甘氨酸螯合铁脂质体制备及其体外释放

甘氨酸螯合铁脂质体制备及其体外释放
甘氨酸螯合铁脂质体制备及其体外释放

兰索拉唑肠溶片体外释放度研究

兰索拉唑肠溶片体外释放度研究 摘要目的:对于兰索拉唑肠溶片体外释放度进行探讨。方法:通过查阅国内 外相关资料,整理归纳。结果:了解切实可行的测试兰索拉唑肠溶片体外释放度的方法。 关键词兰索拉唑;肠溶片;体外释放度。 相关背景 兰索拉唑为一选择性抑制胃壁细胞H+-K+-ATP酶从而抑制胃酸分泌的抗溃疡药物。它对各种原因引起的胃酸分泌均具抑制作用,具有保护和促进胃粘膜溃疡愈合的作用[1]。而且,兰索拉唑及其相关化合物有较强的抑制幽门螺杆菌的作用,在降低消化性溃疡复发率方面具有良好的作用[2]。临床上主要用于治疗胃及十二指肠溃疡,其疗效较H2受体拮抗剂法莫替丁、雷尼替丁强,毒副作用低,是一有发展前途的抗酸剂。兰索拉唑为一苯骈咪唑类化合物,其对酸不稳 定,为防止药物口服后受胃酸破坏失效,故制备为肠溶片剂。[4]兰索拉唑肠溶片在胃液中不溶解,到了肠道药物才溶解。对于肠溶片的定义据[3]描述如下: 肠溶片:系指用肠溶性包衣材料进行包衣的片剂。为防止药物在胃内分解失效、对胃的剌激或控制药物在肠道内定位释放,可对片剂包肠溶衣;为治疗结肠部位疾病等,可对片剂包结肠定位肠溶衣。肠溶片除另有规定外,应进行释放度检查。 研究方向 为了研究药物的体外释放度,首先了解释放度的概念。 释放度系指口服药物从缓释制剂、控释制剂或肠溶制剂在规定溶剂中释放的速度和程度。检查释放度的制剂,不再进行溶出度或崩解时限的检查。 肠溶制剂系指口服药物在规定的酸性介质中,不释放或几乎不释放,而在缓冲液中大部分或全部释放的制剂。[3] 对于肠溶片的释放度测定,据照《中国药典》2005年版(二部)附录XD释放度测定法第二法[3]描述如下: 第二法用于肠溶制剂 (一) 酸中释放量 除另有规定外,量取0.1mol/L盐酸溶液750ml,注入每个容器,加温使溶液温度保持在37±0.5℃,调整转速并保持稳定,取6片(个)分别投入转篮或容器中,按各药品项下规定的方法,开动仪器运转2小时,立即在规定取样点吸取溶液适量,立即经0.8μm微孔滤膜滤过,自取样至滤过应在30秒钟内完成,滤液按各药品项下规定的方法测定,算出每片(个)的酸中释放量。 缓冲液中释放量

脂质体制备方法

微脂体(又称脂质体)及其制备方法一二 微脂体(又称脂质体) 微脂体起源于1960 年代中期,Bangham博士等人首先提出,在磷酸脂薄膜上加入含盐分的水溶液后,再加以摇晃,会使脂质形成具有通透性的小球;196 8年,Sessa 和Weissmann 等人正式将此小球状的物体命名为微脂体(liposo me)并做出明确的定义: 指出微脂体是由一到数层脂质双层膜(lipid bilayer) 所组成的微小的囊泡,有自行密合(self-closing)的特性。微脂体由脂双层膜包裹水溶液形成,由于构造的特性,可同时作为厌水性(hydrophobic)及亲水性(hydrophilic)药品的载体,厌水性药品可以嵌入脂双层中,而亲水性药品则可包覆在微脂体内的水溶液层中。如同细胞膜,微脂体的脂质膜为脂双层构造,由同时具有亲水性端及厌水性端的脂质所构成,脂双层由厌水性端相对向内而亲水性端面向水溶液构成,组成中的两性物质以磷酸脂质最为常见。微脂体的形成是两性物质在水溶液中,依照热力学原理,趋向最稳定的排列方式而自动形成。微脂体的性质深受组成脂质影响,脂质在水溶液的电性,决定微脂体是中性或带有负电荷、正电荷。此外,磷酸脂碳链部分的长短,不饱和键数目,会决定微脂体的临界温度(transition temperature, Tc),影响膜的紧密度。一般来说,碳链长度越长临界温度越高,双键数越多则临界温度越低,常见的DPPC(dipalmitoylp hosphatidylcholine)与DSPC(distearoylphosphatidylcholine)的临界温度分别是42℃与56℃,而Egg PC(egg phosphatidylcholine)与POPC(palmitoyl oleoyl phosphatidylcholine)的Tc 则低于0℃。临界温度影响微脂体包裹及结合药物的紧密度,当外界温度高于Tc时,对膜有通透性的药物,较容易通过膜;此外,当外界温度处于临界温度时,微脂体脂质双层膜中的脂质,会因为流动性不一致而使微脂体表面产生裂缝,造成内部药物的释出。在磷脂质内加入胆固醇,会对微脂体性质产生下列影响:增加微脂体在血液中的安定性,较不易发生破裂;减少水溶性分子对微脂体脂膜的通透性;增加微脂体的安定性,使其在血液循环中存在的时间较长。 微脂体可依脂双层的层数或是粒子大小,加以命名或分类: (1) Multilamellar vesicle(MLV)是具有多层脂双层之微脂体,粒子大小介于100-1000 nm,特色是粒子内具多层脂质膜,一般而言,干燥后的脂质薄膜,

Hieff TransTM脂质体核酸转染试剂(亲手整理)

Hieff TransTM 脂质体核酸转染试剂 产品描述 Hieff Trans TM 脂质体核酸转染试剂是一种多用途的脂质体转染试剂,适用于DNA 、RNA 和寡核苷酸的转染,对大多数真核细胞具有很高的转染效率。其独特的配方使其可直接加入培养基中,血清的存在不会影响转染效率,这样可以减少去除血清对细胞的损伤。转染后不需要除去核酸-Hieff Trans TM 复合物或更换新鲜培养基,也可在4~6小时后除去。 Hieff Trans TM 以无菌的液体形式提供。通常情况下对于 24 孔板转染,每次用1.5μl 左右,则1ml Hieff Trans TM 约可做660次转染;对于6孔板,每次用6μl 左右,则1ml Hieff Trans TM 约可做160 次转染; 运输与保存方法 冰袋(wet ice )运输。产品4oC 保存,一年有效。不可冷冻! 注意事项 1)Hieff Trans TM 脂质体核酸转染试剂要求细胞铺板密度较高,以90%-95%为佳,这有助于减少阳离子脂质体细胞毒性造成的影响;如果你研究的基因要求比较长的表达时间,比如细胞周期相关基因,或者细胞表面蛋白,最好选择细胞铺板密度要求较低的转染试剂,不适合用脂质体核酸转染试剂。 2)Hieff Trans TM 脂质体核酸转染试剂可用于有血清培养基的转染,并且转染前后不需要换培养基。但是,制备转染复合物时要求用无血清培养基稀释DNA 和转染试剂,因为血清会影响复合物的形成。另外,要检测所用的无血清培养基与脂质体核酸转染试剂的相容性,已知CD293, SFMII, VP-SFM 就不相容。 3)转染的时候培养基中不能添加抗生素。 4)使用高纯度的DNA 或RNA 有助于获得较高的转染效率,质粒中的内毒素是转染的大敌。 5)阳离子脂质体应该在4度保存,要注意避免多次反复长时间开盖,因为可能会导致脂质体氧化而影响转染效率。 6)初次使用应优化DNA 浓度和阳离子脂质体试剂量以得到最大的转染效率。DNA 和转染试剂的比例,通常推荐是1:2-1:3,比如24孔板内接种0.5-2×105个细胞,使用0.5 μg DNA 和1-1.5 μl 转染试剂。通过调整DNA/Hieff Trans TM 脂质体核酸转染试剂比例优化转染效率,保证细胞密度大于90%,DNA (μg ): Hieff Trans TM (μl )比值在1:0.5-1:5。 操作流程(以24孔板为例,其他培养板加样体积请参考表一) 【注】:转染试剂使用量受细胞类型及其他实验条件影响,建议初次使用时设置梯度进行优化最佳使用量。 贴壁细胞:转染前一天(20-24小时),胰酶消化细胞并计数,细胞铺板(不含抗生素),使其在转染时密度为90-95%(0.5-2 × 105 cells/well for a 24-well plate )。 c c l 整 理

脂质体转染的实验原理与操作步骤大全

脂质体转染的实验原理与操作步骤大全 细胞转染的方法主要包括:电穿孔法、显微注射、基因枪、磷酸钙共沉淀法、脂质体转染法、多种阳离子物质介导、病毒介导的转染等,理想的细胞转染方法是具有高转染效率、对细胞的毒性作用小等,本文主要介绍细胞转染常用的方法-脂质体转染的原理和操作步骤等。 脂质体(lipofectin regeant,LR)试剂是阳离子脂质体N-[1-2,3-Dioleyoxy,Propyl]-n, n,n-Trimethylammonium Chloride(DOTMA)和Dioleoyl photidye-thanolamine(DOPE)的混合物[1:1(w/w)]。它适用于把DNA转染入悬浮或贴壁培养细胞中,是目前条件下最方便的转染方法之一。转染率高,优于磷酸钙法,比它高5~100倍,能把DNA和RNA转染到各种细胞。 用LR进行转染时,首先需优化转染条件,应找出该批LR对转染某一特定细胞适合的用量、作用时间等,对每批LR都要做:第一,先要固定一个DNA的量和DNA/LR混合物与细胞相互作用的时间,DNA可从1~5μg和孵育时间6小时开始,按这两个参数绘出相应LR需用量的曲线,再选用LR和DNA两者最佳的剂量,确定出转染时间(2~24小时)。因LR对细胞有一定的毒性,转染时间以不超过24小时为宜。 细胞种类:COS-7、BHK、NIH3T3、Hela和Jurkat等任何一种细胞均可作为受体细胞。 一、脂质体(liposome)转染方法原理 脂质体(liposome)转染方法原理:脂质体((Iiposome)作为体内和体外输送载体的工具,已经研究的十分广泛,用合成的阳离子脂类包裹DNA,同样可以通过融合而进人细胞。使用脂质体将DNA带人不同类型的真核细胞,与其它方法相比,有较高的效率和较好的重复性。 中性脂质体是利用脂质膜包裹DNA,借助脂质膜将DNA导入细胞膜内。带正电的阳离子脂质体,DNA并没有预先包埋在脂质体中,而是带负电的DNA自动结合到带正电的脂质体上,形成DNA-阳离子脂质体复合物,从而吸附到带负电的细胞膜表面,经过内吞被导入细胞。 二、脂质体转染操作步骤 1、操作步骤[方法一]: (1)细胞培养:取6孔培养板(或用35mm培养皿),向每孔中加入2mL含1~2×105个细胞培养液,37℃CO2培养至40%~60%汇合时(汇合过分,转染后不利筛选细胞)。 (2) 转染液制备:在聚苯乙稀管中制备以下两液(为转染每一个孔细胞所用的量)A液:用不含血清培养基稀释1-10μg DNA,终量100μL,B液:用不含血清培养基稀释2-50μgLR,终量100μL,轻轻混合A、B液,室温中置10-15分钟,稍后会出现微浊现象,但并不妨碍转染(如出现沉淀可能因LR或DNA浓度过高所致,应酌情减量)。 (3)转染准备:用2mL不含血清培养液漂洗两次,再加入1mL不含血清培养液。

氨基酸螯合铁作为铁添加剂的优缺点

氨基酸螯合铁作为铁添加剂的优缺点 引言 这篇文章论述了氨基酸螯合铁作为铁添加剂的价值。约三年前,世界生命科学研究组织举行了一个氨基酸螯合铁的技术研讨会。在这次会上现有的研究数据不足以对氨基酸螯合铁中铁的生物利用率作出总结;然而,一些设计优良的实验已研究了这些化合物用作食品添加剂的价值。这将下面的篇幅中一一论述。 二甘氨酸亚铁盐和三甘氨酸正铁盐的结构 二甘氨酸亚铁盐由一分子Fe2+与二分子甘氨酸结合而成。Fe2+与甘氨酸的酰基形成阴离子健,与氨基形成共价健,构成两个杂环。这个结构可以保护Fe2+不与食物中吸收铁离子的防腐剂反应,使之潜在的成为一种理想的富含防腐剂(例如植酸)食品的添加剂。理论上相对可溶性Fe2+它可以较少的引发聚脂肪酸和维生素的过氧化作用。假如亚铁鳌合物被完全吸收,重要的是要知道从这种分子里吸收的Fe2+是否一般会随着Fe2+含量的上升而减少。 三甘氨酸正铁盐作为除味剂也有商业销售,它由三个甘氨酸分子与一分子Fe3+结合而成(Albiion Laboratories, Clearfield, UT)。这篇文章的主要篇幅将用于论述二甘氨酸亚铁盐(三铁螯合物)作铁添加剂的质量问题,也会简略地讨论一下三甘氨酸盐中的Fe3+吸收。 近期氨基酸螯合物中铁离子吸收的研究进展 在这里提到的四篇研究报告的作者分别是智利的Olivares、英格兰的Fox、美国的BovellBenjamin和委内瑞拉的Layrisse。在所有的这些报告中铁离子的吸收评估都是用放射性的或稳定的铁同位素来标定氨基酸螯合物,并且测定两个星期后血红细胞中铁同位素的含量。 在Olivares的研究中,14名成年妇女对二甘氨酸亚铁盐水溶液中Fe2+的吸收试验是对比另一组相同条件的14名妇女对牛奶中Fe2+的吸收同时进行。这两组被测者都是贫铁的。由于每组测试有着各自的研究对象,那么每个人吸收的铁离子含量会由他们摄取的铁离子形态决定,所有的被测者也服用一定量的抗坏血酸亚铁盐来协调相互之间在铁离子形态上的差异。亚铁螯合物的Fe2+在牛奶中的吸收(11%)远没有在水溶液中的吸收好(46%)。同时,添加抗坏血酸可使牛奶中亚铁螯合物Fe2+的吸收从15%增长到38%。这些结果表明抑制剂和强化剂能够影响二甘氨酸盐中Fe2+的吸收。作者报道说在以前的一个实验中,当抗坏血酸加到硫酸亚铁中时Fe2+的吸收大大提高了(250%)。此实验的另一个缺点就是没有牛奶中硫酸亚铁的Fe2+吸收评估值;作者报道说在以前的一个实验中发现这个值仅有4%,这意味着牛奶中二甘氨酸亚铁盐的Fe2+吸收是硫酸亚铁的近3倍。 在英格兰学者Fox的研究中,用稳定同位素标定过的二甘氨酸亚铁盐或硫酸亚铁的食物给婴儿食用。不论这两种铁源加在蔬菜婴儿食品还是高植酸含量的谷类婴儿食品中,它们的铁离子吸收没有明显的不同;植酸使这两种添加剂的铁离子吸收降低到了相同的范围之内。重要的是,在硫酸亚铁对照实验中,每毫克铁离子添加0.83毫克抗坏血酸的硫酸亚铁比不添加的硫酸亚铁有更高的铁离子吸收。 在美国Bovell-benjamin的研究中,二甘氨酸亚铁盐与硫酸亚铁中的铁离子吸收是对比进行的,两种铁源都是加在高植酸含量的全玉米粥里给同样的10位男性服用。测试的目的是确定植酸的抑制作用是否对亚铁螯合物的铁离子吸收有促进作用,以及亚铁螯合物的Fe2+是否与硫酸亚铁的Fe2+在肠液中互换。在第一个实验中两种铁源是分别在相邻的两天喂服的,在第二个实验中则是在同一餐喂服的。每种铁源都用不同的同位素标记。如果亚铁螯合物在肠道中分解,并且它的Fe2+与硫酸亚铁的Fe2+交换,观测到的两种来源的铁离子吸收应该是一样的;这是因为自由的同位素铁离子在肠腔里混合。然而,当两种铁源分别在两餐玉米粥里食用, 二甘氨酸亚铁盐中铁离子的吸收比硫酸亚铁高出五到六倍(平均上,大约6~

中药缓释制剂体外释放度评价(三)

中药缓释制剂体外释放度评价(三) 国际上采用指纹图谱对植物药进行质量控制的国家有韩国、日本、德国等。如德国用指纹图谱技术控制银杏制剂的质量。德国0.Sticher早在1993年发表的文章中指出银杏叶其主要成分是黄酮苷类与银杏内酯,采用十多种化学成分的高效液相色谱图作指纹图谱,同时用其中多个化学成分(指标成分)作为定量的标准。在大量基础研究及严格控制原料及生产全过程的条件下,对银杏叶制剂不仅控制总黄酮和总内酯的含量,而且对黄酮中槲皮素、山柰酚和异鼠李素的比例,总内酯中银杏内酯A. B. C.J和白果内酯的比例,规定了较为明确的范围,作为中药指纹图谱的范例。美国FDA对植物药的质量控制则要求必须控制指纹图谱的检测标准。我国申请FDA临床实验的天津天士力集团的复方丹参滴丸、北京华颐制药厂的威麦宁胶囊、上海史泰隆制药厂的杏林制剂等都制定了指纹图谱检测标准。对于中药缓控释制剂的研究,指纹图谱有巨大的现实意义。按照中医的观点,指标成分的控制,难以真正控制中药功效。中医辨证施治用的是药味而非某个化学成分。麻黄素与麻黄、甘草酸与甘草、人参皂苷与人参等在中医看来是两回事。中药的“补气”、“活血”、“温里”、“发表”、“滋阴”、“健脾”等功效,是药材饮片或成药方剂内含物质群的整体作用结果。所以要控制中药的功效,不仅只针对某几种化学成分,必须对方剂的物质群整体予以控制。在尚不清楚中药全体化学成分的情况下,用现代色谱、光谱、波谱、质谱等仪器分析所得的指纹图谱,实现对物质群整体的控制的思想应运而生。 周俊院士近年提出中药复方是天然组合化学库,周院士认为根据中医药理论和长期实践,筛选出来的中药复方是相对安全和有效的复方。中药复方由多味中药组成,一味 中药可能分离鉴定出100种左右化学成分,由多味中药组成的中药复方可能含有数百种至数千种化学成分。因此中药复方是一个根据中医理论和实践以及单味药功能主治性味,通过人工组合形成的、具有疗效的、相对安全的天然组合化学库。中药复方天然组合化学库中的化学成分大量是单味药本身含有的,少量是加工炮制过程中形成的,包括有效成分和无效化学成分两大类。有效成分是中药复方治疗疾病的药效物质基础,往往含有几种或一群有效成分或生物

黄芩素脂质体的制备及体外释放的研究

黄芩素脂质体的制备及体外释放的研究 姚亚红,张立伟3 (山西大学分子科学研究所,山西太原030006) 摘 要:目的:研究黄芩素脂质体的制备方法。方法:采用逆相蒸发法、薄膜-超声法制备黄芩素脂质体,利用紫外光谱测定包封率以及浆板法测定体外释放曲线。结果:逆相蒸发制备的脂质体平均粒径179nm ,包封率和载药量分别为92.57%和23.24%;薄膜超声法平均粒径257nm ,包封率和载药量分别为60.02%和7.70%,在PH7.4磷酸盐缓冲液中体外释药符合Higuchi 方程。结论:逆相蒸发法操作简单,重现性好,制备的脂质体粒径小、包封率高,药物具有一定的缓释性。 关键词:黄芩素;脂质体;包封率;制备 中图分类号:R944.9 文献标识码:A 文章编号:1002-2392(2006)03-0031-03 收稿日期:2005-09-02 资助项目:山西省自然科学基金(20041102) 作者简介:姚亚红,女,(1979-),硕士研究生,研究方向为天然药物提取 与分离与药物制剂。 3通讯作者:张立伟,E -mail :lwzhang @https://www.360docs.net/doc/3f13699127.html, 。 黄芩素(baicalein )为黄酮类化合物,是唇形科植物 黄芩(Scutellaria baicalensis G eorgi )的主要有效成分之 一。具有抗菌、抗病毒、抑制炎症反应、保肝、利胆、利 尿、抗癌等作用,具有很好的临床应用价值[1]。但是黄 芩素水溶性差,且易被氧化。大量研究表明,脂质体有 包封脂溶性药物或水溶性药物的特性,药物被脂质体 包封后,保护了药物免受降解,增加了其在水中的溶解 度,且在体内呈现出与药物本身不同的特点。另外,脂 质体作为药物的载体,具有靶向性、缓释性,可增加疗 效,降低药物的毒副作用[2]。根据黄芩素的性质,本研 究以包封率为评价指标,探讨了黄芩素脂质体的制备 方法,并对其体外释放进行考察。 1 实验材料 1.1 仪器 K Q3200超声波清洗器(昆山市超声仪器有限公 司);HP 8453UV 一ViS 吸收光谱仪(美国惠普公司); 透射电子显微镜(H -600-2日本日立公司);激光粒 度分析仪(ZET ASIZER 3000HS A ,Malvern InstrumentsC o. L td ,UK );冷冻干燥机(ct60e Heto );旋转蒸发仪RE - 52A (上海亚荣生化仪器厂);TG L -16C 型台式离心机 (上海安亨科学仪器厂);FSH -2A 可调高速匀浆机(江 苏金坛医疗仪器厂)。 1.2 试剂 黄芩素为自制;蛋黄卵磷脂(E pc ,北京双旋微生物 培养机制品厂);胆固醇(Chol ,北京奥博星生物技术责 任有限公司);其它化学试剂均为分析纯。 2 方法和结果 2.1 黄芩素标准曲线的制作精密称取黄芩素10.4mg 置10ml 容量瓶中,用叔丁醇溶解并稀释至刻度。再分别吸取53、58、64、70、77、85、110、142μl ,用蒸馏水定容至10ml ,制成不同浓度的溶液,以蒸馏水为空白,测定各溶液在272nm 处的吸收值。结果表明,黄芩素在272nm 处的吸光度A 与其浓度C 呈良好的线性关系,线性范围为50~140Πml ,其线性回归方程为:C =0.73818+16.04372A (r =0.9998)。2.2 脂质体的制备2.2.1 逆相蒸发法 称取一定比例[3]的E pc 和Chol 溶于无水乙醚中,将适量黄芩素溶于10ml 磷酸盐缓冲液(P BS ,PH6.8)中。再将含有药物的P BS 与有机相混合,水浴超声处理,直至形成稳定的W ΠO 型乳剂,然后于旋转蒸发仪中减压蒸发除去乙醚,达胶态后再加入10mlP BS 水化,继续减压蒸发,即得淡乳黄色脂质体混悬液。2.2.2 薄膜-超声法[4] 称取同样比例的类脂溶于无水乙醚中,然后于旋转蒸发仪中减压蒸发除去乙醚,使类脂在圆底烧瓶内壁形成一层均匀薄膜。加入适量黄芩素磷酸盐缓冲液,水化脂膜,冰浴超声破碎一定时间,即得淡乳黄色脂质体混悬液。2.3 包封率和载药量的测定分别精密吸取2种不同方法制备的黄芩素脂质体混悬液1.0m1,进行离心(13000rpm ,30min ),取上清液于10ml 容量瓶,用蒸馏水和叔丁醇(2∶lv Πv )的混合溶剂定容。于272nm 处测定吸光度,代入标准曲线方程计算游离药物的量(W 游)。同时精密量取1.0ml 的混悬液于25ml 容量瓶中,同法处理,得总药物的量(W 总)。按下式计算包封率和载药量:包封率=(W 总-W 游)ΠW 总×100%;载药量=(W 总-W 游)ΠW 载× 100%,结果见表1。? 13?中医药学报2006年第34卷第3期

转染步骤及经验(精华)

转染步骤及经验(精华) 一、基础理论 转染是将外源性基因导入细胞内的一种专门技术。分类:物理介导方法:电穿孔法、显微注射和基因枪;化学介导方法:如经典的磷酸钙共沉淀法、脂质体转染方法、和多种阳离子物质介导的技术;生物介导方法:有较为原始的原生质体转染,和现在比较多见的各种病毒介导的转染技术。理想细胞转染方法,应该具有转染效率高、细胞毒性小等优点。病毒介导的转染技术,是目前转染效率最高的方法,同时具有细胞毒性很低的优势。但是,病毒转染方法的准备程序复杂,常常对细胞类型有很强的选择性,在一般实验室中很难普及。其它物理和化学介导的转染方法,则各有其特点。需要指出的一点,无论采用哪种转染技术,要获得最优的转染结果,可能都需要对转染条件进行优化。影响转染效率的因素很多,从细胞类型、细胞培养条件和细胞生长状态到转染方法的操作细节(见后文)。 二、转染操作流程(以常用的6孔板为例) (1) 细胞培养: 取6孔培养板,以3x104/cm2密度铺板,37℃5%CO2培养箱中培养至70%~90%汇合。(不同细胞略有不同,根据实验室优化的条件进行,汇合过分,转染后不利筛选细胞)。 (2) 转染液制备: 在EP管中制备以下两液(为转染每一个孔细胞所用的量) A液:用不含血清培养基稀释1-10μg DNA,终量100μL, B液:用不含血清培养基稀释对应量的转染试剂,终量100μL; 轻轻混合A、B液(1:1混匀),室温中置15分钟,稍后会出现微浊现象,但并不妨碍转染。 (3) 转染准备:用2mL不含血清培养液漂洗两次,再加入2mL不含血清及PS的培养液。 (4) 转染:把A/B复合物缓缓加入培养液中(缓慢滴加),轻轻摇匀,37℃温箱置6~8小时,吸除无血清转染液,换入正常培养液继续培养。 三、转染注意事项 1. 血清 A. DNA-阳离子脂质体复合物形成时不能含血清,因为血清会影响复合物的形成。 B.一般细胞对无血清培养可以耐受几个小时没问题,转染用的培养液可以含血清也可以不加,但血清一度曾被认为会降低转染效率,转染培养基中加入血清需要对条件进行优化。 C. 对于对血清缺乏比较敏感的细胞,可以使用一种营养丰富的无血清培养基OPTI-MEMⅠ培养基, 或者在转染培养基中使用血清。对血清缺乏比较敏感的贴壁细胞,建议使用LIPOFECTAMINE 2000。无血清培养基OPTI-MEM(GIBICO)很好用,有条件的话,就用它代替PBS洗细胞两遍,注意洗的时候要轻,靠边缘缓缓加入液体,然后不要吹吸细胞,而是转动培养板让液体滚动在细胞表面。如果洗的太厉害,细胞又损失一部分,加了脂质体后,细胞受影响就更大了,死亡细胞会增多。 2.抗生素(PS) 抗生素,比如青霉素和链霉素,是影响转染的培养基添加物。这些抗生素一般对于真核细胞无毒,但阳离子脂质体试剂增加了细胞的通透性,使抗生素可以进入细胞。这降低了细胞的活性,导致转染效率低。所以,在转染培养基中不能使用抗生素,甚至在准备转染前进行细胞铺板时也要避免使用抗生素。这样,在转染前也不必润洗细胞。对于稳定转染,不要在选择性培养基中使用青霉素和链霉素,因为这些抗生素是GENETICIN选择性抗生素的竞争性抑制剂。另外,为了保证无血

甘氨酸铁企标

备案号: Q/WF 建德市维丰饲料有限公司企业标准Q/WF 304 -2005 代替304-2000 甘氨酸亚铁 2006-07-12发布 2006-07-12实施建德市维丰饲料有限公司发布

立项的目的、意义或必要性 铁元素在动物营养中的重要性,各个刊物上已充分报道,这里勿庸赘言。可是,铁元素的使用并非易事,它给生产和应用者带来许多挑战。 传统的无机铁盐是最便宜的,但是在研究和实际应用都已证明,其中的Fe2+可利用率极低,由于消化道中的植酸、丹宁酸和抗营养因子等其它因素的影响,其生物利用率更低,而余下的全部排出体外,对土壤和水源造成污染,长持以往,是环保法规所不许的。 有机铁的潜在营养价值远远超过无机铁盐,这也是大家所认同的,特别是氨基酸系列的有机铁,其高生物利用率及良好的环保更是专业人士所推崇的。但是,目前我国各个生产厂家,由于生产水平的高低,导致产品质量参差不齐,同时由于缺乏统一的产品标准,对产品质量无法进行客观的评价,造成市场混乱,好坏不分,这将极大地影响饲料微量元素添加剂的健康发展和整个畜禽业的发展。 浙江维丰生物科技有限公司本着环保和高生物利用率两大方针,在各大专院校广大科研人员的共同参与下,经过多年的研究,生产出很好的环保性和最高的生物利用率的有机铁——甘氨酸铁。随着我国加入WTO,国际绿色贸易壁垒使我国畜牧生产面临巨大的挑战,如何利用有效资源,实现动物高效安全优质生产,以期克服铁元素添加剂的弊端,推动微量元素添加剂的健康发展,规范甘氨酸铁的生产、质检及评价,建立统一的甘氨酸铁标准势在必行。

饲料添加剂甘氨酸铁 1范围 本标准规定了饲料添加剂甘氨酸铁产品的要求、试验方法、标签、包装、贮存及运输。 本标准适用于化学合成法制得的甘氨酸铁,在饲料工业中作为矿物质类饲料添加剂。2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 601-88 化学试剂标准溶液的制备 GB 603 化学试剂试验方法中所用制剂及制品的制备 GB 6682 分析实验室用水规格和试验方法(neq ISO 3696) GB/T 10648 饲料标签 中华人民共和国药典 3要求 产品名称:甘氨酸铁 分子式:C4H30N2O22S2Fe2 相对分子质量:(按1999年国际相对原子质量) 化学结构式:〔Fe(C2H5NO2)2SO4·4H2O〕·〔FeSO4·6H2O〕 外观和性状:棕黄色至黄褐色结晶或结晶性粉末,易溶于水 (注:分子式、相对分子量、化学结构式均是产品烘干前的状态,烘干后会失去若干结晶水) 技术指标 技术指标应符合表1的要求。 表1 技术指标

氨基酸螯合铁肥有什么功效

氨基酸螯合铁肥有什么功效 氨基酸螯合铁肥,含有水溶氨基酸铁和纯铁元素含量这可是目前防治果树黄化、溃疡病的效果很不错的鉄肥哦。氨基酸螯合铁肥中国总代理--烟台七微肥料有限公司赵总介绍:微量元素包括硼、铁、锰、锌、钼、铜等营养元素,虽然植物对微量元素的需要量很少,但它们对植物的生长发育的作用与大量元素是同等重要的,当某种微量元素缺乏时,作物生长发育受到明显的影响,产量降低,品质下降。随着作物产量的不断提高和化肥的大量施用,对微量元素肥料的应用逐渐迫切。 #详情咨询#【七微肥料https://www.360docs.net/doc/3f13699127.html,/】 比如猕猴桃溃疡病,砂糖桔溃疡病近几年已经成为广西、四川、陕西猕猴桃产区的常见病,给果农造成了很大损失。据专家介绍,已经有实验表明:缺铁首先会引发黄化,进而降低果树抵御细菌侵染能力,一旦遇到合适气候就可能引发溃疡病的发生。 说了这么多,是不是想尽快了解一下农作物铁肥呢?~那接下来让我来看看相关信息吧~市面上大大小小的铁肥产品比较多,到底哪个是比较适合我们的呢?在这里专家给你推荐的是:【七微螯合铁】:

它是一种螯合态全水溶氨基酸铁肥,含有92%的水溶氨基酸铁,纯铁元素含量18%。这可是目前防治果树黄化、溃疡病的效果很不错的鉄肥哦。 大家知道:氨基酸是植物细胞最容易穿透的小分子有机物,所以,氨基酸螯合的铁也是植物最易吸收的鉄肥。传统上对微量元素铁、锌、锰等元素的补充使用其无机盐形式较多,如硫酸锌、硫酸亚铁,但存在有很大的问题(如硫酸亚铁在自然条件下极易转化为三价铁而失去作用,硫酸锌、极易流失),应用范围较窄、效能低下,不利于作物吸收,而且由于土壤的自身碱性反应和氧化还原反应,使之形成难溶的氢氧化物等,降低其生物学活性,不但起不到补充微量元素的作用,而且还会造成土壤板结,不利于环境保护和农业的可持续发展。 螯合态铁肥由于价位比较高,在农业生产中使用 还不普及,随着市场逐步接受,相信农民朋友会 越来越多的使用这种优质的进口铁肥。 七微药肥微肥,助力天下丰收---烟台七微肥料有 限公司于2004年注册成立,公司座落在美丽的港 口城市烟台,是国家最著名的大型化工进出口基 地。区位优势给公司开展国际货物进出口和技术 合作带来了便利条件。七微公司主营新型农用药 肥微肥及植物精油原料及制剂供应,主要服务国 内农药肥料生产企业。不仅向客户提供成熟先进 的系列产品,同时可以向客户提供最新应用技术 服务。公司将以国际品质和专业服务,补齐中国 农业在施肥用药方面的短板,助力现代农业向更 高品质、更高产量迈进!

药物释放度研究概述

药物释放度研究概述 药物释放度是指药物从缓释制剂、控释制剂、肠溶制剂及透皮贴剂等在规定条件下释放的 速率和程度,是 评价药物制剂质量的内在指标,是制剂质量控制的重要手段。释放度是随着科学技术和生物药剂学的发展而迅速发展起来的一种新的药品检验方法。20世纪70年代确立了溶出度在口服固体制剂中的重要地位,至20世纪80年代,缓释、控释技术发展迅速,释放的概念随之提出。美国药典1985年版(第21版)率先引入释放度检查法,对缓释制剂、肠溶制剂的溶出进行监控,2000年版(第24版)收载释放度检查品种36个。中国药典1995年版引入释放度检查法,2000年版收载释放度检查品种15个,2005年版收载释放度检查品种26个。 1释放度研究的意义 释放度研究的对象一般为半衰期相对较短(2~4h),首过效应明显,治疗剂量范围较窄, 在很广的pH值内较稳定,并经胃肠道充分吸收的药物。将此类药物制成缓、控释制剂,可通过控制释药速率来降低临床不期望的高峰血药浓度,减少“峰谷”现象,避免血药浓度频繁波动起伏或是控制血药浓度在一个较长的时间内维持在有效浓度以上,从而提高药物疗效,提高患者用药的顺应性。与普通制剂相比较,药物治疗作用持久,毒副作用低,用药次数减少,药物缓慢地释放进入体内,血药浓度“峰谷”波动小,能保持在有效浓度范围内以维持疗效。研究药物释放度,在有效控制制剂质量,指导制剂处方筛选和指导制剂制备工艺优化方面有着重要意义。 2体外药物释放度试验 体外药物释放度试验是在模拟体内消化道条件(如温度、介质的pH值、搅拌速率等)下,对制剂进行药物释放速率试验,以监测产品的生产过程与对产品进行质量控制,同时也是筛选缓、控释制剂处方的重要手段。 仪器装置 USP25共收录了7种装置用于释放度测定。装置1(转篮法)、装置2(桨法)、

Hieff TransTM脂质体核酸转染试剂说明书

Hieff Trans TM脂质体核酸转染试剂说明书 产品描述 Hieff Trans TM脂质体核酸转染试剂是一种多用途的脂质体转染试剂,适用于DNA、RNA 和寡核苷酸的转染,对大多数真核细胞具有很高的转染效率。其独特的配方使其可直接加入培养基中,血清的存在不会影响转染效率,这样可以减少去除血清对细胞的损伤。转染后不需要除去核酸-Hieff Trans TM复合物或更换新鲜培养基,也可在4~6小时后除去。 Hieff Trans TM以无菌的液体形式提供。通常情况下对于 24 孔板转染,每次用1.5μl左右,则1ml Hieff Trans TM约可做660次转染;对于6孔板,每次用6μl左右,则1ml Hieff Trans TM约可做160 次转染; 运输与保存方法 冰袋(wet ice)运输。产品4oC保存,一年有效。不可冷冻! 注意事项 1)Hieff Trans TM脂质体核酸转染试剂要求细胞铺板密度较高,以90%-95%为佳,这有助于减少阳离子脂质体细胞毒性造成的影响;如果你研究的基因要求比较长的表达时间,比如细胞周期相关基因,或者细胞表面蛋白,最好选择细胞铺板密度要求较低的转染试剂,不适合用脂质体核酸转染试剂。 2)Hieff Trans TM脂质体核酸转染试剂可用于有血清培养基的转染,并且转染前后不需要换培养基。但是,制备转染复合物时要求用无血清培养基稀释DNA和转染试剂,因为血清会影响复合物的形成。另外,要检测所用的无血清培养基与脂质体核酸转染试剂的相容性,已知CD293, SFMII, VP-SFM 就不相容。 3)转染的时候培养基中不能添加抗生素。 4)使用高纯度的DNA或RNA有助于获得较高的转染效率,质粒中的内毒素是转染的大敌。 5)阳离子脂质体应该在4度保存,要注意避免多次反复长时间开盖,因为可能会导致脂质体氧化而影响转染效率。 6)初次使用应优化DNA浓度和阳离子脂质体试剂量以得到最大的转染效率。DNA 和转染试剂的比例,通常推荐是1:2-1:3,比如24孔板内接种0.5-2×105个细胞,使用0.5 μg DNA 和1-1.5 μl 转染试剂。通过调整DNA/Hieff Trans TM脂质体核酸转染试剂比例优化转染效率,保证细胞密度大于90%,DNA(μg): Hieff Trans TM(μl)比值在1:0.5-1:5。

甘氨酸亚铁综述修订稿

甘氨酸亚铁综述 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

甘氨酸亚铁综述 富瑞甘(Ferrochel)是美国犹他州爱尔宾(Albion)公司独特制备的一种氨基酸螯合铁(双甘氨酸亚铁螯合物)。富瑞甘已获得专利注册,并且具有其他铁及所不具备性质。富瑞甘铁的高度生物利用度,缘于它有足够小的分子,且高度稳定,从而得以完整地通过消化道粘膜。其他方式的铁在被吸收前必须在体内被消化或离解,离子形式的铁引起有害的胃肠道副作用如便秘和急性腹痛。爱尔宾公司取得专利的富瑞甘在胃中不离解。富瑞甘极大的改变了无机铁盐固有的缺点,即利用性差和相对高的毒性。富瑞甘像血红素一样,毒性很低。 富瑞甘具有很高的安全性和良好的生理作用 目的目标人群 预防缺铁性贫血婴儿和青少年 改善学习能力婴儿和青少年 改善体能一般人群 降低儿童死亡率婴儿和青少年 改善妊娠期的健康妇女 一、产品特点 铁20% 颜色黄褐灰绿色 质地细而轻的粉末 密度 颗粒大小不超过60%,325筛孔 灼烧后损失68-73% 总氮8-13% 溶解度40% 含水量不超过7% pH7-9 经临床试验和证明,富瑞甘具有: 优良的生物利用度 优良的生理作用 缓和的作用(对器官系统很舒适,安全性好) 二、生物利用度

富瑞甘的生物利用度明显优于任何其他形式的铁剂。普通铁化合物的生物利用度受各种吸收抑制物的影响,如植酸盐,纤维,鞣酸等等。 富瑞甘超越这些障碍,并保证其完整地被吸收。一项研究证明,即使存在相同的抑制物,富瑞甘的吸收也比硫酸亚铁高倍,富瑞甘的这种优良生物利用度使它成为铁营养添加剂中的第三代新化合物。 三、优良的生理学作用 富瑞甘不仅对矫正机体造血的需要有效,而且对重建机体的铁也有良好效果。此外,它不产生硫酸亚铁通常有的副作用。当铁作为添加剂使用时,生物利用度和耐受性是两个最重要的因素。富瑞甘明显表明在这两方面均优于硫酸亚铁及其他铁营养添加剂。 四、缓和的作用 研究者发现爱尔宾公司氨基酸铁螯合物几乎没有铁剂通常引起的胃肠道的副作用,如便秘和胃部不适。富瑞甘不像其他形式的铁那样会引起膳食的不良相互作用,也没有其他形式的铁特有的药物相互作用的问题,富瑞甘由于与氨基酸螯合,形成一种稳定的无反应性亚铁分子,因此毒性很低。 爱尔宾公司研制的矿物质键合到氨基酸上,形成一个独有的天然化学结构。此结构保证矿物质的吸收,并保护它们不与其他营养素发生有害的相互作用。爱尔宾公司氨基酸螯合的矿物质是独特的,受国际专利保护。 1.氨基酸铁有很高的生物利用度 人体吸收氨基酸很有效,在营养物质消化后通过肠壁的先后次序中,氨基酸排在前面,实际上所有氨基酸的95%被吸收。铁与氨基酸螯合使它在运输过程中以化合物整体形式被带着通过肠壁。 2.制造氨基酸铁的专利技术 市场上有许多产品都自称为是螯合物,其实他们只是矿物质和蛋白质的复合混合物,并不是真正的氨基酸螯合物。这些产品在体内代谢中失去完整性,变成不稳定的化合物,因此导致利用性降低。爱尔宾公司的实验室具有专利工艺技术,能保证产品具有稳定的分子状态和更高的生物利用度。 3.螯合物的优点 只有爱尔宾公司具有开发接近体内发生天然螯合过程的能力,实质上爱尔宾公司有能力将矿物原料转变为小的有机分子,这样使它们具有高的生物利用度,因而更有效。 螯合一词来自希腊字"chele",意思是爪。螯合物天然存在于自然界:植物叶绿素中的镁、维生素B12分子中的钴和血液血红蛋白中的铁,都是矿物质螯合于氨基酸的天然例证。 爱尔宾公司开发的螯合物专利技术将天然的螯合模式复制成可供选用的产品: 无味钙氨基酸螯合物(13%Ca)

实验十五 脂质体的制备.

实验十五脂质体的制备 一、实验目的 1. 掌握注入法制备脂质体的工艺。 2. 掌握脂质体包封率的测定方法。 二、实验原理 60年代初 Banghan 等发现磷脂分散在水中可形成多层囊,并证明每层囊均为双分子脂质膜组成且被水相隔开,称这种具有生物膜结构的囊为脂质体。197l 年Ryman 等人提出将脂质体作为药物载体, 即将酶或药物包囊在脂质体中。近年来脂质体作为药物载体在传递给药系统中的研究有了迅速的发展。 脂质体系一种人工细胞膜, 它具有封闭的球形结构, 可使药物被保护在它的结构中, 发挥定向作用。特别适于作为抗癌药物载体,以改善药物的治疗作用,降低毒副作用等。脂质体系由磷脂为骨架膜材及附加剂组成。用于制备脂质体的磷脂有天然磷脂, 如豆磷脂,卵磷脂等;合成磷脂,如二棕榈酰磷脂酰胆碱,二硬脂酰磷脂酰胆碱等。磷脂在水中能形成脂质体是由其结构决定的。磷脂具有两条较长的疏水烃链和一个亲水基团。当较多的磷脂加至水或水性溶液中, 磷脂分子定向排列, 其亲水基团面向两侧的水相, 疏水的烃链彼此对向缔合形成双分子层, 并进一步形成椭圆形或球状结构——脂质体。常用的附加剂为胆固醇,它也是两亲性物质,与磷脂混合使用,可制备稳定的脂质体,其作用是调节双分子层流动性,减低脂质体膜的通透性。其它附加剂有十八胺,磷脂酸等,这两种附加剂可改变脂质体表面电荷的性质。 脂质体可分为三类:小单室(层脂质体,粒径在 20~50nm,凡经超声波处理的脂质体混悬液, 绝大部分为小单室脂质体; 多室(层脂质休, 粒径约在 400~1000nm; 大单室脂质, 粒径约为 200~1000nm,用乙醚注入法制备的脂质体多属这—类。 脂质体包封率的测定包封率的定义可用下式表示: 包封率% =(W总 - W游离 / W总 x 100

脂质体转染实验原理与操作步骤总

脂质体转染的实验原理与操作步骤大全 日期:2012-06-25 来源:互联网作者:青岚点击:3644次 摘要: 细胞转染的方法主要包括:电穿孔法、显微注射、基因枪、磷酸钙共沉淀法、脂质体转染法、多种阳离子物质介导、病毒介导的转染等,理想的细胞转染方法是具有高转染效率、对细胞的毒性作用小等,本文主要介绍细胞转染常用的方法-脂质体转染的原理和操作步骤等。 找产品,上生物帮>> >> 细胞转染的方法主要包括:电穿孔法、显微注射、基因枪、磷酸钙共沉淀法、脂质体转染法、多种阳离子物质介导、病毒介导的转染等,理想的细胞转染方法是具有高转染效率、对细胞的毒性作用小等,本文主要介绍细胞转染常用的方法-脂质体转染的原理和操作步骤等。 脂质体(lipofectin regeant,LR)试剂是阳离子脂质体N-[1-2,3-Dioleyoxy,Propyl]-n,n,n-Trimethylammonium Chloride(DOTMA)和Dioleoyl photidye-thanolamine(DOPE)的混合物[1:1(w/w)]。它适用于把DNA转染入悬浮或贴壁培养细胞中,是目前条件下最方便的转染方法之一。转染率高,优于磷酸钙法,比它高5~100倍,能把DNA和RNA转染到各种细胞。 用LR进行转染时,首先需优化转染条件,应找出该批LR对转染某一特定细胞适合的用量、作用时间等,对每批LR都要做:第一,先要固定一个DNA的量和DNA/LR混合物与细胞相互作用的时间,DNA可从1~5μg和孵育时间6小时开始,按这两个参数绘出相应LR需用量的曲线,再选用LR和DNA两者最佳的剂量,确定出转染时间(2~24小时)。因LR对细胞有一定的毒性,转染时间以不超过24小时为宜。 细胞种类:COS-7、BHK、NIH3T3、Hela和Jurkat等任何一种细胞均可作为受体细胞。 一、脂质体(liposome)转染方法原理 脂质体(liposome)转染方法原理:脂质体((Iiposome)作为体内和体外输送载体的工具,已经研究的十分广泛,用合成的阳离子脂类包裹DNA,同样可以通过融合而进人细胞。使用脂质体将DNA带人不同类型的真核细胞,与其它方法相比,有较高的效率和较好的重复性。 中性脂质体是利用脂质膜包裹DNA,借助脂质膜将DNA导入细胞膜内。带正电的阳离子脂质体,DNA并没有预先包埋在脂质体中,而是带负电的DNA自动结合到带正电的脂质体上,形成DNA-阳离子脂质体复合物,从而吸附到带负电的细胞膜表面,经过内吞被导入细胞。 二、脂质体转染操作步骤 1、操作步骤[方法一]:

脂质体转染实验原理与操作步骤总(精)

脂质体转染的实验原理与操作步骤大全 日期:2012-06-25 来源:互联网作者:青岚点击:3644次 摘要: 细胞转染的方法主要包括:电穿孔法、显微注射、基因枪、磷酸钙共沉淀法、脂质体转染法、多种阳离子物质介导、病毒介导的转染等, 理想的细胞转染方法是具有高转染效率、对细胞的毒性作用小等, 本文主要介绍细胞转染常用的方法 -脂质体转染的原理和操作步骤等。 找产品,上生物帮 >> >> 细胞转染的方法主要包括:电穿孔法、显微注射、基因枪、磷酸钙共沉淀法、脂质体转染法、多种阳离子物质介导、病毒介导的转染等, 理想的细胞转染方法是具有高转染效率、对细胞的毒性作用小等,本文主要介绍细胞转染常用的方法 -脂质体转染的原理和操作步骤等。 脂质体 (lipofectin regeant, LR 试剂是阳离子脂质体 N-[1-2, 3-Dioleyoxy , Propyl]-n, n , n-Trimethylammonium Chloride(DOTMA和 Dioleoyl photidye-thanolamine(DOPE的混合物 [1:1(w/w]。它适用于把 DNA 转染入悬浮或贴壁培养细胞中 ,是目前条件下最方便的转染方法之一。转染率高,优于磷酸钙法,比它高 5~100倍,能把 DNA 和 RNA 转染到各种细胞。 用 LR 进行转染时, 首先需优化转染条件, 应找出该批 LR 对转染某一特定细胞适合的用量、作用时间等,对每批 LR 都要做:第一,先要固定一个 DNA 的量和DNA/LR混合物与细胞相互作用的时间, DNA 可从1~5μg和孵育时间 6小时开始,按这两个参数绘出相应 LR 需用量的曲线,再选用 LR 和 DNA 两者最佳的剂量,确定出转染时间 (2~24小时。因 LR 对细胞有一定的毒性,转染时间以不超过 24小时为宜。

相关文档
最新文档