量实现,也称电容换流。

晶闸管电路不能采用器件换流,根据电路形式的不同采用电网换流、负载换流和强迫换流3种方式。

14、

答:按照逆变电路直流测电源性质分类,直流侧是电压源的称为逆变电路称为电

压型逆变电路,直流侧是电流源的逆变电路称为电流型逆变电路,电压型逆变电路的主要特点是:

①直流侧为电压源,或并联有大电容,相当于电压源。直流侧电压基本无脉动,直流回路呈现低阻抗。

②由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。而交流侧输出电流波形和相位因负载阻抗情况的不同而不同。

③当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。

电流型逆变电路的主要特点是:

①直流侧串联有大电感,相当于电流源。直流侧电流基本无脉动,直流回路呈现高阻抗。

②电路中开关器件的作用仅是改变直流电流的流通路径,因此交流侧输出电流为矩形波,并且与负载阻抗角无关。而交流侧输出电压波形和相位则因负载阻抗情况的不同而不同。

③当交流侧为阻感负载时需要提供无功功率,直流测电惑起缓冲无功能量的作用。因为反馈无功能量时直流电流并不反向,因此不必像电压型逆变电路那样要给开关器件反并联二极管。

15、

答:在电压型逆变电路中,当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。当输出交流电压和电流的极性相同时,电流经电路中的可控开关器件流通,而当输出电压电流极性相反时,由反馈二极管提供电流通道。

在电流型逆变电路中,直流电流极性是一定的,无功能量由直流侧电感来缓冲。当需要从交流侧向直流侧反馈无功能量时,电流并不反向,依然经电路中的可控开关器件流通,因此不需要并联反馈二极管。

16、

答;假设在t时刻触发VT2、VT3使其导通,负载电压u。就通过VT2、VT3施加在VTl、VT4上,使其承受反向电压关断,电流从VTl、VT4向VT2、VT3转移触发VT2、VT3时刻/必须在u。过零前并留有足够的裕量,才能使换流顺利完成。

电力电子技术期末考试试题及答案(史上最全)

电力电子技术试题 第1章电力电子器件 1.电力电子器件一般工作在__开关__状态。 2.在通常情况下,电力电子器件功率损耗主要为__通态损耗__,而当器件开关频率较高 时,功率损耗主要为__开关损耗__。 3.电力电子器件组成的系统,一般由__控制电路__、_驱动电路_、 _主电路_三部分组成, 由于电路中存在电压和电流的过冲,往往需添加_保护电路__。 4.按内部电子和空穴两种载流子参与导电的情况,电力电子器件可分为_单极型器件_ 、 _ 双极型器件_ 、_复合型器件_三类。 5.电力二极管的工作特性可概括为_承受正向电压导通,承受反相电压截止_。 6.电力二极管的主要类型有_普通二极管_、_快恢复二极管_、 _肖特基二极管_。 7.肖特基 二极管的开关损耗_小于_快恢复二极管的开关损耗。 8.晶闸管的基本工作特性可概括为 __正向电压门极有触发则导通、反向电压则截止__ 。 | 9.对同一晶闸管,维持电流IH与擎住电流IL在数值大小上有IL__大于__IH 。 10.晶闸管断态不重复电压UDSM与转折电压Ubo数值大小上应为,UDSM_大于__Ubo。 11.逆导晶闸管是将_二极管_与晶闸管_反并联_(如何连接)在同一管芯上的功率集成器件。 的__多元集成__结构是为了便于实现门极控制关断而设计的。 的漏极伏安特性中的三个区域与GTR共发射极接法时的输出特性中的三个区域有对应关系, 其中前者的截止区对应后者的_截止区_、前者的饱和区对应后者的__放大区__、前者的非饱和区对应后者的_饱和区__。 14.电力MOSFET的通态电阻具有__正__温度系数。 的开启电压UGE(th)随温度升高而_略有下降__,开关速度__小于__电力MOSFET 。 16.按照驱动电路加在电力电子器件控制端和公共端之间的性质,可将电力电子器件分为_电压驱动型_和_电流驱动型_两类。 的通态压降在1/2或1/3额定电流以下区段具有__负___温度系数,在1/2或1/3额定电流以 上区段具有__正___温度系数。 18.在如下器件:电力二极管(Power Diode)、晶闸管(SCR)、门极可关断晶闸管(GTO)、电力晶体管(GTR)、电力场效应管(电力MOSFET)、绝缘栅双极型晶体管(IGBT)中,属 于不可控器件的是_电力二极管__,属于半控型器件的是__晶闸管_,属于全控型器件的是_ GTO 、GTR 、电力MOSFET 、IGBT _;属于单极型电力电子器件的有_电力MOSFET _,属于双 极型器件的有_电力二极管、晶闸管、GTO 、GTR _,属于复合型电力电子器件得有 __ IGBT _;在可控的器件中,容量最大的是_晶闸管_,工作频率最高的是_电力MOSFET,属于电压驱动 的是电力MOSFET 、IGBT _,属于电流驱动的是_晶闸管、GTO 、GTR _。 . 第2章整流电路 1.电阻负载的特点是_电压和电流成正比且波形相同_,在单相半波可控整流电阻性负载电路中,晶闸管控制角α的最大移相范围是_0-180O_。 2.阻感负载的特点是_流过电感的电流不能突变,在单相半波可控整流带阻感负载并联续 流二极管的电路中,晶闸管控制角α的最大移相范围是__0-180O _ ,其承受的最大正反向电压均为___,续流二极管承受的最大反向电压为___(设U2为相电压有效值)。 3.单相桥式全控整流电路中,带纯电阻负载时,α角移相范围为__0-180O _,单个晶闸管 所承受的最大正向电压和反向电压分别为__ 和_;带阻感负载时,α角移相范围为_0-90O _, 单个晶闸管所承受的最大正向电压和反向电压分别为___和___;带反电动势负载时,欲使电阻上的电流不出现断续现象,可在主电路中直流输出侧串联一个_平波电抗器_。 4.单相全控桥反电动势负载电路中,当控制角α大于不导电角时,晶闸管的导通角=_π-α-_; 当控制角小于不导电角时,晶闸管的导通角=_π-2_。

三相PWM逆变器的设计_毕业设计

湖南文理学院 课程设计报告 三相PWM逆变器的设计 课程名称:专业综合课程设计 专业班级:自动化10102班

摘要 本次课程设计题目要求为三相PWM逆变器的设计。设计过程从原理分析、元器件的选取,到方案的确定以及Matlab仿真等,巩固了理论知识,基本达到设计要求。 本文将按照设计思路对过程进行剖析,并进行相应的原理讲解,包括逆变电路的理论基础以及Matlab仿真软件的简介、运用等,此外,还会清晰的介绍各个环节的设计,比如触发电路、控制电路、主电路等,其中部分电路的绘制采用Proteus软件,最后结合Matlab Simulink仿真,建立了三相全控桥式电压源型逆变电路的仿真模型,进而通过软件得到较为理想的实验结果。 关键词:三相PWM 逆变电路Matlab 仿真

Abstract The curriculum design subject requirements for the design of the three-phase PWM inverter. Design process from the principle of analysis, selection of components, to scheme and the Mat-lab simulation, etc., to consolidate the theoretical knowledge, basic meet the design requirements. This article will be carried out in accordance with the design of process analysis, and the corresponding principles, including the theoretical foundation of the inverter circuit and introduction, using Matlab simulation software, etc., in addition, will also clearly introduces the design of every link, such as trigger circuit, control circuit, main circuit, etc., some of the drawing of the circuit using Proteus software, finally combined with Matlab Simulink, established a three-phase fully-controlled bridge voltage source type inverter circuit simulation model, and then through the software to get the ideal results. Keywords: Matlab simulation, three-phase ,PWM, inverter circuit

单相全桥逆变电路原理

单相全桥逆变电路原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

单相全桥型逆变电路原理 电压型全桥逆变电路可看成由两个半桥电路组合而成,共4个桥臂,桥臂1和4为一对,桥臂2和3为另一对,成对桥臂同时导通,两对交替各导通180° 电压型全桥逆变电路输出电压uo 的波形和半桥 电路的波形uo 形状相同,也是矩型波,但幅值 高出一倍,Um=Ud 输出电流io 波形和半桥电路的io 形状相同,幅值增加一倍 VD1 、V1、VD2、V2相继导通的区间,分别对应VD1和VD4、V1和V4、VD2和VD3、V2和V3相继导通的区间 + - VD 3 VD 4

单相半桥电压型逆变电路工作波形 全桥逆变电路是单相逆变电路中应用最多的, 对电压波形进行定量分析将幅值为Uo 的矩形波 uo 展开成傅里叶级数,得 其中基波幅值Uo1m 和基波有效值Uo1分别为 上述公式对半桥逆变电路也适用,将式中的ud 换成Ud /2 uo 为正负电压各为180°的脉冲时,要改变输出电压有效值只能通过改变输出直流电压Ud 来实现 O ON u o U - U m i o VD 1 VD 2 VD 1 VD 2 采用移相方式调节逆变电路的输出电压

t 1时刻前V 1和V 4导通,输出电压u o 为u d t 1时刻V 3和V 4栅极信号反向,V 4截止,因i o 不能突变,V 3不能立即导通,VD 3导通续流,因V 1和VD 3同时导通,所以输出电压为零 各IGBT 栅极信号uG1~uG4及输出电压uo 、输出电流io 的波形 u u u u u i o o 实际就是调节输出电压脉冲的宽度 ? 各IGBT 栅极信号为180°正偏, 180°反偏,且V 1和V 2栅极信号互补,V 3和V 4栅极信号互补 ? V 3的基极信号不是比V 1落后 180°,而是只落后 ( 0< <180°) ? V 3、V 4的栅极信号分别比V 2、V 1 的前移180°- ? VD 3 VD 4

逆变电路课程设计

本科电力电子技术课程设计说明书 题目:基于SG3524芯片的逆变电源设计 与MATLAB仿真 (控制电路) 学院:机电工程学院 专业:农业电气化与自动化 姓名:王德昭 学号:1 指导教师:洪宝棣 职称:副教授

设计完成日期:二Ο一五年一月 电力电子简介 (4) 课设的目的 (4) 课程设计要求 (4) 课程设计的主要内容与技术参数 (5) 二、单相电压型逆变电路 (7) 全桥逆变电路 (7) 三、器件的选择 (8) 内部结构图 SG3524引脚功能 SG3524引脚图 四、控制电路 (10) 五、心得体会 10

一、前言 电力电子简介 电力电子技术又称为功率电子技术,他是用于电能变换和功率恐控制的电子技术。电力电子技术示弱电控制强电的方法和手段,是当代高兴技术发展的重要内容,也是支持电力系统技术革命和技术革命的发展的重要基础,并节能降耗、增产节约提高生产效能的重要技术手段。微电子技术、计算机技术以及大功率电力电子技术的快速发展,极大地推动了电工技术、电气工程和电力系统的技术发展和进步。电力电子器件是电力电子技术发展的基础。正是大功率晶闸管的发明,使得半导体变流技术从电子学中分离出来,发展成为电力电子技术这一专门的学科。而二十时间九十年代各种全控型大功率半导体器件的发明,进一步拓展了电力电子技术应用和覆盖的领域和范围。电力电子技术的应用领域已经深入到国民经济的各个部门,包括钢铁、冶金、化工、电力、石油、汽车、运输以及人们的日常生活。功率范围大到几千兆瓦的高压直流输电,小到一瓦的手机充电器,电力电子技术随处可见。电力电子技术在电力系统中的应用中也有了长足的发展,电力电子装置与传统的机械式开关操作设备相比有动态响应快,控制方便,灵活的特点,能够显著地改善电力系统的特性,在提高系统稳定、降低运行风险、节约运行成本方面有很大潜力。 课设的目的 1)通过对单相桥式PWM逆变电路的设计,掌握单相桥式PWM逆变电路的工作原理,综合运用所学知识,进行单项桥式全控整流电路和系统设计的能力。 2)了解与熟悉单相桥式PWM逆变电路的控制方法。 3)理解和掌握单相桥式PWM逆变电路及系统的主电路、控制电路、保护电路的设计方法,掌握元器件的选择计算方法。 课程设计要求 1、输入直流电源:24V±10%; 2、输出交流电压:220V±10%; 3、控制电路芯片为SG3524;

单相全桥逆变电路原理

单相全桥型逆变电路原理 电压型全桥逆变电路可瞧成由两个半桥电路组合而成,共4个桥臂,桥臂1与4为一对,桥臂2与3为另一对,成对桥臂同时导通,两对交替各导通180° 电压型全桥逆变电路输出电压uo 的波形与半桥 电路的波形uo 形状相同,也就是矩型波,但幅值 高出一倍,Um=Ud 输出电流io 波形与半桥电路的io 形状相同,幅值增加一倍 VD1 、V1、VD2、V2相继导通的区间,分别对应VD1与VD4、V1与V4、VD2与VD3、V2与V3相继导通的区间 + - VD 3 VD 4

单相半桥电压型逆变电路工作波形 全桥逆变电路就是单相逆变电路中应用最多的, 对电压波形进行定量分析将幅值为Uo 的矩形波 uo 展开成傅里叶级数,得 其中基波幅值Uo1m 与基波有效值Uo1分别为 上述公式对半桥逆变电路也适用,将式中的ud 换成Ud /2 uo 为正负电压各为180°的脉冲时,要改变输出电压有效值只能通过改变输出直流电压Ud 来实现 d d o1m 27.14U U U == π d d 1o 9.022U U U == π O ON u o U - U m i o VD 1 VD 2 VD 1 VD 2 ?? ? ??+++= t t t U u ωωωπ5sin 513sin 31sin 4d o

t 1时刻前V 1与V 4导通,输出电压u o 为u d t 1时刻V 3与V 4栅极信号反向,V 4截止,因i o 不能突变,V 3不能立即导通,VD 3导通续流,因V 1与VD 3同时导通,所以输出电压为零 各 IGBT 栅极信号uG1~uG4及输出电压uo 、输出电流io 的波形 u u u u u i o o ? 各IGBT 栅极信号为180°正 偏,180°反偏,且V 1与V 2栅极信号互补,V 3与V 4栅极信号互补 ? V 3的基极信号不就是比V 1落后 180°,而就是只落后θ ( 0< θ <180°) ? V 3、V 4的栅极信号分别比V 2、V 1 采用移相方式调节逆变电路的输出电压

逆变器设计 课程设计任务

逆变器设计课程设计任务

3KVA逆变器设计课程设计任务书

课程设计任务书 题目: 3KVA三相逆变器设计 初始条件: 输入直流电压220V。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 设计容量为3KVA的三相逆变器,要求达到: 1、输出220V三相交流电。 2、完成总电路设计。 3、完成电路中各元件的参数计算。 时间安排: 6月5日~6月6日:完成选题,领取设计任务书,查阅相关资料,规划总体设计方案; 6月7日~6月11日:完成电力电子装置的具体设计方案,包括参数设计、器件选取等; 6月12日~6月14日:整理资料,完成设计论文撰写。 指导教师签名:年月日 系主任(或责任教师)签名:年月日 目录

摘要 (1) 1 设计意义及要求 (2) 1.1设计意义 (2) 1.2设计要求 (2) 2 方案设计 (3) 2.1设计原理及思路 (3) 2.1.1逆变电路 (3) 2.1.2 三相逆变原理介绍 (4) 2.1.3 SPWM逆变电路原理及其控制方法 (5) 2.1.4 设计思路 (8) 2.2方案设计与选择 (8) 2.2.1 逆变电路选择 (8) 2.2.2 SPWM采样方法选择 (10) 3 部分电路设计 (11) 3.1IGBT三相桥式逆变电路 (11) 3.2脉宽控制电路的设计 (12) 3.2.1 SG3524芯片 (12) 3.2.2 调制波及载波的产生 (13) 3.3驱动电路的设计 (14) 3.3.1 IR2110芯片 (14) 3.3.2 驱动电路 (14) 3.4LC滤波 (15) 3.5变压器升压模块 (16) 4 系统元件有关参数的计算 (17) 4.1开关管和二极管的选择 (17) 4.2L、C滤波器的设计 (17) 4.3变压器参数设计 (18) 5 基于MATLAB的原理仿真 (19) 结束语 (22) 参考文献 (24)

单相全桥逆变电路毕业设计

2008级应用电子技术 毕业设计报告 设计题目单相电压型全桥逆变电路设计姓名及 学号 学院 专业应用电子技术 班级2008级3班 指导教师老师 2011年05月1日

题目:单相电压型全桥逆变电路设计

目录 第一章绪论 1.1整流技术的发展概况 (4) 第二章设计方案及其原理 2.1电压型逆变器的原理图 (5) 2.2电压型单相全桥逆变电路 (6) 第三章仿真概念及其原理简述 3.1 系统仿真概述 (6) 3.2 整流电路的概述 (8) 3.3 有源逆变的概述 (8) 3.4逆变失败原因及消除方法 (9) 第四章参数计算 4.1实验电路原理及结果图 (10) 第五章心得与总结 (14) 参考文献 (15)

第一章绪论 1.1整流技术的发展概况 正电路广泛应用于工业中。整流与逆变一直都是电力电子技术的热点之一。桥式整流是利用二极管的单向导通性进行整流的最常用的电路。常用来将交流电转化为直流电。从整流状态变到有源逆变状态,对于特定的实验电路需要恰到好处的时机和条件。基本原理和方法已成熟十几年了,随着我国交直流变换器市场迅猛发展,与之相应的核型技术应用于发展比较将成为业内企业关注的焦点。 目前,整流设备的发展具有下列特点:传统的相控整流设备已经被先进的高频开关整流设备所取代。系统的设计已经由固定式演化成模块化,以适应各种等级、各种模块通信设备的要求。加上阀控式密封铅酸蓄电池的广泛应用,为分散供电创造了条件。从而大大提高了通信网运行可靠和通信质量。高频开关整流器采用模块化设计、N1配置和热插拨技术,方便了系统的扩展,有利于设备的维护。由于整流设备和配电设备等配备了微机监控器,使系统设备具有了智能化管理功能和故障保护及自保护功能。新旗舰、新技术、新材料的应用,使高频开关整流器跃上了一个新台阶。

电压型逆变电路课程设计

1 主电路设计 逆变电路的作用是将直流电压转换成梯形脉冲波,经低通滤波器滤波后,从而使负载上得到的实际电压为正弦波。 1.1 主电路图 图1三相电压型桥式逆变电路 1.1 主电路原理分析 图1是采用IGBT作为开光器件的电压型三相桥式逆变电路,可以看成由三个半桥逆变电路组成。图1的直流侧通常只有一个电容就可以了,但为了分析方便,画作串联的两个电容器并标出假象中点N′。和单相半桥、全桥逆变电路相同,三相电压型桥式逆变电路的基本工作方式也是180°导电方式,即每个桥臂的导电角度为180°,同一相(即同一半桥)上下两个臂交替导电,各相开始导电的角度依次相差120°。这样,在任一瞬间,将有三个桥臂同时导通。可能是上面一个臂下面两个臂,也可能是上面两个臂下面一个臂同时导通。因为每次换流都是在同一相上下两个桥臂之间进行,因此也被称为纵向换流

1.2 工作波形分析和绘制 对于U 相输出来说,当桥臂1导通时,2'd UN U u =,当桥臂4导通时, 2'd UN U u -=。因此,'UN u 的波形是幅值为2d U 的矩形波。V 、W 两相的情况和U 相相似,'VN u 、'WN u 的波形形状和'UN u 相同,只是相位依次相差120°。'UN u 、 'VN u 、'WN u 的波形如图2a 、b 、c 所示。 图2 三相电压型桥式逆变电路的工作波形 负载线电压UV u 、VW u 、WU u 可由下式求出 ?? ? ?? -=-=-=''''''UN WN WU WN VN VW VN UN UV u u u u u u u u u ()1?? ??? -=-=-=''''''UN WN WU WN VN VW VN UN UV u u u u u u u u u

电流源型单相全桥逆变电路

电流源型单相全桥逆变电路的设计 摘要 本次设计说明书首先介绍了电流源型单相全桥逆变电路的特点和原理,用单相桥式电流型逆变电路的原理图说明了该电路是采用负载换相方式工作的,要求负载电流略超前于负载电压,又详细分析该电路的工作过程,并用图给出该逆变电路的工作波形。最后根据以上分析运用仿真软件PSIM对电路进行仿真设计,得到波形图。 关键词:电流源型单相电路,逆变电路,PSIM仿真 ' 目录

. 1.电流源型单相全桥逆变电路研究-----------------------------------------3 逆变电路介绍----------------------------------------------------3 电流型逆变电路的主要特点----------------------------------------3 电流源型单相全桥逆变电路----------------------------------------3 电流源型单相全桥逆变电路工作过程--------------------------------4 2.电流源型单相全桥逆变电路设计------------------------------------------7 电路设计原理----------------------------------------------------7 电路仿真图------------------------------------------------------7 3.参数设定及仿真结果----------------------------------------------------8 直流侧仿真------------------------------------------------------8 ) 参数设定-------------------------------------------------8 仿真结果-------------------------------------------------8交流侧仿真------------------------------------------------------8 参数设定-------------------------------------------------8 仿真结果-------------------------------------------------9 4.小结------------------------------------------------------------------9 5.参考文献--------------------------------------------------------------10 :

无源三相PWM逆变器控制电路设计65427

目录 第一章:课程设计的目的及要求 (2) 第二章整流电路 (5) 第三章逆变电路 (9) 第四章PWM逆变电路的工作原理 (11) 第五章三相正弦交流电源发生器 (14) 第六章三角波发生器 (15) 第七章比较电路 (16) 第八章死区生成电路 (18) 第九章驱动电路 (20) 附录 参考文献 课程设计的心得体会

第一章:课程设计的目的及要求 一、课程设计的目的 通过电力电子计术的课程设计达到以下几个目的: 1、培养学生文献检索的能力,特别是如何利用Internet检索 需要的文献资料。 2、培养学生综合分析问题、发现问题和解决问题的能力。 3、培养学生运用知识的能力和工程设计的能力。 4、培养学生运用仿真工具的能力和方法。 5、提高学生课程设计报告撰写水平。 二、课程设计的要求 1. 自立题目 题目:无源三相PWM逆变器控制电路设计 注意事项: ①学生也可以选择规定题目方向外的其它电力电子装置设计,如开关电源、镇流器、UPS电源等,

②通过图书馆和Internet广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计方案。首先要明确自己课程设计的设计容。 控制框图 设计装置(或电路)的主要技术数据 主要技术数据 输入交流电源: 三相380V,f=50Hz 交直变换采用二极管整流桥电容滤波电路,无源逆变桥采用三相桥式电压型逆变主电路,控制方法为SPWM控制原理输出交流: 电流为正弦交流波形,输出频率可调,输出负载为三相异步电动机,P=5kW等效为星形RL电路,R=10Ω,L=15mH

设计容: 整流电路的设计和参数选择 滤波电容参数选择 三相逆变主电路的设计和参数选择 IGBT电流、电压额定的选择 三相SPWM驱动电路的设计 画出完整的主电路原理图和控制电路原理图 2.在整个设计中要注意培养灵活运用所学的电力电子技术 知识和创造性的思维方式以及创造能力 要求具体电路方案的选择必须有论证说明,要说明其有哪些特点。主电路具体电路元器件的选择应有计算和说明。课程设计从确定方案到整个系统的设计,必须在检索、阅读及分析研究大量的相关文献的基础上,经过剖析、提炼,设计出所要求的电路(或装置)。课程设计中要不断提出问题,并给出这些问题的解决方法和自己的研究体会。设计报告最后给出设计中所查阅的参考文献最少不能少于5篇,且文中有引用说明,否则也不能得优)。

电力电子技术习题及答案

电力电子技术习题集 习题一 1. 试说明什么是电导调制效应及其作用。 2. 晶闸管正常导通的条件是什么,导通后流过的电流由什么决定晶闸管由导通变为关断的条件是什么,如何实现 3. 有时晶闸管触发导通后,触发脉冲结束后它又关断了,是何原因 4. 图1-30中的阴影部分表示流过晶闸管的电流波形,其最大值均为I m ,试计算各波形的电流平均值、有效值。如不考虑安全裕量,额定电流100A 的晶闸管,流过上述电流波形时,允许流过的电流平均值I d 各位多少 (f) 图1-30 习题1-4附图 5. 在图1-31所示电路中,若使用一次脉冲触发,试问为保证晶闸管充分导通,触发脉冲宽 度至少要多宽图中,E =50V ;L =;R =; I L =50mA (擎住电流)。 图1-31习题1-5附图 图1-32习题1-9附图 6. 为什么晶闸管不能用门极负脉冲信号关断阳极电流,而GTO 却可以 7. GTO 与GTR 同为电流控制器件,前者的触发信号与后者的驱动信号有哪些异同 8. 试比较GTR 、GTO 、MOSFET 、IGBT 之间的差异和各自的优缺点及主要应用领域。 9. 请将VDMOS (或IGBT )管栅极电流波形画于图1-32中,并说明电流峰值和栅极电阻有 何关系以及栅极电阻的作用。 10. 全控型器件的缓冲吸收电路的主要作用是什么试分析RCD 缓冲电路中各元件的作用。 11. 限制功率MOSFET 应用的主要原因是什么实际使用时如何提高MOSFET 的功率容量 习题二

1.具有续流二极管的单相半波可控整流电路,带阻感性负载,电阻为5,电感为,电源电压的有效值为220V,直流平均电流为10A,试计算晶闸管和续流二极管的电流有效值,并指出晶闸管的电压定额(考虑电压2-3倍裕度)。 2.单相桥式全控整流电路接电阻性负载,要求输出电压在0~100V连续可调,输出电压平均值为30 V时,负载电流平均值达到20A。系统采用220V的交流电压通过降压变压器供电,且晶闸管的最小控制角αmin=30°,(设降压变压器为理想变压器)。试求: (1)变压器二次侧电流有效值I2; (2)考虑安全裕量,选择晶闸管电压、电流定额; (3)作出α=60°时,u d、i d和变压器二次侧i2的波形。 3.试作出图2-8所示的单相桥式半控整流电路带大电感负载,在α=30°时的u d、i d、i VT1、i VD4的波形。并计算此时输出电压和电流的平均值。 4.单相桥式全控整流电路,U2=100V,负载中R=2 ,L值极大,反电动势E=60V,当α=30°时,试求: (1)作出u d、i d和i2的波形; (2)求整流输出电压平均值U d、电流I d,以及变压器二次侧电流有效值I2。 5. 某一大电感负载采用单相半控桥式整流接有续流二极管的电路,负载电阻R=4Ω,电源电 压U2=220V,α=π/3,求: (1) 输出直流平均电压和输出直流平均电流; (2) 流过晶闸管(整流二极管)的电流有效值; (3) 流过续流二极管的电流有效值。 6.三相半波可控整流电路的共阴极接法和共阳极接法,a、b两相的自然换相点是同一点吗如果不是,它们在相位上差多少度试作出共阳极接法的三相半波可控的整流电路在α=30°时的u d、i VT1、u VT1的波形。 7. 三相半波可控整流电路带大电感性负载,α=π/3,R=2Ω,U2=220V,试计算负载电流I d, 并按裕量系数2确定晶闸管的额定电流和电压。 8.三相桥式全控整流电路,U2=100V,带阻感性负载,R=5 ,L值极大,当α=60°,试求:(1)作出u d、i d和i VT1的波形; (2)计算整流输出电压平均值U d、电流I d,以及流过晶闸管电流的平均值I dVT和有效值 I VT; (3)求电源侧的功率因数; (4)估算晶闸管的电压电流定额。 9.三相桥式不控整流电路带阻感性负载,R=5 ,L=∞,U2=220V,X B= ,求U d、I d、I VD、I2和γ的值,并作出u d、i VD1和i2的波形。 10.请说明整流电路工作在有源逆变时所必须具备的条件。 11.什么是逆变失败如何防止逆变失败 12. 三相全控桥变流器,已知L足够大、R=Ω、U2=200V、E M= -300V,电动机负载处于发电制 动状态,制动过程中的负载电流66A,此变流器能否实现有源逆变求此时的逆变角β。13.三相全控桥变流器,带反电动势阻感负载,R=1 ,L=∞,U2=220V,L B=1mH,当E M =-400V,β=60°时求U d、I d和γ的值,此时送回电网的有功功率是多少 14.三相桥式全控整流电路,其整流输出电压中含有哪些次数的谐波其中最大的是哪一次变压器二次电流中含有哪些次数的谐波其中主要的是哪几次 15.试计算第4题中i2的3、5、7次谐波分量的有效值I23、I25、I27,并计算此时该电路的输

三相电压型逆变器课程设计

三相电压型逆变器 一.电力电子器件的发展: 1.概述: 1957年可控硅(晶闸管)的问世,为半导体器件应用于强电领域的自动控制迈出了重要的一步,电力电子开始登上现代电气传动技术舞台,这标志着电力电子技术的诞生。20世纪60年代初已开始使用电力电子这个名词,进入70年代晶闸管开始派生各种系列产品,普通晶闸管由于其不能自关断的特点,属于半控型器件,被称作第一代电力电子器件。随着理论研究和工艺水平的不断提高,以门极可关断晶闸管(GTO)、电力双极性晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展,被称作第二代电力电子器件。80年代后期,以绝缘栅极双极型晶体管(IGBT)为代表的复合型第三代电力电子器件异军突起,而进入90年代电力电子器件开始朝着智能化、功率集成化发展,这代表了电力电子技术发展的一个重要方向 电子技术被认为是现代科技发展的主力军,电力电子就是电力电子学,又称功率电子学,是利用电子技术对电力机械或电力装置进行系统控制的一门技术性学科,主要研究电力的处理和变换,服务于电能的产生、输送、变换和控制。(电力电子的发展动向)电力电子技术包括功率半导体器件与IC 技术、功率变换技术及控制技术等几个方面,其中电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“龙头”。电力电子器件(Power Electronic Device)又称为功率半导体器件,用于电能变换和电能控创电路中

的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。广义上电力电子器件可分为电真空器件(Electron Device)和半导体器件(Semiconductor Device)两类。 2.发展: A.整流管: 整流管是电力电子器件中结构最简单、应用最广泛的一种器件。目前主要有普通整流管、快恢复整流管和肖特基整流管三种类型。电力整流管在改善各种电力电子电路的性能、降低电路损耗和提高电源使用效率等方面发挥着非常重要的作用。目前,人们已通过新颖结构的设计和大规模集成电路制作工艺的运用,研制出集PIN整流管和肖特基整流管的优点于一体的具有MPS、SPEED和SSD等结构的新型高压快恢复整流管。它们的通态压降为IV 左右,反向恢复时间为PIN整流管的1/2,反向恢复峰值电流为PIN整流管的1/3。 B.晶闸管: 自1957年美国通用电气公司GE研制出第一个晶闸管开始,其结构的改进和工艺的改革,为新器件开发研制奠定了基础,其后派生出各种系列产品。1964年,GE公司成功开发双向晶闸管,将其应用于调光和马达控制;1965年,小功率光触发晶闸管问世,为其后出现的光耦合器打下了基础;60年代后期,出现了大功率逆变晶闸管,成为当时逆变电路的基本元件;逆导晶闸管和非对称晶闸管于1974年研制完成。 C.门极可关断晶闸管: GTO可达到晶闸管相同水平的电压、电流等级,工作频率也可扩展到

逆变电路的基本工作原理

逆变电路的基本工作原理 1、S4闭合,S 2、S3断开时,负载电压uo为正S1;S 1、S4断开,S 2、S3闭合时,uo为负,把直流电变成了交流电。改变两组开关切换频率,可改变输出交流电频率。图5-1 逆变电路及其波形举例电阻负载时,负载电流io和uo的波形相同,相位也相同。阻感负载时,io滞后于uo,波形也不同(图5-1b)。t1前:S 1、S4通,uo和io均为正。t1时刻断开S 1、S4,合上S 2、S3,uo变负,但io不能立刻反向。io从电源负极流出,经S 2、负载和S3流回正极,负载电感能量向电源反馈,io逐渐减小,t2时刻降为零,之后io才反向并增大(2)换流方式分类换流电流从一个支路向另一个支路转移的过程,也称换相。开通:适当的门极驱动信号就可使其开通。关断:全控型器件可通过门极关断。半控型器件晶闸管,必须利用外部条件才能关断,一般在晶闸管电流过零后施加一定时间反压,才能关断。研究换流方式主要是研究如何使器件关断。本章换流及换流方式问题最为全面集中,因此在本章讲述

1、器件换流利用全控型器件的自关断能力进行换流(Device Commutation)。 2、电网换流由电网提供换流电压称为电网换流(Line Commutation)。可控整流电路、交流调压电路和采用相控方式的交交变频电路,不需器件具有门极可关断能力,也不需要为换流附加元件。 3、负载换流由负载提供换流电压称为负载换流(Load Commutation)。负载电流相位超前于负载电压的场合,都可实现负载换流。负载为电容性负载时,负载为同步电动机时,可实现负载换流。图5-2 负载换流电路及其工作波形基本的负载换流逆变电路:采用晶闸管,负载:电阻电感串联后再和电容并联,工作在接近并联谐振状态而略呈容性。电容为改善负载功率因数使其略呈容性而接入,直流侧串入大电感Ld, id基本没有脉动。工作过程:4个臂的切换仅使电流路径改变,负载电流基本呈矩形波。负载工作在对基波电流接近并联谐振的状态,对基波阻抗很大,对谐波阻抗很小,uo波形接近正弦。t1前:VT 1、VT4通,VT 2、VT3断,uo、io均为正,VT 2、VT3电压即为uot1时:触发VT 2、VT3使其开通,uo加到VT 4、VT1上使其承受反压而关断,电流从VT 1、VT4换到VT

逆变电路 电力电子课程设计 spwm

电力电子课程设计报告 题目无源逆变系统的实现 专业班级电气工程及其自动化02 学号 1004150213 学生姓名孔令上 指导教师胡为兵 学院名称电气信息学院 完成日期:2013年 1月

目录 1、设计说明 (3) 1.1、设计目的及作用 (3) 1.2、设计依据(技术要求) (3) 1、正文 (3) 2.1、主电路详细原理图 (4) 2.2、主电路工作原理论述 (4) 2.4.1单向全控桥式逆变电路 (4) 2.3、元件参数 (5) 2.4、元件选择 (6) 2.5、控制保护电路详细框图 (6) 2.6、控制保护原理的论述 (7) 2.6.1、spwm控制原理 (7) 2.6.2、过流保护设计 (8) 2.6.3、过流保护论述 (9) 2.6.4、过压保护设计 (9) 2.6.4、过压保护论述 (10) 2、小节 (10) 3、参考资料 (11)

1、设计说明 1.1、设计目的及作用 随着各行各业自动化水平及控制技术的发展和其对操作性能要求的提高,许多行业的用电设备(如通信电源、电弧焊电源、电动机变频调速器等)都不是直接使用交流电网作为电源,而是通过形式对其进行变换而得到各自所需的电能形式,它们所使用的电能大都是通过整流和逆变组合电路对原始电能进行变换后得到的。现如今,逆变器的应用非常广泛,在已有的各种电源中,蓄电池、干电池、太阳能电池等都是直流电源,当需要这些电源向交流负载供电时,就需要逆变。另外,交流电机调速变频器、UPS、感应加热电源等使用广泛的电力电子装置,都是以逆变电路为核心。 本文以单相DC-AC逆变器为研究对象,设计了一种基于全桥式结构的SPWM逆变器。以stc公司的51单片机作为控制核心,根据反馈的电压或电流信号对PWM波形作出调整,进行可靠的的双闭环控制,逆变部分采用mcs-51数字化SPWM控制技术,以尽可能减少谐波。为降低开关损耗,防止产生噪声,将开关频率设置为20KHZ。系统具有短路保护,输入过压和过流保护功能,针对开关管,还完善了抑制浪涌电流,开断缓冲和关断缓冲等功能。设计的硬件电路主要包括全桥式逆变主电路、控制电路、驱动电路、取样电路、保护电路等。重点分析了SPWM控制算法,并给出了软件实现SPWM波形的过程。采用无差拍控制和传统的PI 控制方法相结合的复合控制方法,既利用了无差拍控制的快速动态响应特性,又利用了PI控制具有强的鲁棒性,据此设计的控制器能够使逆变器的输出电压很好地跟踪正弦波,在电容性整流负载下输出电压也具有很好的正弦性,在MATLAB/SIMULINK下建立了电源系统的仿真模型,完成了控制器的参数设计,并给出电源在不同负载下和主电路滤波器参数变化下的输出电压仿真波形,证明了本方案设计的逆变器能够得到优质的正弦交流电。 1.2、设计依据(技术要求) 1.直流电压为12 V。 2.要求频率可调。 3.输出为5V的正弦交流电。 4.带阻感负载。负载中R=2 L=1mH。 5.要求输出频率范围:10HZ~100HZ。 1、正文

单相桥式逆变电路设计

《电力电子技术》课程设计说明书单相桥式逆变电路的设计 院、部:电气与信息工程学院 学生姓名: 指导教师:桂友超职称副教授 专业:电气工程及其自动化 班级: 完成时间: 2014年6月

电力电子技术》课程设计任务书 一、课程设计的目的 通过课程设计达到以下目的 1、加强和巩固所学的知识,加深对理论知识的理解; 2、培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料; 3、培养学生综合分析问题、发现问题和解决问题的能力; 4、培养学生综合运用知识的能力和工程设计能力; 5、培养学生运用仿真软件的能力和方法; 6、培养学生科技写作水平。 二、课程设计的主要内容 1、关于本课程学习情况简述 2、主电路的设计、原理分析和器件的选择; 3、控制电路的设计; 4、保护电路的设计; 5、利用MATLAB软件对自己的设计进行仿真。 三、课程设计的要求 1、通过查阅资料,确定自己的设计方案; 2、按学号尾数定课题,即课题一的学号尾数为1,以此类推。自拟参数不能雷同; 3、要求最后图纸是标准的CAD图; 4、课程设计在第18周五前交上来。 四、课题 1、课题一:单相桥式可控整流电路的设计 已知单相交流输入交流电压220V,负载自拟,要求整流电压在0~100V连续可调,其它性能指标自定。 2、课题二:三相半波可控整流电路的设计 已知三相交流输入线电压380V,要求整流电压在0~100V连续可调,负载自拟,其它性能指标自定。 3、课题三:三相桥式可控整流电路的设计

已知三相交流输入线电压380V,要求整流电压在0~100V连续可调,负载自拟,其它性能指标自定。 4、课题四:直流降压斩波电路的设计 已知直流输入电压200V,负载自拟,要求输出电压在50~100V可调,其它性能指标自定。 5、课题五:直流升压斩波电路的设计 已知直流输入电压200V,负载自拟,要求输出电压在300~400V可调,其它性能指标自定。 6、课题六:直流升降压斩波电路的设计 已知直流输入电压200V,负载自拟,要求输出电压在100~300V连续可调,其它性能指标自定。 7、课题七:单相桥式逆变电路的设计 已知直流输入电压100V,负载自拟,要求交流输出电压频率范围在30~60HZ,电压在30~50V范围可调,其它性能指标自定。 8、课题八:单相交流调压电路设计 已知单相交流输入交流电压220V,负载自拟,要求输出交流电压在0~220V 可调,其它性能指标自定。 9、课题九:三相交流调压电路的设计 已知三相交流输入交流线电压380V,负载自拟,要求输出交流电压在0~200V可调,其它性能指标自定。 10、课题十:三相桥式逆变电路的设计 已知直流输入电压100V,负载自拟,要求交流输出电压频率范围在30~60HZ,电压在30~50V范围可调,其它性能指标自定。 注意:若已经按上课时我讲解的内容和安排的课题进行了设计,则不必再更改。 五、格式要求 1、格式严格按照教务处规定的毕业设计格式; 2、文档内容: 1)绪言:主要介绍对本课程学习情况;本设计内容的掌握情况;拟出设计任务书。 2)主电路设计: (1)电路原理图:用CAD绘制电路; (2)原理分析:用自己的语言;

电压型单相全桥逆变电路讲课稿

电压型单相全桥逆变 电路

1.引言 逆变电路所谓逆变,就是与整流相反,把直流电转换成某一固定频率或可变频率的交流电(DC/AC)的过程。 当把转换后的交流电直接回送电网,即交流侧接入交流电源时,称为有源逆变;而当把转换后的交流电直接供给负载时,则称为无源逆变。通常所讲的逆变电路,若不加说明,一般都是指无源逆变电路。 1. 电压型逆变器的原理图 当开关S1、S4闭合,S2、S3断开时,负载电压u o为正;当开关S1、S4断开,S2、S3闭合时,u o为负,如此交替进行下去,就在负载上得到了由直流电变换的交流电,u o的波形如图7.4(b)所示。输出交流电的频率与两组开关的切换频率成正比。这样就实现了直流电到交流电的逆变。 t (b) (a) u o t3 t2 t1 i o u o Z u o i o U d _ + S3 S2S 4 S1

2. 电压型单相全桥逆变电路 它共有4个桥臂,可以看成由两个半桥电路组合而成。 两对桥臂交替导通180°。 输出电压和电流波形与半桥电路形状相同,幅值高出一倍。 改变输出交流电压的有效值只能通过改变直流电压U d 来实现。 输出电压定量分析 u o 成傅里叶级数 基波幅值 基波有效值 ?? ? ??+++= t t t U u ωωωπ5sin 513sin 31sin 4d o d d o1m 27.14U U U ==π d d 1o 9.022U U U ==π

当u o为正负各180°时,要改变输出电压有效值只能改变U d来实现 可采用移相方式调节逆变电路的输出电压,称为移相调压。 各栅极信号为180o正偏,180o反偏,且T1和T2互补,T3和T4互补关系不变。T3的基极信号只比T1落后q ( 0

相关文档
最新文档