最全线性代数公式笔记

最全线性代数公式笔记
最全线性代数公式笔记

线性代数公式必记

1、行列式

1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;

2. 代数余子式的性质:

①、ij A 和ij a 的大小无关;

②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-

4. 设n 行列式D :

将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2

1(1)

n n D D -=-; 将D 顺时针或逆时针旋转90

,所得行列式为2D ,则(1)2

2(1)n n D D -=-;

将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;

将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:

①、主对角行列式:主对角元素的乘积;

②、副对角行列式:副对角元素的乘积(1)2

(1)

n n -? -;

③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2

(1)n n -? -;

⑤、拉普拉斯展开式:

A O A C

A B C B O B

==、

(1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;

6. 对于n 阶行列式A ,恒有:1(1)n

n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;

7. 证明0A =的方法:

①、A A =-; ②、反证法;

③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;

2、矩阵

1.

A 是n 阶可逆矩阵:

?0A ≠(是非奇异矩阵);

?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解;

?A 与E 等价;

?A 可表示成若干个初等矩阵的乘积; ?A 的特征值全不为0; ?T A A 是正定矩阵;

?A 的行(列)向量组是n R 的一组基; ?A 是n R 中某两组基的过渡矩阵;

2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;

3.

1**111**()()()()()()T T T T A A A A A A ----=== ***

111()()()T T T

AB B A AB B A AB B A ---===

4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;

5. 关于分块矩阵的重要结论,其中均A 、B 可逆:

若12

s A A A A ?? ?

?= ? ??

?

,则: Ⅰ、12s A A A A = ; Ⅱ、1111

2

1s A A A A ----?? ?

?= ? ? ??

?

; ②、1

11A O A O O B O

B ---??

??

=

? ?????

;(主对角分块) ③、1

11

O A O B B O A

O ---??

??= ? ?????

;(副对角分块) ④、1

1111

A C A A C

B O B O

B -----??

-??=

? ?????

;(拉普拉斯) ⑤、1111

1A O A O C B B CA

B -----??

??

= ? ?-????

;(拉普拉斯) 3、矩阵的初等变换与线性方程组

1. 一个m n ?矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:r

m n

E

O F O

O ???

= ???; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;

对于同型矩阵A 、B ,若()()r A r B A B = ? ; 2. 行最简形矩阵:

①、只能通过初等行变换获得;

②、每行首个非0元素必须为1;

③、每行首个非0元素所在列的其他元素必须为0;

3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)

①、 若(,)(,)r

A E E X ,则A 可逆,且1X A -=;

②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)c

A B E A B - ~ ;

③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)r

A b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:

①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵; ②、12

n ??

?

?Λ= ? ??

?

λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,i

λ乘A 的各列元素;

③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1

111111-????

? ?

= ? ? ? ?????

④、倍乘某行或某列,符号(())E i k ,且1

1(())(())E i k E i k -=,例如:1111(0)11k k k

-????

?

?

?=≠ ? ? ? ???

?

?

; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:1

11

11(0)11k k k --???? ? ?

=≠ ? ? ? ?????

5. 矩阵秩的基本性质:

①、0()min(,)m n r A m n ?≤≤;

②、()()T r A r A =;

③、若A B ,则()()r A r B =;

④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)

⑧、如果A 是m n ?矩阵,B 是n s ?矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);

Ⅱ、()()r A r B n +≤

⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;

6. 三种特殊矩阵的方幂:

①、秩为1的矩阵:一定可以分解为列矩阵(向量)?行矩阵(向量)的形式,再采用结合律;

②、型如101001a c b ?? ?

? ???

的矩阵:利用二项展开式;

二项展开式:01111110

()n

n n n m n m m n n n n m m n m

n n n n n n m a b C a C a b C a b C a b C b C a b -----=+=++++++=∑ ;

注:Ⅰ、()n a b +展开后有1n +项;

Ⅱ、0(1)(1)!

1123!()!

--+=

=

==- m n

n n n n n n m n C C C m m n m

Ⅲ、组合的性质:1

1

11

2---+-===+==∑n

m n m

m m m r

n

r r n n n n n

n

n n r C C C C C C

rC nC ; ③、利用特征值和相似对角化: 7. 伴随矩阵:

①、伴随矩阵的秩:*()()1

()10()1

n

r A n r A r A n r A n = ??

==-??<-?

②、伴随矩阵的特征值:*1*(,)A

A

AX X A A A A X X λλ

λ

- == ? =

③、*1A A A -=、1

*n A A

-=

8. 关于A 矩阵秩的描述:

①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)

②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;

9. 线性方程组:Ax b =,其中A 为m n ?矩阵,则:

①、m 与方程的个数相同,即方程组Ax b =有m 个方程;

②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:

①、对增广矩阵B 进行初等行变换(只能使用初等行变换);

②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;

11. 由n 个未知数m 个方程的方程组构成n 元线性方程:

①、1111221121122222

1122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ??+++= ????+++=? ;

②、111211121

222221

2

n n m m mn m m a a a x b a a a x b Ax b a a a x b ??????

??? ?

??? ?

=?= ??? ?

??? ?

??????

(向量方程,A 为m n ?矩阵,m 个方程,n 个未知数)

③、()12

12

n n x x a a a x β?? ? ?= ? ??? (全部按列分块,其中12n b b b β?? ? ?= ? ???

);

④、1122n n a x a x a x β+++= (线性表出)

⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)

4、向量组的线性相关性

1.

m 个n 维列向量所组成的向量组A :12,,,m ααα 构成n m ?矩阵12(,,,)m A = ααα; m 个n 维行向量所组成的向量组B :12,,,T T T

m βββ 构成m n ?矩阵12T T T m B βββ??

? ?= ? ? ???

含有有限个向量的有序向量组与矩阵一一对应;

2. ①、向量组的线性相关、无关 0Ax ?=有、无非零解;(齐次线性方程组)

②、向量的线性表出 Ax b ?=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ?=是否有解;(矩阵方程)

3. 矩阵m n A ?与l n B ?行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)

4. ()()T r A A r A =;(101P 例15)

5.

n 维向量线性相关的几何意义: ①、α线性相关 ?0α=;

②、,αβ线性相关 ?,αβ坐标成比例或共线(平行);

③、,,αβγ线性相关 ?,,αβγ共面;

6. 线性相关与无关的两套定理:

若12,,,s ααα 线性相关,则121,,,,s s αααα+ 必线性相关;

若12,,,s ααα 线性无关,则121,,,s ααα- 必线性无关;(向量的个数加加减减,二者为对偶) 若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :

若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;

7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);

向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示

AX B ?=有解;

()(,)r A r A B ?=(85P 定理2)

向量组A 能由向量组B 等价()()(,)r A r B r A B ? ==(85P 定理2推论) 8. 方阵A 可逆?存在有限个初等矩阵12,,,l P P P ,使12l A P P P = ;

①、矩阵行等价:~r

A B PA B ?=(左乘,P 可逆)0Ax ?=与0Bx =同解

②、矩阵列等价:~c A B AQ B ?=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ?=(P 、Q 可逆); 9.

对于矩阵m n A ?与l n B ?:

①、若A 与B 行等价,则A 与B 的行秩相等;

②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.

若m s s n m n A B C ???=,则:

①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;

②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)

11.

齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ? =只有零解;

②、0Bx = 有非零解0ABx ? =一定存在非零解;

12. 设向量组12:,,,n r r B b b b ? 可由向量组12:,,,n s s A a a a ? 线性表示为:(110P 题19结论)

1212(,,,)(,,,)r s b b b a a a K = (B AK =)

其中K 为s r ?,且A 线性无关,则B 组线性无关()r K r ?=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴= ;充分性:反证法)

注:当r s =时,K 为方阵,可当作定理使用;

13. ①、对矩阵m n A ?,存在n m Q ?,m AQ E = ()r A m ?=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ?,存在n m P ?,n PA E = ()r A n ?=、P 的行向量线性无关; 14. 12,,,s ααα 线性相关

?存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++= 成立;(定义)

?1212(,,,)0s s x x

x ααα?? ? ?= ? ???

有非零解,即0Ax =有非零解;

?12(,,,)s r s ααα< ,系数矩阵的秩小于未知数的个数;

15. 设m n ?的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;

16. 若*η为Ax b =的一个解,12,,,n r ξξξ- 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ- 线性无关;(111P 题

33结论)

5、相似矩阵和二次型

1. 正交矩阵T A A E ?=或1T A A -=(定义),性质:

①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0

T i j i j

a a i j n i j

=?==?

≠? ; ②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a

11b a =;

1222111[,]

[,]

b a b a b b b =-

121121112211[,][,][,]

[,][,][,]

r r r r r r r r r b a b a b a b a b b b b b b b b b ----=-

--- ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;

对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ?A 经过初等变换得到B ;

?=PAQ B ,P 、Q 可逆; ()()?=r A r B ,A 、B 同型;

②、A 与B 合同 ?=T C AC B ,其中可逆;

?T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-?=P AP B ; 5. 相似一定合同、合同未必相似;

若C 为正交矩阵,则T C AC B =?A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:

A ?的正惯性指数为n ;

A ?与E 合同,即存在可逆矩阵C ,使T C AC E =; A ?的所有特征值均为正数; A ?的各阶顺序主子式均大于0;

0,0ii a A ?>>;(必要条件)

线性代数公式大全最全最完美

线性代数公式大全——最新修订 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解; ?A 与E 等价; ?A 可表示成若干个初等矩阵的乘积;

考研线性代数公式速记大全

概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确 (),n T A r A n A A Ax x Ax A Ax A A A E οοοββ==??≠≠≠??∈=?可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 , 0总有唯一解 是正定矩阵 R 12,s i A p p p p n B AB E AB E ?? ??? ????? ?? ??=????==?? 是初等阵 存在阶矩阵使得 或 ○ 注:全体n 维实向量构成的集合n R 叫做n 维向量空间. ()A r A n A A A Ax A ολ<=?==不可逆 0的列(行)向量线性相关 0是的特征值 有非零解,其基础解系即为关于0的?? ?? ?????特征向量 ○ 注 ()()a b r aE bA n aE bA aE bA x οολ+

12121211 12121222()121 2()n n n n n j j j n j j nj j j j n n nn a a a a a a D a a a a a a τ= = -∑ 1 √ 行列式的计算: ①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ②若A B 与都是方阵(不必同阶),则 == ()mn A O A A O A B O B O B B O A A A B B O B O *= =* * =-1(拉普拉斯展开式) ③上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④关于副对角线: (1)2 1121 21 1211 1 ()n n n n n n n n n n n a O a a a a a a a O a O ---* ==- 1 (即:所有取自不同行不 同列的n 个元素的乘积的代数和) ⑤范德蒙德行列式:()1 2 2 22 1211 1112n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏ 111 由m n ?个数排成的m 行n 列的表11 12121 2221 2 n n m m mn a a a a a a A a a a ?? ? ? = ? ? ?? 称为m n ?矩阵.记作:()ij m n A a ?=或m n A ? () 1121112222* 12n T n ij n n nn A A A A A A A A A A A ?? ? ? == ? ? ?? ,ij A 为A 中各个元素的代数余子式. √ 逆矩阵的求法: ① 1 A A A *-= ○注: 1 a b d b c d c a ad bc --????= ? ? --???? 1 主换位副变号

线性代数性质公式

线性代数 第一章行列式 一、相关概念 1.行列式——n阶行列式是所有取自不同行不同列的n个元素的乘积 的代数和,这里是1,2,···n的一个排列。当是偶排列时,该项的前面带正号;当是奇排列时,该项的前面带负号,即 (1.1) 这里表示对所有n阶排列求和。式(1.1)称为n阶行列式的完全展开式。 2.逆序与逆序数——一个排列中,如果一个大的数排列在小的数之前,就称这两个数构成一个逆序。一个排列的逆序总是称为这个排列的逆序数。用表示排列的逆序数。 3.偶排列与奇排列——如果一个排列的逆序数是偶数,则称这个排列为偶排列,否则称为奇排列。 4.2阶与3阶行列式的展开——, 5.余子式与代数余子式——在n阶行列式中划去所在的第i行,第j列的元素,剩下的元素按原来的位置排法构成的一个n-1阶的行列式 称为的余子式,记为;称为的代数余子式,记为,即。

6.伴随矩阵——由矩阵A的行列式|A|所有的代数余子式所构成的形如,称为A的伴随矩阵,记作。 二、行列式的性质 1.经过转置行列式的值不变,即→行列式行的性质与列的性质是对等的。 2.两行互换位置,行列式的值变号。特别地,两行相同(或两行成比例),行列式的值为0. 3.某行如有公因子k,则可把k提出行列式记号外。 4.如果行列式某行(或列)是两个元素之和,则可把行列式拆成两个行列式之和: 5.把某行的k倍加到另一行,行列式的值不变: 6.代数余子式的性质——行列式任一行元素与另一行元素的代数余子式乘积之和为0 三、行列式展开公式 n阶行列式的值等于它的任何一行(列)元素,与其对应的代数余子式乘积之和,即 |A|按i行展开的展开式 |A|按j列展开的展开式 四、行列式的公式 1.上(下)三角形行列式的值等于主对角线元素的乘积; 2.关于副对角线的n阶行列式的值 3.两个特殊的拉普拉斯展开式:如果A和B分别是m阶和n阶矩阵,则 4.范德蒙行列式 5.抽象n阶方阵行列式公式(矩阵) 若A、B都是n阶矩阵,是A的伴随矩阵,若A可逆,是A的特征值:

线性代数重要公式、定理大全

1、行列式 1. n 行列式共有2 n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1) (1) i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1) 2 1 (1) n n D D -=-;(1) 2 2 (1) n n D D -=- 将D 顺时针或逆时针旋转90 ,所得行列式为2D ,则; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4 D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1)n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1) n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1) m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1 (1) n n k n k k k E A S λλλ -=-=+ -∑,其中k S 为k 阶主子式; 7. 证明 A =的方法: ①、 A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ? 齐次方程组0 Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解; ?A 与E 等价; ?A 可表示成若干个初等矩阵的乘积;

线性代数公式大全——最新修订(突击必备)

线性代数公式大全 1、行列式 1. n 行列式共有2 n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1) n n -? -; ⑤、拉普拉斯展开式:A O A C A B C B O B ==、(1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 5. 对于n 阶行列式A ,恒有:1(1) n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 6. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解;

?A 与E 等价; ?A 可表示成若干个初等矩阵的乘积; ?A 的特征值全不为0; ?T A A 是正定矩阵; ?A 的行(列)向量组是n R 的一组基; ?A 是n R 中某两组基的过渡矩阵; 2. 对于n 阶矩阵A :* * AA A A A E == 无条件恒成立; 3. 1* *1 11**()()()()()()T T T T A A A A A A ----=== * * * 1 1 1 ()()()T T T AB B A AB B A AB B A ---=== 4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和; 5. 关于分块矩阵的重要结论,其中均A 、B 可逆: 若12 s A A A A ?? ? ?= ? ?? ? ,则: Ⅰ、12s A A A A = ; Ⅱ、1 1112 1s A A A A ----?? ? ?= ? ? ?? ? ; ②、1 11A O A O O B O B ---?? ?? = ? ????? ;(主对角分块) ③、1 11O A O B B O A O ---?? ??= ? ? ???? ;(副对角分块) ④、1 1111A C A A CB O B O B -----?? -?? = ? ????? ;(拉普拉斯) ⑤、1 111 1A O A O C B B CA B -----?? ?? = ? ?-???? ;(拉普拉斯) 3、矩阵的初等变换与线性方程组 1. 一个m n ?矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:r m n E O F O O ???= ???; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ? ; 2. 行最简形矩阵:

2020考研 线性代数_常用公式

考研数学线性代数常用公式 数学考研考前必背常考公式集锦。希望对考生在暑期的复习中有所帮助。本文内容为线性代数的常考公式汇总。 1、行列式的展开定理 行列式的值等于其任何一行(或列)所有元素与其对应的代数余子式乘积之 和,即 C 的 3、设A 为n 阶方阵,*A 为它的伴随矩阵则有**==AA A A A E . 设A 为n 阶方阵,那么当AB =E 或BA =E 时,有1-B =A 4、 对单位矩阵实施一次初等变换得到的矩阵称之为初等矩阵.由于初等变换有三种,初等矩阵也就有三种: 第一种:交换单位矩阵的第i 行和第j 行得到的初等矩阵记作ij E ,该矩阵也

可以看做交换单位矩阵的第i 列和第j 列得到的.如1,3001010100?? ?= ? ?? ?E . 第二种:将一个非零数k 乘到单位矩阵的第i 行得到的初等矩阵记作()i k E ;该矩阵也可以看做将单位矩阵第i 列乘以非零数k 得到的.如 2100(5)050001?? ?-=- ? ?? ?E . 第三种:将单位矩阵的第i 行的k 倍加到第j 行上得到的初等矩阵记作()ij k E ;该矩阵也可以看做将单位矩阵的第j 列的k 倍加到第i 列上得到的.如 3,2100(2)012001?? ?-=- ? ??? E . 注: 1)初等矩阵都只能是单位矩阵一次初等变换之后得到的. 2)对每个初等矩阵,都要从行和列的两个角度来理解它,这在上面的定义中已经说明了.尤其需要注意初等矩阵()ij k E 看做列变换是将单位矩阵第j 列的k 倍加到第i 列,这一点考生比较容易犯错. 5、矩阵A 最高阶非零子式的阶数称之为矩阵A 的秩,记为()r A . 1)()()(),0r r r k k ==≠T A A A ; 2)()1r ≠?≥A O A ; 3)()1r =?≠A A O 且A 各行元素成比例; 4)设A 为n 阶矩阵,则()0r n =?≠A A . 6、线性表出 设12,,...,m ααα是m 个n 维向量,12,,...m k k k 是m 个常数,则称1122...m m k k k ααα+++为向量组12,,...,m ααα的一个线性组合. 设12,,...,m ααα是m 个n 维向量,β是一个n 维向量,如果β为向量组

线性代数性质公式整理教学文案

线性代数性质公式整

的乘积 的代数和,这里帘汀?是1, 2,?n ?的一个排列。当? 是偶排列时,该项的 前面带正号;当 是奇排列时,该项的前面带负号,即 | 釦1 a l2 V 这里. 表示对所有n 阶排列求和。式(1.1)称为n 阶行列式的完全展开式 2. 逆序与逆序数 ——一个排列中,如果一个大的数排列在小的数之前,就称这 两个数构成一个逆序。一个排列的逆序总是称为这个排列的逆序数。用 表示排列 '的逆序数。 3. 偶排列与奇排列一一如果一个排列的逆序数是偶数,则称这个排列为偶排 列,否则称为奇排列 忖h 4.2阶与3阶行列式的展开一 |匚d =ad - he a 21 a 22 也 3 对1 日32 ^33 =^^22333 + ^12a 23^31 + a 13a 21a 32 _ a 13a 22a 31 ~ 312^21^33 _ a ll a 23 a 32 、相关概念 1?行列式 线性代数 第一章行列式 町1 31? a 22 … di ?1!| ? |i gi f di f ■ ■1 P ? a n i 鈿.2 a t]n 是所有取自不同行不同列的 n 阶行列式 n 个元素

行,第j 列的元素,剩下的元素按原来的位置排法构成的一个 n-1阶的行列式 6.伴随矩阵一一由矩阵A 的行列式|A|所有的代数余子式所构成的形如 、行列式的性质 1. 经过转置行列式的值不变,即I :l A l'k 行列式行的性质与列的性质是对等 的。 2. 两行互换位置,行列式的值变号。特别地,两行相同 (或两行成比例),行列式 的值为0. 3. 某行如有公因子k ,则可把k 提出行列式记号外。 4. 如果行列式某行(或列)是两个元素之和,则可把行列式拆成两个行列式之和: 5.把某行的k 倍加到另一行,行列式的值不变: pi 岂为 a l 旳 b ]帕 b :t =b t + 斶 b? + kaj b$ + 1“巳5 1 c i “ 卬 6.代数余子式的性质一一行列式任一行元素与另一行元素的代数余子式乘积 5.余子式与代数余子式——在n 阶行列式 日12… ^22 … 屯】】 4)-| * || || * 甲章■ ■1 p III 釘2 … a t ]n an - 日]』1 1 … … … … a i - 14 …a i -1J- 1 邳Li 丰 a i + u …+ i,j -1 a i + 1.| + *** *** … 2[订 … ^ll,j -1 a IIJ +1 (-1)2叫为%的代数余子式,记为 ?1 - Ln + Im Aij 称为呦的余子式,记为 ,即A 产(-1严叫 ii ;称 A 】 】 A12 A21 … A 22 ...A (2) A lllv ,称为A 的伴随矩阵,记作… 中划去所在的第i

最全线性代数公式笔记

线性代数公式必记 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90 ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解;

(精选)线性代数-考研笔记

第一章行列式 性质1 行列式与它的转置行列式相等。 性质2互换行列式的两行(列),行列式变号。 推论如果行列式的两行(列)完全相同,则此行列式等于零。 性质3行列式的某一行(列)中所以的元素都乘以同一个数,等于用数乘以此行列式。第行(或者列)乘以,记作(或)。 推论行列式的某一行(列)的所有元素的公因子可以提到行列式记号的外面。第行(或者列)提出公因子,记作(或)。 性质4行列式中如果两行(列)元素成比例,此行列式等于零。 性质5若行列式的某一列(行)的元素都是两数之和,例如第列的元素都是两数之和,则等于下列两个行列式之和: = 性质 6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。 定义在阶行列式,把元所在的第行和第列划去后,留下来的阶行列式叫做元的余子式,记作;记,叫做元的代数余子式。 引理一个阶行列式,如果其中第行所有元素除元外都为零,那么这行列式等于与它的代数余子式的乘积,即 定理3 (行列式按行按列展开法则) 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和,即 或 推论行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零。 范德蒙德行列式 克拉默法则

如果线性方程组①的系数行列式不等于零,即 , 那么,方程组①有唯一解其中是把系数行列式矩阵中第列的元素 用方程组右端的常数项代替后所得到的阶行列式,即 定理4 如果非齐次线性方程组的系数行列式,则非齐次线性方程组一定有解,且解是唯一的。 定理如果非齐次线性方程组无解或有两个不同的解,则它的系数行列式必为零。 定理5 如果齐次线性方程组的系数行列式 定理如果,则它的系数行列式必为零 第二章矩阵级其运算 定义1 由个数排成的行列的数表,称为行列矩阵; 以数为元的矩阵可简记作或矩阵也记作。 行数和列数都等于的矩阵称为阶矩阵或阶方阵。阶矩阵也记作。 特殊定义: 两个矩阵的行数相等,列数也相等时,就称它们是同型矩阵同型矩阵和的每一个元素都相等,就称两个矩阵相等,;元素都是零的矩阵称为零矩阵,记作;注意不同型的零矩阵是不同的。 特殊矩阵 阶单位矩阵,简称单位阵。特征:主对角线上的元素为,其他元素为; 对角矩阵,特征:不在对角线上的元素都是0,记作

线性代数笔记

线性代数笔记 第一章行列式 (1) 第二章矩阵 (2) 第三章向量空间 (8) 第四章线性方程组 (11) 第五章特征值与特征向量...................................... 错误!未定义书签。第一章行列式 1.3。1 行列式的性质 给定行列式,将它的行列互换所得的新行列式称为D的转置行列式,记为或。 性质1 转置的行列式与原行列式相等。即 (这个性质表明:行列式对行成立的性质,对列也成立,反之亦然) 性质2 用数k乘行列式D的某一行(列)的每个元素所得的新行列式等于kD。 推论1 若行列式中某一行(列)的元素有公因数,则可将公因数提到行列式之外。 推论2 若行列式中某一行(列)的元素全为零,则行列式的值为0。 可以证明:任意一个奇数阶反对称行列式必为零。 性质3行列式的两行(列)互换,行列式的值改变符号。 以二阶为例 推论3 若行列式某两行(列),完全相同,则行列式的值为零. 性质4 若行列式某两行(列)的对应元素成比例,则行列式的值为零。 性质5 若行列式中某一行(列)元素可分解为两个元素的和,则行列式可分解为两个行列式的和, 注意性质中是指某一行(列)而不是每一行。 性质 6 把行列式的某一行(列)的每个元素都乘以加到另一行(列),所得的行列式的值不变。 范德蒙德行列式 例10 范德蒙行列式…… . =(x2-x1)(x3—x1)(x3—x2)

1。4 克莱姆法则 定理1.4.1 对于n阶行列式 定理1.4。2 如果n个未知数,n个方程的线性方程组的系数行列式D≠0,则方程组有惟一的解: 定理1.4。3 如果n个未知数n个方程的齐次方程组的系数行列式D≠0,则该方程组只有零解,没有非零解. 推论如果齐次方程组有非零解,则必有系数行列式D=0. 第二章矩阵 一、矩阵的运算 1、矩阵的加法 设A=(a ij)m×n,B=(b ij)m×n,则 A+B=(a ij+b ij)m×n 矩阵的加法适合下列运算规则: (1)交换律:A+B=B+A (2)结合律:(A+B)+C=A+(B+C) (3)A+0=0+A=A

线性代数公式大全

概率论公式大全(2010版) 1.随机事件及其概率 吸收律:A AB A A A A =?=??Ω=Ω?)( A B A A A A A =???=??=Ω?)( )(AB A B A B A -==- 反演律:B A B A =? B A AB ?= n i i n i i A A 11=== n i i n i i A A 11=== 2.概率的定义及其计算 )(1)(A P A P -= 若B A ? )()()(A P B P A B P -=-? 对任意两个事件A , B , 有 )()()(AB P B P A B P -=- 加法公式:对任意两个事件A , B , 有 )()()()(AB P B P A P B A P -+=? )()()(B P A P B A P +≤? )()1()()()()(2111111n n n n k j i k j i n j i j i n i i n i i A A A P A A A P A A P A P A P -≤<<≤≤<≤==-+++- =∑∑∑ 3.条件概率 ()=A B P ) ()(A P AB P 乘法公式 ())0)(()()(>=A P A B P A P AB P

()() ) 0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P 全概率公式 ∑==n i i AB P A P 1)()( )()(1i n i i B A P B P ?=∑= Bayes 公式 )(A B P k )()(A P AB P k = ∑==n i i i k k B A P B P B A P B P 1 ) ()()()( 4.随机变量及其分布 分布函数计算 ) ()()()()(a F b F a X P b X P b X a P -=≤-≤=≤< 5.离散型随机变量 (1) 0 – 1 分布 1,0,)1()(1=-==-k p p k X P k k (2) 二项分布 ),(p n B 若P ( A ) = p n k p p C k X P k n k k n ,,1,0,)1()( =-==- *Possion 定理 0lim >=∞ →λn n np 有 ,2,1,0!)1(l i m ==---∞→k k e p p C k k n n k n k n n λλ (3) Poisson 分布 )(λP ,2,1,0,!)(===-k k e k X P k λλ

考研线性代数公式

考研线性代数公式

————————————————————————————————作者:————————————————————————————————日期: ?

1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解;

线性代数公式必记

1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1) i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1) 2 1(1)n n D D -=-; 将D 顺时针或逆时针旋转90 ,所得行列式为2D ,则(1) 2 2(1) n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1) 2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1) 2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1) m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1 (1) n n k n k k k E A S λλλ -=-=+ -∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0 Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ? 齐次方程组0 Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解; ?A 与E 等价; ?A 可表示成若干个初等矩阵的乘积; ?A 的特征值全不为0;

线性代数公式精简版

1、行列式 1. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 逆序数计算 2. 行列式的重要公式: (1)、主对角行列式:主对角元素的乘积; (2)、上、下三角行列式( = ◥◣):主对角元素的乘积; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解; ?A 与E 等价; 2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立; 3. 1**111**()()()()()()----===T T T T A A A A A A *** 111()()()T T T AB B A AB B A AB B A ---=== 4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和; 5. 方阵行列式性质。(1)||||;(2)||||;(3)|||||===T n A A A A AB A B λλ 注意:矩阵乘法不满足交换律。 3、矩阵的初等变换与线性方程组 1. 一个m n ?矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:r m n E O F O O ??? = ???; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ? ; 2. 行最简形矩阵: ①、只能通过初等行变换获得; ②、每行首个非0元素必须为1; ③、每行首个非0元素所在列的其他元素必须为0; 3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换) ①、若(,)(,)r A E E X ,则A 可逆,且1X A -=; ②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)c A B E A B - ~ ; ③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)r A b E x ,则A 可逆,且1x A b -=; 4. 矩阵秩的基本性质: ①、0()min(,)m n r A m n ?≤≤; ②、()()T r A r A =; ③、若A B ,则()()r A r B =; ④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+; ⑥、()()()r A B r A r B +≤+; ⑦、()min((),())r AB r A r B ≤;

线性代数公式总结大全

线性代数公式 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)2 2(1) n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、(1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 8. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵);

(完整版)精心整理线性代数公式大全,推荐文档

1. n 行列式共有2 n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1 (1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2 D ,则(1)2 2 (1) n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3 D ,则3 D D =; 将D 主副角线翻转后,所得行列式为4 D ,则4 D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1)n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式 : A O A C A B C B O B = =、 (1)m n C A O A A B B O B C = =-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1 (1) n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子 式; 7. 证明0A =的方法: ①、A A =-;

②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ? 齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解; ?A 与E 等价; ?A 可表示成若干个初等矩阵的乘积; ?A 的特征值全不为0; ?T A A 是正定矩阵; ?A 的行(列)向量组是n R 的一组基; ?A 是n R 中某两组基的过渡矩阵; 2. 对于n 阶矩阵A :* * AA A A A E == 无条件恒成立; 3. 1* *1 11 ** ()()()()()()T T T T A A A A A A ----=== * * * 1 1 1 ()()()T T T AB B A AB B A AB B A ---=== 4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和; 5. 关于分块矩阵的重要结论,其中均A 、B 可逆: 若 12 s A A A A ?? ? ?= ? ?? ? O ,则: Ⅰ、1 2s A A A A =L ;

自考线性代数(经管类)笔记-重点解析

《线性代数(经管类)》考试笔记,重点解析 武汉大学出版社 2006年版 第一章行列式 1.1 行列式的定义 1.2 行列式行(列)展开 1.3 行列式的性质与计算 1.3 克拉默法则 第二章矩阵 2.1 线性方程组与矩阵的定义 2.2 矩阵运算 2.3 分阵的逆矩阵 2.4 分块矩阵 2.5 矩阵的初等变换与初等方阵 2.6 矩阵的秩 2.7 矩阵与线性方程组 第三章向量空间 3.1 n维向量概念及其线性运算 3.2 线性相关与线性无关 3.3 向量组的秩 3.4 向量空间 第四章线性方程组 4.1 齐次线性方程组 4.2 非齐次线性方程组 第五章特征值与特征向量 5.1 特征值与特征向量 5.2 方阵的相似变换 5.3 向量内积和正交矩阵 5.4 实对称矩阵的相似标准形 第六章实二次型 6.1 实二次型及其标准形 6.2 正这二次型和正定矩阵 第一部分行列式 本章概述 行列式在线性代数的考试中占很大的比例。从考试大纲来看。虽然只占13%左右。但在其他章。的试题中都有必须用到行列式计算的内容。故这部分试题在试卷中所占比例远大于13%。 1.1 行列式的定义 1.1.1 二阶行列式与三阶行列式的定义 一、二元一次方程组和二阶行列式

例1.求二元一次方程组 的解。 解:应用消元法得 当时。得 同理得 定义称为二阶行列式。称为二阶行列式的值。 记为。 于是 由此可知。若。则二元一次方程组的解可表示为: 例2 二阶行列式的结果是一个数。我们称它为该二阶行列式的值。 二、三元一次方程组和三阶行列式 考虑三元一次方程组 希望适当选择。使得当后将消去。得一元一次方程 若,能解出

学习线性代数总结

竭诚为您提供优质文档/双击可除 学习线性代数总结 篇一:线性代数学习总结 线性代数学习总结 ----------应化11王阳(2110904024) 时间真快,一转眼看似漫长的大一就这样在不知不觉中接近尾声。纵观一年大学的学习和生活,特别是在线代的学习过程中,实在是感慨颇多。在此,我就从老师教学和自身学习方面,谈谈自己的一点体会。 老师在教学中,也应该以一些具体的实例入手来教学,如果脱离了实际应用,只是讲抽象的概念和式子,是很难明白的,并且有实例的对照,可以加深记忆理论知识。然后要注重易混淆概念的区别,必要时应该拿出来单独讲讲,比如矩阵和行列式的区别,矩阵只是为了计算线性方程而列的一个数据单而已,并无实际意义。而行列式和矩阵有本质的区别,行列式是一个具体的数值,并且行列式的行数和列数必须是相等的。其实老师在教学过程中,应该学会轻松一点,我不希望看到老师在讲台上讲得满头大汗,而学生坐在下面

听得云里雾里的场面,这就需要老师能够精选一些内容讲解,不需要都讲,而其他相关的内容让学生自己通过举一反三就得到就可以了。老师可以自己选一些经典的例子来讲,而不一定要讲书上的例子。然后对于例子中的计算,老师就可以不用算了,多叫学生动动手,增加我们的积极性,并且这样也更能发现问题。再就是线性代数的课时少,这是一个客观存在的原因,所以更要精讲。而不需全部包揽。当然,若果能通过改革,增加课时是最好不过了。这也算一点小小的建议吧。 再者,在自身学习过程中,我想说明的是,大学里的学习是不能靠其他任何人的,只能靠自己,老师只是起到一个引导作用。所以教材是我们最重要的学习资源,如果没有书本,就是天才也不可能学好。总体看来,我们使用的课本题型简单易懂,非常适合初学者学习。但它也有许多的不足之处,就个人在看这本教材时,觉得它举得实例太少了,并且例子不太全面,本来线性代数是一门比较抽象的学科,加上计算量大,学时少,所以要学好它,就只有靠自己在课余时间多加练习,慢慢领悟那些概念性的东西。然后对于教材内容的侧重点,我觉得应该放在线性方程组这一块,因为它是其他问题的引出点,不管是矩阵,行列式,还是矩阵的秩和向量空间,都是为线性方程组服务的。我们对向量组的线性相关性的讨论,还有对矩阵的秩,向量组的秩的计算,都是

相关文档
最新文档