转子系统临界转速Matlab计算程序

转子系统临界转速Matlab计算程序
转子系统临界转速Matlab计算程序

%=====================================================

%转子系统临界转速计算程序1.0.0版;

%本程序为1.0.0版,默认系统支承为刚性;

%本程序暂时不考虑陀螺效应的影响;

%程序的后续版本将逐步补充完善相关功能。

%=====================================================

%本程序由中国振动联盟网站(https://www.360docs.net/doc/3217399419.html,)开发;

%本程序版权属中国振动联盟所有,未经中国振动联盟网站同意,禁止将本程序用于任何商业行为;

%本程序仅供联盟会员学习和验算使用,中国振动联盟不对程序的正确性作任何承诺;

%感谢yejet在程序编写过程中做的大量的工作,感谢心灯提供的参考程序;

%转载本程序请注明程序来源:https://www.360docs.net/doc/3217399419.html,/。

%=====================================================

本程序正在逐步开发中,本站将根据开发进度,阶段性的发布最新版本的程序

由于多方面的原因,源代码不能公布,如果有特殊需要,大家可以回帖说明,我们将在能力范围内为大家扩展相应的功能

本程序下一步增加的功能有:

1. 输出振型

2. 增加弹性支承

3. 增加陀螺效应等

如还需扩展其他功能,请回帖说明

调用格式:

CriticalSpeeds=Chinavib_CriticalSpeeds(Nshaft,RotorE,RotorM,ShaftL,ShaftDI,ShaftDO,Locatio nF,addtionN,addtionM,addtionJ,CSN)

参数说明:(所有输入单位均采用国际制单位)

Nshaft %轴段数量;

%%

RotorE %转子弹性模量;

RotorM %转子材料密度

ShaftL %各轴段长度

ShaftDI %各轴段外径

ShaftDO %各轴段内径;

LocationF%支承所在节点编号;

%%

addtionN %附加轮盘编号

addtionM %附加轮盘质量

addtionJ %附加轮盘转动惯量

CSN %输出的临界转速数量

CriticalSpeeds 输出的临界转速,单位为转/分

调用算例见本贴2、3楼

算例一:如图所示两端简支的光轴系统,轴长为2m,轴直径为0.1m,转子弹性模量为

2.095e11Pa,转子材料密度为7.85e3kg/m3。

很显然,该转子可以求得临界转速的理论解,理论解为:

一阶临界转速:3043 转/分

二阶临界转速:12172 转/分

三阶临界转速:27387 转/分

四阶临界转速:48689 转/分

五阶临界转速:76076 转/分

本程序的计算结果为:

一阶临界转速:3041 转/分

二阶临界转速:12138 转/分

三阶临界转速:27234 转/分

四阶临界转速:48287 转/分

五阶临界转速:75337 转/分

计算结果和理论解基本完全吻合,尤其是低阶临界转速

从整体上看,结果本程序计算结果略低于理论解

这是由于刚性支承的处理方式造成的,今后将改进相关的刚度处理方式,以进一步提高解的准确性

该算例具体计算方法如下:

将该光轴等分成8段,显然个轴段长度为0.25m,各轴段外径为0.1m,各轴段内经为0m,支承所在节点为1,9号节点

然后将各轴段的相关参数输入程序,并调用本程序,具体如下:

%=====================================================

%转子系统临界转速计算程序1.0.0版;

%本程序为1.0.0版,默认系统支承为刚性;

%本程序暂时不考虑陀螺效应的影响;

%程序的后续版本将逐步补充完善相关功能。

%=====================================================

%本程序由中国振动联盟网站(https://www.360docs.net/doc/3217399419.html,)开发;

%本程序版权属中国振动联盟所有,未经中国振动联盟网站同意,禁止将本人程序用于任何商业行为;

%本程序仅供联盟会员学习和验算使用,中国振动联盟不对程序的正确性作任何承诺;

%转载本程序请注明程序来源:https://www.360docs.net/doc/3217399419.html,/。

%=====================================================

%%

clc

clear all;

Nshaft=8; %轴段数量;

%%

RotorE = 2.095e11; %转子弹性模量;

RotorM = 7.85e3; %转子材料密度

ShaftL = [0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25]; %各轴段长度

ShaftDI = ones(1,Nshaft)*0.1; %各轴段外径

ShaftDO = ones(1,Nshaft)*0.0; %各轴段内径;

LocationF=[1

9]; %支承所在节点编号;

%%

addtionN = []; %附加轮盘编号

addtionM = []; %附加轮盘质量

addtionJ = []; %附加轮盘转动惯量

%%

CSN = 5; %输出的临界转速数量CriticalSpeeds=Chinavib_CriticalSpeeds(Nshaft,RotorE,RotorM,Shaft L,ShaftDI,ShaftDO,LocationF,addtionN,addtionM,addtionJ,CSN)

算例二:如图所示转子,转子具体尺寸见程序中的输入参数,转子弹性模量为2.095e11Pa,

转子材料密度为7.85e3kg/m3。

计算程序如下:

=====================================================

%转子系统临界转速计算程序1.0.0版;

%本程序为1.0.0版,默认系统支承为刚性;

%本程序暂时不考虑陀螺效应的影响;

%程序的后续版本将逐步补充完善相关功能。

%=====================================================

%本程序由中国振动联盟网站(https://www.360docs.net/doc/3217399419.html,)开发;

%本程序版权属中国振动联盟所有,未经中国振动联盟网站同意,禁止将本人程序用于任何商业行为;

%本程序仅供联盟会员学习和验算使用,中国振动联盟不对程序的正确性作任何承诺;

%转载本程序请注明程序来源:https://www.360docs.net/doc/3217399419.html,/。

%=====================================================

%%

clc

clear all;

Nshaft=5; %轴段数量;

%%

RotorE = 2.095e11; %转子弹性模量;

RotorM = 7.85e3; %转子材料密度

ShaftL = [0.55,0.45,0.45,0.55,0.5]; %各轴段长度

ShaftDI = ones(1,Nshaft)*0.1;ShaftDI(2)=0.15;ShaftDI(3)=0.15; %各轴段外径

ShaftDO = ones(1,Nshaft)*0.0; %各轴段内径;

LocationF=[1,5]; %支承所在节点编号;

%%

addtionN = [2,3,4,6]; %附加轮盘编号addtionM = [144.1157,288.2313,144.1157,144.1157]; %附加轮盘质量addtionJ = [4.7933,18.4648,4.7933,4.7933]; %附加轮盘转动惯量

%%

CSN = 5;

CriticalSpeeds=Chinavib_CriticalSpeeds(Nshaft,RotorE,RotorM,Shaft L,ShaftDI,ShaftDO,LocationF,addtionN,addtionM,addtionJ,CSN)

计算结果如下:

CriticalSpeeds =

1.0e+004 *

0.1356

0.2631

0.5891

1.2066

1.4088

改变分段方式如下:

计算程序如下:

%=====================================================

%转子系统临界转速计算程序1.0.0版;

%本程序为1.0.0版,默认系统支承为刚性;

%本程序暂时不考虑陀螺效应的影响;

%程序的后续版本将逐步补充完善相关功能。

%=====================================================

%本程序由中国振动联盟网站(https://www.360docs.net/doc/3217399419.html,)开发;

%本程序版权属中国振动联盟所有,未经中国振动联盟网站同意,禁止将本人程序用于任何

商业行为;

%本程序仅供联盟会员学习和验算使用,中国振动联盟不对程序的正确性作任何承诺;

%转载本程序请注明程序来源:https://www.360docs.net/doc/3217399419.html,/。

%=====================================================

%%

clc

clear all;

Nshaft=9; %轴段数量;

%%

RotorE = 2.095e11; %转子弹性模量;

RotorM = 7.85e3; %转子材料密度

ShaftL = [0.5,0.1,0.4,0.1,0.4,0.1,0.5,0.4,0.1]; %各轴段长度

ShaftDI = ones(1,Nshaft)*0.1;ShaftDI(2)=0.15;ShaftDI(3)=0.15; %各轴段外径

ShaftDI(4)=0.15;ShaftDI(5)=0.15;ShaftDI(6)=0.15;

ShaftDO = ones(1,Nshaft)*0.0; %各轴段内径;

LocationF=[1,8]; %支承所在节点编号;

%%

addtionN = [2,3,4,5,6,7,9,10]; %附加轮盘编号

addtionM = [70.1311,70.1311,144.1157,144.1157,70.1311,70.1311,70.1311,70.131 1]; %附加轮盘质量

addtionJ = [2.3888,2.3888,9.2324,9.2324,2.3888,2.3888,2.3888,2.3888];

%附加轮盘转动惯量

%%

CSN = 5;

CriticalSpeeds=Chinavib_CriticalSpeeds(Nshaft,RotorE,RotorM,Shaft L,ShaftDI,ShaftDO,LocationF,addtionN,addtionM,addtionJ,CSN)

CriticalSpeeds =

1.0e+004 *

0.1433

0.2786

0.6196

1.2417

1.4763

两种不同分段形式所得到的结果不同,主要是因为分段时考虑轴段刚度不一致造成的

在第一种分段模式中,在2节点处轴段左侧轴段直径为0.1m,第4节点处右侧的轴段直径

为0.1m

而第二种分段模式中,上述两个位置轴段的直径为0.15m,因此临界转速的计算结果要略高

一点

实际计算时,如果要获得比较准确的结果,需要考虑轮盘对转子临界转速的影响,其考虑办法可以参考西安交通大学编写的《透平零件结构和强度计算》一书中的相关内容进行修正。

对第二种分段模式节点进行加密,如图

计算程序如下:

复制内容到剪贴板

=====================================================

%转子系统临界转速计算程序1.0.0版;

%本程序为1.0.0版,默认系统支承为刚性;

%本程序暂时不考虑陀螺效应的影响;

%程序的后续版本将逐步补充完善相关功能。

%=====================================================

%本程序由中国振动联盟网站(https://www.360docs.net/doc/3217399419.html,)开发;

%本程序版权属中国振动联盟所有,未经中国振动联盟网站同意,禁止将本人程序用于任何商业行为;

%本程序仅供联盟会员学习和验算使用,中国振动联盟不对程序的正确性作任何承诺;

%转载本程序请注明程序来源:https://www.360docs.net/doc/3217399419.html,/。

%=====================================================

%%

clc

clear all;

Nshaft=14; %轴段数量;

%%

RotorE = 2.095e11; %转子弹性模量;

RotorM = 7.85e3; %转子材料密度

ShaftL = [0.25,0.25,0.1,0.2,0.2,0.1,0.2,0.2,0.1,0.25,0.25,0.2,0.2,0.1]; %各轴段长度

ShaftDI = ones(1,Nshaft)*0.1;ShaftDI(3)=0.15;ShaftDI(4)=0.15; %各轴段外径

ShaftDI(5)=0.15;ShaftDI(6)=0.15;ShaftDI(7)=0.15;ShaftDI(8)=0.15;S haftDI(9)=0.15;

ShaftDO = ones(1,Nshaft)*0.0; %各轴段内径;

LocationF=[1,12]; %支承所在节点编号;

%%

addtionN = [2,3,6,7,9,10,14,15]; %附加轮盘编号

addtionM = [70.1311,70.1311,144.1157,144.1157,70.1311,70.1311,70.1311,70.131 1]; %附加轮盘质量

addtionJ = [2.3888,2.3888,9.2324,9.2324,2.3888,2.3888,2.3888,2.3888];

%附加轮盘转动惯量

%%

CSN = 5;

CriticalSpeeds=Chinavib_CriticalSpeeds(Nshaft,RotorE,RotorM,Shaft L,ShaftDI,ShaftDO,LocationF,addtionN,addtionM,addtionJ,CSN)

CriticalSpeeds =

1.0e+004 *

0.1454

0.2824

0.6159

1.2077

1.4586

临界转速的计算

一、临界转速分析的目的 临界转速分析的主要目的在于确定转子支撑系统的临界转速,并按照经验或有关的技术规定,将这些临界转速调整,使其适当的远离机械的工作转速,以得到可靠的设计。 例如设计地面旋转机械时,如果工作转速低于其一阶临界转速Nc1,应使N<0.75Nc1, 如果工作转速高于一阶临界转速,应使 1.4Nck

传递矩阵法 基本原理:传递矩阵法的基本原理是,去不同的转速值,从转子支撑系统的一端开始,循环进行各轴段截面状态参数的逐段推算,直到满足另一端的边界条件。 优点:对于多支撑多元盘的转子系统,通过其特征值问题或通过建立运动微分方程的方法求解系统的临界转速和不平衡响应,矩阵的维数随着系统的自由度的增加而增加,计算量往往较大:采用传递矩阵法的优点是矩阵的维数不随系统的自由度的增加而增大,且各阶临界转速计算方法相同,便于程序实现,所需存储单元少,这就使得传递矩阵法成为解决转子动力学问题的一个快速而有效的方法。 缺点:求解高速大型转子的动力学问题时,有可能出现数值不稳定现象。今年来提出的Riccati 传递矩阵法,保留传递矩阵的所有优点,而且在数值上比较稳定,计算精度高,是一种比较理想的方法,但目前还没有普遍推广。 轴段划分:首先根据支撑系统中刚性支撑(轴承)的个数划分跨度。在整个轴段内,凡是轴承、集中质量、轮盘、联轴器等所在位置,以及截面尺寸、材料有变化的地方都要划分为轴段截面。若存在变截面轴,应简化为等截面轴段,这是因为除了个别具有特殊规律的变截面轴段外,其他的变截面轴段的传递矩阵特别复杂。 传递矩阵: 4. 轴段传递矩阵 每段起始状态参数和终端状态参数的转换方程,根据是否考虑转轴的分布质量,可以建立两种轴段传递矩阵 ① 当考虑轴段的分布质量时:起始和终端的转换方程是均质等截面杆的振动弹性方程: ② 不考虑转轴的分布质量时建立的传递矩阵 i 0212222111212Q M X 1000L 100-L 10-L L 1Q M X ??????? ??????????????=??????? ??θααααααθki 其中,a11,a12,a21,a22为该轴段的影响系数,根据材料力学: ???? ?????====EJ L EJ L EJ 22221123 1123L αααα,a11和a12是终端的剪力和弯矩在终端引起的挠度,a21和

matlab电力系统潮流计算

华中科技大学 信息工程学院课程设计报告书题目: 电力系统潮流计算 专业:电气工程及其自动化 班级: 学号: 学生姓名: 指导教师: 2015年 11 月 10 日

2015年11月12日

信息工程学院课程设计成绩评定表

摘要 电力系统稳态分析包括潮流计算和静态安全分析。本文主要运用的事潮流计算,潮流计算是电力网络设计与运行中最基本的运算,对电力网络的各种设计方案及各种运行方式进行潮流计算,可以得到各种电网各节点的电压,并求得网络的潮流及网络中的各元件的电力损耗,进而求得电能损耗。本位就是运用潮流计算具体分析,并有MATLAB仿真。 关键词:电力系统潮流计算 MATLAB仿真

Abstract Electric power system steady flow calculation and analysis of the static safety analysis. This paper, by means of the calculation, flow calculation is the trend of the power network design and operation of the most basic operations of electric power network, various design scheme and the operation ways to tide computation, can get all kinds of each node of the power grid voltage and seek the trend of the network and the network of the components of the power loss, and getting electric power. The standard is to use the power flow calculation and analysis, the specific have MATLAB simulation. Key words: Power system; Flow calculation; MATLAB simulation

潮流计算(matlab)实例计算

潮流例题:根据给定的参数或工程具体要求(如图),收集和查阅资料;学习相关软件(软件自选:本设计选择Matlab进行设计)。 2.在给定的电力网络上画出等值电路图。 3.运用计算机进行潮流计算。 4.编写设计说明书。 一、设计原理 1.牛顿-拉夫逊原理 牛顿迭代法是取x0 之后,在这个基础上,找到比x0 更接近的方程的跟,一步一步迭代,从而找到更接近方程根的近似跟。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0 的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。电力系统潮流计算,一般来说,各个母线所供负荷的功率是已知的,各个节点电压是未知的(平衡节点外)可以根据网络结构形成节点导纳矩阵,然后由节点导纳矩阵列写功率方程,由于功率方程里功率是已知的,电压的幅值和相角是未知的,这样潮流计算的问题就转化为求解非线性方程组的问题了。为了便于用迭代法解方程组,需要将上述功率方程改写成功率平衡方程,并对功率平衡方程求偏导,得出对应的雅可比矩阵,给未知节点赋电压初值,一般为额定电压,将初值带入功率平衡方程,得到功率不平衡量,这样由功率不平衡量、雅可比矩阵、节点电压不平衡量(未知的)构成了误差方程,解误差方程,得到节点电压不平衡量,节点电压加上节点电压不平衡量构成新的节点电压初值,将新的初值带入原来的功率平衡方程,并重新形成雅可比矩阵,然后计算新

的电压不平衡量,这样不断迭代,不断修正,一般迭代三到五次就能收敛。 牛顿—拉夫逊迭代法的一般步骤: (1)形成各节点导纳矩阵Y。 (2)设个节点电压的初始值U和相角初始值e 还有迭代次数初值为0。 (3)计算各个节点的功率不平衡量。 (4)根据收敛条件判断是否满足,若不满足则向下进行。 (5)计算雅可比矩阵中的各元素。 (6)修正方程式个节点电压 (7)利用新值自第(3)步开始进入下一次迭代,直至达到精度退出循环。 (8)计算平衡节点输出功率和各线路功率 2.网络节点的优化 1)静态地按最少出线支路数编号 这种方法由称为静态优化法。在编号以前。首先统计电力网络个节点的出线支路数,然后,按出线支路数有少到多的节点顺序编号。当由n 个节点的出线支路相同时,则可以按任意次序对这n 个节点进行编号。这种编号方法的根据是导纳矩阵中,出线支路数最少的节点所对应的行中非零元素也2)动态地按增加出线支路数最少编号在上述的方法中,各节点的出线支路数是按原始网络统计出来的,在编号过程中认为固定不变的,事实上,在节点消去过程中,每消去一个节点以后,与该节点相连的各节点的出线支路数将发生变化(增加,减少或保持不变)。因此,如果每消去一个节点后,立即修正尚未编号节点的出线支路数,然后选其中支路数最少的一个节点进行编号,就可以预期得到更好的效果,动态按最少出线支路数编号方法的特点就是按出线最少原则编号时考虑了消去过程中各节点出线支路数目的变动情况。 3.MATLAB编程应用 Matlab 是“Matrix Laboratory”的缩写,主要包括:一般数值分析,矩阵运算、数字信号处理、建模、系统控制、优化和图形显示等应用程序。由于使用Matlab 编程运算与人进行科学计算的思路和表达方式完全一致,所以不像学习高级语言那样难于掌握,而且编程效率和计算效率极高,还可在计算机上直接输出结果和精美的图形拷贝,所以它的确为一高效的科研助手。 二、设计内容 1.设计流程图

matlab电力系统潮流计算

m a t l a b电力系统潮流计 算 Final approval draft on November 22, 2020

华中科技大学 信息工程学院课程设计报告书题目: 电力系统潮流计算 专业:电气工程及其自动化 班级: 学号: 学生姓名: 指导教师: 2015年 11 月 10 日

信息工程学院课程设计成绩评定表

摘要 电力系统稳态分析包括潮流计算和静态安全分析。本文主要运用的事潮流计算,潮流计算是电力网络设计与运行中最基本的运算,对电力网络的各种设计方案及各种运行方式进行潮流计算,可以得到各种电网各节点的电压,并求得网络的潮流及网络中的各元件的电力损耗,进而求得电能损耗。本位就是运用潮流计算具体分析,并有MATLAB仿真。 关键词:电力系统潮流计算 MATLAB仿真

Abstract Electric power system steady flow calculation and analysis of the static safety analysis. This paper, by means of the calculation, flow calculation is the trend of the power network design and operation of the most basic operations of electric power network, various design scheme and the operation ways to tide computation, can get all kinds of each node of the power grid voltage and seek the trend of the network and the network of the components of the power loss, and getting electric power. The standard is to use the power flow calculation and analysis, the specific have MATLAB simulation. Key words: Power system; Flow calculation; MATLAB simulation

matlab潮流计算

附录1 使用牛顿拉夫逊法进行潮流计算的Matlab程序代码 % 牛拉法计算潮流程序 %----------------------------------------------------------------------- % B1矩阵:1、支路首端号;2、末端号;3、支路阻抗;4、支路对地电纳 % 5、支路的变比;6、支路首端处于K侧为1,1侧为0 % B2矩阵:1、该节点发电机功率;2、该节点负荷功率;3、节点电压初始值 % 4、PV节点电压V的给定值;5、节点所接的无功补偿设备的容量 % 6、节点分类标号:1为平衡节点(应为1号节点);2为PQ节点;3为PV 节点; %------------------------------------------------------------------------ clear all; format long; n=input('请输入节点数:nodes='); nl=input('请输入支路数:lines='); isb=input('请输入平衡母线节点号:balance='); pr=input('请输入误差精度:precision='); B1=input('请输入由各支路参数形成的矩阵:B1='); B2=input('请输入各节点参数形成的矩阵:B2='); Y=zeros(n);e=zeros(1,n);f=zeros(1,n);V=zeros(1,n);sida=zeros(1,n);S1=zeros(nl); %------------------------------------------------------------------ for i=1:nl %支路数 if B1(i,6)==0 %左节点处于1侧 p=B1(i,1);q=B1(i,2); else %左节点处于K侧 p=B1(i,2);q=B1(i,1); end Y(p,q)=Y(p,q)-1、/(B1(i,3)*B1(i,5)); %非对角元 Y(q,p)=Y(p,q); %非对角元 Y(q,q)=Y(q,q)+1、/(B1(i,3)*B1(i,5)^2)+B1(i,4); %对角元K侧 Y(p,p)=Y(p,p)+1、/B1(i,3)+B1(i,4); %对角元1侧 end %求导纳矩阵 disp('导纳矩阵Y='); disp(Y) %------------------------------------------------------------------- G=real(Y);B=imag(Y); %分解出导纳阵的实部与虚部 for i=1:n %给定各节点初始电压的实部与虚部 e(i)=real(B2(i,3)); f(i)=imag(B2(i,3));

临界转速

在工程上,我们也把对应于转子一阶横向固有频率的转速称为临界转速。 当代的大型转动机械,为了提高单位体积的做功能力,一般均将转动部件做成高速运转的柔性转子(工作转速高于其固有频率对应的转速),采用滑动轴承支撑。 由于滑动轴承具有弹性和阻尼,因此,它的作用远不止是作为转子的承载元件,而且已成为转子动力系统的一部分。在考虑到滑动轴承的作用后,转子——轴承系统的固有振动、强迫振动和稳定特性就和单个振动体不同了。 柔性转子的临界转速 由于柔性转子在高于其固有频率的转速下工作,所以在起、停车过程中,它必定要通过固有频率这个位置。此时机组将因共振而发生强烈的振动,而在低于或高于固有频率转速下运转时,机组的振动是一般的强迫振动,幅值都不会太大,共振点是一个临界点。故此,机组发生共振时的转速也被称之为临界转速。 转子的临界转速往往不止一个,它与系统的自由度数目有关。实际情况表明:带有一个转子的轴系,可简化成具有一个自由度的弹性系统,有一个临界转速;转轴上带有二个转子,可简化成二个自由度系统,对应有二个临界转速,依次类推。 其中转速最小的那个临界转速称为一阶临界转速nc1,比之大的依次叫做二阶临界转速nc2、三阶临界转速nc3。 工程上有实际意义的主要是前几阶,过高的临界转速已超出了转子可达的工作转速范围。 临界转速的变动 为了保证大机组能够安全平稳的运转,轴系转速应处于该轴系各临界转速的一定范围之外,一般要求: 刚性转子 n<0.75 nc1 柔性转子 1.4 nc1 < n <0.7 nc2 式中,nc1、nc2分别为轴系的一阶、二阶临界转速。 机组的临界转速可由产品样本查到或在起停车过程中由振动测试获取。 需指出的是,样本提供的临界转速和机组实际的临界转速可能不同,因为系统的固有频率受到种种因素影响会发生改变。 一般地说,一台给定的设备,除非受到损坏,其结构不会有太大的变化,因而其质量分布、轴系刚度系数都是固定的,其固有频率也应是一定的。 但实际上,现场设备结构变动的情况还是很多的,最常遇到的是换瓦,有时是更换转子,不可避免的是设备维修安装后未能准确复位等等,都会影响到临界转速的改变。 多数情况下,这种临界转速的改变量不大,处在规定必须避开的转速区域内,因而被忽略。

转子临界转速概念

1 转子临界转速概念 转子的固有频率除了与转子结构(和支承结构)参数有关外,它还随转子涡动转速和转子 自转转速的变化而变化。在转子不平衡力驱动下,转子一般作正同步涡动,当转子涡动转 速等于转子固有频率时,转子出现共振,相应转速就称为该转子的临界转速。 2 转子临界转速计算对程序的要求 计算转子临界转速必须能够考虑旋转结构涡动时产生的陀螺效应对转子临界转速的影响, 这是转子临界转速计算同其他非旋转结构固有频率计算的差异所在。一般有限元程序不具 备计算转子临界转速的功能。 3 ANSYS的临界转速计算功能 1) 计算转子临界转速可用单元 BEAM4; PIPE16。 COBIN14(用于模拟带阻尼的弹性支撑) 2) 单元特性及实常数 BEAM4和PIPE16: Keyoption(7)=1 实常数Spin=转子自转角速度(ω) rad/s。 3) 特征值求解方法 选取DAMP方法求解特征值。 4) 计算结果处理 采用有限元方法计算转子临界转速时,转子会出现正进动和反进动。由于陀螺效应的作用 ,随着转子自转角速度的提高,反进动固有频率将降低,而正进动固有频率将提高。根据 临界转速的定义,应只对正进动固有频率(Ωc)进行分析。 在后处理中首先剔除负固有频率,然后分析各阶模态振型,确定同一阶振型的正进动和反 进动固有频率。 改变转子自转角速度(ω),计算出新的Ωc,最后画出Ωc~ω曲线,根

据临界转速的定 义,当Ωc=ω时,Ωc即所求临界转速。需注意:由于Ωc的单位为Hz,而ω为rad/s,计算 时应转换单位。 4 算例 单转子结构如图所示,转子轴近似无质量,轮盘密度8*104Kg/m3,其余材料参数为: E=200Gpa μ=0.3 || |----50--------| || _____________________________||d=120 ^ ^ d0=10 || || h=0.5 |---------- 100----------------------------------| 算例命令流文件如下: /PREP7 ET,1,BEAM4 !* KEYOPT,1,2,0 KEYOPT,1,6,0 KEYOPT,1,7,1 KEYOPT,1,9,0 KEYOPT,1,10,0 *SET,p,acos(-1) *SET,R1,5 *SET,R2,60 R,1,p*R1**2,p*R1**4/4,p*R1**4/4,2*R1,2*R1, , RMORE, ,p*R1**4/2, , ,2175, , R,2,p*R2**2,p*R2**4/4,p*R2**4/4,2*R2,2*R2, , RMORE, ,p*R2**4/2, , ,2175, ,

基于MATLAB的电力系统潮流计算

基于MATLAB的电力系统潮流计算 %简单潮流计算的小程序,相关的原始数据数据数据输入格式如下: %B1是支路参数矩阵,第一列和第二列是节点编号。节点编号由小到大编写%对于含有变压器的支路,第一列为低压侧节点编号,第二列为高压侧节点%编号,将变压器的串联阻抗置于低压侧处理。 %第三列为支路的串列阻抗参数。 %第四列为支路的对地导纳参数。 %第五烈为含变压器支路的变压器的变比 %第六列为变压器是否是否含有变压器的参数,其中“1”为含有变压器,%“0”为不含有变压器。 %B2为节点参数矩阵,其中第一列为节点注入发电功率参数;第二列为节点%负荷功率参数;第三列为节点电压参数;第六列为节点类型参数,其中 %“1”为平衡节点,“2”为PQ节点,“3”为PV节点参数。 %X为节点号和对地参数矩阵。其中第一列为节点编号,第二列为节点对地%参数。 n=input('请输入节点数:n='); n1=input('请输入支路数:n1='); isb=input('请输入平衡节点号:isb='); pr=input('请输入误差精度:pr='); B1=input('请输入支路参数:B1='); B2=input('请输入节点参数:B2='); X=input('节点号和对地参数:X='); Y=zeros(n); Times=1; %置迭代次数为初始值 %创建节点导纳矩阵 for i=1:n1 if B1(i,6)==0 %不含变压器的支路 p=B1(i,1); q=B1(i,2); Y(p,q)=Y(p,q)-1/B1(i,3); Y(q,p)=Y(p,q); Y(p,p)=Y(p,p)+1/B1(i,3)+0.5*B1(i,4); Y(q,q)=Y(q,q)+1/B1(i,3)+0.5*B1(i,4); else %含有变压器的支路 p=B1(i,1); q=B1(i,2); Y(p,q)=Y(p,q)-1/(B1(i,3)*B1(i,5)); Y(q,p)=Y(p,q); Y(p,p)=Y(p,p)+1/B1(i,3);

临界转速理论基础

临界转速理论基础 一、临界转速定义 临界转速就是透平机组转速与透平机转子自振频率相重合时的转速,此时便会引起共振,结果导致机组轴系振动幅度加大,机组振动加剧,长时间在这种临界转速下运转,就会造成破坏事故的发生。 由于转子因材料、制造工艺的误差、受热弯曲等多种因素,转子各微段的质心一般对回转轴线有微小偏离。转子旋转时,由上述偏离造成的离心力会使转子产生横向振动,在工作过程中不可避免的产生振动现象。这种振动在某些转速上显得异常强烈,这些转速称为临界转速。转子的振动幅值(扰度、离心力)将随着转速的升高而增大,当转速继续升高而振动幅值出现下降且稳定在某一振动幅值范围之内,我们称转子系统此时发生了共振现象(批注:转子的振动幅值(扰度、离心力)将随着转速的升高而增大,当转速继续升高而振动幅值出现下降,继续升高下降)。我们把振动幅值出现极大值时对应的转速称为转子系统的临界转速,这个转速等于转子的固有频率。当转子速度继续升高,振动幅值再次出现极大值时,该振动幅值对应的转速称为二阶临界转速,以此类推我们可以定义转子的三阶临界转速,四阶临界转速。但是实际中由于支承刚度、轴系受力等情况,转子临界转速会与定义值有一定的偏差,比如转轴受到拉力时,临界转速会提高;转轴受到压力时,临界转速会下降。 转子的临界转速一般通过求解其振动频率来得到。转子的固有频率除了与转子结构(和支承结构)参数有关外,它还随转子涡动转速和转子自转转速的变化而变化。在不平衡力驱动下,转子一般作正向同步涡动,当转子涡动频率等于转子振动频率时,转子出现共振,相应振动频率下的转速就称为该转子的临界转速。转子的固有频率除了与转子结构(和支承结构)参数有关外,它还随转子涡动转速和转子自转转速的变化而变化。为确保机器在工作转速范围内不致发生共振,临界转速应适当偏离工作转速10%以上。 临界转速的研究对于旋转机械很重要。在旋转机械中,由于振动而引起很多故障甚至事故,造成了财力物力的损失。有效预防、及时发现、有效解决振动原因能够显著提高设备的运行安全性、可靠性并减少维修费用,带来巨大的经济和社会效益。引起旋转机械振动的原因很多,但是运行在临界转速下的转轴产生的振动破坏性最大。在运行中,要尽快通过临界转速,动力学特性研究指出,转子在越过临界转速后会自动定心,因而可以稳定运转。二、临界转速的分析 根据临界转速的定义可以看出,质心的偏移是临界转速产生的原因。当回转体在临界转速或其附近运行时,本身将出现很大变形并作弓状回旋,引起支承及整个机械的剧烈振动,甚至造成轴承和回转体的破坏,而当转速在这些特定转速的一定范围之外时,运转即趋于平稳。 以图2-1所示竖立单圆盘转轴为例分析临界转速。轴的重量忽略不计,只考虑圆盘的质量m,轴系的刚度为k,而阻尼可忽略,圆盘的几何中心为O,重心为G,偏心距e = O’G。当轴静止时,其轴心线与铅垂线AB 重合;当轴以角速度ω 旋转时,偏心质量将产生离心惯性力2meω,使轴弯曲而到达AO’B的位置,其振幅为OO’。 由图2-1可见,在临界转速下运动时,轴系作两种运动:一种是圆盘绕几何中心的转动;一种是弯曲了的轴AO’B 绕铅锤线AOB的转动,轴的变形呈弓状,因而称为弓状回旋。弓状回旋与轴系的横向振动不同。横向振动时,轴因反复弯曲而产生交变拉压应力;弓状回旋时,轴内不产生或仅产生频率远低于轴转频率的交变拉压应力,但离心惯性力对轴系施加频率等于轴自转频率的交变作用力而使系统发生振动。当不考虑回转效应和工作环境等因素时,回转体的临界转速在数值上与其横向振动的固有频率相同。设某回转体的临界转速为 n c(r/min),其横向振动的固有频率为ωn(rad/s),则有:

基于MATLAB的潮流计算源程序代码(优.选)

%*************************电力系统直角坐标系下的牛顿拉夫逊法潮流计算********** clear clc load E:\data\IEEE014_Node.txt Node=IEEE014_Node; weishu=size(Node); nnum=weishu(1,1); %节点总数 load E:\data\IEEE014_Branch.txt branch=IEEE014_Branch; bwei=size(branch); bnum=bwei(1,1); %支路总数 Y=(zeros(nnum)); Sj=100; %********************************节点导纳矩阵******************************* for m=1:bnum; s=branch(m,1); %首节点 e=branch(m,2); %末节点 R=branch(m,3); %支路电阻 X=branch(m,4); %支路电抗 B=branch(m,5); %支路对地电纳 k=branch(m,6); if k==0 %无变压器支路情形 Y(s,e)=-1/(R+j*X); %互导纳 Y(e,s)=Y(s,e); end if k~=0 %有变压器支路情形 Y(s,e)=-(1/((R+j*X)*k)); Y(e,s)=Y(s,e); Y(s,s)=-(1-k)/((R+j*X)*k^2); Y(e,e)=-(k-1)/((R+j*X)*k); %对地导纳 end Y(s,s)=Y(s,s)-j*B/2; Y(e,e)=Y(e,e)-j*B/2; %自导纳的计算情形 end for t=1:nnum; Y(t,t)=-sum(Y(t,:))+Node(t,12)+j*Node(t,13); %求支路自导纳 end G=real(Y); %电导 B=imag(Y); %电纳 %******************节点分类************************************* * pq=0; pv=0; blancenode=0; pqnode=zeros(1,nnum); pvnode=zeros(1,nnum); for m=1:nnum; if Node(m,2)==3 blancenode=m; %平衡节点编号 else if Node(m,2)==0 pq=pq+1; pqnode(1,pq)=m; %PQ 节点编号 else if Node(m,2)==2 pv=pv+1; pvnode(1,pv)=m; %PV 节点编号 end end end end %*****************************设置电压初值********************************** Uoriginal=zeros(1,nnum); %对各节点电压矩阵初始化 for n=1:nnum Uoriginal(1,n)=Node(n,9); %对各点电压赋初值 if Node(n,9)==0;

临界转速的计算

临界转速分析的目的 临界转速分析的主要目的在于确定转子支撑系统的临界转速,并按照经验或有关的技术 规定,将这些临界转速调整,使其适当的远离机械的工作转速,以得到可靠的设计。 例如设计地面旋转机械时,如果工作转速低于其一阶临界转速Nc1,应使N<0.75Nc1, 如果工作转速高于一阶临界转速,应使 1.4Nck

传递矩阵法 基本原理:传递矩阵法的基本原理是,去不同的转速值,从转子支撑系统的一端开始,循环 进行各轴段截面状态参数的逐段推算,直到满足另一端的边界条件。 优点:对于多支撑多元盘的转子系统,通过其特征值问题或通过建立运动微分方程的方法求 解系统的临界转速和不平衡响应,矩阵的维数随着系统的自由度的增加而增加,计算量往往 较大:采用传递矩阵法的优点是矩阵的维数不随系统的自由度的增加而增大,且各阶临界转 速计算方法相同,便于程序实现,所需存储单元少,这就使得传递矩阵法成为解决转子动力学问题的一个快速而有效的方法。 缺点:求解高速大型转子的动力学问题时, 传递矩 阵法,保留传递矩阵的所有优点,理想的方法, 但目前还没有普遍推广。 轴段划分:首先根据支撑系统中刚性支撑(轴承)的个数划分跨度。在整个轴段内,凡是轴承、集中质量、轮盘、联轴器等所在位置,以及截面尺寸、材料有变化的地方都要划分为轴段截面。若存在变截面轴,应简化为等截面轴段,这是因为除了个别具有特殊规律的变截面轴段外,其他的变截面轴段的传递矩阵特别复杂。 传递矩阵: 4. 轴段传递矩阵 每段起始状态参数和终端状态参数的转换方程,根据是否考虑转轴的分布质量,可以建 立两种轴段传递矩阵 ①当考虑轴段的分布质量时:起始和终端的转换方程是均质等截面杆的振动弹性方程: ②不考虑转轴的分布质量时建立的传递矩阵 X1L 1212 L - 11 X 01 2222 L - 21 M001L M Q ki0001Q 0i 其中,a11,a12,a21,a22为该轴段的影响系数,根据材料力学 3 11 12 3EJ L2 21 2EJ L a11和a12是终端的剪力和弯矩在终端引起的挠度, a21和EJ 有可能出现数值不稳定现象。今年来提出的Riccati 而且在数值上比较稳定,计算精度高,是一种比较

基于matlab--psat软件的电力系统潮流计算课程设计

东北电力大学课程设计改革试用任务书: 电力系统潮流计算课程设计任务书 设计名称:电力系统潮流计算课程设计 设计性质:理论计算,计算机仿真与验证 计划学时:两周 一、设计目的 1.培养学生独立分析问题、解决问题的能力; 2.培养学生的工程意识,灵活运用所学知识分析工程问题的能力 3.编制程序或利用电力系统分析计算软件进行电力系统潮流分析。 二、原始资料 1、系统图:IEEE14节点。 2、原始资料:见IEEE14节点标准数据库 三、课程设计基本内容: 1.采用PSAT仿真工具中的潮流计算软件计算系统潮流; 1)熟悉PSAT仿真工具的功能; 2)掌握IEEE标准数据格式内容; 3)将IEEE标准数据转化为PSAT计算数据; 2.分别采用NR法和PQ分解法计算潮流,观察NR法计算潮流中雅可比矩阵的变化情况, 分析两种方法计算潮流的优缺点; 3.分析系统潮流情况,包括电压幅值、相角,线路过载情况以及全网有功损耗情况。

4.选择以下内容之一进行分析: 1)找出系统中有功损耗最大的一条线路,给出减小该线路损耗的措施,比较各种措施 的特点,并仿真验证; 2)找出系统中电压最低的节点,给出调压措施,比较各种措施的特点,并仿真验证; 3)找出系统中流过有功功率最大的一条线路,给出减小该线路有功功率的措施,比较 各种措施的特点,并仿真验证; 5.任选以下内容之一作为深入研究:(不做要求) 1)找出系统中有功功率损耗最大的一条线路,改变发电机有功出力,分析对该线路有 功功率损耗灵敏度最大的发电机有功功率,并进行有效调整,减小该线路的损耗; 2)找出系统中有功功率损耗最大的一条线路,进行无功功率补偿,分析对该线路有功 功率损耗灵敏度最大的负荷无功功率,并进行有效调整,减小该线路的损耗; 3)找出系统中电压最低的节点,分析对该节点电压幅值灵敏度最大的发电机端电压, 并有效调整发电机端电压,提高该节点电压水平; 四、课程设计成品基本要求: 1.绘制系统潮流图,潮流图应包括: 1)系统网络参数 2)节点电压幅值及相角 3)线路和变压器的首末端有功功率和无功功率 2.撰写设计报告,报告内容应包括以下几点: 1)本次设计的目的和设计的任务; 2)电力系统潮流计算的计算机方法原理,分析NR法和PQ分解法计算潮流的特点; 3)对潮流计算结果进行分析,评价该潮流断面的运行方式安全性和经济性; 4)找出系统中运行的薄弱环节,如电压较低点或负载较大线路,给出调整措施; 5)分析各种调整措施的特点并比较它们之间的差异; 6)结论部分以及设计心得; 五、考核形式 1.纪律考核:学生组织出勤情况和工作态度等; 2.书面考核:设计成品的完成质量、撰写水平等; 3.答辩考核:参照设计成品,对计算机方法进行电力系统潮流计算的相关问题等进行答辩; 4.采用五级评分制:优、良、中、及格、不及格五个等级。

MATLAB下的潮流计算实现-稀疏技术毕业设计

毕业设计(论文)MATLAB下的潮流计算实现-稀疏技术

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

摘要 电力系统潮流计算是研究电力系统稳态运行情况的一种计算,它根据给定的运行条件及系统接线情况确定整个电力系统各部分的运行状态:各母线的电压,各元件中流过的功率,系统的功率损耗等等。在电力系统规划的设计和现有电力系统运行方式的研究中,都需要利用潮流计算来定量地分析比较供电方案或运行方式的合理性、可靠性和经济性。因此潮流计算是研究电力系统的一种很重要和很基础的计算。由于电力系统结构及参数的一些特点,并且随着电力系统不断扩大,潮流问题的方程式阶数越来越高,对这样的方程式并不是任何数学方法都能保证给出正确答案的。这种情况成为促使电力系统计算人员不断寻求新的更可靠方法的重要因素。 本文旨在于研究潮流计算的牛顿—拉夫逊法的基本原理,在Matlab环境中实现牛顿—拉夫逊法潮流计算的数学模型,程序流程以及编制相应程序,并在程序中融合了节点优化编号和稀疏技术,以提高计算效率。最后用IEEE-3O节点标准测试系统验证所编程序。 关键词:潮流计算Newtom-Raphson法节点优化稀疏技术Matlab ABSTRACT Power flow calculation is fundanmental of analysis. Network reconfiguration,fault management,state estimator etc also need the data of electrial system power flow.There is important significance to develop power flow calculation in allusion to traits of distribution network. This paper introduces the principle of Newtom-Raphson algorithm, which is developed for calculation of power flow calculation ,where zero sequence network is open.With this algorithm,the three-phase load is resolved into positive/negative sequence power and coupling power,thus,decoupling three phase power flow into sequencet component power flow.The power flow can be obtained by just finding the positive sequence power flow and then finding the negative sequent component from the coupling https://www.360docs.net/doc/3217399419.html,pared with the existing methods,the jacobian matrix with the proposed algorithm is of much lower order,thus substantially reducing the computation burden.The proposed algorithm,together with a reference algorithm,has been simulated on an actual IEEE-30 system using statistic load date.And then it will

ANSYS用于转子临界转速计算

ANSYS用于转子临界转速计算 1 转子临界转速概念 转子的固有频率除了与转子结构(和支承结构)参数有关外,它还随转子涡动转速和转子自转转速的变化而变化。在转子不平衡力驱动下,转子一般作正同步涡动,当转子涡动转速等于转子固有频率时,转子出现共振,相应转速就称为该转子的临界转速。 2 转子临界转速计算对程序的要求 计算转子临界转速必须能够考虑旋转结构涡动时产生的陀螺效应对转子临界转速的影响,这是转子临界转速计算同其他非旋转结构固有频率计算的差异所在。一般有限元程序不具备计算转子临界转速的功能。 3 ANSYS的临界转速计算功能 1) 计算转子临界转速可用单元 BEAM4; PIPE16。 COBIN14(用于模拟带阻尼的弹性支撑) 2) 单元特性及实常数 BEAM4和PIPE16: Keyoption(7)=1 实常数Spin=转子自转角速度(ω) rad/s。 3) 特征值求解方法 选取DAMP方法求解特征值。 4) 计算结果处理 采用有限元方法计算转子临界转速时,转子会出现正进动和反进动。由于陀螺效应的作用,随着转子自转角速度的提高,反进动固有频率将降低,而正进动固有频率将提高。根据临界转速的定义,应只对正进动固有频率(Ωc)进行分析。在后处理中首先剔除负固有频率,然后分析各阶模态振型,确定同一阶振型的正进动和反进动固有频率。 改变转子自转角速度(ω),计算出新的Ωc,最后画出Ωc~ω曲线,根据临界转速的定义,当Ωc=ω时,Ωc即所求临界转速。需注意:由于Ωc的单位为Hz,而ω为rad/s,计算时应转换单位。 4 算例 单转子结构如图1所示,转子轴近似无质量,轮盘密度8*104Kg/m3,其余材料参数为: E=200Gpa μ=0.3 图1 模型转子结构(mm) 理论临界转速: 式中,m:轮盘质量;

临界转速

转子的振幅随转速的增大而增大,到某一转速时振幅达到最大值,超过这一转速后振幅随转速增大逐渐减少,且稳定于某一范围内,这一转子振幅最大的转速称为转子的临界转速。 旋转机械转子的工作转速接近其横向振动的固有频率而产生共振的特征转速。汽轮机、压缩机和磨床等高速旋转机械的转子,由于制造和装配不当产生的偏心以及油膜和支承的反力等原因,运行中会发生弓状回旋。当转速接近临界转速时,挠曲量显著增加,引起支座剧烈振动,形成共振,甚至波及整个机组和厂房,造成破坏性事故。转子横向振动的固有频率有多阶,故相应的临界转速也有多阶,按数值由小到大分别记为n c1,n c2,…n ck…等。有工程实际意义的是较低的前几阶。任何转子都不允许在临界转速下工作。对于工作转速n低于其一阶临界转速的刚性转子,要求n<0.75n c1;对于工作转速n高于其一阶临界转速的柔性转子,要求 1.4n ck<n<0.7n ck+1。限元法利用电子计算机计算各阶临界转速。对于已经制造出的转子,可用各种〖HTK〗激励法实测其各阶横向振动固有频率,进而确定各阶临界转速,为避免事故、改进设计提供依据。因此,旋转机械在设计和使用中,必须设法使工作转速避开各阶临界转速。临界转速的数值与转子的材料、几何形状、尺寸、结构形式、支承情况和工作环境等因素有关。计算转子临界转速的精确值很复杂,需要同时考虑全部影响因素,在工程实际中常采用近似计算法或实测法来确定。对于在图纸设计阶段的转子,可用分解代换法、当量直径法或图解法估算其一阶临界转速,也可用传递矩阵法或有 振动物体离开平衡位置的最大距离叫振动的振幅。振幅在数值上等于最大位移的大小。振幅是标量,单位用米或厘米表示。 振幅的物理意义,振幅描述了物体振动幅度的大小和振动的强弱。发音体振动的位移幅度,振幅大小同发音受到的外力大小有关,振幅的大小决定声音的强弱。 →如果您认为本词条还有待完善 次同步谐振是指汽轮机发电机组轴系振荡和发电机电气系统的电气振荡之间,通过发电机转子气隙中电气转矩的耦合作用而形成的整个机网系统的共振行为。含有串联补偿线路的电网,其电气谐振频率f1与轴系某阶固有频率f2互补,即满足f1+f2=f(工频50Hz)条件时,将出现低于电网频率的负阻尼振荡,诱发机电谐振,由于频率低于电网频率,故称为次同步谐振。 impeller 又称工作轮。离心式压缩机中惟一对气流作功的元件。转子上的最主要部件。一般由轮盘、轮盖和叶片等零件组成。气体在叶轮叶片的作用下,随叶轮作高速旋转,气体受旋转离心力的作用,以及在叶轮里的扩压流动,使它通过叶轮后的压力得到提高。 对叶轮的要求是:(1)能给出较大的能量头;(2)气体流过叶轮的损失要小,即气体流经叶轮的效率要高;(3)气体流出叶轮时各参数合宜,使气体流过后面固定元件时的流动损失较小;(4)叶轮型式能使级或整机性能曲线的稳定工况区及高效区范围较宽。常分为闭式、半开式和开式叶轮。 在风里发电机组中,叶轮由轮毂和叶片组成。风经过叶轮,带动叶轮转动,从而带动发电机转动,将风能转化为电能。此时,要求叶轮转动时有足够大的迎风面,以从风中提取足够多的能量;同时,在风速过大时,要能够自动调整叶片迎风角度,避免因受力过大而损坏机械 根据ISO标准,由轴承支撑的旋转体称为转子。如光盘等自身没有旋转轴的物体,当它采用刚性连接或附加轴时,可视为一个转子,转子多为动力机械和工作机械中的主要旋转部件。典型的转子有透平机械转子、电机转子、各种泵的转子和透平压缩机的转子等。转子在某些特定的转速下转动时会发生很大的变形并引起共振,引起共振时的转速称为转子的临界转速。在工程上,工作转速低于第一阶临界转速的转子称为刚性转子,大于第一阶临界转

相关文档
最新文档