最简单的变频器控制电机正反转及调速电路

最简单的变频器控制电机正反转及调速电路
最简单的变频器控制电机正反转及调速电路

最简单的变频器控制电机正反转及调速电路

1.线路图

有正反转功能变频器控制电动机正反转调速线路,如下图

器件:QF:断路器

UF:变频调速器

SB1:正转启动按钮

SB2:反转启动按钮

SB3:停止按钮开关

SB4:故障复位按钮

K1,K2:继电器(线圈电压380Vac)

RP1,RP2:调速电位器

M:三相交流电动机

2.工作原理

旋转RP1调速电位器将设定频率调至目标值,再启动正反转,亦可在运行过程中随时调整电位器,改变变频器运行频率(注意不可转得太快)。

正转时,按下按钮SB1,继电器K1得电吸合并自锁,其常开触点闭合,FR-COM 连接,电动机正转运行;停止时,按下按钮SB3,K1失电释放,电动机停止。

反转时,按下按钮SB2,继电器K2得电吸合并自锁,其常开触点闭合,RR-COM 连接,电动机反转运行;停止时,按下按钮SB3,K2失电释放,电动机停止。

事故停机或正常停机时,复位端子RST-COM断开,并发出报警信号。按下复位按钮SB4,使RST-COM连接,报警解除。

控制线路串联于变频器内部热继电常闭辅助触点,提高电路保护性能。

3.应用

该电路有加减速平稳,运行可靠,控制简单的特点,大大调高了设备的自动化程度,比常规控制正反转电路的优点是:保护性能大大提高,可以调速。可广泛应用于建筑施工,仓库,酒店餐饮业,小型工厂等货物的上下传输系统中。

电机正反转电路图

电机正反转电路图

三相异步电动机接触器联锁的正反转控制的电气电子原理图如图3-4所示。线路中采用了两个接触器,即正转用的接触器KM1和反转用的接触器KM2,它们分别由正转按钮SB2和反转按钮SB3控制。这两个接触器的主触头所接通的电源相序不同,KM1按L1—L2—L3相序接线,KM2则对调了两相的相序。控制电路有两条,一条由按钮SB2和KM1线圈等组成的正转控制电路;另一条由按钮SB3和KM2线圈等组成的反转控制电路。

220v单相电机正反原理 单相电机不同于三相电机,三相电进入电机后,由于存在120°电角度,所以产生N S N S旋转磁场,推动转子旋转。而单相电进入电机后,产生不了N S N S磁场,所以加了一个启动绕组,启动绕组在定子内与工作绕组错开90°电角度排列,外接离心开关和启动电容后与工作绕组并联接入电源,又因为电容有阻直通交的作用,交流电通过电容时又滞后一个电角度,这样就人为地把进入电机的单相电又分出来一相,产生旋转磁场,推动转子旋转。反转时,只要把工作绕组或者启动绕组的两个接线对调一下就行,产生S N S N的磁场,电机就反转了。 网友完善的答案好评率:75% 单相电机的接线方法,是在副绕组中串联(不是并联)电容,再与主绕组并联接入电源;只要调换一下主绕组与副绕组的头尾并联接线,电机即反转 如果电机是3条出线的,其中一条是公共点!(分别与另外2条线的测电阻其值较小)接电源零线!然后把剩下的两条线并联电容,在电容的一端接220V电源相(火)线,就可以了!若要改变电机转向只要把220V电源相(火)线接在电容的另一端就可以了!

笼型电动机正反转的控制线路(电路图) 发布: | 作者: | 来源: jiasonghu | 查看:775次 | 用户关注: 接通电源让KMF--线圈通电其主触点闭合三相电源ABC分别通入电机三相绕组UVW,电动机正转。KMF线圈断电,主触点打开,电机停。让KMR线圈通电----其主触点闭合三相电源ABC通入电机三相绕组变为A—U未变,但B—W,C—V。电动→笼型电动机正反转的控制线路要使电动机给够实现反转,只要把接到电源的任意两根联线对调一头即可。为此用两个接触器来实现这一要求。设KMF为实现电机正转的接触器,KMR为实现电机反转的接触器。合上--S 笼型电动机正反转的控制线路 要使电动机给够实现反转,只要把接到电源的任意两根联线对调一头即可。为此用两个接触器来实现这一要求。 设 KMF 为实现电机正转的接触器, KMR 为实现电机反转的接触器。 接通电源→合上--S 让 KMF--线圈通电其主触点闭合 三相电源 ABC 分别通入电机三相绕组 UVW ,电动机正转。 KMF 线圈断电,主触点打开,电机停。 让 KMR 线圈通电----其主触点闭合 三相电源 ABC 通入电机三相绕组变 为 A — U 未变,但 B — W ,C — V。电动机将反转

ABB变频器参数及其正反转设置

一、为什么变频器能控制电机的正反转。能把他的控制原理告诉我吗目前市场上的变频器大都是交直交型。 先从交流整流成直流,再从直流分别逆变成相位相差120度的三相交流电。逆 变出来的电、频率、相位都是由微电脑控制的。 如果我给电机的UVW相分别送0度,120度和240度相位,那它就正转;给UVW相送0度,240度和120度相位时候,就反转。 反正微电脑的程序是人编的,让它送什么样的电它就送什么样的电,控制三相的相位差就能够控制电机的转向。 将控制正转、反转的继电器的触点分别接在二个多功能端子上,把变频器参数设定控制命为 为端子控制,修改多功能端子对应的参数功能为:正转、反转。(需与接线相对应,变频器都有正转、反转端子,接上正转、反转的继电器的触点就可)。变频器所控制的电机,要旋 转还需0---10V的模拟电压。(由上位机PLC,或CNC给出,或用电位器接DC10V电压给出)。 一般来讲,实现正反转有两种方法: 第一,就是通过变频器的外部控制正反转端子; 第二,如果是周期性的、规律性的正反转,也可以通过变频器的多段速功能来实现; 四 变频器控制正反转和工频控制正反转原理差不多,工频是通过控制电机的线圈从机控制主电路来实现,而变频器是通过控制变频器的正反转端子从而来控制电机的正反转,在原有工频控制线路基础上在一些改进,将正反转的两个接触器的输出拆掉,分别在每个接触器上加一个辅助触头,用常开触头的通断来控制变频器的正转FWD和DCM端子,反转REV和DCM端子就可以了 ACS550完整参数表 Group 99: 起动数据 代码英文名称中文名称用户/缺省值 9901 LANGUAGE 语言1(中文) 9902 APPLIC MACRO 应用宏3(交变宏) 9904 MOTOR CTRL MODE 电机控制模式3(标量速度) 9905 MOTOR NOM VOLT 电机额定电压380V 9906 MOTOR NOM CURR 电机额定电流 A

变频器的运行控制方式

变频器的运转指令方式 变频器的运转指令方式是指如何控制变频器的基本运行功能,这些功能包括启动、停止、正转与反转、正向电动与反向点动、复位等。 与变频器的频率给定方式一样,变频器的运转指令方式也有操作器键盘控制、端子控制和通讯控制三种。这些运转指令方式必须按照实际的需要进行选择设置,同时也可以根据功能进行相互之间的方式切换。 1操作器键盘控制 操作器键盘控制是变频器最简单的运转指令方式,用户可以通过变频器的操作器键盘上的运行键、停止键、点动键和复位键来直接控制变频器的运转。 操作器键盘控制的最大特点就是方便实用,同时又能起到报警故障功能,即能够将变频器是否运行或故障或报警都能告知给用户,因此用户无须配线就能真正了解到变频器是否确实在运行中、是否在报警(过载、超温、堵转等)以及通过led数码和lcd液晶显示故障类型。 按照前面一节的内容,变频器的操作器键盘通常可以通过延长线放置在用户容易操作的5m以内的空间里。同理,距离较远时则必须使用远程操作器键盘。 在操作器键盘控制下,变频器的正转和反转可以通过正反转键切换和选择。如果键盘定义的正转方向与实际电动机的正转方向(或设备的前行方向)相反时,可以通过修改相关的参数来更正,如有些变频器参数定义是“正转有效”或“反转有效”,有些变频器参数定义则是“与命令方向相同”或“与命令方向相反”。 对于某些生产设备是不允许反转的,如泵类负载,变频器则专门设置了禁止电动机反转的功能参数。该功能对端子控制、通讯控制都有效。 2端子控制 2.1基本概念 端子控制是变频器的运转指令通过其外接输入端子从外部输入开关信号(或电平信号)来进行控制的方式。 这时这些由按钮、选择开关、继电器、plc或dcs的继电器模块就替代了操作器键盘上的运行键、停止键、点动键和复位键,可以在远距离来控制变频器的运转。

常见电动机控制电路图

电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为,要求电路能定时自动循环正反转 控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2串联的KT1、KT2断电延

时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

PLC控制实验--变频器控制电机正反转

实验二十八变频器控制电机正反转 一、实验目的 了解变频器外部控制端子的功能,掌握外部运行模式下变频器的操作方法。二、实验设备 序号名称型号与规格数量备注 1 网络型可编程控制器高级实验装置THORM-D 1 2 实验挂箱CM51 1 3 电机WDJ26 1 4 实验导线3号/4号若干 5 通讯电缆USB 1 6 计算机 1 自备 三、控制要求 1.正确设置变频器输出的额定频率、额定电压、额定电流。 2.通过外部端子控制电机启动/停止、正转/反转。 3.运用操作面板改变电机启动的点动运行频率和加减速时间。 四、参数功能表及接线图 1.参数功能表 序号变频器参数出厂值设定值功能说明 1 n1.00 50.00 50.00 最高频率 2 n1.05 1.5 0.01 最低输出频率 3 n1.09 10.0 10.0 加速时间 4 n1.10 10.0 10.0 减速时间 5 n2.00 1 1 操作器频率指令旋钮有效 6 n2.01 0 1 控制回路端子(2线式或3线式) 7 n4.04 0 1 2线式(运转/停止(S1)、正转/反转(S2)) 注:(1)设置参数前先将变频器参数复位为工厂的缺省设定值(2)设定n0.02=0可设定及参照全部参数 2.变频器外部接线图 五、操作步骤

1.检查实验设备中器材是否齐全。 2.按照变频器外部接线图完成变频器的接线,认真检查,确保正确无误。 3.打开电源开关,按照参数功能表正确设置变频器参数。 4.打开开关“K1”,观察并记录电机的运转情况。 5.旋转操作面板频率设定旋钮,增加变频器输出频率。 6.关闭开关“K1”,变频器停止运行。 7.打开开关“K1”、“K2”,观察并记录电机的运转情况。 六、实验总结 1.总结使用变频器外部端子控制电机正反转的操作方法。 2.总结变频器外部端子的不同功能及使用方法。

电机基本控制原理图简介

电机基本控制原理图简介 一、星三角启动原理图简介 L1/L2/L3分别表示三根相线; QS表示空气开关; Fu1表示主回路上的保险; Fu2表示控制回路上的保险; SP表示停止按钮; ST表示启动按钮; KT表示时间继电器的线圈,后缀的数字表示它不同的触点; KMy表示星接触器的线圈,后缀的数字表示它不同的触点; KM△表示三角接触器的线圈,后缀的数字表示它不同的触点; KM表示主接触器的线圈,后缀的数字表示它不同的触点; U1/V1/W1分别表示电动机绕组的三个同名端; U2/V2/W2分别表示电动机绕组的另三个同名端; 为了叙述方便,将图纸整理了一下,添加了触点的编号。整理后的图纸见附图。 合上QS,按下ST,KT、KMy得电动作。 KMY-1闭合,KM得电动作;KMY-2闭合,电动机线圈处于星形接法,KMY-3断开,避免KM△误动作; KM-1闭合,自保启动按钮;kM-2闭合为三角形工作做好准备;kM-3闭合,电动机得电运转,处于星形启动状态。 时间继电器延时到达以后,延时触点KT-1断开,KMy线圈断电,KMY-1断开,KM通过KM-2仍然得电吸合着;KMY-2断开,为电动机线圈处于三角形接法作准备;KMY-3闭合,使KM△得电吸合; KM△-1断开,停止为时间继电器线圈供电;KM△-2断开,确保KMY不能得电误动作:KM△-3闭合是电动机线圈处于三角形运转状态。 电动机的三角形运转状态,必须要按下SP,才能使全部接触器线圈失电跳开,才能停止运转。

接线图:

二、电机直接启动原理图 图l中,三相电源的火线(相线)Ll、L2和L3接在隔离刀开关QS上端。QS的作用是在检修时断开电源.使受检修电路与电源之间有一个明显的断开点,保证检修人员的安全。FU 是一次回路的保护用熔断器。准备启动电动机时,首先合上刀开关QS,之后如果交流接触器KM主触点闭合,则电动机得电运行:接触器主触点断开,电动机停止运行。接触器触点闭合与否.则受二次电路控制。 图2中.FUl和FU2是二次熔断器. SBl是停止按钮.SB2是启动按钮.FH是热继电器的保护输出触点。按下SB2。交流接触器KMl的线圈得电,其主触点闭合,电动机开始运行。同时,接触器的辅助触点KMl-1也闭合。它使接触器线圈获得持续的工作电源,接触器的吸合状态得以保持。习惯上将辅助触点KMl一1称做自保(持)触点。 电动机运行中.若因故出现过流或短路等异常情况,热继电器FH(见图1)内部的双金属片会因电流过大而热变形,在一定时限内使其保护触点FH(见图2)动作断开,致使接触器线圈失电,接触器主触点断开,电动机停止运行,保护电动机不被过电流烧坏。保护动作后,接触器的辅助触点KMl-1断开,电动机保持在停运状态。 电动机运行中如果按下SBl.电动机同样会停止运行,其动作过程与热保护的动作过程相同。 停止指示绿灯HG和运行指示红灯HR分别受接触器的常『利(动断)或常开(动合)辅助触点KMl-2、KMl一3控制,用作信号指示。电流互感器TA的二次线圈串接电流表PA,电压表PV则直接接在电源线上.

电机正反转控制原理电路图、电路分析及相关

双重联锁(按钮、接触器)正反转控制电路原理图 电机双重联锁正反转控制 一、线路的运用场合Array正反转控制运用生产机械要求运动部件 能向正反两个方向运动的场合。如机床工作 台电机的前进及后退控制;万能铣床主轴的 正反转控制;圈板机的辊子的正反转;电梯、 起重机的上升及下降控制等场所。 二、控制原理分析 (1)、控制功能分析: 怎样才能实现正反转控制?为什么要 实现联锁? 电机要实现正反转控制:将其电源的相 序中任意两相对调即可(简称换相),通常是 V相不变,将U相及W相对调,为了保证两 个接触器动作时能够可靠调换电动机的相 序,接线时应使接触器的上口接线保持一致, 在接触器的下口调相。。由于将两相相序对 调,故须确保2个KM线圈不能同时得电, 否则会发生严重的相间短路故障,因此必须 采取联锁。为安全起见,常采用按钮联锁(机 械)和接触器联锁(电气)的双重联锁正反 转控制线路(如原理图所示);使用了(机械) 按钮联锁,即使同时按下正反转按钮,调相 用的两接触器也不可能同时得电,机械上避 1 / 111 / 11

2 / 112 / 11 免了相间短路。另外,由于应用的(电气)接触器间的联锁,所以只要其中一个接触器得电,其长闭触点(串接在对方线圈的控制线路中)就不会闭合,这样在机械、电气双重联锁的应用下,电机的供电系统不可能相间短路,有效地保护的电机,同时也避免在调相时相间短路造成事故,烧坏接触器。 (2)、工作原理分析: A 、正转控制: 按下 SB1常闭触头先断开(对KM2实现联锁) SB1常开触头闭合 KM1线圈得电 KM1电机M 启动连续正转工作 KM1KM1联锁触头断开(对KM2实现联锁) B 、反转控制: M 失电,停止正转 SB2 按下 线圈得电 SB2 KM2 电机M 启动连续反转工作 KM2主触头闭合KM2联锁触头断开(对KM1实现联锁) C 、停止控制: 按下SB3,整个控制电路失电,接触器各触头复位,电机M 失电停转;

电机控制线路图大全

电机控制线路图大全 Y-△(星三角)降压启动控制线路-接触器应用接线图 Y-△降压启动适用于正常工作时定子绕组作三角形连接的电动机。由于方法简便且经济,所以使用较普遍,但启动转矩只有全压启动的三分之…,故只适用于空载或轻载启动。 Y-△启动器有OX3-13、Qx3—30、、Qx3—55、QX3—125型等。OX3后丽的数字系指额定电压为380V时,启动器可控制电动机的最大功率值(以kW计)。 OX3—13型Y-△自动启动器的控制线路如图11—11所示。(https://www.360docs.net/doc/3e3949414.html,) 合上电源开关Qs后,按下启动按钮SB2,接触器KM和KMl线圈同时获电吸合,KM和KMl 主触头闭合,电动机接成Y降压启动,与此同时,时间继电器KT的线圈同时获电,I 星形—三角形降压起动控制线路

星形——三角形降压起动控制线路 星形——三角形( Y —△)降压起动是指电动机起动时,把定子绕组接成星形,以降低起动电压,减小起动电流;待电动机起动后,再把定子绕组改接成三角形,使电动机全压运行。 Y —△起动只能用于正常运行时为△形接法的电动机。 1.按钮、接触器控制 Y —△降压起动控制线路 图 2.19 ( a )为按钮、接触器控制 Y —△降压起动控制线路。线路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合, KM1 自锁,电动机星形起动,待电动机转速接近额定转速时,按下 SB2 , KM2 断电、 KM3 得电并自锁,电动机转换成三角形全压运行。 2.时间继电器控制 Y —△降压起动控制线路 图 2.19 ( b )为时间继电器自动控制 Y —△降压起动控制线路,电路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合,电动机星形起动,同时 KT 也得电,经延时后时间继电器 KT 常闭触头打开,使得 KM2 断电,常开触头闭合,使得 KM3 得电闭合并自锁,电动机由星形切换成三角形正常运行。 图2定子串电阻降压起动控制线路

通用变频器控制异步电动机正反转

通用变频器控制异步电动机正反转 一、实训的目的: 1、掌握通用变频器控制异步电动机的主回路接线; 2、掌握通用变频器控制异步电动机变频器内的参数的设定; 3、掌握通用变频器控制异步电动机变频器面板启动方法; 4、掌握通用变频器控制异步电动机变频器外部端子控制变方式的电 动机启动方法; 5、掌握通用变频器控制异步电动机的正反转运行方法; 二、实训所需元件 本实训使用ATV31变频器和普通异步电动机,为保证安全,ATV71变频器组件不能上电。 三、实训电路及原理 本实训采用的电路图如图1所示,LI1、LI2、LI3为三相380V电源进线,Q为小型断路器,M为三相异步电动机,S1、S2为转换按钮,用于变频器的外部端子启动,其中S1为正转启动,S2为反转启动(通过设定变频器内部参数来设定),PE为保护接地。

\ 图1 实训二电路图 四、实训的内容及步骤 1、按图1所示进行外部连线(ATV31变频器的动力引出线和控制线已经引出到实验板的端子上,在连线时不需打开变频器的面板,电动机线直接引到相应的端子上,并确认相应的线号)。 2、确定接线正确无误,连接可靠后,将ATV31变频器上电。 3、在I/O 菜单组中确认以下参数; 参数 工厂设定值 本实验设定值 TCC 2C LOC TCT TRN TRN LI1 LI2 LI3 5 1 3 5 6 4 2 Q 3 3 4 4 S2 S1 L1 L2 L3 LI1 LI2 24V PE U V W W U V PE M 3~

RRS LI2 LI2 4、在CTL菜单组中确认以下参数: 参数工厂设定值本实验设定值 FR1 AI1 AIP RFC FR1 FR1 CHCF SIN SEP CD1 TER LOC 5、在FUN菜单中设定停车方式为斜坡停车(STT为RNP)。 6、将菜单显示转换为SUP菜单组,显示当前菜单FRH,按ENT、上和下键,分别设定30.5Hz和40.5Hz,按RUN键,使电动机启动。改变SET菜单中ACC和DEC(加速时间和减速时间)参数,观察电动机的转换变化情况。当电动机稳定运行后,利用闪光测速仪记录频率与电动机实际转速的数值。 7、在I/O、CTL菜单组中改变以下参数; 参数工厂设定值本实验设定值TCC 2C 2C TCT TRN TRN RRS LI2 LI2 8、在合上S1按钮,电动机正转;断开S1按钮,电动机停止运行。

电动机正反转控制电路图及其原理分析

正反转控制电路图及其原理分析 要实现电动机的正反转,只要将接至电动机三相电源进线中的任意两相对调接线,即可达到反转的目的。下面是接触器联锁的正反转控制线路,如图所示

图中主回路采用两个接触器,即正转接触器KM1和反转接触器KM2。当接触器KM1的三对主触头接通时,三相电源的相序按U―V―W接入电动机。当接触器

KM1的三对主触头断开,接触器KM2的三对主触头接通时,三相电源的相序按W―V―U接入电动机,电动机就向相反方向转动。电路要求接触器KM1和接触器KM2不能同时接通电源,否则它们的主触头将同时闭合,造成U、W两相电源短路。为此在KM1和KM2线圈各自支路中相互串联对方的一对辅助常闭触头,以保证接触器KM1和KM2不会同时接通电源,KM1和KM2的这两对辅助常闭触头在线路中所起的作用称为联锁或互锁作用,这两对辅助常闭触头就叫联锁或互锁触头。 正向启动过程:按下起动按钮SB2,接触器KM1线圈通电,与SB2并联的KM1的辅助常开触点闭合,以保证KMl线圈持续通电,串联在电动机回路中的KM1的主触点持续闭合,电动机连续正向运转。 停止过程:按下停止按钮SB1,接触器KMl线圈断电,与SB2并联的KM1的辅助触点断开,以保证KMl线圈持续失电,串联在电动机回路中的KMl的主触点持续断开,切断电动机定子电源,电动机停转。 反向起动过程:按下起动按钮SB3,接触器KM2线圈通电,与SB3并联的KM2的辅助常开触点闭合,以保证KM2线圈持续通电,串联在电动机回路中的KM2的主触点持续闭合,电动机连续反向运转。 对于这种控制线路,当要改变电动机的转向时,就必须先按停止按钮SB1,再按反转按钮SB3,才能使电机反转。如果不先按SB1,而是直接按SB3,电动机是不会反转的。

解析国标图集_常用电机控制电路图_

BUILDING ELECTRICITY 2011年 第期 Jun.2011Vol.30No.6 6 *:国家科技支撑计划子课题,课题名称:村镇小康住宅规划设计成套技术研究(课题任务书编号:2006BAJ04A01),子课 题名称:村镇住宅设备与设施设计技术集成及软件开发(子课题任务书编号:2006BAJ04A01-3)。Xu Lingxian Sun Lan (China Institute of Building Standard Design &Research ,Beijing 100048,China ) 徐玲献 孙 兰(中国建筑标准设计研究院,北京市 100048) Explanation and Analysis of National Standardization Collective Drawings Control Circuit Diagrams of Common Electric Machines * 解析国标图集《常用电机控制电路图》摘 要 对多年来国家建筑标准设计图集 10D303-2~3《常用电机控制电路图》(2010年合订本,已修编出版发行)使用中遇到的疑问进行汇总、解析,以加深读者对10D303-2~3的理解。 关键词信号灯端子标志消防控制室的监控消防风机消防水泵 过负荷 水源水池水位 双 速风机 0引言 国家建筑标准设计图集10D303-2~3《常用电 机控制电路图》 (2010年合订本) (以下简称 10D303)适用于民用及一般工业建筑内3/N /PE ~220/380V 50Hz 系统中常用风机和水泵的控制,是对99D303-2《常用风机控制电路图》和01D303-3《常用水泵控制电路图》的修编。根据现行的国家标 准,对图集中涉及到的项目分类代码和图形符号进行了修改,并在原图集方案的基础上,增加了两用单速风机、平时用双速风机、射流风机联动排风机及冷冻(冷却)水泵控制电路图。根据节能环保的要求,增加了YDT 型双速风机的控制方案。并根据电气产品的发展,增加了控制与保护开关电器(CPS )和电机控制器的控制方案,供设计人员直接选用。 10D303从立项调研、修编到送印,历经两年多的时间,期间收到了不少反馈意见和建议,为图集的编制提供了宝贵的建议,在此答谢。 《常用电机控制电路图》 (2002年合订本)发行 十余年中一直受到读者青睐,使用者涉及设计、生产和建造等多领域,通过国标热线和其他途径咨询问题的读者很多。问题中除风机和水泵的控制电路外,经常牵涉到现行的国家标准、制图要求和电气设计技术等多方面的内容,有些问题无法通过修编图集 10D303直接解决,因此借助《建筑电气》平台,把《常用电机控制电路图》经常咨询的问题归纳汇总、解析,以利于读者更好使用和理解10D303图集。 1有关国家标准、规范和制图要求的问题 1.1指示器(信号灯)和操作器(按钮)的颜色 标识 10D303中有关信号灯和按钮的颜色标识是依据国家标准GB /T 4025-2003/IEC 60073:1996《人-机界面标志标识的基本和安全规则 指示器和 作者信息 徐玲献,女,中国建筑标准设计研究院,高级工程师,主任工程师。 孙兰,女,中国建筑标准设计研究院,教授级高级工程师,院副总工程师。 Abstract The collective drawings of national building standard design 10D303-2~3Control Circuit Diagrams of Common Electric Machines (2010bound volume )has been revised and published.This paper summarizes and analyzes the questions encountered during use over the years so as to deepen the readers 'understanding of the collective drawings. Key words Signal light Terminal symbol Fire control room monitoring Fire fan Fire pump Overload Water level of the water tank of water source Two -speed fans * 34 330

变频器控制电动机正反转调速电路

变频器控制电动机正反转调速电路 很多变颇器控制电动机正反转调速电路.通常都利用交流接触器来实现其正转、反转、停止,以及外接信号的控制,其优点是动作可靠、线路简单、r办企业电工人员都能掌握。 如图85所示,合上电源断路器QP,接人380v交流电源.使电路处于热备机状态。若需要正转时,则按下正转起动按钮sBI(1—3),此时交流接触器KI线圈得电吸合且KI辅助常开触点[3—5)闭合白锁,同时KI常开触点(19—21)闭合,将FR与c〔)M连接起来、变频器正相序工作,控制电动机正转运行;欲停止时,按下停止按钮sDl(1—3),此时.交流接触器Kj线圈断电释放.Kl常开触点(19—21)断开FR与c[)M的连接,使变频器停止丁作,电动机失电停止运转。 需要反转时,按下反转起动按钮sB2(3—9),此时交流接触器K2线圈得电吸合fl K2辅助常开触点(3—9)闭合自锁,同时K2常开触点(19—23)闭合,将R只—coM连接起来,变频器反相序工作,控制电动机反转运行;欲停止时,按下停止按钮sIL(1—3).此时.交流接触器x2线圈断电释放.K2常开触点(19—23)断开RR—c()M的连接,使变频2R停止丁作,中压变频器电动机失电停止运转。

因电路中正反转交流接触器线圈回路中各串联了对方接触器的互锁常闭触点,以保证在正反转操作时,不会出现两只交流接触器同时工作的现象,起到互锁保护作用。 当需要正常停机或出现事故停机时.复位端子RST—COM(13—19)断开,变频器发出报警信号。此时技下复位按钮sB4(17—19),将RsT与c()M端子连接起来,报警即可解除。 阐85巾,QF为保护断路器;Fu为控制回路熔断器Exl为正转控制交流接触器;K2为反转控制交流接触器,s11j为停止按钮;sB2为正转起动按钮;SB3为反转起动按钮;SB4为复泣按钮,Hz为频率表;RPl为1kn、2w的线绕式频率给定电位器;配Pg为10ko、1/2w校正电阻,用于频率调整。

电机正反转联动控制电路图

按钮联锁正反转控制线路 图2—12 按钮联锁正反转控制电路图 图2-12 按钮联锁正反转控制电路图接触器联锁正反转控制线路

双重联锁正反转控制线路 元件安装图

元件明细表 1、线路的运用场合: 正反转控制运用生产机械要求运动部件能向正反两个方向运动的场合。如机床工作台电机的前进与后退控制;万能铣床主轴的正反转控制;电梯、起重机的上升与下降控制等场所。 2、控制原理分析 (1)、控制功能分析:A、怎样才能实现正反转控制? B、为什么要实现联锁? 这两个问题是本控制线路的核心所在,务必要透彻地理解,否则只会接线安装,那只是知其然而不知其所以然。另外,问题的提出,一方面让学生学会去思考,另一方面也培养学生发现问题、分析问题的能力。教学中,计划先让学生温书预习(5分钟)、寻找答案,再集中讲解。先提问抽查,让学生能各抒己见、充分发挥,最后再总结归纳,解答所提出的问题,进一步统一全班思路。答案如下: A、电机要实现正反转控制:将其电源的相序中任意两相对调即可(简称换相),通常是V相不变,将U相与W 相对调。 B、由于将两相相序对调,故须确保2个KM线圈不能同时得电,否则会发生严重的相间短路故障,因此必须采取联锁。为安全起见,常采用按钮联锁和接触器联锁的双重联锁正反转控制线路(如原理图所示)

(2)、工作原理分析 C、停止控制: 按下SB3,整个控制电路失电,接触器各触头复位,电机M失电停转 (3)双重联锁正反转控制线路的优点: 接触器联锁正反转控制线路虽工作安全可靠但操作不方便;而按钮联锁正反转控制线路虽操作方便但容易产生电源两相短路故障。双重联锁正反 转控制线路则兼有两种联锁控制线路的优点,操作方便,工作安全可靠。 3、怎样正确使用控制按钮? 控制按钮按用途和触头的结构不同分停止(常闭按钮)、起动按钮(常开按钮)和复合按钮(常开和常闭组合按钮)。按钮的颜色有红、绿、黑等,一般红色表示“停止”,绿色表示“起动”。接线时红色按钮作停止用,绿色或黑色表示起动或通电。 三、注意事项

解析国标图集10D303《常用电机控制电路图——专业技术要求

解析国标图集10D303《常用电机控制电路图——专业技术 要求 【图集解析】 解析国标图集10D303《常用电机控制电路图》 ——专业技术要求 在JGJ 16-2008《民用建筑电气设计规范》中强制性条文第7.6.4条规定:“配电线路的过负荷保护,应在过负荷电流引起的导体温升对导体的绝缘、接头、端子或导体周围的物质造成损害前切断负荷电流。对于突然断电比过负荷造成的损失更大的线路,该线路的过负荷保护应作用于信号而不应切断电路。” 从第7.6.4条可以看出,针对10D303中的消防风机(消防排烟风机、加压送风机等)和消防水泵(消火栓用消防泵、自动喷洒用消防泵和消防稳压泵),过负荷保护应作用于信号而不应作用于切断电路。 1 消防风机过负荷保护只报警不跳闸的实现 图8为两用单速风机(平时和消防均使用的风机,风机不可调速)电路图 (10D303第21、22页)XKDF-1。从图8控制原理中可以看出,风机手动控制和平时DDC自动控制,热继电器常闭触点BB参与控制,风机过负荷后,热继电器常闭触点BB断开,接触器QAC线圈失电,主回路接触器QAC主动合触点断开,切断了风机主电路。而在消防状态下,无论由消防联动(模块)控制KA1,还是由消防控制室手动旋转开关“SF” 应急控制,热继电器常闭触点BB不参与控制,控制回路躲过热继电器常闭触点BB,风机过负荷,不会使接触器QAC线圈失电,不切断风机主电路。但风机过负荷时,热继电器常开触点BB闭合,会使声光报警(黄色信号灯PGY点亮,蜂鸣器PB报警)。因此在消防状态下,实现了风机过负荷只作用于信号而不作用于切断电路。图中声响报警可以通过复位按钮“ SR ”解除。

PLC控制电机正反转论文模板

摘要 可编程控制器(PLC)是以微处理器为核心,将自动控制技术、计算机技术和通信技术融为一体而发展起来的崭新的工业自动控制装臵。目前PLC已基本替代了传统的继电器控制而广泛应用于工业控制的各个领域,PLC已跃居工业自动化三大支柱的首位。 生产机械往往要求运动部件可以实现正反两个方向的起动,这就要求拖动电动机能作正、反向旋转。由电机原理可知,改变电动机三相电源的相序,就能改变电动机的转向。按下正转启动按钮SB1,电动机正转运行,且KM1,KMY接通。2s后KMY断开,KM 接通,即完成正转启动。按下停止按钮SB2,电动机停止运行。按下反转启动按钮SB3,电动机反转运行,且KM2,KMY接通。2s后KMY断开,KM 接通,即完成反转启动。

目录 第一章 PLC概述 (1) 1.1 PLC的产生 (1) 1.2 PLC的定义 (1) 1.3 PLC的特点及应用 (2) 1.4 PLC的基本结构 (4) 第二章三相异步电动机控制设计 (7) 2.1 电动机可逆运行控制电路 (7) 2.2 启动时就星型接法30秒后转为三角形运行直到停止反之亦然 (9) 2.3. 三相异步电动机正反转PLC控制的梯形图、指令表 (12) 2.4 三相异步电动机正反转PLC控制的工作原理 (13) 2.5 指令的介绍 (14) 结论 (16) 致谢 (17) 参考文献 (18)

第一章 PLC概述 1.1 PLC的产生 1969年,美国数字设备公司(DEC)研制出了世界上第一台可编程序控制器,并应用于通用汽车公司的生产线上。当时叫可编程逻辑控制器PLC(Programmable Logic Controller),目的是用来取代继电器,以执行逻辑判断、计时、计数等顺序控制功能。紧接着,美国MODICON公司也开发出同名的控制器,1971年,日本从美国引进了这项新技术,很快研制成了日本第一台可编程控制器。1973年,西欧国家也研制出他们的第一台可编程控制器。 随着半导体技术,尤其是微处理器和微型计算机技术的发展,到70年代中期以后,特别是进入80年代以来,PLC已广泛地使用16位甚至32位微处理器作为中央处理器,输入输出模块和外围电路也都采用了中、大规模甚至超大规模的集成电路,使PLC在概念、设计、性能价格比以及应用方面都有了新的突破。这时的PLC已不仅仅是逻辑判断功能,还同时具有数据处理、PID调节和数据通信功能,称之为可编程序控制器(Programmable Controller)更为合适,简称为PC,但为了与个人计算机(Persona1 Computer)的简称PC相区别,一般仍将它简称为PLC(Programmable Logic Controller)。 1.2 PLC的定义 “可编程控制器是一种数字运算操作的电子系统,专为在工业环境下应用而设计。它采用了可编程序的存储器,用来在其内部存储和执行逻辑运算、顺序控制、定时、计数和算术运算等操作命令,并通过数字式和模拟式的输入和输出,控制各种类型的机械或生产过程。可编程控制器及其有关外围设备,都按易于与工业系统联成一个整体、易于扩充其功能的原则设计。” 可编程序控制器是应用面最广、功能强大、使用方便的通用工业控制装臵,自研制成功开始使用以来,它已经成为了当代工业自动化的主要支柱之一。

变频器控制电动机正反转

变频器外部端子点动控制 一、实验目的 了解变频器外部控制端子的功能,掌握外部运行模式下变频器的操作方法。 二、 三、控制要求 1.正确设置变频器输出的额定频率、额定电压、额定电流、额定功率、额定转速。 2.通过外部端子控制电机启动/停止、正转/反转,按下按钮“S1”电机正转启动,松开按钮“S1”电机停止;按下按钮“S2”电机反转,松开按钮“S2”电机停止。 3.运用操作面板改变电机启动的点动运行频率和加减速时间。 四、参数功能表及接线图 注:(1)设置参数前先将变频器参数复位为工厂的缺省设定值(P0010=30;P0970=1)(2)设定P0003=2 允许访问扩展参数 (3)设定电机参数时先设定P0010=1(快速调试),设置上表P0304-P1121参数,

P3900=1,P0003=3结束快速调试;再设置上表P0700-P1061参数,电机参数设置完成设定P0010=0(准备) 2.变频器外部接线图 五、操作步骤 1.检查实训设备中器材是否齐全。 2.按照变频器外部接线图完成变频器的接线,认真检查,确保正确无误。 3.打开电源开关,按照参数功能表正确设置变频器参数(具体步骤参照变频器实训三 十五)。 4.按下按钮“S1”,观察并记录电机的运转情况。 5.按下操作面板按钮“”,增加变频器输出频率。 6.松开按钮“S1”待电机停止运行后,按下按钮“S2”,观察并记录电机的运转情况。 7.松开按钮“S2”,观察并记录电机的运转情况。 8.改变P1058、P1059的值,重复4、5、6、7,观察电机运转状态有什么变化。 9.改变P1060、P1061的值,重复4、5、6、7,观察电机运转状态有什么变化。 六、实训总结 1.总结使用变频器外部端子控制电机点动运行的操作方法。 2.记录变频器与电机控制线路的接线方法及注意事项。 快速调试的流程:

常用变频器的正反转设计

化工厂常用变频器的正反转设计 摘要:本文主要介绍了某厂芳烃装置的一台变频器的正反转改造原理及接线。并介绍了常见变频的的正反转设计及接线和参数设计。希望对需要变频器正反转设计或改造的读者有所启发,以实现所需功能。 关键词:变频器正反转设计 引言: 某化工厂芳烃装置空冷平台利用风机进行主动式散热,由于冬季气温较低需要风机反向送风才能达到控制温度的需求。由于这是装置投用后才提出的要求,就需要对变频器控制回路进行改造、参数进行设定,从而达到控制电机正反转的目的。本文亦讨论了工厂常用的变频器正反转的控制的设计及参数设定。 1、改造前的控制原理 装置所用变频器是丹佛斯VLT 8000 AQUA系列, 图一低压变频电机正反转控制原理图 通过接触器(图中-2KM)的辅助触点来接通12、18号端子,给变频器启动信号。同样当12、18号端子断开时,18号端子处于低电平是则电机停止。 通过55、60号端子输入4-20mA的模拟量进行转速控制。 注:27号端子设为“安全连锁”,12、27号端子之间用短接线连接。 2、改造后的控制原理 改造前每次调整转向只能由电气人员调整变频器输出接线。由于接线处有防护板,每次调整时费时费力,没有发挥变频器控制上的优势。 改造的思路是利用19号端子来实现反转,如图二。 即改造时在12、19号端子间增加一条连线,并在线上接一开关。再查阅丹佛斯VLT8000AQUA系列操作说明中的端子设置表 把19号端子对应的参数303改为[1] 1.当开关闭合时则19号为高电平,此时再闭合18号端子电机将会反向启动。 2.当开关断开时则19号为低电平,此时闭合18号端子电机为正向启动。 3、其他常见变频器的正反转控制及参数设置

解析国标图集10D303《常用电机控制电路图——专业技术要求

【图集解析】 解析国标图集10D303《常用电机控制电路图》 ——专业技术要求 在JGJ 16-2008《民用建筑电气设计规范》中强制性条文第7.6.4条规定:“配电线路的过负荷保护,应在过负荷电流引起的导体温升对导体的绝缘、接头、端子或导体周围的物质造成损害前切断负荷电流。对于突然断电比过负荷造成的损失更大的线路,该线路的过负荷保护应作用于信号而不应切断电路。” 从第7.6.4条可以看出,针对10D303中的消防风机(消防排烟风机、加压送风机等)和消防水泵(消火栓用消防泵、自动喷洒用消防泵和消防稳压泵),过负荷保护应作用于信号而不应作用于切断电路。 1 消防风机过负荷保护只报警不跳闸的实现 图8为两用单速风机(平时和消防均使用的风机,风机不可调速)电路图(10D303第21、22页)XKDF-1。从图8控制原理中可以看出,风机手动控制和平时DDC自动控制,热继电器常闭触点BB参与控制,风机过负荷后,热继电器常闭触点BB断开,接触器QAC线圈失电,主回路接触器QAC主动合触点断开,切断了风机主电路。而在消防状态下,无论由消防联动(模块)控制KA1,还是由消防控制室手动旋转开关“SF” 应急控制,热继电器常闭触点BB不参与控制,控制回路躲过热继电器常闭触点BB,风机过负荷,不会使接触器QAC线圈失电,不切断风机主电路。但风机过负荷时,热继电器常开触点BB闭合,会使声光报警(黄色信号灯PGY 点亮,蜂鸣器PB报警)。因此在消防状态下,实现了风机过负荷只作用于信号而不作用于切断电路。图中声响报警可以通过复位按钮“ SR ”解除。 2 消防水泵过负荷保护只报警不跳闸的实现 一般工程设计中消防风机无备用风机,而消防水泵一般是一台工作一台备用(或两用一备)。GB 50055-93《通用用电设备配电设计规范》第2.4.6条的条文说明中有这么一句话:“一、过载是导致电动机损坏的主要原因。……在为编制原规范而进行的调查中,收集到国内……以至美国

电机正反转控制电路及实际接线图

三相异步电动机正反转控制电路图原理及plc接线与编程在图1是三相异步电动机正反转控制的电路和继电器控制电路图,图2与3是功能与它相同的PLC控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的交流接触器. 在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保。使KM1的线圈通电,电机开始正转运行。按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。 在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联。设Y0为ON,电动机正转,这是如果想改为反转运行,可

以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转。 在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通。由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障。 可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的电源短路事故。如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相电源短路事故。为了防止出现这种情况,应在PLC外部设置KM1和KM2的辅助常闭触点组成的硬件互锁电路(见图2),假设KM1的主触点被电弧熔焊,这时它与KM2线圈串联的辅助常闭触点处于断开状态,因此KM2的线圈不可能得电。 图1中的FR是作过载保护用的热继电器,异步电动机长期严重过载时,经过一定延时,热继电器的常开触点断开,常开触点闭合。其常闭触点与接触器的线圈串联,过载时接触其线圈断电,电机停止运行,起到保护作用。 有的热继电器需要手动复位,即热继电器动作后要按一下它自带的复位按钮,其触点才会恢复原状,及常开触点断开,常闭触点闭合。这种热继电器的常闭触点可以像图2那样接在PLC的输出回路,仍然与接触器的线圈串联,这反而可以节约PLC的一个输入点。 有的热继电器有自动复位功能,即热继电器动作后电机停止转,串接在主回路中的热继电器的原件冷却,热继电器的触点自动恢复原状。如果这种热断电器的常闭触点仍然接在PLC的输出回路,电机停止转动后果一段时间会因热继电器的触点恢复原状而自动重新运转,可能会造成设备和人身事故。因此有自动复位功能的热继电器的常闭触点不能接在PLC的输出回路,必须将它的触点接在PLC的输入端(可接常开触点或常闭触点),用梯形图来实现点击的过载保护。如果用电子式电机过载保护来代替热继电器,也应注意它的复位. 电动机正反转实物接线图

相关文档
最新文档