合成氨的方法及其应用

闽南师范大学

合成氨的方法及其应用

姓名:

学号:

专业:应用化学

年级: 10应化2

2013年12月30

合成氨的方法及其应用

【摘要】介绍不同原料的合成氨和合成氨各个工段工艺流程,指出了我国合成氨工艺技术现状及其未来发展趋势,认为未来合成氨技术进展的主要趋势是大型化、低能耗、结构调整、清洁生产、长周期运行;介绍合成氨工业产品的用途,指出合成氨对化肥的重要意义。

关键词:合成氨工艺流程发展现状意义

前言

氨是一种重要的含氮化合物。氮是蛋白质质中不可缺少的部分,是人类和一切生物所必须的养料;可以说没有氮,就没有蛋白质,没有蛋白质,就没有生命。大气中存在有大量的氮,在空气中氨占78%(体积分数)以上,它是以游离状态存在的。但是,如此丰富的氮,通常状况下不能为生物直接吸收,只有将空气中的游离氮转化为化合物状态,才能被植物吸收,然后再转化成人和动物所需的营养物质。把大气中的游离氮固定下来并转变为可被植物吸收的化合物的过程,称为固定氮。目前,固定氮最方便、最普通的方法就是合成氨,也就是直接由氮和氢合成为氨,再进一步制成化学肥料或用于其它工业

我国合成氨装置很多,但合成氨装置的控制水平都比较低,大部分厂家还停留在半自动化水平,靠人工控制的也不少,普遍存在的问题是:能耗大、成本高、流程长,自动控制水平低。这种生产状况下生产的产品成本高,市场竞争力差,因此大部分化肥行业处于低利润甚至处于亏损状态。为了改变这种状态,除了改变比较落后的工艺流程外,实现装置生产过程优化控制是行之有效的方法。

合成氨生产装置是我国化肥生产的基础,提高整个合成氨生产装置的自动化控制水平,对目前我国化肥行业状况,只有进一步稳定生产降低能耗,才能降低成本,增加效益。而实现合成氨装置的优化是投资少、见效快的有效措施之一。

合成氨装置优化控制的意义是提高整个合成氨装置的自动化水平,在现有工艺条件下,发挥优化控制的优势,使整个生产长期运行在最佳状态下,同时,优化系统的应用还能节约原材料消耗,降低能源消耗,提高产品的合格率,增强产品的市场竞争能力。

1.氨的性质

1.1物理性质

无色气体,有刺激性恶臭味。分子式NH3。分子量17.03。相对密度0.7714g/l。熔点-77.7℃。沸点-33.35℃。自燃点651.11℃。蒸气密度0.6。蒸气压1013.08kPa(25.7℃)。

1.2化学性质

蒸气与空气混合物爆炸极限16~25%(最易引燃浓度17%)。

氨在20℃水中溶解度34%,25℃时,在无水乙醇中溶解度10%,在甲醇中溶解度16%,溶于氯仿、乙醚,它是许多元素和化合物的良好溶剂。水溶液呈碱性,0.1N水溶液PH值为11.1;液态氨将侵蚀某些塑料制品,橡胶和涂层。

遇热、明火,难以点燃而危险性较低; 但氨和空气混合物达到上述浓度范围遇明火会燃烧和爆炸,如有油类或其它可燃性物质存在,则危险性更高。与硫酸或其它强无机酸反应放热,混合物可达到沸腾;不能与下列物质共存:乙醛、丙烯醛、硼、卤素、环氧乙烷、次氯酸、硝酸、汞、氯化银、硫、锑、双氧水等。

2.合成氨的生产工艺

19世纪中叶,炼焦工业兴起,生产焦炭过程中制得了氨。煤中的氮约有20%~25%转化为氨,煤气中氨含量为8~11g/m3,因而可以从副产焦炉中回收氨。但这样回收的氨量不能满足需要,促使人们研究新的合成氨的方法来满足工业需要,以下介绍不同原料合成氨的简要生产过程。

2.1以固体燃料(煤或焦炭)为原料的合成氨的简要生产过程

煤或焦炭造气脱硫CO变换

精制脱CO2

压缩

合成合成尿素

氨尿素

2.2以天然气或轻油为原料的合成氨的简要生产过程

天然气或轻油脱硫一段转化二段转化

CO高变

CO低变

压缩甲烷化脱CO2

合成合成尿素

氨尿素

2.3以重油为原料的合成氨的简要生产过程

重油油气化除炭黑脱硫CO变化

空气空分脱CO2

液氨洗涤

压缩合成尿素

2.4合成氨各工段工艺流程(以煤为原料)

2.4.1造气工段(间歇式气化过程在固定床煤气发生炉中进行的)

(1)五个阶段:

①吹风阶段:吹入空气,提高燃料层温度,吹风气放空。

工艺流程:空气—煤气炉底部—燃料层—炉顶—上旋风除尘器—废热锅炉—烟囱放空或送吹风气系统回收。

②一次上吹制气阶段:自下而上送入水蒸汽进行气化反应,燃料层下部温度下降,上部升高。

工艺流程:水蒸汽和加氮空气—煤气炉底部—燃料层—炉顶—上旋风除尘器—废热锅炉—洗气箱—洗气塔—煤气总管—气柜

③下吹制气阶段:水蒸汽自上而下进行反应,使燃料层温度趋下均衡。

工艺流程:蒸汽(不加空气)—炉顶—燃料层—炉底—废热锅炉—洗气箱—洗气塔—煤气总管—气柜

④二次上吹制气阶段:使底部下吹煤气排净,为吹入空气做准备。工艺流程与一次上吹阶段相同。

⑤空气吹净阶段:此部分吹风气加以回收,作为半水煤气中氮的主要来源。

工艺流程:空气—煤气炉底部—燃料层—炉顶—上旋风除尘器—废热锅炉—洗气箱—洗气塔—煤气总管—气柜

(2)工艺条件:

①温度:炉温应较熔点温度低50℃

②吹风速度:吹风速度直接决定放热。

③蒸汽用量:是改善煤气质量和提高煤气产量的重要手段之一。

④循环时间及其分配:等于或略少于3min

2.4.2净化工段

(1)原料气的脱硫:合成氨原料气中,一般总含有一定数量的无机硫化物(主要是硫化氢H2S),其次是有机硫化物如二硫化碳(CS2)、硫氧化碳(COS)、硫醇(RSH)、噻吩(C4H4S)等

①湿法脱硫:在吸收塔中用液体吸收剂(脱硫剂)吸收煤气中的硫化氢,而后再将吸收剂再生,再生后的吸收剂再送回吸收塔中循环使用。按硫的回收形态,可分为循环法和

氧化法。

循环法:(以氨水脱硫为例)

NH3·H2O+H2S=NH4HS+H2O

氧化法:(改良ADA法)

脱硫塔中的反应:

Na2CO3+H2S→NaHS+NaHCO3

2NaHS+4NaVO3+H2O→Na2V4O9+4NaOH+2S

Na2V4O9+2ADA(氧化态)+2NaOH+H2O→4NaVO3+2ADA(还原态)

再生塔中反应:

2ADA(还原态)+O2→2ADA(氧化态)+H2O

②干法脱硫(氧化锌法最为常见)

脱硫反应:

ZnO+H2S=ZnS+H2O

ZnO+C2H5SH=ZnS+C2H5OH

ZnO+C2H5SH=ZnS+C2H4+H2O

氧化锌脱硫剂:以ZnO为主体,其余为Al2O3,还有的加入CuO、MoO3、TiO2、MnO2、MgO等以增进脱硫效果。

(2)一氧化碳变换:一氧化碳不仅不是合成氨所需的直接原料,而且对氨合成催化剂有毒害作用,因此原料气送往合成工序之前必须将一氧化碳彻底清除。

主反应:CO+H2O CO2+H2△H0298=-41.19KJ/mol

副反应:CO+H2C+H2O

CO+3H2CH4+H2O

(3)二氧化碳的除净:原料气经CO变换后都含有相当量的CO2,CO2的存在对下步的反应不利,但其又是制造尿素、碳酸氢铵、纯碱等工业的原料。根据所用吸收剂的性质不同,可分为物理吸收和化学吸收两类。

物理吸收法利用二氧化碳能溶解于水或有机溶剂来完成的。常用的有水、甲醇、碳酸丙烯酯、磷酸三丁酯等。

化学吸收法是用氨水、碳酸钾、有机胺等碱性溶液为吸收剂,基于二氧化碳是酸性气体能与溶液中的碱性物质进行化学反应而将其吸收。

(4)原料气的精制:经一氧化碳变换和二氧化碳脱除后的原料气尚有少量含有少量的一氧化碳和二氧化碳会对氨合成催化剂毒害。方法有铜氨液吸收、甲烷化法、深冷液氮洗涤法、变压吸附法。

2.4.3合成氨工段

(1)氨的合成:

0.5N2+1.5H2NH3+46.22kJ/mol

氨合成反应为气固非均相反应。当气流速度较大、催化剂粒度足够小时,整个过程速度为动力学控制。

工艺条件选择:最佳温度:(400~500℃)。压力:中小型厂20~32MPa;大型厂

15MPa)。空间速度:中压法空速(30Mpa),20000~30000h-1;低压法空速(15Mpa),10000h-1。

(2)氨的分离:氢氮混合气经过合成塔催化剂床反应后,只有很少部分氢氮气合成为氨,产物与未反应的氢氮气一起离开合成塔,因此需要进行氨的分离。分离方法有:

冷凝法:把含氨混合气冷却,使其中大部分氨冷凝与循环气分开。目前工业上常用此法。水吸收法:此法利用氨易溶于水得到浓氨水,氨水经蒸馏、冷凝成为液氨。缺点:能耗较大,工厂用之较少。

有机溶剂吸收法(三甘醇等):溶剂易挥发至混合器中分离不净对催化剂有影响,用之较少。

3.合成氨的应用

在国民经济中,氨占有重要地位,特别是对农业生产有着重大意义。氨主要用来制作化肥。液氨可以直接用作肥料,它的加工产品有尿素、硝酸铵、氯化氨和碳酸氢氨以及磷酸铵、氮磷钾混合肥等。

氨也是非常重要的工业原料,在化学纤维、塑料工业中,则以氨、硝酸和尿素作为氮元素的来源生产己内酰胺、尼龙-6、丙烯腈等单体和尿醛树脂等产品。

由氨制成的硝酸,是各种炸药和基本原料,如三硝基申苯,硝化甘油以及其它各种炸药。硝酸铵既是优良的化肥,又是安全炸药,在矿山开发等基本建设中广泛应用。

氨在其他工业中的应用也非常广泛。在石油炼制、橡胶工业、冶金工业和机械加工等部门以及轻工、食品、医药工业部门中,氨及其加工产品都是不可缺少的。例如制冷、空调、食品冷藏系统大多数都是用氨作为制冷剂。.

3.1氨气用途

a:工业上用氨气来通过氧化制造硝酸,而硝酸是重要的化工原料。

b:制造化肥。

3.2氨水用途

a.氨水是实验室重要的试剂

b.军事上作为一种碱性消毒剂,用于消毒沙林类毒剂。常用的是10%浓度的稀氨水(密度0.960),冬季使用浓度则为20%。

c.无机工业用于制选各种铁盐。

d.毛纺、丝绸、印染等工业用于洗涤羊毛、呢绒、坯布,溶解和调整酸碱度,并作为助染剂等。

e.有机工业用作胺化剂,生产热固性酚醛树脂的催化剂。

f.医药上用稀氨水对呼吸和循环起反射性刺激,医治晕倒和昏厥,并作皮肤刺激药和消毒药。

g.也用作洗涤剂、中和剂、生物碱浸出剂。还用于制药工业,纱罩业,晒图等。

4.我国合成氨工艺技术现状及其未来发展趋势

我国的氮肥工业自20 世纪50年代以来, 不断发展壮大, 目前合成氨产量已跃居世界第一位,现已掌握了以焦炭、无烟煤、焦炉气、天然气及油田伴生气和液态烃多种原料生产合成氨、尿素的技术, 形成了特有的煤、石油、天然气原料并存和大、中、小生产规模并存的生产格局。

4.1大型合成氨生产工艺技术现状

4.2中、小型合成氨生产工艺技术现状

我国目前有中型合成氨装置55套, 生产能力约为500 万t /a; 其下游产品主要是尿素和硝酸铵; 其中以煤、焦为原料的装置有34套, 以渣油为原料的装置有9套, 以气为原料

的装置有12 套。目前有小型合成氨装置700多套, 生产能力约为3 000万t /a; 其下游产品原来主要是碳酸氢铵, 现有112套经过改造生产尿素。原料以煤、焦为主,其中以煤、焦为原料的占96% , 以气为原料的仅占4%。

4.3合成氨技术未来的发展趋势

1.大型化、集成化、自动化, 形成经济规模的生产中心、低能耗与环境更友好将是未来合成氨装置的主流发展方向。在合成氨装置大型化的技术开发过程中, 其焦点主要集中在关键性的工序和设备, 即合成气制备、合成气净化、氨合成技术、合成气压缩机:在低能耗合成氨装置的技术开发过程中, 其主要工艺技术将会进一步发展。

2.以“油改气”和“油改煤”为核心的原料结构调整和以“多联产和再加工”为核心的产品结构调整, 是合成氨装置“改善经济性、增强竞争力”的有效途径。

3.实施和环境友好的清洁生产时未来合成氨装置的必须和唯一的选择。

4.提高生产运转的可靠性, 延长运行周期是未来合成氨装置改善经济性、增强竞争力的必要保证。

5.研究合成氨对化学化肥的意义

生产和使用化肥,是农业生产和科学研究发展到一定阶段的必然产物。农业生产的不同历史阶段,有不同的主要肥源。20世纪初,由于大规模合成氨方法的问世,化肥工业获得迅速发展,并已成为发达国家传统的工业基础之一。当今一座年产30万吨合成氨或50万吨尿素的化肥厂,一年能生产的氮素,大约相当于种植80万公顷豆科绿肥或

饲养3000万头猪的猪厩肥所能提供的氮素。更为重要的是,化肥作为一种新肥源,突破了农业(废)副产品还田和农业物质自然(有机)循环的局限。它可以完全不依赖于土地及作物本身,不受气候和其他自然条件的影响,采用现代工业生产的方法,大量提供作物必需的养分,从而在现代农业中大放异彩。农业发展的统计结果认为,粮食产量主要与这些化学指数(单位面积N+P2O5+K2O施用量)呈密切相关。人口密度高的国家,化学化发展越快,化学化指数越高。-这已为一个多世纪来不同国家的农业现代化实践所证明,那些耕地潜力有限的国家,如西欧各国和日本,农业现代都从增施化肥起步。即在一个时期内,主要以化肥形式对农业增加投入,以提高作物单产为首要目标,进而实现农业机械化。从20世纪70年代以后,发展中国家如中国、印度和一些亚洲国家,其化肥使用水平提高很快,这也是其农业生产快速发展的主要原因。

从发展趋势看,化学肥料的生产和施用,主要是提高肥料浓度,发展二元、三元复合肥料或液化肥料,并采用颗粒肥料和深层施肥法。虽然有机肥料不可忽视,但是,现在化学肥料仍在增产中占有重要地位。据联合国粮食组织统计, 1公斤化肥一般增产籽粒和茎秆各10公斤。所以,年近来,化肥的生产和研究水平不断提高,主要表现在:高浓度化肥逐渐代替低浓度化肥,欧美和日本生产的一种超高浓度肥料,含有效成分

达 94%以上;复合肥料、混合肥料迅猛发展,目前除含铜等微量元素的新复合肥料之外,有的厂家生产的有效成份在40%以上;液体肥料和长效肥料逐年增加,这种肥料优点突出,效果良好;微量元素肥料越来越占显著地位。活性有机肥问世,生产无公害、无污

染绿色食品,对人类是极为重要的贡献。除此之外,生物固氮的研究正在大力开展之中,不久将会给肥料的制造和使用带来革命性的大变化。

参考文献

[1]韩冬冰.化工工艺学[M].北京:中国石油出版社,2011.398-415

[2]孙凤伟.栾智宇.合成氨工艺技术的现状及其发展趋势[J],辽宁化工,2010.39(4):452-453

[3]蒋德军.合成氨工艺技术的现状及其发展趋势[J],现代化工,2005.8:9-16

[4]王新杰.合成氨厂两气回收技术的应用[J].中氮肥2006,23(1):13~14

[5]刘俊兰.以煤为原料的合成氨工艺选择[J].化学工业与工程技术,2000,21(4):16-18

[6]汪家铭.世界合成氨工业近期进展及前景展望[J].化工科技动态,1995.3(7):9-10

[7]王敏.合成氨生产中的废气利用与节能效益[J].江西能源,2001.7(3):26~27

我国合成氨工业的现状及发展趋势

我国合成氨工业的现状及发展趋势 合成氨工业的现状及发展趋势 一、我国合成氨工业已走过了五十多年的路程,从小到大从弱到强,从3000吨/年——5000吨/年到45万吨/年,从碳铵到尿素。根据中国氮肥协会统计2019年合成氨产量5864.1万吨/年,位居世界第一,其中88%用来生产化肥;30万吨/年工厂有74家约占 49.4%,8万吨/年上以工厂有223家占82.4%,合成氨工业由3000吨/年发展到今天40万 吨/年(单系列),全国从1000个厂到今只有300个厂,然而总产量不但没有下降,反而 有所增加,尿素2019年出口355.95万吨,从而保证了粮食生产连年丰收。(据农业部门 反映一吨尿素可增产粮食几吨),我国粮食为什么连年丰收增产,一是靠国家支农、惠农、护农政策,二是靠优良品种,三是靠化肥支撑。因此对于我们这样一个有13.4亿人的大国,如果粮食生产不能稳定,那是不堪设想的。因此合成氨工业是国家发展的需要,也是 人民生活的需要。 二、我国合成氨工业发展趋势 由于我国人多地少,粮食需求量大,因此合成氨工业必须由小变大,向大型化、现代 化发展,过去小规模用块煤的技术已远远不能满足国民经济发展需要,发展趋势主要是: 1. 由小变大,扶大压小; 2. 由块煤变粉煤; 3. 由低压向中压、高压气化发展; 具体有以下几点: 1. 中压、高压造气 不管用水煤浆气化炉、干粉煤气化炉,还是块煤炉,流化床气化炉都要向中压、高压 发展,现在有的气化炉已做到8.7Map ,一般都在4.0Map 左右。 透平压缩这样可以省电3%左右。 2. 低压合成氨。 过去为了追求产量合成氨压力由低压向高压发展,现在从降低能耗的角度又能向低压,目前已成功运用15Map ,10Map 即正在试验中,这样可以做到电耗最低。 3. 高度净化,为了保证催化剂长周期运行气体净化已达到PPM 级,甚至PPb 级。 4. 消灭三废,最少做到达标排放,最终做到零排放。

合成氨工艺流程

合成氨工艺流程标准化管理部编码-[99968T-6889628-J68568-1689N]

将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化所生成的半水煤气经燃烧室、废热锅炉回收热量后送入气柜。 半水煤气由气柜进入电除尘器,除去固体颗粒后依次进入压缩机的Ⅰ、Ⅱ、Ⅲ段,加压到~,送入脱硫塔,用溶液或其他脱硫溶液洗涤,以除去硫化氢,随后,气体经饱和塔进入热交换器,加热升温后进入一氧化碳变换炉,用水蒸汽使气体中的一氧化碳变为氢。变换后的气体,返回热交换器进行降温,并经热水塔的进一步降温后,进入变换器脱硫塔,以除去变换时产生的硫化氢。然后,气体进入二氧化碳吸收塔,用水洗法除去大部分二氧化碳。脱碳后的原料进入压缩机Ⅳ、Ⅴ段,升压到压缩机~后,依次进入铜洗塔和碱洗塔,使气体中残余的一氧化碳和二氧化碳含量进一步降至20(ppm)以下,以满足合成氨的要求。 净化后的原料气进入压缩机的最后一段,升压到~MPa进入滤油器,在此与循环压缩机来的循环气混合,经除油后,进入冷凝塔和氨冷器的管内,再进入冷凝塔的下部,分离出液氨。分离出液氨后的气体进入冷凝塔上部的管间,与管内的气体换热升温后进入氨合成塔。在高温高压并有催化剂存在的条件下,将氮氢气合成氨。出合成塔的气体中,约含氨10~20%,经水冷器与氨冷器将氨液化并分离后,其气体进入循环压缩机循环使用。分离出的液氨进入液氨贮槽。 原料气的制备:制备氢氮比为3:1的半水煤气 即造气。将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化后生成氢氮比为3:1的半水煤气。整个生产过程由煤气发生炉、燃烧室、废热锅炉、气柜等设备组成。 固定床半水煤气制造过程由吹风、上吹制气、下吹制气、二次上吹、空气吹净等5个阶段构成,为了调节氢氮比,在吹风末端要将部分吹风气吹入煤气,这个过程通常称为吹风回收。 吹风阶段:空气从煤气炉的底部吹入,使燃料燃烧,热量贮存于燃料中,为制气阶段碳与水蒸汽的反应提供热量。吹风气经过燃烧室和废热锅炉后放空。上吹制气阶段:从煤气炉的底部通入混有适量空气的水蒸汽,和碳反应生成的半水煤气经过炉的顶部引出。向水蒸汽中加入的空气称为加氮空气。 下吹制气阶段:将水蒸汽和加氮空气由炉顶送入,生成的半水煤气由炉底引出。二次上吹制气阶段:水蒸汽和加氮空气自下而上通过燃料层,将炉底残留的半水煤气排净,为下一步送入空气创造安全条件。 空气吹净阶段:从炉底部吹入空气,所得吹风气为半水煤气中氮的主要来源,并将残留的半水煤气加以回收。 以上五个阶段完成了制造半水煤气的主过程,然后重新转入吹风阶段,进入下一个循环。原料气的净化:除去原料气中的硫化氢、二氧化碳等杂质,将一氧化碳转化为氢气本阶段由原料气脱硫、一氧化碳变换、水洗(脱除二氧化碳)、铜洗(脱除一氧化碳)、碱洗(脱除残余二氧化碳)等几个工段构成,主要设备有除尘器、压缩机、脱硫塔、饱和塔、热水塔、一氧化碳变换炉、二氧化碳吸收塔、铜洗塔、碱洗塔等。 脱硫:原料气中硫化物的存在加剧了管道及设备的腐蚀,而且能引起催化剂中毒,必须予以除去。脱硫方法可分为干法脱硫和湿法脱硫两大类。干法脱硫是用固体硫化剂,当气体通过脱硫剂时硫化物被固体脱硫剂吸附,脱除原料气中的少量硫化氢和有机硫化物。一般先进行湿法脱硫,再采用干法脱硫除去有机物和残余硫化氢。湿法脱硫所用的硫化剂为溶液,当含硫气体通过脱硫剂时,硫化物被液体剂吸收,除去气体中的绝大部分硫化氢。

合成氨发展史及未来的发展方向

合成氨 发展史及未来的发展方向

合成氨发展史及未来的发展方向 各位同事工友们,下午好: 我今天演讲的题目是“合成氨发展史及未来的发展方向”,是一种科普性质的讲义,作为一个搞氨合成的专业技术人员来说,知道合成氨的发展历史和未来的发展方向,对把握我们公司的发展和了解我们的现状,很有必要和意义。 一、为什么叫合成氨 我们把氨叫做合成氨,为什么在氨的前面加了“合成”两个字,我们知道氨的分子式是NH3,由于氨的不活泼性,使得人们直到19世纪晚期仍然普遍认为将氮与氨直接合成氨是不可能的,20世纪初,虽然有人借助催化剂的作用合成了氨,但仍然认为无法工业化,因为确实遇到了诸如可供实际工业使用的催化剂难以找到、高温高压能够抵抗氢腐蚀的材料无法解决等问题,可以认为合成氨的技术开发历程阻力重重,举步维艰,经过千万次的不懈努力,才使得世界上第一座工业规模的氨系统于1913年在德国建成投产。从此开创了氮肥工业的新纪元。为了纪念氨开发的艰难,特在氨前面加“合成”两个字。 二、合成氨在国民经济中的地位和作用 1、用氨制造氮肥。我们知道土壤所缺的养份主要是氮磷、钾。从解放前直至改革开放初期,中国的粮食产量一直不能自给自足,主要原因是中国几乎所有的土壤都需补氮。

由于合成氨工业不能满足农业施肥的需要,土壤补氮不足,农作物只能在低产水平上徘徊(300斤过黄河,400斤跨长江),为了满足粮食生产的需要,我国一直把发展化肥工业作为整个化学工业的首要任务,中国要以全世界7%的耕地来养活全世界22%的人口。经过60多年的发展,我国合成氨制造和氮肥产量已居世界首位,合成氨作为制造氮肥的主要原料,为粮食增产、农民增收、社会稳定立下了汗马功劳。 2、氨的工业用途 氨是氮的一种固定形式,除少数场合直接使用外,更主要的是使用其中的氮与其他物质化合而成各种不同的含氮化合物,然后再用于各工业领域。 虽然氮分子只由两个氮原子组成,但是氮原子可以形成三个键,如果这三个键都与氢原子相联,就形成了氨(NH3),将氨的氢原子以各种不同的化学物质取代,就会的到不同的衍生物。 氨中的氢原子被碳(C)取代后,由于碳的加入,氨由无机物而变为有机物---胺,按取代氢原子数目多少而依次排列为伯胺、仲胺和叔胺,这些都是重要的化工原料。在特殊情况下,氮还可以产生第四个键,如也被碳(C)取代,即成为季胺,这是构成人体的重要组成部分:胆胺及胆碱的基础。 氨基与苯环相联,就构成苯胺,这是苯胺系如染料的基

年产30万吨合成氨脱碳工段工艺设计

年产30万吨合成氨脱碳 工艺项目 可行性研究报告 指导教师:姚志湘 学生:魏景棠

目录 第一章总论 (3) 1.1 概述 (3) 1.1.1 项目名称 (3) 1.1.2 合成氨工业概况 (3) 1.2 项目背景及建设必要性 (4) 1.2.1 项目背景 (4) 1.2.2 项目建设的必要性 (4) 1.2.3 建设意义............................................................................. 错误!未定义书签。 1.2.4 建设规模 (4) 第二章市场预测 (6) 2.1国内市场预测 (6) 2.2 产品分析 (6) 第三章脱碳方法及种类.. (7) 3.1 净化工序中脱碳的方法. (7) 3.1.1 化学吸收法 (7) 3.1.2 物理吸收法 (8) 3.1.3 物理化学吸收法................... (8) 3.1.4 固体吸收法 (10) 3.2碳酸丙烯酯(PC)法脱碳基本原理 (10) 3.2.1 PC法脱碳技术国内外的情况 (10) 3.2.2 发展过程 (10) 3.2.3 技术经济 (11) 3.2.4 工艺流程 (11) 3.2.5 存在的问题及解决方法 (12) 3.2.6 PC脱碳法发展趋势 (13)

第一章项目总述 2.1 概述 1.1.1项目名称 年产30万吨合成氨脱碳工段工艺设计 1.1.2合成氨工业概况 1898年,德国A.弗兰克等人发现空气中的氮能被碳化钙固定而生成氰氨化钙(又称石灰氮),进一步与过热水蒸气反应即可获得氨: CaCN2+3H2O(g)→2NH3(g)+CaCO3 在合成氨工业化生产的历史中,合成氨的生产规模(以合成塔单塔能力为依据)随着机械、设备、仪表、催化剂等相关产业的不断发展而有了极大提高。50年代以前,最大能力为200吨/日,60年代初为400吨/日,美国于1963年和1966年分别出现第一个600t/d 和1000t/d的单系列合成氨装置,在60-70年代出现1500-3000t/d规模的合成氨。 世界上85%的合成氨用做生产化肥,世界上99%的氮肥生产是以合成氨为原料。虽然全球一体化的发展减少了用户的选择范围,但市场的稳定性却相应地增加了,世界化肥生产的发展趋势是越来越集中到那些原料丰富且价格便宜的地区,中国西北部有蕴藏丰富的煤炭资源,为发展合成氨工业提供了极其便利的条件。 2.2 项目背景及建设必要性 1.2.1 项目背景 我国是一个人口大国,农业在国民经济中起着举足轻重的作用,而农业的发展离不开化肥。氮肥是农业生产中需要量最大的化肥之一,合成氨则是氮肥的主要来源,因而合成氨工业在国民经济中占有极为重要的位置。 我国合成氨工业始于20世纪30年代,经过多年的努力,我国的合成氨工业得到很大的发展,建国以来合成氨工业发展十分迅速,从六十年代末、七十年代初至今,我国陆续引进了三十多套现代化大型合成氨装置,已形成我国特有的煤、石油、天然气原料并存和大、中、小规模并存的合成氨生产格局。目前我国合成氨产能和产量己跃居世界前列。 但是,由于在我国合成氨工业中,中小型装置多,技术基础薄弱,国产化水平低,远远不能满足农业生产和发展的迫切需要,因此,开发新技术的同时利用计算机数学模型来提高设汁、生产、操作和管理等的核算能力,促进设计、管理和生产操作的优化,从而推动合成氨工业发展,提升整体技术水平,己成为国内当前化学工程科研、工程设计的重要课题。

-合成氨原料气的制备方法

年产五十万吨合成氨的原料气制备工艺筛选 合成氨生产工艺流程简介 合成氨因采用的工艺不同其生产流程也有一定的差别,但基本的生产过程都大同小异,基本上由原料气的生产、原料气的净化、合成气的压缩以及氨合成四个部分组成。 ●原料气的合成 固体燃料生产原料气:焦炭、煤 液体燃料生产原料气:石脑油、重油 气体燃料生产原料气:天然气 ●原料气的净化 CO变换 ●合成气的压缩 ●氨的合成 工业上因所用原料制备与净化方法不同,而组成不同的工艺流程,各种原料制氨的典型流程如下: 1)以焦炭(无烟煤)为原料的流程 50年代以前,世界上大多数合成氨厂采用哈伯-博施法流程。以焦炭为原料的吨氨能耗为88GJ,比理论能耗高4倍多。 我国在哈伯-博施流程基础上于50年代末60年代初开发了碳化工艺和三催化剂净化流程: ◆碳化工艺流程将加压水洗改用氨水脱除CO2得到的碳酸氢铵经结晶,分离后作 为产品。所以,流程的特点是气体净化与氨加工结合起来。 ◆三催化剂净化流程采用脱硫、低温变换及甲烷化三种催化剂来净化气体,以替代 传统的铜氨液洗涤工艺。 2)以天然气为原料的流程 天然气先要经过钴钼加氢催化剂将有机硫化物转化成无机硫,再用脱硫剂将硫含量脱除到以下,这样不仅保护了转化催化剂的正常使用,也为易受硫毒害的低温变换催化剂应用提供了条件。 3)以重油为原料的流程 以重油作为制氨原料时,采用部分氧化法造气。从气化炉出来的原料气先清除炭黑,经CO耐硫变换,低温甲醇洗和氮洗,再压缩和合成而得氨。 二、合成氨原料气的制备方法简述 天然气、油田气、炼厂气、焦炉气、石脑油、重油、焦炭和煤,都是生产合成氨的原料。除焦炭成分用C表示外,其他原料均可用C n H m来表示。它们呢在高温下与蒸汽作用生成以H2和CO为主要组分的粗原料气, 这些反应都应在高温条件下发生,而且为强吸热反应,工业生产中必须供给热量才能使其进行。 按原料不同分为如下几种制备方法: ●以煤为原料的合成氨工艺 各种工艺流程的区别主要在煤气化过程。 典型的大型煤气化工艺主要包括固定床碎煤加压气化工艺、德士古水煤浆加压气化工艺以及壳牌干煤粉加压气化工艺。 ①固定床碎煤气化

合成氨工艺流程简述

合成氨工艺流程简述标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9NJ

合成氨工艺流程简述 1、粘结剂制备 先将水加入到粘结剂提取罐内,然后向罐内微通蒸汽,加热温度应≤40°C,开动搅拌机在不断搅拌的情况下投入液体烧碱(30%N a OH),待碱液温度达一定时继续搅拌,投入筛好的褐煤(含腐植酸约35%),含量低的褐煤应适当多投,可根据腐植酸含量高低而调整加入量,边投料边通蒸汽,同时不停搅拌,此时由于化学反应而放出热量产生少量气体、液位有所升高,为防止冒槽现象应酌惜减少蒸汽加入量,维护反应温度,时间约2小时反应基本完全,可取少量提取液检查,其颜色为黑褐色,有粘结性,用母指和食指捏后拉开有连丝,冷却后粘结性增大,流动性变差,视为提出制液结束。此时停蒸汽,不停搅拌待用。 2、原料煤的粉碎和粘结剂的加入 原料煤先送入一级粉碎机,粉至3毫米以下,后经皮带机送入鼠笼粉碎机粉至1毫米以下,经皮带机送入双轴搅拌机内,此时山操作工视其送入的煤量酌惜控制加液阀加入已提取好的粘结剂,在双轴搅拌机内不断的搅拌推进混匀后落入斜皮带机,送至分仓平皮带机,分仓堆泯备用(粘结剂的加入量是根据经验判断掌握调节,一般加液后的煤屑用手抓一把捏得拢,两指能捏散较为合适)。 3、煤棒制备 泯化合格的原料煤送煤棒机挤压成型后经皮带机输送到煤棒烘干炉中,利用吹风气回收锅炉的尾气(温度?160°C)将煤棒烘干,再经皮带机输送到造气车间供造气炉制取半水煤气用。 4、半水煤气制取以空气和蒸汽为气化剂,在常压、高温下与煤棒中的炭作用,通过固定床(造气炉)蓄热间歇制气法得到半水煤气,根据氨合成必需的氢、氮气体比例调整空气和蒸汽加入量,保证合成氨系统的循环氢含量,造气过程山微机控制,分为五个阶段:

合成氨脱碳工艺.doc.doc

合成氨脱碳工艺简介 合成氨生产工艺简述 合成氨是一个传统的化学工业,诞生于二十世纪初。就世界范围来说,氨是最基本的化 工产品之一,其主要用于制造硝酸和化学肥料等。合成氨的生产过程一般包括三个主要步骤: (l )造气,即制造含有氢和氮的合成氨原料气,也称合成气; (2)净化,对合成气进行净化处理,以除去其中氢和氮之外的杂质; (3)压缩和合成,将净化后的氢、氮混合气体压缩到高压,并在催化剂和高温条件下 反应合成为氨。其生产工艺流程包括:脱硫、转化、变换、脱碳、甲烷化、氨的合成、吸收 制冷及输人氨库和氨吸收八个工序[1]。 在合成氨生产过程中,脱除CO2是一个比较重要的工序之一,其能耗约占氨厂总能耗 的10%左右。因此,脱除 CO2,工艺的能耗高低,对氨厂总能耗的影响很大,国外一些较 为先进的合成氨工艺流程,均选用了低能耗脱碳工艺。我国合成氨工艺能耗较高,脱碳工艺技术也显得比较落后,因此,结合具体情况,推广应用低能耗的脱除CO2工艺,非常有必要。 1.1.4 脱碳单元在合成氨工业中的作用 在最终产品为尿素的合成氨中,脱碳单元处于承前启后的关键位置,其作用既是净化合成气,又是回收高纯度的尿素原料CO2。以沪天化 1000t/d 合成氨装置脱碳单元为例,其需 要将低变出口的 CO2含量经吸收后降到 0.1% 以下,以避免甲烷化系统超温并产生增加能耗 的的合成惰气,同时将吸收的CO2再生为 99%纯度的产品 CO2。在此过程中吸收塔压降还 应维持在合理范围内以降低合成气压缩机的功耗。系统的扩能改造工程中,脱碳单元将为系统瓶颈,脱碳运行的好坏,直接关系到整个装置的安全稳定与否。脱碳系统的能力将影响合成氨装置的能力,必须同步进行扩能改造。 但是不论用什么原料及方法造气,经变换后的合成气中都含有大量的CO2,原料中烃的分子量越大,合成气中 CO2就越多。用天然气(甲烷 )为原料的烃类蒸汽转化法所得的CO2 量较少,合成气中 CO2浓度在15-20%,每吨氨副产 CO2约 1.0-1.6 吨。这些 CO2如果不在合成工序之前除净,不仅耗费气体压缩功,空占设备体积,而且对后续工序有害。此外, CO2还是重要的化工原料,如合成尿素就需以CO2为主要原料。因此合成氨生产中把脱除工艺 气中CO2的过程称为“脱碳”,在合成氨尿素联产的化肥装置中,它兼有净化气体和回收纯净CO2的两个目的。 1.1.5 脱碳方法概述 由变换工序来的低变气进脱碳系统的吸收塔,经物理吸收或者化学吸收法吸收二氧化 碳。出塔气中二氧化碳含量要求小于0.1% 。为了防止气体夹带出脱碳液,脱碳后的液体进 人洗涤塔,用软水洗去液沫后再进入甲烷化换热器。脱碳塔出来的富液经换热器后,减压送至二氧化碳再生塔,用蒸汽加热再沸器,再脱去二氧化碳。由再生塔顶出来的CO2,经空冷器和水冷器,气体温度降至40℃,再经二氧化碳分离器除去冷凝水,送到尿素车间作原料。 再生后的脱碳液(贫液),先进溶液空冷器,冷却至65℃左右,由溶液循环泵加压,再经溶 液水冷器冷却至 40℃后,送入二氧化碳吸收塔循环使用。 1.2 净化工序中脱碳方法 在合成氨的整个系统中,脱碳单元将为系统关键主项,脱碳工序运行的好坏,直接关系到整个装置的安全稳定与否。脱碳系统的能力将影响合成氨装置和尿素装置的能力。CO2 是一种酸性气体,对合成氨合成气中CO2的脱除,一般采用溶剂吸收的方法。 根据 CO2与溶剂结合的方式,脱除CO2的方法有化学吸收法、物理吸收法和物理化学 吸收法三大类。 1.2.1 化学吸收法 化学吸收法即利用CO2是酸性气体的特点,采用含有化学活性物质的溶液对合成气进 行洗涤, CO2与之反应生成介稳化合物或者加合物,然后在减压条件下通过加热使生成物分

产万吨合成氨脱碳工段工艺设计方案

年产30万吨合成氨脱碳 工艺工程 可行性研究报告 指导教师:姚志湘 学生:魏景棠

目录 第一章总论3 1.1 概述3 1.1.1工程名称3 1.1.2合成氨工业简况3 1.2 工程背景及建设必要性4 1.2.1工程背景4 1.2.2工程建设的必要性4 1.2.3建设意义错误!未定义书签。 1.2.4建设规模4 第二章市场预测 (6) 2.1国内市场预 测 (6) 2.2 产品分析 (6) 第三章脱碳方法及种类.... .. (7) 3.1 净化工序中脱碳的方法.. (7) 3.1.1化学吸收 法 (7) 3.1.2物理吸收 法 (8) 3.1.3物理化学吸收法.................. (8) 3.1.4 固体吸收法 (10) 3.2碳酸丙烯酯

3.2.4 工艺流程 (11) 3.2.5 存在的问题及解决方法 (12) 3.2.6 PC脱碳法发展趋势 (13) 第一章工程总述 2.1 概述 1.1.1工程名称 年产30万吨合成氨脱碳工段工艺设计 1.1.2合成氨工业简况 1898年,德国A.弗兰克等人发现空气中的氮能被碳化钙固定而生成氰氨化钙<又称石灰氮),进一步与过热水蒸气反应即可获得氨: CaCN2+3H2O

合成氨工艺简介

合成氨工艺简介 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

摘要 煤气化法是我国合成氨的主要制气方法,也是未来更替天然气和石油资源所必将采用的制气方法。即利用无烟煤、蒸汽和空气在碳发生炉内生产合成氨所需要的气体,俗称半水煤气。在已制得的半水煤气中,除了含有按合成工艺所需要的氮气和氢气外,还含有许多杂质和有害气体。由于这些杂质和有害气体很容易使合成触媒中毒而降低触媒效能。为保护触媒,延长其使用寿命,保证合成氨生产的正常进行,半水煤气中的杂质和有害气体必须在合成之前得以及时清除,这就需要对混合气体进行净化处理,并且要求连续性作业,以达到化学反应稳定进行,从而构成了合成氨工艺流程错综复杂和连续性强的生产特点。 一合成氨的生产方法简介 氨的合成,必须制备合成氨的氢、氮原料气。氮可取之于空气或将空气液化分离而制得,氮气或使空气通过燃料层汽化将产生CO或CO2转化为原料气。氢气一般常用含有烃类的各种燃料制取,亦通过焦碳,无烟煤,重油等为原料与水作用的方法制取。由于我国煤储量丰富,所以以煤为原料制氨在我国工业生产中广泛使用。 合成氨的过程一般可分为四个步骤: 1.造气:即制备出含有氮一定比例的原料气。 2.净化:任何制气方法所得的粗原料气,除含有氢和氮外,还含有硫化氢、有机硫、一氧化碳、二氧化碳和少量氧,这些物质对氨合成催化剂均有害,需进行脱除,直至百万分之几的数量级为止。在间歇式煤气炉制气流程中,脱硫置于变换之前,以保护变换催化剂的活性。 3.精炼:原料气的最终精炼包括清除微量一氧化碳、二氧化碳、氧、甲烷和过量氮,以确保氨合成催化剂活性和氨合成过程的经济运行。 4.合成:将合格的氢氮混合气体压缩到高压,在催化剂作用下合成氨气。 二合成氨反应的基本原理 1. 造气:合成氨的原料——氢氮可以用下列两种方法取得 (1)以焦碳与空气、水蒸气作用 (2)将空气分离制取氮,由焦炉气分离制氢 采用煤焦固定床间歇式汽化法。反应方程如下: C+H2O=CO +H2 (1) CO+O2=CO2 (2) 2.脱硫:无论以固体煤作原料还是以天然气、石油为原料制备氢氮原料气都含有一定成分的硫元素,无机硫主要含有硫化氢;有机硫主要含有二硫化碳、硫化氧碳等等。 硫化氢对合成氨生产有着严重危害,但不能与铁反应生成硫化亚铁,而且进入变换及合成系统能使铁催化剂中毒,进入铜洗系统使铜液的低价铜生成硫化亚铜的低价沉淀,使操作恶化,铜耗增加。所以半水煤气总的无机碳化物和有机硫化物必须在进入变换、合成系统前除去。

合成氨生产工艺介绍

1、合成氨生产工艺介绍 1)造气工段 造气实质上是碳与氧气和蒸汽的反应,主要过程为吹风和制气。具体分为吹风、上吹、下吹、二次上吹和空气吹净五个阶段。原料煤间歇送入固定层煤气发生炉内,先鼓入空气,提高炉温,然后加入水蒸气与加氮空气进行制气。所制的半水煤气进入洗涤塔进行除尘降温,最后送入半水煤气气柜。 造气工艺流程示意图 2)脱硫工段 煤中的硫在造气过程中大多以H2S的形式进入气相,它不仅会腐蚀工艺管道和设备,而且会使变换催化剂和合成催化剂中毒,因此脱硫工段的主要目的就是利用DDS脱硫剂脱出气体中的硫。气柜中的半水煤气经过静电除焦、罗茨风机增压冷却降温后进入半水煤气脱硫塔,脱除硫化氢后经过二次除焦、清洗降温送往压缩机一段入口。脱硫液再生后循环使用。

脱硫工艺流程图 3)变换工段 变换工段的主要任务是将半水煤气中的CO在催化剂的作用下与水蒸气发生放热反应,生成CO2和H2。河南中科化工有限责任公司采用的是中变串低变工艺流程。经过两段压缩后的半水煤气进入饱和塔升温增湿,并补充蒸汽后,经水分离器、预腐蚀器、热交换器升温后进入中变炉回收热量并降温后,进入低变炉,反应后的工艺气体经回收热量和冷却降温后作为变换气送往压缩机三段入口。

变换工艺流程图 4)变换气脱硫与脱碳 经变换后,气体中的有机硫转化为H2S,需要进行二次脱硫,使气体中的硫含量在25mg/m3。脱碳的主要任务是将变换气中的CO2脱除,对气体进行净化,河南中科化工有限责任公司采用变压吸附脱碳工艺。来自变换工段压力约为1.3MPa左右的变换气,进入水分离器,分离出来的水排到地沟。变换气进入吸附塔进行吸附,吸附后送往精脱硫工段。 被吸附剂吸附的杂质和少量氢氮气在减压和抽真空的状态下,将从吸附塔下端释放出来,这部分气体称为解析气,解析气分两步减压脱附,其中压力较高的部分在顺放阶段经管道进入气柜回收,低于常 压的解吸气经阻火器排入大气。

合成氨工业发展史

合成氨工业发展史 一、人口增加与粮食需求 农业出现在12000年以前,是人类企图用增加食物供给来增强自己生存的开始。那时的人口约1500万。在2000 年前,由于农业的发展使人口增加到2.5亿。到1650年,人口又增长一倍,达到5亿。然后,到1850年世界人口就翻了一番,高达10亿,这段历程仅仅花了200 年时间。80 年后的1930年,人口超过了20亿。这种增长速度还未减缓,到1985年地球上供养的人数已达50亿。如果每年以1985年人口的2%水平继续增长下去的话,到2020年的世界人口将是100亿左右。因此限制人口的增长势在必行。目前,人口自然增长率在世界范围内正开始下降,据美国华盛顿人口局(1997年):2000年全球人口将由目前的58 亿增至61 亿,2025 年将达68 亿。人口局称,人口增长最快的是全球最贫困的国家。1996 年全球58 亿人中发展中国家的人口占了47 亿,占全球人口总增长率的98%。中国人口增长的形势也不容乐观。根据国家统计局的统计,中国人口已于1995年2 月15 日达到12亿。据预测,到2000 年中国人口将突破13.5亿。 显然,人类将面临日益严重的问题是给自己提供充足的食物和营养,以及从根本上限制人口增长。估计,到20 世纪末,严重营养不良的人数将达6.5 亿。解决问题的出路,必然需要科学的帮助,化学看来是最重要的学科之一。它之所以重要,首先是因为它能增加食物供给,其次它能给那些有意限制人口增长的人提供可靠的帮助。 在历史上,化学曾在扩大世界粮食供应过程中起过关键作用。这就是合成氨的发明和现代农药的使用,以及它们的工业化。 二、合成氨工业发展史 20 世纪初化学家们所面临的突出问题之一,是如何为大规模利用大气中氮找到一种实用的途径。氮化合物是肥料和炸药所必不可少的。但在当时,这种化合物的质量最优和最大来源是智利硝石。但智利地处南美而且远离世界工业中心;可是全世界无论何处,大气的五分之四都是氮。如果有人能学会大规模地、廉价地把单质的氮转化为化合物的形式,那么,氮是取之不尽、用之不竭的。 利用氮气与氢气直接合成氨的工业生产曾是一个较难的课题。合成氨从实验室研究到实现工业生产,大约经历了150年。直至1909年,德国物理化学家F ·哈伯(Fritz Haber,1868—1934)用锇催化剂将氮气与氢气在17.5MPa~20MPa和500℃~600℃下直接合成,反应器出口得到6%的氨,并于卡尔斯鲁厄大学建立一个每小时80g合成氨的试验装置。但是,在高压、高温及催化剂存在的条件下,氮氢混合气每次通过反应器仅有一小部分转化为氨。为此,哈伯又提出将未参与反应的气体返回反应器的循环方法。这一工艺被德国巴登苯胺纯碱公司所接受和采用。由于金属锇稀少、价格昂贵,问题又转向寻找合适的催化剂。该公司在德国化学家A ·米塔斯提议下,于1912 年用2500 种不同的催化剂进行了6500 次试验,并终于研制成功含有钾、铝氧化物作助催化剂的价廉易得的铁催化剂。而在工业化过程中碰到的一些难题,如高温下氢气对钢材的腐蚀、碳钢制的氨合成反应器寿命仅有80h 以及合成氨用氮氢混合气的制造方法,都被该以司的工程师 C ·博施(Carl Bosch,1874—1940)所解决。此时,德国皇帝威廉二世准备发动战争,急需大量炸药,而由氨制得的硝酸是生产炸药的理想原料,于是巴登苯胺纯碱公司于1912年在德国奥堡建成世界上第一座日产30t合成氨的装置,1913年9月9 日开始运转,氨产量很快达到了设计能力。人们称这种合成氨法为哈伯-博施法,它标志着工业上实现高压催化反应的第一个里程碑。由于哈伯和博施的突出贡献,他们分别获得1918、1931年度诺贝尔化学奖金。其他国家根据德国发表的论文也进行了研究,并在哈伯-博施法的基础上作了一些改进,先后开发了合成压力从低压到高压的很多其他方法(表18-1)。

合成氨的工艺流程 (1)

合成氨工艺流程 氨是重要的无机化工产品之一,在国民经济中占有重要地位。除液氨可直接作为肥料外,农业上使用的氮肥,例如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥,都是以氨为原料的。合成氨是大宗化工产品之一,世界每年合成氨产量已达到1亿吨以上,其中约有80%的氨用来生产化学肥料,20%作为其它化工产品的原料。 德国化学家哈伯1909年提出了工业氨合成方法,即“循环法”,这是目前工业普遍采用的直接合成法。反应过程中为解决氢气和氮气合成转化率低的问题,将氨产品从合成反应后的气体中分离出来,未反应气和新鲜氢氮气混合重新参与合成反应。合成氨反应式如下: N2+3H2≒2NH3 合成氨的主要原料可分为固体原料、液体原料和气体原料。经过近百年的发展,合成氨技术趋于成熟,形成了一大批各有特色的工艺流程,但都是由三个基本部分组成,即原料气制备过程、净化过程以及氨合成过程。 1.合成氨的工艺流程 (1)原料气制备将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。(2)净化对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。 ① 一氧化碳变换过程 在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%~40%。合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。变换反应如下:CO+H2OH→2+CO2 =-41.2kJ/mol 0298HΔ 由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至0.3%左右。因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。 ② 脱硫脱碳过程 各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法种类很多,通常是采用物理或化学吸收的方法,常用的有低温甲醇洗法(Rectisol)、聚乙二醇二甲醚法(Selexol)等。 粗原料气经CO变换以后,变换气中除H2外,还有CO2、CO和CH4等组分,其中以CO2含量最多。CO2既是氨合成催化剂的毒物,又是制造尿素、碳酸氢铵等氮肥的重要原料。因此变换气中CO2的脱除必须兼顾这两方面的要求。 一般采用溶液吸收法脱除CO2。根据吸收剂性能的不同,可分为两大类。一类是物理吸收法,如低温甲醇洗法(Rectisol),聚乙二醇二甲醚法(Selexol),碳酸丙烯酯法。一类是化学吸收法,如热钾碱法,低热耗本菲尔法,活化MDEA法,MEA法等。 4

合成氨工艺原理

合成氨工艺原理 合成氨不论采用什么原料与生产方法,大体上包括三个工艺过程:(1)原料气的制造;(2)原料气的净化(包括脱硫、变换脱除CO,碳化、脱碳脱除CO 2 ,精炼脱 除微量的CO、CO 2、H 2 S、O 2 等);(3)氨的合成与为了满足气体净化及合成各工序 工艺条件提供能量补偿的压缩工序。生产出氨以后再根据需要加工成碳铵、尿素、硝铵等。其详细原理如下(以煤为原料): 一、造气工段 合成氨生产所用的半水煤气,要求气体中(CO+H 2)与N 2 的比例为3:1左右。因 此生产上采用间歇地送入空气与蒸汽进行气化,将所得的水煤气配入部分吹风气制成半水煤气。即以石灰碳化煤球、无烟块煤为原料,在高温下交替与空气与过 热蒸汽进行气化反应(C+O点燃CO 2+Q 、2C+O点燃2CO+Q 、2CO+ O点燃2CO 2 + Q 2H 2O(气)+C△CO+2H 2 -Q制得半水煤气,半水煤气经过除尘,余热回收,水洗降温制 得合格的半水煤气,供后工段使用。 二、脱硫工段 从造气工段的半水煤气中,除氢气与氮气外,还含有27%左右CO、9%左右的CO 2 以及少量的硫化物,这些硫化物对合成氨生产就是有害的。它会腐蚀设备、管道,会引起催化剂中毒,会损坏铜液成份。因此,必须除去少量硫化物,其原理:用 稀氨水(10—15tt)与硫化氢反应(NH 3+H 2 S=NH 4 HS)将H 2 S脱除至0、07g/m3(标)以下, 使半水煤气净化,以满足合成氨生产工艺要求。 三、变换工段 将脱S后的半水煤气(含CO25%—28%)由压缩工段加压后经增温、加热,在一定的温度与压力下,在变换炉内借助催化剂的催化作用,使半水煤气中CO与H 2 O(气) 进行化学反应,转变为CO 2与H 2 (CO+H 2 O(气)催化剂高温CO 2 +H 2 +Q),制得合格的变 换气,以满足后工段的工艺要求。其次,系统中设有饱与热水塔、甲交、一水加、二水加、冷却塔等换热设备,以便合理利用反应热与充分回收余热,降低能耗,同时降低变换气温度。 四、碳化与脱碳工段 1、碳化

(完整版)合成氨生产工艺及其意义

论文名称合成氨生产工艺及其意义

氨是重要的无机化工产品之一,合成氨工业在国民经济中占有重要地位。除液氨可直接作为肥料外,农业上使用的氮肥,例如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥,都是以氨为原料的。合成氨是大宗化工产品之一,世界每年合成氨产量已达到1亿吨以上,其中约有80%的氨用来生产化学肥料,20%作为其它化工产品的原料。 我国合成氨装置很多,但合成氨装置的控制水平都比较低,大部分厂家还停留在半自动化水平,靠人工控制的也不少,普遍存在的问题是:能耗大、成本高、流程长,自动控制水平低。这种生产状况下生产的产品成本高,市场竞争力差,因此大部分化肥行业处于低利润甚至处于亏损状态。为了改变这种状态,除了改变比较落后的工艺流程外,实现装置生产过程优化控制是行之有效的方法。 合成氨生产装置是我国化肥生产的基础,提高整个合成氨生产装置的自动化控制水平,对目前我国化肥行业状况,只有进一步稳定生产降低能耗,才能降低成本,增加效益。而实现合成氨装置的优化是投资少、见效快的有效措施之一。 合成氨装置优化控制的意义是提高整个合成氨装置的自动化水平,在现有工艺条件下,发挥优化控制的优势,使整个生产长期运行在最佳状态下,同时,优化系统的应用还能节约原材料消耗,降低能源消耗,提高产品的合格率,增强产品的市场竞争能力。 关键字合成氨农业化学肥料意义

摘要 (2) 关键字 (2) 目录 (3) 正文 (4) 一前言 (4) 1.1 物理性质 (4) 1.2化学性质 (4) 二合成氨工业产品的用途 (5) 2.1氨气用途 (5) 2.2氨水用途 (5) 三合成氨的生产工艺及影响因素 (5) 3.1 原料气制备 (5) 3.1.1 一氧化碳变换过程 (6) 3.1.2 脱硫脱碳过程 (6) 3.1.3 气体精制过程 (6) 3.1.4 氨合成 (7) 3.2 影响合成氨的因素 (7) 3.2.1 温度对氨合成反应的影响 (7) 3.2.2 压力对氨合成反应的影响 (7) 3.2.3 空速对氨合成反应的影响 (7) 3.2.4 氢氮比对氨合成反应的影响 (8) 四.合成氨工艺流程图 (8) 五.研究现状 (8) 六.发展趋势 (9) 6.1原料路线的变化方向 (9) 6.2节能和降耗 (10) 6.3产品联合生产 (10) 7.1合成氨对农业的意义 (10) 7.1.1提高粮食产量 (10) 7.1.2提高土壤肥力 (10) 7.1.3发挥良种潜力 (11) 7.1.4补偿耕地不足 (11) 7.2合成氨对工业生产的意义 (11) 7.3合成氨对其他行业的意义 (12) 致谢 (13) 参考文献 (14)

合成氨工艺

合成氨工艺 合成氨的介绍 基本简介: 生产合成氨的主要原料有天然气、石脑油、重质油和煤(或焦炭)等。 ①天然气制氨。天然气先经脱硫,然后通过二次转化,再分别经过一氧化碳变换、二氧化碳脱除等工序,得到的氮氢混合气,其中尚含有一氧化碳和二氧化碳约0.1%~0.3%(体积),经甲烷化作用除去后,制得氢氮摩尔比为3的纯净气,经压缩机压缩而进入氨合成回路,制得产品氨。以石脑油为原料的合成氨生产流程与此流程相似。 ②重质油制氨。重质油包括各种深度加工所得的渣油,可用部分氧化法制得合成氨原料气,生产过程比天然气蒸气转化法简单,但需要有空气分离装置。空气分离装置制得的氧用于重质油气化,氮作为氨合成原料外,液态氮还用作脱除一氧化碳、甲烷及氩的洗涤剂。 ③煤(焦炭)制氨。随着石油化工和天然气化工的发展,以煤(焦炭)为原料制取氨的方式在世界上已很少采用。 用途氨主要用于制造氮肥和复合肥料,氨作为工业原料和氨化饲料,用量约占世界产量的12%。硝酸、各种含氮的无机盐及有机中间体、磺胺药、聚氨酯、聚酰胺纤维和丁腈橡胶等都需直接以氨为原料。液氨常用作制冷剂。

贮运商品氨中有一部分是以液态由制造厂运往外地。此外,为保证制造厂内合成氨和氨加工车间之间的供需平衡,防止因短期事故而停产,需设置液氨库。液氨库根据容量大小不同,有不冷冻、半冷冻和全冷冻三种类型。液氨的运输方式有海运、驳船运、管道运、槽车运、卡车运。直接合成氨。于1908年申请专利,即“循环法”,在此基础上,他继续研究,于1909年改进了合成,氨的含量达到6%以上。这是目前工业普遍采用的直接合成法。反应过程中为解决氢气和氮气合成转化率低的问题,将氨产品从合成反应后的气体中分离出来,未反应气和新鲜氢氮气混合重新参与合成反应。 合成氨反应式如下:N2+3H2≒2NH3(该反应为可逆反应,等号上反应条件为:“高温高压”,下为:“催化剂”) 合成氨的主要原料可分为固体原料、液体原料和气体原料。经过近百年的发展,合成氨技术趋于成熟,形成了一大批各有特色的工艺流程,但都是由三个基本部分组成,即原料气制备过程、净化过程以及氨合成过程。 氨是重要的无机化工产品之一,在国民经济中占有重要地位。除液氨可直接作为肥料外,农业上使用的氮肥,例如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥,都是以氨为原料的。合成氨是大宗化工产品之一,世界每年合成氨产量已达到1 亿吨以上,其中约有80%的氨用来生产

产万吨合成氨脱碳工段工艺设计方案

年产30 万吨合成氨脱 碳 工艺工程 可行性研究报告 指导教师:姚志湘 学生:魏景棠 目录 第一章总论3 1.1 概述3 1.1.1工程名称3

1.1.2合成氨工业简况3 1.2 工程背景及建设必要性4 1.2.1工程背景4 1.2.2工程建设的必要性4 1.2.3建设意义错误!未定义书签。 1.2.4建设规模4 第二章市场预测????????????????????.? (6) 2.1 国内市场预测????????????????????? (6) 2.2 产品分析??????????????????? (6) 第三章脱碳方法及种类 . ???????????????????? (7) 3.1 净化工序中脱碳的方法.. ????????????.??????? (7) 3.1.1 化学吸收 法????????????.?????????????...?.7 3.1.2 物理吸收 法????????????????????.? (8) 3.1.3 物理化学吸收法 ........ ????????????????.????8 3.1.4 固体吸收法????????????????.?????????.? (10) 3.2碳酸丙烯酯

合成氨的工艺流程复习过程

合成氨的工艺流程

合成氨的工艺流程 氨是重要的无机化工产品之一,在国民经济中占有重要地位。除液氨可直接作为肥料外,农业上使用的氮肥,例如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥,都是以氨为原料的。合成氨是大宗化工产品之一,世界每年合成氨产量已达到1亿吨以上,其中约有80%的氨用来生产化学肥料,20%作为其它化工产品的原料。 德国化学家哈伯从1902年开始研究由氮气和氢气直接合成氨。于1908年申请专利,即“循环法”,在此基础上,他继续研究,于1909年改进了合成,氨的含量达到6%以上。这是目前工业普遍采用的直接合成法。反应过程中为解决氢气和氮气合成转化率低的问题,将氨产品从合成反应后的气体中分离出来,未反应气和新鲜氢氮气混合重新参与合成反应。合成氨反应式如下: N2+3H2=2NH3(该反应为可逆反应,等号上反应条件为:"高温,高压",下为:"催化剂") 合成氨的主要原料可分为固体原料、液体原料和气体原料。经过近百年的发展,合成氨技术趋于成熟,形成了一大批各有特色的工艺流程,但都是由三个基本部分组成,即原料气制备过程、净化过程以及氨合成过程。 合成氨是由氮和氢在高温高压和催化剂存在下直接合成的氨。别名:氨气。分子式NH3英文名:synthetic ammonia。世界上的氨除少量从焦炉气中回收副产外,绝大部分是合成的氨。 1.合成氨装置模型图:

工业生产上合成氨装置图 2、合成氨工艺流程叙述: (1)原料气制备将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。 (2)净化对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。 ①一氧化碳变换过程 在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为 12%~40%。合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。变换反应如下: CO+H2OH→2+CO2 由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至0.3%左右。因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。 ②脱硫脱碳过程 各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第

相关文档
最新文档