RC电路的时间常数

RC电路的时间常数
RC电路的时间常数

RC電路的時間常數

【目的】:

研習電容器的充電與放電。

【原理】:

R C線路圖如圖1所示。分為兩類情形討論:

(一)充電情形(開關S在t = 0時與a接觸):設電容器的電位差V C開始時為0 (即原來沒有電荷)。由能量守恆知(即電源提供之功率等於電阻和電容之功率)又, 以及

(因為)

(起始條件為q(0)=0)

此方程式的解為,如圖2(a)所示。

,如圖2(b)所示。

RC即所謂capacitive time constant,因次為時間,。

本例中可改寫為,在時間時

當t=時,q( )=Cε,是充電量的極值。故時,電荷、電壓升到極值之63%。

(二)放電情形(開關S在t=0時與b接觸):設電容原有電荷q0,電壓V0。

放電的電路方程將由前面的ε=i R1+ 方程,

因0;而改寫為T0=iR2+ ,(起始條件q(0)= q0)

此方程式之解為(如圖3(a))

i== (如圖3(b)取絕對值)

即在t= R2C時,電荷、電壓為原值之37%。

【步驟】:

(1)將電阻及電容串聯在麵包板上,如圖4,連接訊號產生器(選擇方形波)及示波器。

(2)分別將CH1及CH2調至GND,調整垂直POISTION,使基準線呈水平,並調整適當的亮度及聚焦(亮度太亮易損螢幕),再將CH1及CH2調整至AC 狀態。

(3)將訊號選擇模式調整至CH1及CH2,並調整SEC/DIV及VOL/DIV至適當刻度,使清楚的看到輸入訊號。

※注意:CH1及CH2的VOL/DIV必須相同。

(4)將訊號選擇模式調整至DUAL時,螢幕上可同時顯示出CH1及CH2的輸入訊號。

(5)此時調整訊號產生器之頻率,使電容完全充放電,如圖5。

(6)記錄電壓充電至原值的63%及放電至原值的37%所需的時間,並計算百分誤差。

【實驗表格】:

一、電阻R = ________W 電容C = ________時間常數= ________sec A﹒充電( T為充電至原值的63 %所需時間)

B﹒放電 ( T為放電至原值的37 %所需時間)

二、電阻R = ________W 電容C = ________時間常數= ________sec

A﹒充電( T為充電至原值的63 %所需時間)

B﹒放電 ( T為放電至原值的37 %所需時間)

【問

題】:

(1)如果要使電容器快速充電,則RC值得大小應如何?越大?或越小?為什麼?

(2)放電時電流為負值是代表什麼意思?

时间常数RC的计算方法

进入正题前,我们先来回顾下电容的充放电时间计算公式,假设有电源Vu通过电阻R给电容C充电,V0为电容上的初始电压值,Vu为电容充满电后的电压值,Vt为任意时刻t时电容上的电压值,那么便可以得到如下的计算公式: Vt = V0 + (Vu – V0) * [1 – exp( -t/RC)] 如果电容上的初始电压为0,则公式可以简化为: Vt = Vu * [1 – exp( -t/RC)] 由上述公式可知,因为指数值只可能无限接近于0,但永远不会等于0,所以电容电量要完全充满,需要无穷大的时间。 当t = RC时,Vt = 0.63Vu; 当t = 2RC时,Vt = 0.86Vu; 当t = 3RC时,Vt = 0.95Vu; 当t = 4RC时,Vt = 0.98Vu; 当t = 5RC时,Vt = 0.99Vu; 可见,经过3~5个RC后,充电过程基本结束。 当电容充满电后,将电源Vu短路,电容C会通过R放电,则任意时刻t,电容上的电压为: Vt = Vu * exp( -t/RC) 对于简单的串联电路,时间常数就等于电阻R和电容C的乘积,但是,在实际电路中,时间常数RC并不那么容易算,例如下图(a)。

对于上图(a),如果从充电的角度去计算时间常数会比较难,我们不妨换个角度来思考,我们知道,时间常数只与电阻和电容有关,而与电源无关,对于简单的由一个电阻R和一个电容C串联的电路来说,其充电和放电的时间参数是一样的,都是RC,所以,我们可以把上图中的电源短路,使电容C1放电,如上图(b)所示,很容易得到其时间常数: t = RC = (R1//R2)*C 使用同样的方法,可以将下图(a)电路等效成(b)的放电电路形式,得到电路的时间常数: t = RC = R1*(C1+C2) 用同样的方法,可以将下图(a)电路等效成(b)的放电电路形式,得到电路的时间常数: t = RC = ((R1//R3//R4)+R2)*C1

RC电路时间常数

1).RC电路过渡过程产生的原因 图1 简单RC电路如图1所示,外加电压源为US,初始时开关K打开,电容C上无电压,即uC(0-)=0V。 当开关K闭合时,US加在RC电路上,由于电容电压不能突变,此时电容电压仍为0V,即uC(0+)=0V。 由于US现已加在RC组成的闭合回路上,则会产生向电容充电的电流i,直至电容电压uC=US时为止。 根据回路电压方程,可写出 解该微分方程可得 其中τ=RC。 根据回路电压的分析可知,uC将按指数规律逐渐升高,并趋于US值,最后达到电路的稳定状态,充电波形图2所示。 图2 2).时间常数的概念及换路定律: 从以上过程形成的电路过渡过程可见,过渡过程的长短,取决于R和C的数值大小。一般将RC的乘积称为时间常数,用τ表示,即

τ=RC 时间常数越大,电路达到稳态的时间越长,过渡过程也越长。 不难看出,RC电路uC(t)的过渡过程与电容电压的三个特征值有关,即初始 值uC(0+)、稳态值uC(∞)和时间常数τ。只要这三个数值确定,过渡过程就基本确定。 电路状态发生变化时,电路中的电容电压不能突变,电感上的电流不能突变。将上述关系用表示式写出,即: 一般将上式称作换路定律。利用换路定律很容易确定电容上的初始电压 微分电路 电路结构如图W-1,微分电路可把矩形波转换为尖脉冲波,此电路的输出波形只反映输入波形的突变部微分电路分,即只有输入波形发生突变的瞬间才有输出。而对恒定部分则没有输出。输出的尖脉冲波形的宽度与R*C有关(即电路的时 间常数),R*C越小,尖脉冲波形越尖,反之则宽。此电路的R*C必须远远少 于输入波形的宽度,否则就失去了波形变换的作用,变为一般的RC耦合电路了,一般R*C少于或等于输入波形宽度的微分电路1/10就可以了。微分电路使输出电压与输入电压的时间变化率成比例的电路。微分电路主要用于脉冲电路、模拟计算机和测量仪器中。最简单的微分电路由电容器C和电阻器R组成(图1a)。若输入ui(t)是一个理想的方波(图1b),则理想的微分电路输出u0(t)是图1c 的δ函数波:在t=0和t=T 时(相当于方波的前沿和后沿时刻), ui(t)的导数分别为正无穷大和负无穷大;在0<t<T 时间内,其导数等于零。微分电路微分电路的工作过程是:如RC的乘积,即时间常数很小,在t=0+即方波跳变时,电容器C 被迅速充电,其端电压,输出电压与输入电压的时间导数成比例关系。实用微分电路的输出波形和理想微分电路的不同。即使输入是理想的方波,在方 波正跳变时,其输出电压幅度不可能是无穷大,也不会超过输入方波电压幅度E。在0<t<T 的时间内,也不完全等于零,而是如图1d的窄脉冲波形那样,其幅度随时间t的增加逐渐减到零。同理,在输入方波的后沿附近,输出u0(t)是一个负的窄脉冲。这种RC微分电路的输出电压近似地反映输入方波前后沿的时间变化率,常用来提取蕴含在脉冲前沿和后沿中的信息。实际的微分电路也可用电阻器

时间常数RC的计算方法

时间常数RC的计算方 法 -CAL-FENGHAI.-(YICAI)-Company One 1 进入正题前,我们先来回顾下电容的充放电时间

计算公式,假设有电源Vu通过电阻R给电容C充电,V0为电容上的初始电压值,Vu为电容充满电后的电压值,Vt为任意时刻t时电容上的电压值,那么便可以得到如下的计算公式: Vt = VO + (Vu 一VO) * [1- exp( -t/RC)] 如果电容上的初始电压为0,则公式可以简化为: Vt = Vu * [l-exp(-t/RC)] 由上述公式可知,因为指数值只可能无限接近于0,但永远不会等于0,所以电容电量要完全充满,需要无穷大的时间。 当t 二RC 时,Vt=; 当t = 2RC 时,Vt=; 当t = 3RC 时,Vt=; 当t = 4RC 时,Vt=: 当t = 5RC 时,Vt=; 可见,经过3~5个RC后,充电过程基本结束。 当电容充满电后,将电源Vu短路,电容C会通过R放电,则任意时刻t,电容上的电压为: Vt = Vu * exp( -t/RC) 对于简单的串联电路,时间常数就等于电阻R和电容C的乘积,但是,在实际电路中,时间常数RC并不那么容易算,例如下图⑻。

对于上图(a),如果从充电的角度去计算时间常数会比较难,我们不妨换个角 度来思考,我们知道,时间常数只与电阻和电容有关,而与电源无关,对于简 单的由一个电阻R 和一个电容C 串联的电路来说,其充电和放电的时间参数是 一样的,都是RC,所以,我们可以把上图中的电源短路,使电容C1放电,如 上图(b)所示,很容易得到其时间常数: 源是电压源形式,先把电源“短路”而保留其串联内阻 ; t = RC = BGI? ------------------------ 果RC 电路中的电 R1 C1 一4酣 ---- i ——i --------------- R1

RC电路充电时间计算

RC电路充电时间计算 简单RC电路充电时间的计算方法。时间常数为tao=RC,一般三个tao就能完全充满电

V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 求充电到90%VCC的时间。(V0=0,V1=VCC,Vt=0.9VCC)

代入上式:0.9VCC=0+VCC*[[1-exp(-t/RC)] 既[[1-exp(-t/RC)]=0.9; exp(-t/RC)=0.1 - t/RC=ln(0.1) t/RC=ln(10) ln10约等于2.3 也就是t=2.3RC。 带入R=10k C=10uf得。 t=2.3*10k*10uf=230ms RC回路充放电时间的推导过程需要用高等数学,简单的方法只要记住RC回路的时间常数τ=R×C,在充电时,每过一个τ的时间,

电容器上电压就上升(1-1/e)约等于0.632倍的电源电压与电容器电压之差;放电时相反。 如C=10μF,R=10k,则τ=10e-6×10e3=0.1s 在初始状态Uc=0时,接通电源,则过0.1s(1τ)时,电容器上电压Uc为0+(1-0)×0.63 2=0.632倍电源电压U,到0.2s(2τ)时,Uc为0.632+(1-0.632)×0.632=0.865倍U……以此类推,直到t=∞时,Uc=U。放电时同样运用,只是初始状态不同,初始状态Uc=U。 单片机复位(上电复位和按键复位,复位脉宽10ms,R常取值10k~47k,c取值10~100uf,电容大些为好): 原理:如果复位是高电平复位,加电后电容充电电流逐渐减少,此时经电阻接地的单片机IO是没电压的,因为电容是隔直流的,直到充电完毕开始放电,放电的过程同样是电流逐渐减少的,开始放电时电流很大,加到电阻上后提供给IO高电平,一段时间(电容器的充放电参数:建立时间等)后,电流变弱到0,但是复位引脚已经有了超过3us的高电平,所以复位就完成了; 手动复位,如加按键,则是直接将电容短路,给复位引脚送高电平,此部分就只有电容在起作用;当然电源较大(一般3.3v-5v)的话,加电阻是为了分压,防止烧坏引脚。 1.放电是一个一阶电路的零输入响应, SPICE Model R 1 0 R C 1 0 C IC=UC 我们有公式:UR-Uc=0,而UR=i*R, i=dUc/dt; 所以,有RC*dUc/dt+Uc=0;从而有初始条件有:Uc=UC*EXP(-t/RC),令τ=1/RC为时间常数,我们得到放电方程为Uc=UC*EXP(-t/τ), 其放电时间一般为3~5τ,理由是5τ时Uc=0.0067UC,已很小。 2. 充电方程类似,可以自己分析吧!

RC电路时间常数

1)、RC电路过渡过程产生的原因 图1 简单RC电路如图1所示,外加电压源为US,初始时开关K打开,电容C上无电压,即uC(0-)=0V。 当开关K闭合时,US加在RC电路上,由于电容电压不能突变,此时电容电压仍为0V,即uC(0+)=0V。 由于US现已加在RC组成的闭合回路上,则会产生向电容充电的电流i,直至电容电压uC=US时为止。 根据回路电压方程,可写出 解该微分方程可得 其中τ=RC。 根据回路电压的分析可知,uC将按指数规律逐渐升高,并趋于US值,最后达到电路的稳定状态,充电波形图2所示。 图2 2)、时间常数的概念及换路定律: 从以上过程形成的电路过渡过程可见,过渡过程的长短,取决于R与C的数值大小。一般将RC的乘积称为时间常数,用τ表示,即

τ=RC 时间常数越大,电路达到稳态的时间越长,过渡过程也越长。 不难瞧出,RC电路uC(t)的过渡过程与电容电压的三个特征值有关,即初始值uC(0+)、稳态值uC(∞)与时间常数τ。只要这三个数值确定,过渡过程就基本确定。 电路状态发生变化时,电路中的电容电压不能突变,电感上的电流不能突变。将上述关系用表示式写出,即: 一般将上式称作换路定律。利用换路定律很容易确定电容上的初始电压 微分电路 电路结构如图W-1,微分电路可把矩形波转换为尖脉冲波,此电路的输出波形只反映输入波形的突变部微分电路分,即只有输入波形发生突变的瞬间才有输出。而对恒定部分则没有输出。输出的尖脉冲波形的宽度与R*C有关(即电路的时间常数),R*C越小,尖脉冲波形越尖,反之则宽。此电路的R*C必须远远少于输入波形的宽度,否则就失去了波形变换的作用,变为一般的RC耦合电路了,一般R*C 少于或等于输入波形宽度的微分电路1/10就可以了。微分电路使输出电压与输入电压的时间变化率成比例的电路。微分电路主要用于脉冲电路、模拟计算机与测量仪器中。最简单的微分电路由电容器C与电阻器R组成(图1a)。若输入ui(t)就是一个理想的方波(图1b),则理想的微分电路输出u0(t)就是图1c的δ函数波:在t=0与t=T 时(相当于方波的前沿与后沿时刻), ui(t)的导数分别为正无穷大与负无穷大;在0<t<T 时间内,其导数等于零。微分电路微分电路的工作过程就是:如RC的乘积,即时间常数很小,在t=0+即方波跳变时,电容器C 被迅速充电,其端电压,输出电压与输入电压的时间导数成比例关系。实用微分电路的输出波形与理想微分电路的不同。即使输入就是理想的方波,在方波正跳变时,其输出电压幅度不可能就是无穷大,也不会超过输入方波电压幅度E。在0<t<T 的时间内,也不完全等于零,而就是如图1d的窄脉冲波形那样,其幅度随时间t的增加逐渐减到零。同理,在输入方波的后沿附近,输出u0(t)就是一个负的窄脉冲。这种RC微分电路的输出电压近似地反映输入方波前后沿的时间变化率,常用来提取 蕴含在脉冲前沿与后沿中的信息。实际的微分电路也可用电阻器R与电感器L来构成(图2)。有时也可用RC与运算放大器构成较复杂的微分电路,但实际应用很少。

RC电路充放电时间计算

RC电路充放电时间计算 V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 求充电到90%VCC的时间。(V0=0,V1=VCC,Vt=0.9VCC) 代入上式: 0.9VCC=0+VCC*[[1-exp(-t/RC)] 既 [[1-exp(-t/RC)]=0.9; exp(-t/RC)=0.1 - t/RC=ln(0.1) t/RC=ln(10) ln10约等于2.3 也就是t=2.3RC。 带入R=10k C=10uf得。 t=2.3*10k*10uf=230ms RC回路充放电时间的推导过程需要用高等数学,简单的方法只要记住RC回路的时间常数τ=R×C,在充电时,每过一个τ的时间,电容器上电压就上升(1-1/e)约等于0.632倍的电源电压与电容器电压之差;放电时相反。 如C=10μF,R=10k,则τ=10e-6×10e3=0.1s 在初始状态Uc=0时,接通电源,则过0.1s(1τ)时,电容器上电压Uc为0+(1-0)×0.632=0.632倍电源电压U,到0.2s(2τ)时,Uc为0.632+(1-0.632)×0.632=0.865倍U……以此类推,直到t=∞时,Uc=U。放电时同样运用,只是初始状态不同,初始状态Uc=U。

单片机复位(上电复位和按键复位,复位脉宽10ms,R常取值10k~47k,c 取值10~100uf,电容大些为好): 原理:如果复位是高电平复位,加电后电容充电电流逐渐减少,此时经电阻接地的单片机IO是没电压的,因为电容是隔直流的,直到充电完毕开始放电,放电的过程同样是电流逐渐减少的,开始放电时电流很大,加到电阻上后提供给IO高电平,一段时间(电容器的充放电参数:建立时间等)后,电流变弱到0,但是复位引脚已经有了超过3us的高电平,所以复位就完成了; 手动复位,如加按键,则是直接将电容短路,给复位引脚送高电平,此部分就只有电容在起作用;当然电源较大(一般3.3v-5v)的话,加电阻是为了分压,防止烧坏引脚。

RC电路的时间常数

RC電路的時間常數 【目的】: 研習電容器的充電與放電。 【原理】:

R C線路圖如圖1所示。分為兩類情形討論: (一)充電情形(開關S在t = 0時與a接觸):設電容器的電位差V C開始時為0 (即原來沒有電荷)。由能量守恆知(即電源提供之功率等於電阻和電容之功率)又, 以及 (因為) (起始條件為q(0)=0) 此方程式的解為,如圖2(a)所示。 ,如圖2(b)所示。

RC即所謂capacitive time constant,因次為時間,。 本例中可改寫為,在時間時 當t=時,q( )=Cε,是充電量的極值。故時,電荷、電壓升到極值之63%。 (二)放電情形(開關S在t=0時與b接觸):設電容原有電荷q0,電壓V0。 放電的電路方程將由前面的ε=i R1+ 方程, 因0;而改寫為T0=iR2+ ,(起始條件q(0)= q0) 此方程式之解為(如圖3(a)) i== (如圖3(b)取絕對值)

即在t= R2C時,電荷、電壓為原值之37%。 【步驟】: (1)將電阻及電容串聯在麵包板上,如圖4,連接訊號產生器(選擇方形波)及示波器。 (2)分別將CH1及CH2調至GND,調整垂直POISTION,使基準線呈水平,並調整適當的亮度及聚焦(亮度太亮易損螢幕),再將CH1及CH2調整至AC 狀態。 (3)將訊號選擇模式調整至CH1及CH2,並調整SEC/DIV及VOL/DIV至適當刻度,使清楚的看到輸入訊號。 ※注意:CH1及CH2的VOL/DIV必須相同。 (4)將訊號選擇模式調整至DUAL時,螢幕上可同時顯示出CH1及CH2的輸入訊號。 (5)此時調整訊號產生器之頻率,使電容完全充放電,如圖5。

时间常数RC的计算方法

进入正题前,我们先来回顾下电容的充放电时间计算公式,假设有电源Vu通过电阻R给电容C充电,V0为电容上的初始电压值,Vu为电容充满电后的电压值,V t为任意时刻t时电容上的电压值,那么便可以得到如下的计算公式: Vt = V0 + (Vu –V0)*[1 – exp( -t/RC)] 如果电容上的初始电压为0,则公式可以简化为: Vt = Vu * [1–exp(-t/RC)] 由上述公式可知,因为指数值只可能无限接近于0,但永远不会等于0,所以电容电量要完全充满,需要无穷大的时间。 当t= RC时,Vt= 0。63Vu; 当t = 2RC时,Vt = 0.86Vu; 当t = 3RC时,Vt = 0.95Vu; 当t = 4RC时,Vt = 0.98Vu; 当t = 5RC时,Vt = 0.99Vu; 可见,经过3~5个RC后,充电过程基本结束。 当电容充满电后,将电源Vu短路,电容C会通过R放电,则任意时刻t,电容上的电压为: Vt = Vu* exp(—t/RC) 对于简单的串联电路,时间常数就等于电阻R和电容C的乘积,但是,在实际电路中,时间常数RC并不那么容易算,例如下图(a)。

对于上图(a),如果从充电的角度去计算时间常数会比较难,我们不妨换个角度来思考,我们知道,时间常数只与电阻和电容有关,而与电源无关,对于简单的由一个电阻R和一个电容C串联的电路来说,其充电和放电的时间参数是一样的,都是RC,所以,我们可以把上图中的电源短路,使电容C1放电,如上图(b)所示,很容易得到其时间常数: t = RC =(R1//R2)*C 使用同样的方法,可以将下图(a)电路等效成(b)的放电电路形式,得到电路的时间常数: t =RC =R1*(C1+C2) 用同样的方法,可以将下图(a)电路等效成(b)的放电电路形式,得到电路的时间常数: t= RC= ((R1//R3//R4)+R2)*C1

零基础看懂RC时间常数

假设有电源Vu通过电阻R给电容C充电,V0为电容上的初始电压值,Vu为电容充满电后的电压值,Vt为任意时刻t时电容上的电压值,那么便可以得到如下的计算公式:Vt=V0+(Vu–V0)*[1–exp(-t/RC)] 如果电容上的初始电压为0,则公式可以简化为:Vt=Vu*[1–exp(-t/RC)] 由上述公式可知,因为指数值只可能无限接近于0,但永远不会等于0,所以电容电量要完全充满,需要无穷大的时间。 当t=1RC时,Vt=0.63Vu; 当t=2RC时,Vt=0.86Vu; 当t=3RC时,Vt=0.95Vu; 当t=4RC时,Vt=0.98Vu; 当t=5RC时,Vt=0.99Vu; 可见,经过3~5个RC后,充电过程基本结束。 RC放电: 当电容充满电后,将电源Vu短路,电容C会通过R放电,则任意时刻t,电容上的电压为:Vt=Vu*exp(-t/RC) 对于简单的串联电路,时间常数就等于电阻R和电容C的乘积,但是,在实际电路中,时间常数RC并不那么容易算,例如下图(a)。 对于上图(a),如果从充电的角度去计算时间常数会比较难,我们不妨换个角度来思考,我们知道,时间常数只与电阻和电容有关,而与电源无关,对于简单的由一个电阻R和一个电容C串联的电路来说,其充电和放电的时间参数是一样的,都是RC,所以,我们可以把上图中的电源短路,使电容C1放电,如上图(b)所示,很容易得到其时间常数:t=RC=(R1//R2)*C 使用同样的方法,可以将下图(a)电路等效成(b)的放电电路形式,得到电路的时间常数:t=RC=R1*(C1+C2) (电阻串联与电容并联计算相同,电阻并联与电容串联相同。 串联:各分电容的倒数之和等于总电容的倒数1/C1+1/C2+1/C3....=1/C总,两电容串联耐压为两者之和。 并联:各分电容之和等于总电容C1+C2+C3....=C总,两电容并联耐压为两者中耐压最低的

实用文库汇编之时间常数RC的计算方法

*作者:座殿角* 作品编号48877446331144215458 创作日期:2020年12月20日 实用文库汇编之进入正题前,我们先来回顾下电容的充放电时间计算公式,假设有电源Vu通过电阻R给电容C充电,V0为电容上的初始电压值,Vu为电容充满电后的电压值,Vt为任意时刻t时电容上的电压值,那么便可以得到如下的计算公式:中国通信人博客N-@(q(]3jH'S$gB Vt = V0 + (Vu – V0) * [1 – exp( -t/RC)] 如果电容上的初始电压为0,则公式可以简化为: Vt = Vu * [1 – exp( -t/RC)] 由上述公式可知,因为指数值只可能无限接近于0,但永远不会等于0,所以电容电量要完全充满,需要无穷大的时间。 当t = RC时,Vt = 0.63Vu; 当t = 2RC时,Vt = 0.86Vu; 当t = 3RC时,Vt = 0.95Vu; 当t = 4RC时,Vt = 0.98Vu; 当t = 5RC时,Vt = 0.99Vu; 可见,经过3~5个RC后,充电过程基本结束。 当电容充满电后,将电源Vu短路,电容C会通过R放电,则任意时刻t,电容上的电压为:

Vt = Vu * exp( -t/RC) 对于简单的串联电路,时间常数就等于电阻R和电容C的乘积,但是,在实际电路中,时间常数RC并不那么容易算,例如下图(a)。 对于上图(a),如果从充电的角度去计算时间常数会比较难,我们不妨换个角度来思考,我们知道,时间常数只与电阻和电容有关,而与电源无关,对于简单的由一个电阻R和一个电容C串联的电路来说,其充电和放电的时间参数是一样的,都是RC,所以,我们可以把上图中的电源短路,使电容C1放电,如上图(b)所示,很容易得到其时间常数: t = RC = (R1//R2)*C 使用同样的方法,可以将下图(a)电路等效成(b)的放电电路形式,得到电路的时间常数: t = RC = R1*(C1+C2)

RC电路充电时间计算

R C电路充电时间计算 This manuscript was revised by the office on December 22, 2012

【转】R C电路充电时间计算(转载) 2012-03-089:13 转载自 最终编辑 RC电路充电时间计算 简单RC电路充电时间的计算方法。时间常数为tao=RC,一般三个tao就能完全充满电 V0为电容上的初始电压值;V1为电容最终可充到或放到的电压值;Vt为t时刻电容上的电压值。则,Vt="V0"+(V1-V0)*[1-exp(-t/RC)]或,t=RC*Ln[(V1-V0)/(V1-Vt)] 求充电到90%VCC的时间。(V0=0,V1=VCC,Vt=0.9VCC) 代入上式:0.9VCC=0+VCC*[[1-exp(-t/RC)] 既[[1-exp(-t/RC)]=0.9; exp(-t/RC)=0.1 -t/RC=ln(0.1) t/RC=ln(10)ln10约等于2.3 也就是t=2.3RC。 带入R=10k?C=10uf得。 t=2.3*10k*10uf=230ms RC回路充放电时间的推导过程需要用高等数学,简单的方法只要记住RC回路的时间常数 τ=R×C,在充电时,每过一个τ的时间,电容器上电压就上升(1-1/e)约等于0.632倍的电源电压与电容器电压之差;放电时相反。如C=10μF,R=10k,则τ=10e-6×10e3=0.1s 在初始状态Uc=0时,接通电源,则过0.1s(1τ)时,电容器上电压Uc为0+(1-0) ×0.632=0.632倍电源电压U,到0.2s(2τ)时,Uc为0.632+(1-0.632)×0.632=0.865倍U……以此类推,直到t=∞时,Uc=U。放电时同样运用,只是初始状态不同,初始状态Uc=U。 单片机复位(上电复位和按键复位,复位脉宽10ms,R常取值10k~47k,c取值10~100uf,电容大些为好): 原理:如果复位是高电平复位,加电后电容充电电流逐渐减少,此时经电阻接地的单片机IO是没电压的,因为电容是隔直流的,直到充电完毕开始放电,放电的过程同样是电流逐渐减少的,开始放电时电流很大,加到电阻上后提供给IO高电平,一段时间(电容器的充放电参数:建立时间等)后,电流变弱到0,但是复位引脚已经有了超过3us的高电平,所以复位就完成了;手动复位,如加按键,则是直接将电容短路,给复位引脚送高电平,此部分就只有电容在起作用;当然电源较大(一般3.3v-5v)的话,加电阻是为了分压,防止烧

RC一阶电路时间常数测量的研究

RC一阶电路时间常数测量的研究 【摘要】本文论述了RC一阶电路中时间常数τ的概念、物理意义,以及在实际电路中时间常数τ的具体求法,阐述了它在充放电过程中所起的作用。 【关键词】RC一阶电路;时间常数τ Research on Measuring the First-Order RC Circuit Time Constant WANG Hao TU Hua 【Abstract】this paper discussed the concept and physical significance of the first-order RC circuit time constant--τ and how to use it in practical circuit. It also expounds how the time constant (τ)plays a role in the charge and discharge process. 【Key words】First-order RC circuit;Time constant(τ) 0 引言 一阶RC电路是电路原理基础课中重要的内容,它包含了两个部分,既零输入、零状态响应,其本质是一个放电电路和充电电路。在《脉冲与数字电路》和《电路基础》课本中,都详细地讲述了电容器充、放电的暂态过程。在这个过程中,由于电压的存在,电流不停地变化,直至充、放电完成,电流值等于零。充、放电的过程可以进行得很慢,也可以瞬间完成,它持续时间的长短是由回路中的时间常数决定。实验通过示波器测出电路的时间常数,它反映了电路充、放电时间的快慢。 1 设计原理 1.1 RC电路的充电过程 在图1电路中,设电容器上的初始电压为零,当开关S向“2”闭合瞬间,由于电容电压Uc不能跃变,电路中的电流为最大,I=Us/R,此后电容电压随时间逐渐升高,直至Uc=Us,电流随时间逐渐减小,最后I=0,充电过程结束,充电过程中的电压Uc和电流I均随时间按指数规律变化。Uc和I的数学表达式为:Uc(t)=Us(1-e-t/RC)(1)I=(Us/R)e-t/RC 式(1)为其电路方程,是一阶微分方程(用一阶微分方程描述的电路为一阶方程)。 在式(1)中引入τ=RC,这是一个有电路元件参数决定的参数,称为时间常数。 图1 图2 在时间t=τ时,Uc(t)=Us(1-e-t/RC)= Us(1-e-t/t)=63.2%Us,即在充电过程中就是电容电压Uc从0增长到63.2%Us所经历的时间。 在充电过程中时间常数等于充电电压U以起始点的充电速度等速地充到稳定所需的时间。我们可以从图2来看,取一个以时间t为横坐标,充电是电容器电端电压U为纵坐标的直角坐标系,最一个充电过程中U随时间变化的波形,如下: 在起始点(原点,即电容器上的初始电压为零),做切线,即为起始点的充电速度直线。 直线方程为U=Us/τt 在U=Us时,直线与曲线的交点P点所对应的时间就是时间常数τ。

RC电路充电时间计算

【转】RC电路充电时间计算(转载) 2012-03-08 9:13 转载自薄月星云强仔 最终编辑jeloc3648 RC电路充电时间计算 简单RC电路充电时间的计算方法。时间常数为tao=RC,一般三个tao就能完全充满电 V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 求充电到90%VCC的时间。(V0=0,V1=VCC,Vt=0.9VCC)

代入上式: 0.9VCC=0+VCC*[[1-exp(-t/RC)] 既 [[1-exp(-t/RC)]=0.9; exp(-t/RC)=0.1 - t/RC=ln(0.1) t/RC=ln(10) ln10约等于2.3 也就是t=2.3RC。 带入R=10k C=10uf得。 t=2.3*10k*10uf=230ms RC回路充放电时间的推导过程需要用高等数学,简单的方法只要记住RC回路的时间常数τ=R×C,在充电时,每过一个τ的时间,电容器上电压就上升(1-1/e)约等于0.632倍的电源电压与电容器电压之差;放电时相反。 如C=10μF,R=10k,则τ=10e-6×10e3=0.1s 在初始状态Uc=0时,接通电源,则过0.1s(1τ)时,电容器上电压Uc为0+(1-0)×0.632=0.632倍电源电压U,到0.2s(2τ)时,Uc为0.632+(1-0.632)×0.632=0.865倍U……以此类推,直到t=∞时,Uc=U。放电时同样运用,只是初始状态不同,初始状态Uc=U。 单片机复位(上电复位和按键复位,复位脉宽10ms,R常取值10k~47k,c取值10~100uf,电容大些为好): 原理:如果复位是高电平复位,加电后电容充电电流逐渐减少,此时经电阻接地的单片机IO 是没电压的,因为电容是隔直流的,直到充电完毕开始放电,放电的过程同样是电流逐渐减少的,开始放电时电流很大,加到电阻上后提供给IO高电平,一段时间(电容器的充放电参数:建立时间等)后,电流变弱到0,但是复位引脚已经有了超过3us的高电平,所以复位就完成了; 手动复位,如加按键,则是直接将电容短路,给复位引脚送高电平,此部分就只有电容在起作用;当然电源较大(一般3.3v-5v)的话,加电阻是为了分压,防止烧坏引脚。

相关文档
最新文档