通原软件实验二:16QAM调制与解调

通原软件实验二:16QAM调制与解调
通原软件实验二:16QAM调制与解调

北京邮电大学通原软件实验实验二:16QAM调制与解调

专业:信息工程

学生姓名:×××

指导教师:××

完成时间:××××

一、实验目的

在全面理解16QAM 调制解调原理的基础上,强化信号星座图、眼图所表明的信号本质。

二、实验原理

由于信道资源越来越紧张,许多数据传输场合二进制数字调制已无法满足需要。为了在有限信道带宽中高速率地传输数据,可以采用多进制(M 进制,M>2)调制方式,MPSK 则是经常使用的调制方式,由于MPSK 的信号点分布在圆周上,没有最充分地利用信号平面,随着M 值的增大,信号最小距离急剧减小,影响了信号的抗干扰能力。MQAM 称为多进制正交幅度调制,它是一种信号幅度与相位结合的数字调制方式,信号点不是限制在圆周上,而是均匀地分布在信号平面上,是一种最小信号距离最大化原则的典型运用,从而使得在同样M 值和信号功率条件下,具有比MPSK 更高的抗干扰能力。

图1:16QAM调制与解调原理图

三、实验内容

设计并实现16QAM调制与解调系统,观察各信号时域、频域波形,体会眼图、星座图的意义。

四、实验结果

1、电路框图

图2:系统电路框图

2、元件参数

编号属性类型参数设置

0 Source PN Seg Amplitude=3V,Rate=50Hz,No.Levels=4

1 Source PN Seg Amplitude=3V,Rate=50Hz,No.Levels=4

2 Source Sinusoid Amplitude=1V,Frequency=500Hz

3 Multiplier ————

4 Multiplier ————

5 Adder ————

6 Sink Analysis ——

7 Sink Analysis ——

8 Source Gauss Noise Std Deviation=0.1V

9 Sink Analysis ——

10 Source Sinusoid Amplitude=1V,Frequency=500Hz

11 Multiplier ————

12 Multiplier ————

13 Operator Linear Sys

No.of Poles=7,Low Cottoff=100Hz

Filters

14 Operator Linear Sys

No.of Poles=7,Low Cottoff=100Hz

Filters

15 Sink Analysis ——

16 Sink Analysis ——

17 Sink Analysis ——

18 Sink Analysis ——

19 Sink Analysis ——

20 Sink Analysis ——

21 Sink Analysis ——

图3:元件参数列表

3、仿真波形

①输入信号

Ⅰ时域波形

图4:四电平PIN码、高频载波、高斯噪声时域波形

图5:四电平PIN码、高频载波、高斯噪声频域波形②中间信号

Ⅰ时域波形

图6:已调信号、加噪信号、解调信号时域波形

图7:已调信号、正交叠加信号频域波形③输出信号

Ⅰ时域信号

图8:输出信号时域波形

④星座图

图10:输出信号星座图

⑤眼图

图11:输出信号眼图

五、实验分析

1、高斯噪声的幅度

在实验中,一开始由于高斯噪声的均值相对于输入信号来说太大了,所以得不到想要的额结果。

2、眼图的观察

曾经在查看眼图的时候,我一直到看不到“眼睛”,反复查看原理图和元件参数都没发现错误,最终发现原来是我设置的观察时间太长了,眼图太密以至于看不清楚,所以我将其放大就看到了清晰的“眼睛”。

六、实验总结

此次试验比起实验一来说难度要大不少,花的时间也更多。由于系统比较复杂,所以我在设计的过程中在各个信号节点均设置了示波器,这很大程度上方便了我查看每个信号的状态,以便查找错误。

3高频实验三_幅度调制与解调

实验三:幅度调制与解调 一、实验目的 1、加深理解幅度调制与检波原理。 2、掌握用集成模拟乘法器构成调幅与检波电路的方法。 3、了解二极管包络检波的主要指标、检波效率及波形失真。 二、实验预习要求 1、复习《高频电子线路》中有关调幅与检波的内容; 2、阅读本实验的内容,熟悉实验的步骤; 三、实验原理和电路说明 1、调幅与检波原理简述: 调幅就是用低频调制信号去控制高频振荡(载波)的幅度,使高频振荡的振幅呈调制信号的规律变化:而检波则是从调幅波中取出低频信号。振幅调制信号按其不同频谱结构分为普通调幅(AM)信号,抑制载波的双边带调制(DSB)信号,抑制载波和一个边带的单边带调制信号。 把调制信号和载波同时加到一个非线性元件上(例如晶体二极管和晶体三极管),经过非线性变换电路,就可以产生新的频率成分,再利用一定带宽的谐振回路选出所需的频率成分就可实现调幅。 2、集成四象限模拟乘法器MCl496简介: 本器件的典型应用包括乘、除、平方、开方、倍频、调制、混频、检波、鉴相、鉴频动态增益控制等。它有两个输入端Vx、Vy和一个输出端Vo。一个理想乘法器的输出为V o=KVxVy,而实际输出存在着各种误差,其输出的关系为:Vo=K(Vx+Vxos)(Vy+Vyos) + Vzox。为了得到好的精度,必须消除Vxos、Vyos与Vzox 三项失调电压。集成模拟乘法器MC1496是目前常用的平衡调制/解调器,内部电路含有8个有源晶体管。本实验箱MCl496的内部原理图和管脚功能如图3-1所示:

图3-1 集成模拟乘法器MC1496电路原理图 MCl496各引脚功能如下: (1)、SIG+ 信号输入正端 (2)、GADJ 增益调节端 (3)、GADJ 增益调节端 (4)、SIG- 信号输入负端 (5)、BIAS 偏置端 (6)、OUT+ 正电流输出端 (7)、空脚 (8)、CAR+ 载波信号输入正端 (9)、空脚 (10)、CAR- 载波信号输入负端 (11)、空脚 (12)、OUT- 负电流输出端 (13)、空脚 (14)、V- 负电源 3、实际线路分析 U501是幅度调制乘法器,音频信号和载波分别从J50l和J502输入到乘法器的两个输入端,K501和K503可分别将两路输入对地短路,以便对乘法器进行输入失调凋

matlab实验报告 数字调制解调

实验报告 姓名:李鹏博实验名称:数字调制解调 学号:2011300704 课程名称:数字信号处理 班级:03041102 实验室名称:航海西楼303 组号: 1 实验日期:2014.06.27 一、实验目的、要求 掌握掌握数字调制以及对应解调方法的原理。 掌握数字调制解调方法的计算机编程实现方法,即软件实现。 二、实验原理 二进制数字频率调制(2FSK) 二进制数字频率调制,简称频移键控2FSK,是利用二进制数字基带信号控制载波的频率,进行频谱变换的过程。在发送端,由基带信号控制载波,用不同频率的载波振荡信号来传输数字信号“1”和“0”;接收端则根据不同频率的载波信号,将其还原成相应的数字基带信号。 PSK调制 在PSK调制时载波的相位随调制信号状态不同而改变。如果两个频率相同的载波同时开始振荡这两个频率同时达到正最大值同时达到零值同时达到负最大值此时它们就处于“同相”状态如果一个达到正最大值时另一个达到负最大值则称为“反相”。把信号振荡一次一周作为360度。如果一个波比另一个波相差半个周期两个波的相位差180度也就是反相。当传输数字信号时“1”码控制发0度相位“0”码控制发180度相位。 三、实验环境 PC机,Windows2000,office2000,Matlab6.5以上版本软件。 四、实验内容、步骤 实验内容 已知消息信号为一个长度为8的二进制序列;载波频率为 800 c f Hz ,采样频率为 4KHz。编程实现一种调制、传输、滤波和解调过程。 实验步骤 根据参数产生消息信号s和载波信号。调用函数randint生成随机序列。 编程实现调制过程。调用函数y=fskmod(s,M,FREQ_SEP,NSAMP)完成频率调制,y=pskmod(s,M) 完成相位调制,或者。调用函数modulate完成信号调制。 编程实现信号的传输过程。产生白噪声noise,并将其加到调制信号序列。或者调用函

实验一 ASK调制与解调实验

通 信 原 理 实 验 报 告 学院:信息与通信工程学院 专业:光电工程 班级:12051041 学号:12051041 姓名 时间:2014.11.21

实验一 ASK调制与解调实验 一实验目的 1.理解ASK调制的工作原理及电路组成。 2.理解ASK解调的原理及实现方法。 3.了解ASK信号的频谱特性。 二实验内容 1.观察ASK调制与解调信号的波形。 2.观察ASK信号频谱。 三实验器材 1.信号源模块 5.20M双踪示波器一台 2.数字调制模块 6.连接线若干 3.数字解调模块 7.频谱分析仪 4.同步提取模块 四实验原理 1.2ASK 调制原理 ASK 基带信号经过电压比较器(LM339),输出高/低电平驱动模拟开关(74HC4066)导通/关闭,ASK 载波通过电压跟随电路(TL082)提高带负载能力,然后通过模拟开关电路选择通过/截止,最后得到 ASK 调制信号输出。 2.2ASK 解调原理 本实验采用的是包络检波法,ASK 调制信号经过 RC 组成的耦合电路,输出波形可从OUT1观察,然后通过半波整流器(由 1N4148 组成),输出波形可从 OUT2 观察,半波整流后的信号经过低通滤波器(由 TL082 组成),滤波后的波形可从 OUT3 观察,再经过电压比较器(LM339)与参考电位比较后送入抽样判决器(74HC74)进行抽样判决,最后得到解调输出的二进制信号。标号为“ASK 判决电压调节”的电位器用来调节电压比较器的判决电压。判决电压过高,将会导致正确的解调结果的丢失;判决电压过低,将会导致解调结果中含有大量错码,因此,只有合理选择判决电压,才能得到正确的解调结果。抽样判决用的时钟信号就是 ASK 基带信号的位同步信号。

实验三模仿调制与解调

实验三、模拟调制与解调 一、实验目的 1、学习用MATLAB 进行模拟调制与解调的方法。 2、理解各种模拟调制解调系统的性能。 3、掌握幅度调制和角度调制的仿真方法。二、实验设备与器件 1、 计算机 2、 MATLAB 软件三、实验原理与步骤一)、调幅 1、AM 信号的仿真与解调 项目1、给定消息信号,,使用该信号以AM 方式调制一个载波频率为300Hz ,)4sin()2cos()(t e t t x t ππ-+=100≤≤t 幅度为1的正弦载波,试求: (1)消息信号的频谱和已调信号的频谱。(2)消息信号的功率和已调信号的功率。 clear all ts=0.001; t=0:ts:10-ts; fs=1/ts; df=fs/length(t); msg=randint(100,1,[-3,3],123); msg1=msg*ones(1,fs/10); msg2=reshape(msg1.',1,length(t));Pm=fft(msg2)/fs; f=-fs/2:df:fs/2-df; subplot(2,1,1) plot(f,fftshift(abs(Pm))) ;xlabel('李啊兴'); title('消息信号频谱') A=1; fc=300; Sam=(A+msg2).*(cos(2*pi*fc*t)+exp(-t).*sin(4*pi*fc*t)); Pam=fft(Sam)/fs; subplot(2,1,2) plot(f,fftshift(abs(Pam))); xlabel('李啊兴'); title('AM 信号频谱') axis([-500 500 0 23]) Pc=sum(abs(Sam).^2)/length(Sam) Ps=Pc-A^2/2 eta=Ps/Pc Pc = 2.3077Ps = 1.8077eta = 0.7833项目2、用Simulink 重做项目1 。

实验三 Matlab的数字调制系统仿真实验(参考)

成都理工大学实验报告 课程名称:数字通信原理 姓名:__________________学号:______________ 成绩:____ ___ 实验三Matlab的数字调制系统仿真实验(参考) 1 数字调制系统的相关原理 数字调制可以分为二进制调制和多进制调制,多进制调制是二进制调制的推广,主要讨论二进制的调制与解调,简单讨论一下多进制调制中的差分相位键控调制(M-DPSK)。 最常见的二进制数字调制方式有二进制振幅键控(2-ASK)、移频键控(2-FSK)和移相键控(2-PSK 和2-DPSK)。下面是这几种调制方式的相关原理。 1.1 二进制幅度键控(2-ASK) 幅度键控可以通过乘法器和开关电路来实现。载波在数字信号1 或0 的控制下通或断,在信号为1 的状态载波接通,此时传输信道上有载波出现;在信号为0 的状态下,载波被关断,此时传输信道上无载波传送。那么在接收端我们就可以根据载波的有无还原出数字信号的1 和0。 幅移键控法(ASK)的载波幅度是随着调制信号而变化的,其最简单的形式是,载波在二进制调制信号控制下通断,此时又可称作开关键控法(OOK)。多电平MASK调制方式是一种比较高效的传输方式,但由于它的抗噪声能力较差,尤其是抗衰落的能力不强,因而一般只适宜在恒参信道下采用。 2-ASK 信号功率谱密度的特点如下: (1)由连续谱和离散谱两部分构成;连续谱由传号的波形g(t)经线性调制后决定,离散谱由载波分量决定; (2)已调信号的带宽是基带脉冲波形带宽的二倍。 1.2 二进制频移键控(2-FSK) 数字频率调制又称频移键控(FSK),二进制频移键控记作2FSK。数字频移键控是用载波的频率来传送数字消息,即用所传送的数字消息控制载波的频率。2FSK

实验四 2PSK调制与解调实验

实验四 2PSK 调制与解调实验 1、 实验箱中2PSK 调制器用的调制方法是什么? 答:移相键控调制的直接调相法。 2、 2PSK 调制能否用非相干解调方法? 答:不能。 3、 相位模糊产生的原因和解决方法? 答:①原因:在调制过程中采用了分频,而二分频器的输出电压有相差180度的两种可能相位,即其输出电压的相位决定了分频器的初始状态,这就是会导致分频出的载波存在相位模糊(2PSK 采用的是相移方式) ②解决办法:使用2DPSK 二相相对移相键控 4、 绝/相、相/绝变换的框图? 答: 5、 绝/相、相/绝变换电路是怎么实现的。 答:绝/相变换电路是把数据信息源输出的绝对码变相对码,2DPSK 信号由相对码进行绝对调相得到。它由模二加10A U (74LS86)和D 触发器9A U (74LS74)组成,其逻辑关系为:i a ⊕i-1b =i b ,其中i a 是绝对码,i-1b 是延迟一个码元的相对码,i b 是相对码。 相/绝变换电路由14B U (74LS74)和15B U (74LS86)组成,其逻辑关系可表示为i-1b ⊕i b =i a ,其中i b 为相对码,i-1b 为延迟一个码元的相对码,i a 为绝对码。 6、 画出实验板中2PSK 、2DPSK 调制与解调器的原理框图; 答:

7、本实验中,2PSK 信号带宽是多少?用数字示波器如何测量? 答:B=2 f=2/Ts。先按MATH按钮,再选择FFT选项。 s 8、测试接收端的各点波形,需要与什么波形对比,才能比较好的进行观测? 示波器的触发源该选哪一种信号?为什么? 答:绝对码波形。原始信号。触发源信号应该选择频率较低、稳定度高的信号。 9、解调电路各点信号的时延是怎么产生的? 答:由滤波与抽样产生。 10、码再生的目的是什么? 答:①防止噪声干扰的累加,恢复出基带信号。②把码元展宽。 11、用D触发器做时钟判决的最佳判决时间应该如何选择? 答:眼图中眼睛张开最大时刻,即码元能量最大时刻,把各个信号叠加在一起。 12、解调出的信码和调制器的绝对码之间的时延是怎么产生的? 答:由滤波与抽样产生。 13、在接收机带通滤波器之后的波形出现了起伏是什么原因,带通滤波器的 带宽设计多大比较合适? 答:符号切换造成了旁瓣的产生,0、1跳变使得高频成份丰富。π→0→π转换点导致的频谱扩展特别大,通过滤波器会缩小。带宽设计为2/Ts。

利用MATLAB实现信号的幅度调制与解调

课程设计论文 姓名:姜勇 学院:机电与车辆工程学院 专业:电子信息工程2班 学号:1665090208

安徽科技学院学年第学期《》课程···················装···············订················线···················专业级班姓名学号 内容摘要: 教师评语:

利用MATLAB实现信号的幅度调制与解调 专业:电子信息工程(2)班姓名:姜勇学号:1665090208 一、设计摘要: 现代通信系统要求通信距离远、信道容量大、传输质量好。在信号处理里面经常要用到调制与解调,而信号幅度调制与解调是最基本,也是经常用到的。用AM调制与解调可以实现很多功能,制造出很多的电子产品。本设计主要研究内容是利用MATLAB实现对正弦信) fπ =进行双边带幅度调制,载波信号频率为100Hz,在MATLAB中 t sin( (t 40 ) 显示调制信号的波形和频谱,已调信号的波形和频谱,比较信号调制前后的变化。并对已调信号解调,比较了解调后的信号与原信号的区别。信号幅度调制与解调及MATLAB 中信号表示的基本方法及绘图函数的调用,实现了对连续时间信号的可视化表示。本文采用MATLAB对信号的幅度进行调制和解调。 二、关键词:幅度、调制、解调、 MAT LAB 三、设计内容 1. 调制信号 调制信号是原始信息变换而来的低频信号。调制本身是一个电信号变换的过程。调制信号去改变载波信号的某些特征值(如振幅、频率、相位等),导致载波信号的这个特征值发生有规律的变化,这个规律是调制信号本身的规律所决定的。 1.1 matlab实现调制信号的波形 本设计的调制信号为正弦波信号) fπ =,通过matlab仿真显示出其波形图 t (t sin( ) 40 如图1-1所示

基础实验cm调制与解调实验

基础实验c m调制与解 调实验 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

基础实验6 PCM调制与解调实验 一、实验目的 1.掌握PCM编译码原理与系统性能测试; 2.熟悉PCM编译码专用集成芯片的功能和使用方法; 3.学习PCM编译码器的硬件实现电路,掌握它的调整测试方法。 二、实验仪器 1.PCM/ADPCM编译码模块,位号:H 2.时钟与基带数据产生器模块,位号:G 3.20M双踪示波器1台 4.低频信号源1台(选用) 5.频率计1台(选用) 6.信号连接线3根 7.小平口螺丝刀1只 三、实验原理 脉冲编码调制(PCM)是把一个时间连续、取值连续的模拟信号变换成时间离散、取值离散的数字信号在信道中传输。脉冲编码调制是对模拟信号进行抽样,量化和编码三个过程完成的。 PCM通信系统的实验方框图如图6-1所示。

在PCM脉冲编码调制中,话音信号经防混叠低通滤波器后进行脉冲抽样,变成时间上离散的PAM脉冲序列,然后将幅度连续的PAM脉冲序列用类似于“四舍五入”办法划归为有限种幅度,每一种幅度对应一组代码,因此PAM脉冲序列将转换成二进制编码序列。对于电话,CCITT规定抽样率为8KHz,每一抽样值编8位码(即为28=256个量化级),因而每话路PCM编码后的标准数码率是64kB。本实验应用的单路PCM编、译码电路是 TP3057 芯片(见图6-1中的虚线框)。此芯片采用a律十三折线编码,它设计应用于PCM 30/32系统中。它每一帧分32个时隙,采用时分复用方式,最多允许接入30个用户,每个用户

各占据一个时隙,另外两个时隙分别用于同步和标志信号传送,系统码元速率为。各用户PCM编码数据的发送和接收,受发送时序与接收时序控制,它仅在某一个特定的时隙中被发送和接收,而不同用户占据不同的时隙。若仅有一个用户,在一个PCM 帧里只能在某一个特定的时隙发送和接收该用户的PCM编码数据,在其它时隙没有数据输入或输出。 本实验模块中,为了降低对测试示波器的要求,将PCM 帧的传输速率设置为64Kbit/s或128Kbit/s两种,这样增加了编码数据码元的宽度,便于用低端示波器观测。此时一个PCM 帧里,可容纳的PCM编码分别为1路或2路。另外,发送时序FSX与接收时序FSR使用相同的时序,测试点为34TP01。实验结构框图已在模块上画出了,实验时需用信号连接线连接34P02和34P03两铆孔,即将编码数据直接送到译码端,传输信道可视为理想信道。 另外, TP3057芯片内部模拟信号的输入端有一个语音带通滤波器,其通带为200HZ~4000HZ,所以输入的模拟信号频率只能在这个范围内有效。 四、各测量点的作用 34TP01:发送时序FSX和接收时序FSR输入测试点,频率为8KHz的矩形窄脉冲; 34TP02:PCM线路编译时钟信号的输入测试点; 34P01:模拟信号的输入铆孔; 34P02:PCM编码的输出铆孔; 34P03:PCM译码的输入铆孔; 34P04:译码输出的模拟信号铆孔,波形应与34P01相同。 注:一路数字编码输出波形为8比特编码(一般为7个半码元波形,最后半个码元波形被芯片内部移位寄存器在装载下一路数据前复位时丢失掉),数据的速率由编译时钟决定,其中第一位为语音信号编码后的符号位,后七位为语音信号编码后的电平值。

实验二 数字调制

实验二数字调制 一、实验目的 1、掌握绝对码、相对码概念及它们之间的变换关系。 2、掌握用键控法产生2ASK、2FSK、2DPSK信号的方法。 3、掌握相对码波形与2PSK信号波形之间的关系、绝对码波形与2DPSK信号波形之间的关系。 1、了解2ASK、2FSK、2DPSK信号的频谱与数字基带信号频谱之间的关系。 二、实验内容 1、用示波器观察绝对码波形、相对码波形。 2、用示波器观察2ASK、2FSK、2PSK、2DPSK信号波形。 3、用频谱仪观察数字基带信号频谱及2ASK、2FSK、2DPSK信号的频谱。 三、基本原理 本实验用到数字信源模块和数字调制模块。信源模块向调制模块提供数字基带信号(NRZ码)和位同步信号BS(已在实验电路板上连通,不必手工接线)。调制模块将输入的绝对码AK(NRZ码)变为相对码BK、用键控法产生2ASK、2FSK、2DPSK信号。调制模块内部只用+5V电压。 数字调制单元的原理方框图如图2-1所示,电原理图如图2-2所示(见附录)。 图2-1 数字调制方框图 本单元有以下测试点及输入输出点: ? CAR 2DPSK信号载波测试点 ? BK 相对码测试点 ? 2DPSK 2DPSK信号测试点/输出点,V P-P>0.5V ? 2FSK 2FSK信号测试点/输出点,V P-P>0.5V ? 2ASK 2ASK信号测试点,V P-P>0.5V 用2-1中晶体振荡器与信源共用,位于信源单元,其它各部分与电路板上主要元器件对应关系如下: ?÷2(A)U8:双D触发器74LS74 ?÷2(B)U9:双D触发器74LS74

?滤波器A V6:三极管9013,调谐回路 ?滤波器B V1:三极管9013,调谐回路 ?码变换U18:双D触发器74LS74;U19:异或门74LS86 ? 2ASK调制U22:三路二选一模拟开关4053 ? 2FSK调制U22:三路二选一模拟开关4053 ? 2PSK调制U21:八选一模拟开关4051 ?放大器V5:三极管9013 ?射随器V3:三极管9013 将晶振信号进行2分频、滤波后,得到2ASK的载频2.2165MHZ。放大器的发射极和集电极输出两个频率相等、相位相反的信号,这两个信号就是2PSK、2DPSK的两个载波,2FSK 信号的两个载波频率分别为晶振频率的1/2和1/4,也是通过分频和滤波得到的。 下面重点介绍2PSK、2DPSK。2PSK、2DPSK波形与信息代码的关系如图2-3所示。 图2-3 2PSK、2DPSK波形 图中假设码元宽度等于载波周期的1.5倍。2PSK信号的相位与信息代码的关系是:前后码元相异时,2PSK信号相位变化180?,相同时2PSK信号相位不变,可简称为“异变同不变”。2DPSK信号的相位与信息代码的关系是:码元为“1”时,2DPSK信号的相位变化180?。码元为“0”时,2DPSK信号的相位不变,可简称为“1变0不变”。 应该说明的是,此处所说的相位变或不变,是指将本码元内信号的初相与上一码元内信号的末相进行比较,而不是将相邻码元信号的初相进行比较。实际工程中,2PSK或2DPSK 信号载波频率与码速率之间可能是整数倍关系也可能是非整数倍关系。但不管是那种关系,上述结论总是成立的。 本单元用码变换——2PSK调制方法产生2DPSK信号,原理框图及波形图如图2-4所示。相对于绝对码AK、2PSK调制器的输出就是2DPSK信号,相对于相对码、2PSK调制器的输出是2PSK信号。图中设码元宽度等于载波周期,已调信号的相位变化与AK、BK的关系当然也是符合上述规律的,即对于AK来说是“1变0不变”关系,对于BK来说是“异变同不变”关系,由AK到BK的变换也符合“1变0不变”规律。 图2-4中调制后的信号波形也可能具有相反的相位,BK也可能具有相反的序列即00100,这取决于载波的参考相位以及异或门电路的初始状态。 2DPSK通信系统可以克服上述2PSK系统的相位模糊现象,故实际通信中采用2DPSK而不用2PSK(多进制下亦如此,采用多进制差分相位调制MDPSK),此问题将在数字解调实验中再详细介绍。

ASKFSKPSK的调制与解调

2ASK的调制与解调 一、实验目的 1.加深理解2ASK调制与解调原理。 2.学会运用SystemView仿真软件搭建2ASK调制与解调仿真电路。 3.通过仿真结果观察2ASK的波形及其功率谱密度。 二、仿真环境 Windows98/2000/XP SystemView5.0 三、2ASK调制解调原理方框图 1.2ASK调制原理 图1 2ASK键控产生 图2 2ASK相乘法产生 2.2ASK解调原理 图3 2ASK相干解调

四、2ASK调制解调仿真电路

1.仿真参数设置 1)信号源参数设置:基带信号码元速率设为101==T R B 波特,2ASK 信号中心载频设为 Hz f s 20=。(说明:中心载频 s f 设得较低,目的主要是为了降低仿真时系统的抽样 率,加快仿真时间。) 2)系统抽样率设置:为得到准确的仿真结果,通常仿真系统的抽样率应大于等于10倍的载频。本次仿真取10 s f ,即200Hz 3)系统时间设置:通常设系统Start time=0。为能够清晰观察每个码元波形及2ASK 信号的功率谱密度,在仿真时对系统Stop time 必须进行两次设置,第一次设置一般取系统Stop time=6T~8T ,这时可以清楚地观察到每个码元波形;第二次设置一般取系统Stop time=1000T~5000T ,这时可以清楚地观察到2ASK 信号的功率谱密度。 2.2ASK 信号调制与解调的仿真电路图 图4 2ASK 信号调制与相干解调仿真电路 图5 2ASK 信号调制与包络检波仿真电路 五、仿真结果参考

S y s te mV iew 00 500.e -3500.e -3 1 1 1.51.5 2 2 500.e -3 1 1.5 2 m T i m e i n S e c o n d s 调制信号波 图6 输入信号波形 S y s te mV iew 00 500.e -3500.e -3 1 1 1.51.5 2 2 -2 -1.5 -1 -500.e -3 500.e -3 1 1.5 2 m T i m e i n S e c o n d s 已调信号波形 图7 2ASK 信号波形 S y s te mV iew 00 500.e -3500.e -3 1 1 1.51.5 2 2 -1 -500.e -3 500.e -3 1 A m T i m e i n S e c on d s 解调输出波形 图8 解调输出波形 图9 已调信号的频谱(载频为50Hz ) 六、自行搭建调试仿真电路,完成设计任务 2FSK 调制与解调 一、实验目的 1. 掌握2FSK 调制与解调原理; 2. 掌握仿真软件Systemview 的使用方法; 3. 完成对2FSK 调制与解调仿真电路设计,观察2FSK 波形及其功率谱密度。

通信原理-实验一 Systemview系统下幅度调制与解调

实验一:Systemview 系统下幅度调制与解调 一.实验目的 1.熟悉Systemview 仿真软件; 2. 掌握调幅信号产生和解调的过程及实现方法; 2.研究输入信号和信道对调幅信号的影响; 二.实验原理 1.调制 幅度调制是无线电通信中最常用的调制方式之一。普通的调幅广播就是它的典型应用。 幅度调制的基本原理是用基带信号(调制信号)控制高频载波的幅度,使其携带基带信号信息,从而实现信息的传输。 调制的基本作用是频谱搬移,其目的是进行频率变换,使信号能够有效的传输(辐射)或实现信道的多路复用。 根据频谱特性的不同,通常可将调幅分为标准调幅(AM ),抑制载波双边带调幅(DSB ),单边带调幅(SSB )和残留边带调幅(VSB )等。 2.调制信号的实现方法 设f (t )为调制信号,高频载波为C (t )=A 0cos (ω0t +θ0) (1)标准调幅 AM 信号可以表示为: S AM (t )=[A 0+f (t )]cos (ω0t +θ0) 已调信号的频谱为(设θ。=0) S AM (ω)=πA o [δ(ω-ωo )+δ(ω+ω0)]+1/2[F (ω-ωo )+F (ω+ωo )] 标准调幅的数学模型如图1-1所示。 图1-1 标准调幅的数学模型 AM 信号在SystemView 中可由模块实现,如图1-2所示。 cos (ω0t + θ0 ) A 0

图1-2 AM 信号在SystemView 中的实现 调制信号和已调信号的波形如图1-3所示。 图1-3 调制信号和已调信号 3.解调 调制的逆变换过程叫解调。解调方法分为相干解调和非相干解调。 为了不失真的恢复调制信号,要求本地载波和接收信号的载波必须保持同频同相,这种方法称为相干解调。它适用各种调幅系统。它的一般数学模型如图1-4所示。 图1-4 相干解调数学模型

通信原理实验——2PSK调制与解调

贵州大学实验报告 学院:计信学院专业:网络工程班级:101 姓名学号实验组实验时间2013.06.16 指导教师成绩 实验项目名称实验二2PSK调制与解调 实 验目的1、掌握2PSK调制的原理及实现方法。 2、掌握2PSK解调的原理及实现方法。 实验原理 1、2PSK调制 2PSK信号产生的方法有两种:模拟调制法和数字调制法。 码型变换乘法器 NRZ输入双极性NRZ调制输出 载波输入 图16-1 2PSK调制模拟相乘法原理框图 上图16-1是2PSK调制模拟相乘法原理框图。信号源模块提供码速率96K的NRZ 码和384K正弦载波。在2ASK中数字基带信号是单极性的,而在2PSK中数字基带信号是双极性的。故先将单极性NRZ码经码型变换电路转换为双极性NRZ码,然后与384K正弦载波相乘,便得2PSK调制信号。乘法器的调制深度可由“调制深度调节”旋转电位器调节。 载波1 384K 开关电路2 调制输出 NRZ输入 开关电路1 反相器 图16-2 2PSK调制数字键控法原理框图 上图16-2是2PSK调制数字键控法原理框图。为便于实验观测,由信号源模块提供码速率为96Kbit/s的NRZ码数字基带信号和384KHz正弦载波信号,NRZ码为“1”的一个码元对应0相位起始的正弦载波的4个周期,NRZ码为“0”的一个码元对应π相位起始的正弦载波的4个周期。 实验中采用模拟开关作为正弦载波的输出通/断控制门,数字基带信号NRZ码用来

控制门的通/断。当NRZ 码为高电平时,模拟开关1导通,模拟开关2截止,0相位起始的正弦载波通过门1输出;当NRZ 码为低电平时,模拟开关2导通,模拟开关1截止,π相位起始的正弦载波通过门2输出。门的输出即为2FSK 调制信号,如下图16-3所示。 NRZ输入 调制信号 1 1 00 1 PSK 图16-3 2PSK 调制信号波形 2、2PSK 解调 2PSK 信号的解调通常采用相干解调法,原理框图如下图16-4所示。 LPF 相乘器电压判决 抽样判决 调制输入 BS输入 PSK/DPSK 判决电压调节 载波输入相乘输出 滤波输出 解调输出 判压输出 图16-4 2PSK 解调相干解调法原理框图 设已调信号表达式为1()cos(())s t A t t ω?=?+(A 1为调制信号的幅值), 经过模拟乘法器与载波信号A 2cos t ω(A2为载波的幅值)相乘,得 0121 ()[cos(2())cos ()]2 e t A A t t t ω??= ++ 可知,相乘后包括二倍频分量121 cos(2())2 A A t t ω?+和cos ()t ?分量(()t ?为时 间的函数)。因此,需经低通滤波器除去高频成分cos(2())t t ω?+,得到包含基带信号的低频信号。 然后再进行电压判决和抽样判决。此时,“解调类型选择”拨位开关拨到“PSK ”一端。 解调过程中各测试点波形如下图16-5所示。

抽样定理和PCM调制解调实验报告

《通信原理》实验报告 实验一:抽样定理和PAM调制解调实验 系别:信息科学与工程学院 专业班级:通信工程1003班 学生姓名:陈威 同组学生:杨鑫 成绩: 指导教师:惠龙飞 (实验时间:2012 年 12 月 7 日——2012 年 12 月28日) 华中科技大学武昌分校

1、实验目的 1对电路的组成、波形和所测数据的分析,加深理解这种调制方法的优缺点。 2.通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。 2、实验器材 1、信号源模块 一块 2、①号模块 一块 3、60M 双踪示波器 一台 4、连接线 若干 3、实验原理 3.1基本原理 1、抽样定理 图3-1 抽样与恢复 2、脉冲振幅调制(PAM ) 所谓脉冲振幅调制,即是脉冲载波的幅度随输入信号变化的一种调制方式。如果脉冲载波是由冲激脉冲组成的,则前面所说的抽样定理,就是脉冲增幅调制的原理。 自然抽样 平顶抽样 ) (t m ) (t T

图3-3 自然抽样及平顶抽样波形 PAM方式有两种:自然抽样和平顶抽样。自然抽样又称为“曲顶”抽样,(t)的脉冲“顶部”是随m(t)变化的,即在顶部保持了m(t)变已抽样信号m s 化的规律(如图3-3所示)。平顶抽样所得的已抽样信号如图3-3所示,这里每一抽样脉冲的幅度正比于瞬时抽样值,但其形状都相同。在实际中,平顶抽样的PAM信号常常采用保持电路来实现,得到的脉冲为矩形脉冲。 四、实验步骤 1、将信号源模块、模块一固定到主机箱上面。双踪示波器,设置CH1通道为同步源。 2、观测PAM自然抽样波形。 (1)将信号源上S4设为“1010”,使“CLK1”输出32K时钟。 (2)将模块一上K1选到“自然”。 (3)关闭电源,连接 表3-1 抽样实验接线表 (5)用示波器观测信号源“2K同步正弦波”输出,调节W1改变输出信号幅度,使输出信号峰-峰值在1V左右。在PAMCLK处观察被抽样信号。CH1接PAMCLK(同步源),CH2接“自然抽样输出”(自然抽样PAM信号)。

数字调制与解调 实验报告材料

计算机与信息工程学院实验报告 一、实验目的 1.掌握绝对码、相对码概念及它们之间的变换关系。 2.掌握用键控法产生2FSK信号的方法。 3.掌握2FSK过零检测解调原理。 4.了解2FSK信号的频谱与数字基带信号频谱之间的关系。 二、实验仪器或设备 1.通信原理教学实验系统 TX-6(武汉华科胜达电子有限公司 2011.10) 2.LDS20410示波器(江苏绿扬电子仪器集团有限公司 2011.4.1) 三、总体设计 3.1数字调制 3.1.1实验内容: 1、用示波器观察绝对码波形、相对码波形。 2、用示波器观察2FSK信号波形。 3、用频谱仪观察数字基带信号频谱及2FSK信号的频谱。 3.1.2基本原理: 本实验用到数字信源模块和数字调制模块。信源模块向调制模块提供数字基带信号(NRZ码)和位同步信号BS(已在实验电路板上连通,不必手工接线)。调制模块将输入的绝对码AK(NRZ码)变为相对码BK、用键控法产生2FSK信号。调制模块内部只用+5V电压。 数字调制单元的原理方框图如图1-1所示。 图1-1 数字调制方框图 本单元有以下测试点及输入输出点:

? CAR 2DPSK 信号载波测试点 ? BK 相对码测试点 ? 2FSK 2FSK 信号测试点/输出点,V P-P >0.5V 用1-1中晶体振荡器与信源共用,位于信源单元,其它各部分与电路板上主要元器件对 应关系如下: ? ÷2(A ) U8:双D 触发器74LS74 ? ÷2(B ) U9:双D 触发器74LS74 ? 滤波器A V6:三极管9013,调谐回路 ? 滤波器B V1:三极管9013,调谐回路 ? 码变换 U18:双D 触发器74LS74;U19:异或门74LS86 ? 2FSK 调制 U22:三路二选一模拟开关4053 ? 放大器 V5:三极管9013 ? 射随器 V3:三极管9013 2FSK 信号的两个载波频率分别为晶振频率的1/2和1/4,通过分频和滤波得到。 2FSK 信号(相位不连续2FSK )可看成是AK 与AK 调制不同载频信号形成的两个2ASK 信号相加。时域表达式为 t t m t t m t S c c 21cos )(cos )()(ωω+= 式中m(t)为NRZ 码。 2FSK 信号功率谱 设码元宽度为T S ,f S =1/T S 在数值上等于码速率, 2FSK 的功率谱密度如图所示。多进制的MFSK 信号的功率谱与二进制信号功率谱类似。 本实验系统中m(t)是一个周期信号,故m(t)有离散谱,因而2FSK 也具有离散谱。 3.2 数字解调 3.2.1 实验内容 1、 用示波器观察2FSK 过零检测解调器各点波形。 3.2.2 基本原理 2FSK 信号的解调方法有:包络括检波法、相干解调法、鉴频法、过零检测法等。

PSK(DPSK)调制与解调

实验题目——PSK(DPSK)调制与解调 一、实验目的 1、掌握绝对码、相对码的概念以及它们之间的变换关系和变换方法。 2、掌握产生PSK(DPSK)信号的方法。 3、掌握PSK(DPSK)信号的频谱特性。 二、实验内容 1、观察绝对码和相对码的波形。 2、观察PSK(DPSK)信号波形。 3、观察PSK(DPSK)信号频谱。 4、观察PSK(DPSK)相干解调器各点波形。 三、实验仪器 1、信号源模块 2、数字调制模块 3、数字解调模块 4、20M双踪示波器 5、导线若干 四、实验原理 1、2PSK(2DPSK)调制原理 2PSK信号是用载波相位的变化表征被传输信息状态的,通常规定0相位载波和π相位载波分别代表传1和传0,其时域波形示意图如图所示。 2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在这种绝对移相的方式中,由于发送端是以某一个相位作为基准的,因而在接收系统也必须有这样一个固定基准相位作参考。如果这个参考相位发生变化,则恢复的数字信息就会与发送的数字信息完全相反,从而造成错误的恢复。这种现象常称为2PSK的“倒π”现象,因此,实际中一般

不采用2PSK 方式,而采用差分移相(2DPSK )方式。 2DPSK 方式即是利用前后相邻码元的相对载波相位值去表示数字信息的一种方式。如图为对同一组二进制信号调制后的2PSK 与2DPSK 波形。 0 0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1数字信息(绝对码)PSK 波形 DPSK 波形 相对码 从图中可以看出,2DPSK 信号波形与2PSK 的不同。2DPSK 波形的同一相位并不对应相同的数字信息符号,而前后码元相对相位的差才唯一决定信息符号。这说明,解调2DPSK 信号时并不依赖于某一固定的载波相位参考值。只要前后码元的相对相位关系不破坏,则鉴别这个关系就可以正确恢复数字信息,这就避免了2PSK 方式中的“倒π”现象发生。同时我们也可以看到,单纯从波形上看,2PSK 与2DPSK 信号是无法分辨的。这说明,一方面,只有已知移相键控方式是绝对的还是相对的,才能正确判定原信息;另一方面,相对移相信号可以看成是把数字信息序列(绝对码)变换成相对码,然后再根据相对码进行绝对移相而形成。 2DPSK 的调制原理与2FSK 的调制原理类似,也是用二进制基带信号作为模拟开关的控制信号轮流选通不同相位的载波,完成2DPSK 调制,其调制的基带信号和载波信号分别从“PSK 基带输入”和“PSK 载波输入”输入,差分变换的时钟信号从“PSK-BS 输入”点输入,其原理框图如图所示: 2DPSK 调制原理框图 2、2PSK (2DPSK )解调原理

基于matlab的幅度调制与解调

郑州轻工业学院 课程设计说明书 题目:利用MATLAB实现信号的幅度调制与解调 姓名: XXX_____________ 院(系):电气信息工程学院____ 专业班级:电子信息工程10-01班 学号: 541001030XXX______ 指导教师:_______任景英_________ 成绩: _____________________ 时间:2013年6月24日至2013年6月28日

郑州轻工业学院 课程设计任务书 题目利用MATLAB实现信号的幅度调制与解调__ 专业、班级电子信息工程10级学号姓名 主要内容、基本要求、主要参考资料等: 主要内容: 利用MATLAB对正弦信号) t (t fπ =进行双边带幅度调制,载波信号频率为 40 sin( ) 100Hz,首先在MATLAB中显示调制信号的波形和频谱,已调信号的波形和频谱,比较信号调制前后的变化。然后对已调信号解调,并比较解调后的信号与原信号的区别。基本要求: 1、掌握利用MATLAB实现信号幅度调制与解调的方法。 2、利用MATLAB实现对常用连续时间信号的可视化表示。 3、验证信号调制的基本概念、基本理论,掌握信号与系统的分析方法。 4、加深对信号解调的理解。 主要参考资料: 1、陈后金. 信号与系统[M].北京:高等教育出版社,2007.07. 2、张洁.双边带幅度调制及其 MATLAB 仿真[J].科技经济市场,2006.9 完成期限: 2013.6.24—2013.6.28 指导教师签名:—————————— 课程负责人签名:——————————— 2013年6月21日

利用MATLAB实现信号的幅度调制与解调 摘要 本文主要研究的内容是利用MATLAB实现信号幅度调制与解调以及MATLAB中信号表示的基本方法及绘图函数的运用,实现对常用连续时间信号的可视化表示。详细介绍了正弦信号的双边带调制与解调原理并对调制信号与已调信号以及调制信号与解调后的信号分别进行了比较。利用matlab作为编程工具通过计算机实现对欲传输的原始信号在发送端对一个高频信号进行振幅调制,而在接收端通过检波过程恢复原信号。这种频带传输不仅克服了目前许多长途电话线路不能直接传输基带信号的缺点,而且能实现多路复用的目的,从而提高了通信线路的利用率。 关键词:DSB调制、解调、MATLAB

幅度调制解调案例

幅度调制解调器案例 1. 理论公式解析 1.1 振幅调制信号分析 设载波电压为 ()cos cos 2c cm c cm c u t U t U ft ωπ== 设调制电压为 ()cos cos 2m m u t U t U Ft πΩΩΩ=Ω= 根据幅度调制信号的定义,已调信号的幅度随调制信号()u t Ω线性变化,那么普通AM 波的振幅()m U t 表达式 ()()t m U t U U k U t U u k U t U a cm cm m a cm m a cm m Ω+=??? ? ??Ω+=Ω=+=ΩΩΩcos 1cos 1cos a k 是叫做灵敏度的参数,a m 一般叫做调幅系数,也可以叫做调幅度或者调制度, cm m a a U U k m Ω=?= c c U U 是载波幅度根据调制信号变化程度。这给出了单频调制的调幅信号表达式 ()()()()()()cos =cos cos =1cos cos cos cos cos 11 cos cos cos 22 AM m c cm a m c cm a c cm c cm a c cm c a cm c a cm c u t U t t U k u t t U m t t U t U m t t U t m U t m U t ωωωωωωωωΩ=+Ω+Ω=+Ω=+ +Ω+-Ω 可以看出,三个高频分量组成了单频信号调制的已调波,分别是角频率为c ω的载波, ()c ω+Ω和()c ω-Ω两个新产生的角频率分量。其中上边频分量比c ω高,下边频分量比c ω低。频率分量为c ω的载波振幅还是为cm U ,两个边频分量的振幅都是1 2 a cm m U 。由于a m 不 可以超过1,所以边频振幅不大于1 2cm U ,把三个频率分量画成图,便能够得到图1所示的 频谱图。图1中,用每一条线段表示幅度调制波的一个正弦分量,幅度用线段的长度来表

数字调制解调实验

武汉大学教学实验报告 电子信息学院 ** 专业 2016 年 ** 月 ** 日 实验名称数字调制解调实验指导教师 *** 姓名 *** 年级 14级学号 20143012***** 成绩 图1 FSK调制电路原理框图

代表信号载波的恒定偏移。 FSK 的信号频谱如图2 所示。 图2 FSK 的信号频谱 公式给出:,其中B 为数字基带信号的带宽。假设信号带宽限制在主 FSK 的传输带宽变为:。 图3 FSK锁相环解调器原理示意图 锁相解调的工作原理是十分简单的,只要在设计锁相环时, 此时对应的环路滤波器输出电压为零,而对另一载频失锁,则对应的环路滤波器输出电压不为零,那末在锁相环路滤波器输出端就可以获得原基带信号的信息。FSK锁相环解调器原理图如图3所示。FSK 。其中,压控振荡器的频率是由5C2.5R3.5R4.5U3等元件参数确定,中心频率设计在 电位器进行微调。当输入信号为32KHz时,环路锁定,经形成电路后,输出高电平;当输入信号为 失锁,经形成电路后,输出低电平,则在解调器输出端就得到解调的基带信号序列。

图4 PSK、DPSK调制电路原理框图 ,通过4P5和4P6两个铆孔输入到FPGA中,FPGA软件完成 解调器电路采用科斯塔斯环(Constas环)解调,其原理如图5所示。 图5 解调器原理方框图 输入电路由射随器和比较器组成,射随器是为了发送(调制器)和接收(解调器)电路之间的隔离,从而使它们工作互不影响。比较电路是将正弦信号转换为脉冲信号,目的是便于控制科斯塔斯特环中的乘法器。由于跟随器电源电压已调波信号幅度不能太大,一般控制在1.8V左右,否则会产生波形失真。 )科斯塔斯环提取载波原理(原理中标号参见原理图) 采用科斯塔斯特环解调,科斯塔斯特环方框原理如图6所示。 图6 科斯塔斯特环电路方框原理如图 解调输入电路的输出信号被加到模拟门5U6C和5U6D构成的乘法器,前者为正交载波乘法器,相当于图 ,后者为同相载波乘法器,相当于框图中乘法器1。5U7A,5U7B周边电路为低通滤波器。 的作用是将低通滤波后的信号整形,变成方波信号。PSK解调信号从5U8的7脚经5U11B.C ,若5U10A两输入信号分别为A和B,因(A、B同为 5E2用来稳压,以便提高VCO的频率稳定度。VCO信号从7脚经5C21输出至移相90o90o移

相关文档
最新文档