锁相放大器实验简介

锁相放大器实验简介
锁相放大器实验简介

.::锁相放大器实验简介::.

在物理学的许多测量中,常常遇到极微弱信号。通常的方法是采用选频放大技术心频率与待测信号频率相同,从非线性器件直接产生的或外部引入的(干扰等)众多出有用分量,滤除其它无用分量。但此方法存在中心频率不稳定、带宽不能太窄及对力等缺点。

锁相放大器(Lock-in amplifier,LIA)自问世以来,在微弱信号检测方面显示出能够在较强的噪声中提取信号,使测量精度大大提高,在科学研究的各个领域得到了用待测信号和参考信号的互相关检测原理实现对信号的窄带化处理,能有效地抑制噪的检测和跟踪[10]。因此,学生掌握锁相放大技术的原理与应用具有重要的意义。

锁相放大器的基本结构如图所示,包括信号通道、参考通道、相敏检测器(PS (LPF)等。

信号通道对调制正弦信号输入进行交流放大,将微弱信号放大到足以推动相敏检并且要滤除部分干扰和噪声,以提高相敏检测的动态范围。

参考通道对参考输入进行放大和衰减,以适应相敏检测器对幅度的要求。参考功能是对参考输入进行移相处理,以使各种不同的相移信号的检测结果达到最佳。

锁相放大器的核心部件是PSD,它以参考信号r(t)为基准,对有用信号x(t)进实现频谱迁移过程。将x(t)的频谱由ω=ω0处,再经LPF滤除噪声,输出直流信号入信号幅度及它们的相位有关。其输出u0(t)对x(t)的幅度和相位都敏感,这样就达相的目的。因为LPF的频带可以做得很窄,所以可使锁相放大器达到较大的SNIR。相敏检测器的输出波形:

不同相位时相敏检测器的波形

当两输入信号的振幅一定时,相敏检波器的输出与输入信号的相位差的余弦成检波后输出最大;而反相时为负最大;相差900或2700时为零。相敏检波器的原理比是输入信号与参考信号的乘积。

出信号

式中:

为被测信号频率;为随机噪声频率。通过PSD后,输出

加低通滤波器,其输出

若大于低通滤波器截止带宽,后一项不通过低通滤波器输出;反之输出。

实际电路中,常采用

的方波作参考信号,设,则参考信号的傅立叶

式中为方波的基波频率。

若信号为:,则

经LPF的滤波作用,n>1的差频项及所有的和频项均被滤除,只剩下n=1的差频项最终将输出信号作为积分时间无限长的积分器的输入,完成互相关函数的求解。

.::锁相放大器仿真实验::.

使用说明:

1.首先阅读实验内容和步骤,熟悉实验过程。

2.阅读之后需下载实验程序,在本地机上完成仿真实验。

实验程序下载

虚拟锁相放大器用户界面:

实验内容和步骤:

实验一:相敏检波器输出波形观察及锁相放大器输出电压测量

调节正弦信号发生器,使输出频率(Frequency)在1KHz左右、振幅(Amplitude)在100mV左右Amplification Ratio)为10x,直流放大倍数(DC Amplification Ratio)为1x,低通滤波器的时间Timing Const.)为1S。调节宽带相移器的相移量观察相敏检波器的输出波形,测量结果请填写在

由分析可知,测量结果与理论值相符合。

实验二:相关器谐波响应的测量与观察

将宽带相移器输入信号置n分频,使得相关器的输入信号的频率是参考信号的n倍。

测量结果请填写在图2中。

通过观察判断实际与理论结果——奇次谐波输出的直流响应电压为基波的直流响应电压的1/流响应电压为0——相一致。

实验三:锁相放大器抑制噪声的能力

调节交流放大倍数为10x,直流放大倍数为10x,时间常数为1S;设置正弦信号发生器的频率为参考信号的相移量为0度;设置噪声发生器的输出幅值为0mV,即不叠加噪声。测量此时锁相放大选择噪声发生器的输出波形类型为高斯白噪声(Gauss White Noise),设置幅值为100mV。此时输

①当时间常数为0.1S时,测量输出电压及计算此时的信噪改善比。

②当时间常数为1S时,测量输出电压及计算此时的信噪改善比。

③当时间常数为10S时,测量输出电压及计算此时的信噪改善比。

由测量结果可知,随着积分常数的增加,输出信噪比不断地提高

实验四锁相放大器抑制噪声的能力

调节交流放大倍数为10x,时间常数为1S;设置信号发生器输出的正弦波频率1V,相位调节为00;设置噪声发生器的输出幅值为0mV,即不叠加噪声。此时锁相流输出电压为6.29V。

选择噪声发生器的输出波形类型为高斯白噪声(Gauss White Noise),设置幅值为

噪比为:

①当时间常数设置为0.1S时,输出直流电压为6.3V,输出噪声幅度为0.2V,根据

,此时信噪改善比为31。

②当时间常数设置为1S时,输出直流电压为6.36V,输出噪声幅度为0.06V,,此106。

③当时间常数设置为10S时,输出直流电压为6.36V,输出噪声幅度为0.04V,此159。

由上述测量结果讨论可知,随着积分常数的增加,锁相放大器的输出信噪比不断.::锁相放大器使用实验::.

实验用户界面:

实验框图:

锁相放大器使用远程实验系统结构方框图

实验原理:

锁相放大器使用远程实验系统结构如图所示。实验采用实验室自制的信号发生器产生正弦信号和噪声的叠加信号,由音频信号线的左声道采集;一路产生同步触发信衰减电路后,产生1V的同步参考方波,由音频信号线的右声道采集。两路信号经过

过线路输入插孔送入实验机,并经网络反馈给客户机,送入虚拟锁相放大器。由虚拟移相、相乘、积分等功能,最后输出与被测信号有关的直流信号。与传统实验相比,机和一台信号发生器即可进行实验。在此基础上,结合网络技术和仪器控制技术,实

实验内容和步骤:

实验电路用的信号发生器的输出信号类型调为正弦波,考虑到声卡采集信号的0.4V。噪声输出幅度也调为0.4V左右,同步触发信号经衰减后输出幅度为1V左右。

学生在客户机上通过调节虚拟锁相放大器面板中的相位调节、交流放大倍数、积数,从而完成锁相放大器对混有噪声信号的测量实验。通过虚拟面板观察各个工作过件实现了移相、相敏检测、积分等功能,输出与被测信号有关的直流输出电压,得到完成实验。由前面锁相放大器原理的介绍可知,为测得正确的直流输出电压,相位调或1800。

当相位调节为1800,交流放大倍数为10倍时,输出直流电压为-2.6V,由测量结结果与理论值相一致。

进行实验

.::热敏电阻温度特性曲线测量实验::.

实验用户界面:

实验硬件装置图:

实验硬件内部电路图:

温度特性测量原理:

温度变化不是很大时,热敏电阻的阻值随温度的变化不明显,一般的测量方法(不容易精确。本测量方法采用电桥来提取阻值变化引起的电压变化信号,这一电压信环境噪声对它的测量结果影响较大,而采用锁相放大器来测量则可以提高测量的精度示:

测量热敏电阻温度特性曲线电路图

信号发生器作为交流信号源,产生1000Hz标准的正弦波信号,正弦波信号经阻参考信号直接送锁相放大器,另一路接入电桥测量电路的AB两端,R1和R3均为1KΩ

为10Ω左右的电阻,R T为待测的热敏电阻,阻值为几欧姆到十几欧姆。

由于电桥A、B两端的信号电压V A B值为固定,当热敏电阻R T所测的温度改变时,两点的电压的变化,而C、D两点的电压V C D就是锁相放大器被测信号的输入电压。根工作原理,在参考信号不变的情况下,锁相放大器的输出电压V O与V C D有线性关系。压与电流的关系,可以求出电压V C D与电阻R T的关系如下:

V

C D =V

A B

[R

T

/(R

T

+ R

3

)·R

2

·(R

1

+ R

2

)]

由于R3远大于R T,所以上式可以近似写为:V C D=aR T+b

因此V0正比于aR T+b(a,b为常数)。

这样,通过测得锁相放大器的输出电压V0随温度变化的特性,就可以求出热敏电度变化的特性。

实验方框图:

实验线路连接图

实验线路连接图如图所示。整个系统由真实信号发生器提供信号源。信号发生器一路其输出直接连接至音频输入电缆的右声道;另一路输出的正弦信号即作为桥式电路的两端之间的电压差输出连接至音频输入电缆的左声道。通过声卡模数转换后输入到计相放大器。

计算机通过串口向单片机发送指令,控制加热电路给热敏电阻加热。热敏电阻温度传感器DS18B20测量,该温度值读入到单片机中,通过串口发送到计算机。

实验内容和步骤:

学生实验过程如下:

(1)运行客户端程序,点击加热按钮,接通加热电源,继电器闭和,水泥电阻热。此时,在虚拟面板上可以观察到温度计的显示开始慢慢上升,桥式电

开始慢慢加大。

(2)调节虚拟锁相放大器面板上的相位调节、交流放大等参数,得到适合的输板上观察。为测得正确的直流输出电压,相位调节必须设置为00或1800。

的读数即是测量得到的被测信号对应的直流电压输出。

(3)虚拟面板上的温度计显示的是当前热敏电阻的温度值,大约每隔50C记录一同时,记录下相应的直流电压的输出值。

(4)当温度值显示到80℃左右时,再次点击加热按钮,关闭加热电源,继电器闭止加热。此时,在虚拟面板上可以观察到温度值和输出电压值开始下降。

示:

温度电压测量结果表

(5)根据测量结果,绘制热敏电阻电压-温度曲线图,如图4-9所示。从曲线可线呈指数关系,由前面分析可知,也即热敏电阻阻值-温度呈指数关系。利的结果符合实际实验结果。

热敏电阻电压-温度曲线图

进行实验

.::使用说明::.

1、如果是第一次做远程控制锁相控制实验,请首先击本网页左侧的导航栏的“插件下载”,下载

2、剩余时间:每次实验限定时间为30分钟,30分钟后,连接自动断开,此数字窗口显示剩余时间时间内完成实验。

.::常见问题FAQ::.

1、请问我为什么不能运行下载的客户端程序?

请首先下载插件(在左侧导航栏下方)。

2、我在操作的时候发现按下按钮一段时间后相应的参数才发生变化,为什么?

这种情况是由于网络数据传输延时引起的,请选择网速较快网络(最好在教育网或校园网络内3、为什么我总调不出所需要的波形信号?

请详细阅读使用说明和实验内容和步骤。

https://www.360docs.net/doc/3f1407246.html,/dislab/res/

锁相放大器技术详解

https://www.360docs.net/doc/3f1407246.html,/st1272/article_22104.html 锁相放大器采用在无线电电路中已经非常成熟的外差式振荡技术,把被测量的信号通过频率变换的方式转变成为直流。 在外差式振荡技术中被称为本地振荡(Local Oscillation)的、用于做乘法运算的信号,在锁相放大器中被称为参照信号,是从外面输入的。锁相放大器能够(从被测量信号中)检测出与这个参照信号频率相同的分量。在被测量的信号里所包含的各种信号分量中,只有与参照信号频率相同的那个分量才会被转换成为直流,因而才能够通过低通滤波器(LPF)。其他频率的分量因为被转换成为频率不等于零的交流信号,所以被低通滤波器(LPF)滤除。在频率域中,如下图所示。 锁相放大器对于噪声的抑制能力,是由上图中低通滤波器(LPF)的截止频率来确定的。例如,在测量10kHz的信号时,如果使用1mHz的低通滤波器(LPF),那么就等效于在使用10kHz±1mHz的带通滤波器时的噪声抑制能力。如果换算成为Q值,就相当于5×106。要想真正制造这样高的Q值的带通滤波器,那是不可能的。但是,使用锁相放大器,这就很容易实现了。 如同前面所解说的那样,在使用通频带非常狭窄的带通滤波器(BPF)时,如果其中心频率与被测量信号的频率有所偏离,那么就会产生测量误差,最糟糕的情况下可能会把被测量信号也滤除了。 与这种情况相比较,对于锁相放大器来说,即使低通滤波器的截止频率多少有些偏离,只要还能够让直流通过,那么对测量结果也不会有大的影响。与带通滤波器相比较,锁相放大器更容易实现通频带非常狭窄的低通滤波器,不管通频带多么狭窄都能实现。由此可见,锁相放大器具有强大的能力从噪声中检测出被掩埋的信号。 那么,实际的锁相放大器又是什么样的呢? ■使用PSD(相敏检波器)作为乘法器。

锁相放大器的原理实验报告

锁相放大器的原理实验报告 摘要:随着科学技术的发展,微弱信号的检测越来越重要。微弱信号检测是利用电子学、信息论、物理学和电子计算机的综合技术。它是在认识噪声与信号的物理特性和相关性的基础上,把被噪声淹没的有用信号提取出来的一门新兴技术学科。锁相放大器就是检测淹没在噪声中微弱信号的仪器。它可用于测量交流信号的幅度和位相,有极强的抑制干扰和噪声的能力,极高的灵敏度,可检测毫微伏量级的微弱信号。锁相放大器可以理解为用噪声频带压缩的方法,将微弱信号从噪声中提取出来。本实验通过测量锁相放大器的工作参数和特性,掌握相关检测原理以及锁相放大器的正确使用方法。 关键词:锁相放大器;微弱信号放大;PSD输出波形;谐波响应 一、引言 随着科学技术的发展,科学研究领域向宏观和微观不断深入,常常需要检测极微弱的信号,如物理学中的表面物理特性,光学中的拉曼光谱、光声光谱、脉冲瞬态光谱,生物学中的细胞发光特性、生物电的测量等。在这些测量过程中,待测的微弱信号常常淹没在强大的背景噪声之中,使用常规的检测手段就无法达到目的。而且随着科学的发展,对实验数据的可靠性、准确性、精确性的要求也越来越高,因此,微弱信号的检测就越来越重要,自60年代初开始,关于信号检测与处理的技术开始产生并迅速发展,现已逐渐形成一专门的边缘科学,在物理、化学、生物、天文、地质、医学、材料等学科领域得到广泛应用。 锁相放大器(Lock-In Amplifier,简写为LIA)就是检测淹没在噪声中微弱信号的仪器。它可用于测量交流信号的幅度和位相,有极强的抑制干扰和噪声的能力,极高的灵敏度,可检测毫微伏量级的微弱信号,能测量到输入信噪比低至10-5的微弱正弦量。自1962年第一台锁相放大器商品问世以来,锁相放大器有了迅速发展,性能指标有了很大提高,现已被广泛应用于科学技术的很多领域。目前全世界已有多个厂家生产该仪器 本实验使用由南京微弱信号检测中心研制的微弱信号综合实验仪来介绍锁相放大器的基本工作原理与使用方法,通过本实验可以了解锁相放大器的基本特点和应用方向。 二、实验 (一)实验原理 锁相放大器就是检测淹没在噪声中微弱信号的仪器。它可用于测量交流信号的幅度和位相,有极强的抑制干扰和噪声的能力,极高的灵敏度。

锁相放大器原理

如何测量被噪声埋没了的信号? 在测量各种物理量(温度、加速度等)时,用传感器将其变换成为电信号,然后输入到分析仪器(测量仪器)中去。但是,仅想获得必要的信号是很难做到的。通常是连不必要的信号(也就是噪声)也一起被测量了。在各种情况下,噪声都有可能混进来。 噪声并不仅限于电信号,也有包含在被测量的物理量中的情况。另外,根据不同场合,也出现噪声强度远远高出所需要的目的信号电平的情况。想要测量的信号越微弱,那么噪声就相对地越大。 在这里,让我们来看一下用交流电压表来测量不同电平的1kHz 的正弦波信号的结果。 在信号上叠加了0.1Vmrs 的白噪声。“毫伏计”是一般的交流电压表,“锁相放大器”是一种专门测量微小信号的(特殊的)交流电压表。 信号电平 (正弦波信号) 波 形 (叠加了噪声的波形) 毫伏计的 测量结果 锁相放大器的 测量结果 1Vrms 1Vrms 0.999Vrms 100mVrms 140mVrms 99mVrms

1mVrms 105mVrms 1.01mVrms 0.1mVrms 105mVrms 0.107mVrms 毫伏计也同时测量噪声。即使用数字万用表(DMM )来测量,也会得到与毫伏计相同的测量结果。 但锁相放大器,能在比目的信号(1kHz 正弦波)强1000倍的噪声中把目的信号几乎准确无误地检测出来。 在测量埋没在噪声中的信号时,使用锁相放大器最为合适。 为什么锁相放大器具有那么强的抗噪声能力? 锁相放大器不容易受到噪声影响的原因,是因为很好地利用了噪声(白噪声)与目的信号(正弦波)之间在性质上的差别。 在这里,我们一方面整理白噪声的性质和正弦波的性质,一方面解说为什么锁相放大器会具有很强的噪声抑制能力。 噪声的性质 ■平坦的频谱 在宽阔的频率范围内,该信号具有几乎相同的频谱。信号的瞬时电平成为预测不到的随机的值。

锁相放大器设计

C题:锁定放大器的设计 摘要:本设计对于检测微弱信号的锁存放大器进行论述,锁定放大器主要包括交流放大器、带通滤波器、相敏检波器、低通滤波器、直流放大器及液晶显示等几个部分。其中,交流放大器以INA128为主要构成部件,实现交流信号的放大从而作为带通滤波器的输入;带通滤波器用UAF42构成,实现对900Hz到1100Hz频带范围的滤波过程,其误差小于20%;相敏检波器的主要部件采用乘法器MPY634,得到的信号在输入低通滤波器经直流放大器放大后输入显示电路,显示出被测信号的幅度及有效值。另外,在相敏检波器部分的方波驱动信号由参考信道的参考信号经触发整形、移相、比较而来。同时,为了更好的检测出锁定放大器的性能,在信号的输入端增加加法器电路,实现被测信号与干扰信号的1:1叠加,当干扰信号的频率为1050Hz—2100Hz时,输出端的测量误差小于10%。锁定放大器在实际应用中用途广泛,尤其对于微弱信号检测方向站着主导地位,随着科技的发展已渐渐的融入人类的生活之中,拥有很好的发展前景。 关键词:带通滤波器;相敏检波器;显示;方波驱动

1 总体方案设计 1.1方案比较与选择 1.1.1微弱信号检测模块方案比较 方案一:采用滤波电路检测微弱信号,通过滤波电路将微弱信号从强噪声中检测出来,但滤波电路中心频率是固定的,而信号的频率是可变的,无法达到要求,由此可见该方案不满足要求。 方案二:采用取样积分电路检测小信号,采用取样技术,在重复信号出现的期间取样,并重复N次,则测量结果的信噪比可改善√N倍,但这种方法取样效率低,不利于重复频率的信号恢复。 方案三:采用锁相放大器检测小信号,锁相放大器由信号通道、参考通道和相敏检波器等组成,其中相敏检波器(PSD)是锁相放大器的核心,PSD把从信号通道输出的被测交流信号进行相敏检波转换成直流,只有当同频同相时,输出电流最大,具有良好的检波特性。由于该被测信号的频率是指定的且噪声强、信号弱,正好适用于锁相放大器的工作情况,故选择方案三。 1.1.2移相网络模块方案比较 方案一:数字法:采用数字相移的方法势必增加电路的难度,所以此法不可取。 方案二:模拟法:由于电路用的是锁相放大,所以要保持输入信号相位的一致,故需要对参考信号做移相处理,移相采用简单的RC电路搭成,可以很容易得到所需效果。所以采用方案二。 1.1.3电阻分压模块方案比较 电阻分压网络有串联分压和π型网络,π型网络的性能较好,适合在高频的条件下工作,而本设计要求的电压范围较小,故采用简单电路串联来作为分压网络就可以达到要求。 1.1.4显示模块方案 方案一:采用数码管显示。数码管只能显示简单的数字,其电路复杂,占用资源较多,显示信息少,不宜显示大量信息。 方案二:采用液晶显示。液晶显示增加了显示信息的可读性,看起来更方便。而QC12864B字符点阵液晶模块有明显的优点:微功耗、尺寸小、显示信息量大、显示清晰、易控制,抗干扰能力强。

锁相放大器实验简介

.::锁相放大器实验简介::. 在物理学的许多测量中,常常遇到极微弱信号。通常的方法是采用选频放大技术心频率与待测信号频率相同,从非线性器件直接产生的或外部引入的(干扰等)众多出有用分量,滤除其它无用分量。但此方法存在中心频率不稳定、带宽不能太窄及对力等缺点。 锁相放大器(Lock-in amplifier,LIA)自问世以来,在微弱信号检测方面显示出能够在较强的噪声中提取信号,使测量精度大大提高,在科学研究的各个领域得到了用待测信号和参考信号的互相关检测原理实现对信号的窄带化处理,能有效地抑制噪的检测和跟踪[10]。因此,学生掌握锁相放大技术的原理与应用具有重要的意义。 锁相放大器的基本结构如图所示,包括信号通道、参考通道、相敏检测器(PS (LPF)等。 信号通道对调制正弦信号输入进行交流放大,将微弱信号放大到足以推动相敏检并且要滤除部分干扰和噪声,以提高相敏检测的动态范围。 参考通道对参考输入进行放大和衰减,以适应相敏检测器对幅度的要求。参考功能是对参考输入进行移相处理,以使各种不同的相移信号的检测结果达到最佳。 锁相放大器的核心部件是PSD,它以参考信号r(t)为基准,对有用信号x(t)进实现频谱迁移过程。将x(t)的频谱由ω=ω0处,再经LPF滤除噪声,输出直流信号入信号幅度及它们的相位有关。其输出u0(t)对x(t)的幅度和相位都敏感,这样就达相的目的。因为LPF的频带可以做得很窄,所以可使锁相放大器达到较大的SNIR。相敏检测器的输出波形:

不同相位时相敏检测器的波形 当两输入信号的振幅一定时,相敏检波器的输出与输入信号的相位差的余弦成检波后输出最大;而反相时为负最大;相差900或2700时为零。相敏检波器的原理比是输入信号与参考信号的乘积。 出信号 式中: 为被测信号频率;为随机噪声频率。通过PSD后,输出 加低通滤波器,其输出 若大于低通滤波器截止带宽,后一项不通过低通滤波器输出;反之输出。

最新专科模板-简易锁相放大器设计-终稿

专科模板-简易锁相放大器设计-终稿

电子科技大学 毕业论文简易锁相放大器设计 指导教师:张萍职称:讲师 学生姓名:文国江专业: 电子信息工程班级:英特尔班学号:V08024843152 2010年 06 月 01 日 电子科技大学成教院制

目录 第一章选题背景 1.1 背景说明 (3) 1.2 选题依据 (3) 1.3 本文工作 (4) 第二章锁相放大器的原理 (5) 第三章研究与分析 (8) 3.1 参考信号产生的方法比较与选择 (8) 3.2 前端放大器的设计 (8) 3.3 移相方法比较与选择 (8) 3.4 相敏检波器的方法比较与选择 (8) 第四章系统设计 (10) 4.1 总体设计 (10) 4.2 硬件设计 (11) 4.2.1 前置放大器的设计 (11) 4.2.2 移相电路的设计 (12) 4.2.3 相敏检波的设计 (13) 4.2.4 低通滤波器的设计 (14) 4.3 软件设计 (15) 第五章系统测试 (16) 第六章附录 (18) 总结 (26) 致谢 (27) 参考文献 (28)

第一章选题背景 1.1背景说明 1962年美国 EG&G PARC(SIGNAL RECOVERY公司的前身 )的第一台锁相放大器 (Lock-in Amplifier,简称 LIA)的发明,使微弱信号检测技术得到标志性的突破,极大地推动了基础科学和工程技术的发展。目前,微弱信号检测技术和仪器的不断进步,已经在很多科学和技术领域中得到广泛的应用,未来科学研究不仅对微弱信号检测技术提出更高的要求,同时新的科学技术发展反过来促进了微弱信号检测新原理和新方法的诞生。 早期的 LIA是由模拟电路实现的,随着数字技术的发展,出现了模拟与数字混合的 LIA,这种LIA只是在信号输入通道,参考信号通道和输出通道采用了数字滤波器来抑制噪声,或者在模拟锁相放大器(简称 ALIA)的基础上多了一些模数转换( ADC)、数模转换( DAC)和各种通用数字接口功能,可以实现由计算机控制、监视和显示等辅助功能,但其核心相敏检波器 (PSD)或解调器仍是采用模拟电子技术实现的,本质上也是 ALIA。直到相敏检波器或解调器用数字信号处理的方式实现后,就出现了数字锁相放大器(简称 DLIA),DLIA 比 ALIA有许多突出的优点而倍受青睐,成为现在微弱信号检测研究的热点,但是在一些特殊的场合中, ALIA仍然发挥着 DLIA不可替代的作用。 1.2选题依据 微弱信号检测技术是一门新兴的技术科学,它运用近年来迅速发展起来的电子学、信息论和物理学方法,分析噪声产生的原因和规律,研究被测信号和噪声的统计特性及其差别,采用一系列的信号处理方法,达到检测被背景噪声覆盖的微弱信号。运用微弱信号检测技术可以测量到传统观念认为不能测量的微弱信号,如弱光、小位移、微震动、微温差、小电容、弱磁、弱声、微电导、微电流等,使微弱信号测量精度得到很大的提高。 “微弱信号"不仅意味着信号的幅度小,而且主要指的是被噪声淹没的信号,“微弱”是相对于噪声而言的。为了检测被噪声覆盖的微弱信号,人们进行了长期的研究工作,分析噪声产生的原因与规律,研究被测信号的特点、相关性及噪声的统计特性,以寻造出从背景噪声中检测出有用信号的方法。微弱信号检测技术大量应用在光谱学、物理、化学、天文、光通讯、雷达、声纳、以及生物医学工程领域。目前的微弱信号检测的方法有窄带滤波、取样积分、

锁相放大器实验报告

锁相放大器实验报告 摘要:本实验利用锁相放大器对信号中的噪声进行抑制并对其进行检测,了解相关检测原理,锁相放大器的基本组成;掌握锁相放大器的正确使用方法及在检波上的应用。通过实验学会锁相放大器的使用,掌握利用锁相放大器来观察信号输入信号通道前后的幅值以及波形情况,获得相位与电压、放大倍数与电压的关系,并且通过噪声的观察知道如何消除噪声。 关键词:锁相放大器,微弱信号放大,PSD 输出波形,谐波响应 引言:随着科学技术的发展,微弱信号的检测越来越重要。微弱信号检测是利用电子学、信息论、物理学和电子计算机的综合技术。它是在认识噪声与信号的物理特性和相关性的基础上,把被噪声淹没的有用信号提取出来的一门新兴技术学科。锁相放大器就是检测淹没在噪声中微弱信号的仪器。它可用于测量交流信号的幅度和位相,有极强的抑制干扰和噪声的能力,极高的灵敏度,可检测毫微伏量级的微弱信号。锁相放大器可以理解为用噪声频带压缩的。方法,将微弱信号从噪声中提取出来。自1962年第一台锁相放大器商品问世以来,锁相放大器有了迅速发展,性能指标有了很大提高,现已被广泛应用于科学技术的很多领域。 一、实验原理: 1、 噪声 在物理学的许多测量中,常常遇到极微弱的信号。这类信号检测的最终极限将取决于测量设备的噪声,这里所说的噪声是指干扰被测信号的随机涨落的电压或电流。噪声的来源非常广泛复杂,有的来自测量时的周围环境,如50Hz 市电的干扰,空间的各种电磁波,有的存在于测量仪器内部。在电子设备中主要有三类噪声:热噪声、散粒噪声和1/f 噪声,这些噪声都是由元器件内部电子运动的涨落现象引起的。从理论上讲涨落现象永远存在,因此只能设法减少这些噪声,而不能完全消除。 2、相干检测及相敏检波器 微弱信号检测的基础是被测信号在时间上具有前后相关性的特点。相关反映了两个函数有一定的关系,如果两个函数的乘积对时间的积分不为零,则表明这两个函数相关。相关按概念分为自相关和互相关,微弱信号检测中一般都采用抗干扰能力强的互相关检测。设信号f 1(t )为被检信号V s (t )和噪声V n (t )的叠加,f 2(t )为与被检信号同步的参考信号V r (t ),二者的相关函数为: 由于噪声V n (τ)和参考信号V r (τ)不相关,故R nr (τ)=0,所以R 12(τ)=R sr (τ)。锁相放大器通过直接实现计算相关函数来实现从噪声中检测到被淹没信号。 锁相放大器的核心部分是相敏检波器(phase —sensitive detector,简称PSD),也有称它为混频器(mixer)的,它实际上是一个乘法器。加在信号输入端的信号经滤波器和调谐放大器后加到PSD 的一个输入端。在参考输入端加一个与被测信号频率相同的正弦(或方波)信号,经触发整形和移相变成方波信号,加到PSD 的另一个输入端。 若加在PSD 上的被测信号为u i ,加在PSD 上的方波参考信号u r 幅度为1,若用傅里叶级数展开,则方波的表达式为 ()[]∑∞=++=0r r 12sin 1 21π4n t n n u ω, (n =0,1,2)。 (1) 于是PSD 的输出信号为 从式(2)可以看出,输出信号oPSD u 包含有下列各种频率分量:

TDS用锁相放大器电路设计

研究与设计 电 子 测 量 技 术 ELECTRONIC MEASUREMENT T ECHNOLOGY第35卷第4期2012年4月  TDS用锁相放大器电路设计 蒋 鹏 赵国忠 (首都师范大学物理系THz实验室 北京 100048 )摘 要:小型或微型锁相放大器(lock-in amplifier)目前市场罕有,小型THz时域光谱仪(TDS)需要此种仪器。提出了一种LIA设计方案,用于TDS提取与THz波电场强度相关的信号。将差分探测器的信号进行预滤波和放大,后接带通滤波器,同时斩波器输出的信号经移相与前者分别送入AD630的信号端和同步端。锁相后信号经低通滤波器,送入ADC。ADC采集的数据送至上位机进行二滤波处理。整个LIA系统放大微弱信号1 000倍左右,信噪比700dB以上,电路板面积11cm×5.5cm, 达到基本指标。关键词:锁相放大器;AD630;太赫兹探测;互相关;Multisim中图分类号:TN911 文献标识码:A Design of lock-in amp lifier circuit for TDSJiang  Peng Zhao Guozhong(THz Lab,Department of Physics,Capital Normal University,Beijing  100048)Abstract:A small or miniature lock-in amplifier(LIA)is rare on market,which is used for small Terahertz time domainsp ectrometer(TDS).LIA scheme design is proposed,and it is used for TDS to extract weak signal,which is related toTHz wave field strength.The signal of differential detector is to be pre-filted and amplificated,then it is connected withband-pass filter.While together with the signal from chopper are put into the AD630 s output terminals andsynchronization port respectively.The signal after lock-in amp lifier is put into low-pass filter then to ADC.Then it isp ut into host computer for filtering.The signal after system has 1000times amplification,more than 700db SNR,andsy stem size is 11cmx5.5cm,which meet the basic indicators.Key words:lock-in amplifier;AD630;THz detector;correlation;Multisim 本文于2 012年3月收到。0 引 言 作为一种精密的测试仪器 [1] ,锁相放大器被广泛的用 在科研领域,尤其是在检测微弱小信号方面。但灵活小巧,轻便的小型或微型锁相放大器市场少有,而一些便携式光谱仪则需要用到小型锁相放大器。在THz时域光谱仪(TDS)[2 ],尤其是小型TDS系统里,更需要小型或者微型锁相放大器。太赫兹时域光谱仪已经在各种材料的检测领域应用广泛, 例如爆炸物或者毒品的检测。但是国内目前在小型TDS系统的发展上出现一些瓶颈,系统中需要有小型锁相放大器。 1 原 理 锁相放大器是基于互相关检测原理(见图1)来实现从大背景噪声中提取微弱的有用信号。当输入信号与参考信号频率完全一致的信号在乘法器的输出端得到直流偏量, 其他信号在输出端都是交流信号,要是在乘法器后加一个低通滤波器, 滤除交流分量,那么剩下的直流分量,而这个直流分量只是正比于输入信号中的特定频率的信号分量的幅值。 图1 互相关检测原理 2 实施方案 为实现低成本小体积的锁相放大器,采集太赫兹时域光谱仪中的差分探头产生的信号。通过核心器件AD630 (平衡调制解调器)做锁相放大,以提取被噪声淹没的微弱

锁相放大器综述

题目: 锁相放大器的原理及应用 姓名: 单位: 学号: 联系方式:

摘要 锁相放大器又称锁定放大器是对正弦信号(含具有窄带特点的调幅信号)进行相敏检波的放大器,它实际上是一个模拟的傅立叶变换器,在强噪声下,利用有用信号的频率值准确测出有用信号的幅值。应用在科学研究的各个领域中:如通讯、工业、国防、生物、海洋等。本文主要介绍了锁相放大器原理,发展过程,基本组成,重要参数和在各方面的应用。 关键词:锁相放大器,噪声,傅立叶变换

一、锁相放大器的定义 锁相放大器是一种对交变信号进行相敏检波的放大器。它利用和被测信号有相同频率和相位关系的参考信号作为比较基准,只对被测信号本身和那些与参考信号同频(或者倍频)、同相的噪声分量有响应。因此,能大幅度抑制无用噪声,改善检测信噪比。此外,锁相放大器有很高的检测灵敏度,信号处理比较简单,是弱光信号检测的一种有效方法。锁相放大器又称锁定放大器是对正弦信号(含具有窄带特点的调幅信号)进行相敏检波的放大器,它实际上是一个模拟的傅立叶变换器,在强噪声下,利用有用信号的频率值准确测出有用信号的幅值。应用在科学研究的各个领域中:如通讯、工业、国防、生物、海洋等。 二、锁相放大器的历史 上世纪六十年代美国公司研制出第一台利用模拟电路实现微弱正弦信号测量的锁相放大器,使微弱信号检测技术突破性飞越,为解决大量电子测量做出贡献,在物质表面组份分析以及表面电子能态研宄方面有重大意义。自上世纪后期开始,国内外越来越多的人开始研宄锁相放大器,随着科技的发展,越来越多性能优良的锁相放大器被研发出来,在各个领域应用广泛,极大程度上推动了各个学科的发展,目前,从提高系统的灵敏度、减小噪声带宽、提高检测精度、改善信噪比上都有了很大的进步。近年来,数字电子技术飞速发展,锁相放大器也在这一契机下,出现了模数混合的锁相放大器与数字锁相放大器,这在一定程度上弥补了由于物理器件造成的模拟锁相放大器的缺点,极大改善了性能,提升了研究层次与扩大了应用范围。国外相较于国内而言,起步要早一些,己研发出一系列锁相放大器。美国公司、美国公司是行业的龙头企业,它们所研制的模拟型:、和数字型:、、、均已有较成熟的发展与应用。其中公司是世界范围内数字锁相放大器研制的佼佼者,该公司的产品在到的频率带宽内可测,具有自动获取、自动补偿功能,具有谐波抑制功能、度的相位分辨率和大于的动态保留,时间常数位从到可调,它的数字信号处理设计使它具有很大的动态存储,这就减少了使用带通滤波器时带进的噪声以及系统的不稳定性。就国内而言,南京大学唐鸿宾等对锁相放大器的研宄起步较早,研发出了系列锁相放大器,该校微弱信号检测中心顺势

锁相放大器

锁相放大器实验 锁相放大器实验(Lock-in amplifier),简称LIA。它是一个以相关器为核心的检测微弱信号仪器,它能在强噪声情况下检测微弱正弦的幅度和相位。学习本实验的目的是使同学了解锁相放大器的基本组成,掌握锁相放大器的正确使用方法。 一、锁相放大器的基本组成 结构框图如图1所示。它有四个主要部分组成:信号通道、参考通道、相关器(即相关检测器)和直流放大器。 图1 锁相放大器的基本结构框架 1.信号通道 信号通道包括:低噪音前置放大器、带通滤波器及可变增益交流放大器。 前置放大器用于对微弱信号的放大,主要指标是低噪音及一定的增益(100~1000倍)。 可变增益放大器是信号放大的主要部件,它必须有很宽的增益调节范围,以适应不同的信号的需要。例如,当输入信号幅度为10nV,而输出电表的满刻度为10V时,则仪器总增益为10V/10nV =109若直流放大器增益为10倍,前置放增益为103,则交流放大器的增益达105。 带通滤波器是任何一个锁相放大器中必须设置的部件,它的作用是对混在信号中的噪音进行滤波,尽量排除带外噪音。这样不仅可以避免PSD(相敏检波器)过载,而且可以进一步增加PSD输出信噪比,以确保微弱信号的精确测量。常用的带通滤波器有下列几种:

图2为一个高通滤波器和一个低通波滤 波器组成的带通滤波器,其滤波器的中心频 率f0及带宽B由高低滤波器的截止频率f c1 决定和f c2决定。锁相放大器中一般设置几种 截止频率,从而根据被测信号的频率来选择 合适的频率f0及带宽B。但是带宽滤波器带 宽不能过窄,否则,由于温度、电源电压波 动使信号频谱离开带通滤波器的通频带,使 输出下降。 为了消除电源50Hz的干扰,在信号通道 中常插入组带滤波器。 (2)同步外差技术 上述高低通滤波器的主要缺点是随着被 测信号频率的改变,高低通滤波器的参数也 要改变,高低通滤波器的参数也要改变,应 用很不方便。为此,要采用类似于收音机的 同步外差技术,原理框图如图3所示。这是一种单外差技术,PSD1实际上是一个混频器, 图2 高低通频滤波器原理,具有频率f0信号经放大滤波后进入混频PSD,其输出为和频项(f i+2f0)及差频f i,再经具有中心频率为f i带通滤波后,输出变为中频信号f i , (幅度仍与被测信号的幅度成正比)再后,通过PSD2完成相敏检波后,得到解调输出U0,达到了对信号幅度的测量。外差方式的优点是采用固定中频f i 的带通滤波器,因而对不同被测信号频率均能适用;其次,由于采用固定中频带通滤波器,故滤波器的带宽及形状可以专门设计,所 以本电路具有很强的抑制噪音的能力。 图 3 同步外差技术原理框图 (3)同步积分技术

锁相放大器实验报告BY陈群

锁相放大器实验报告BY陈群 浙江师范大学实验报告实验名称锁相放大实验班级物理071 姓名陈群学号 07180116 同组人刘懿钧实验日期 09/12/1 室温气温锁相放大实验 摘要: 锁相放大器(Lock-in amplifier,LIA)自问世以来,在微弱信号检测方面显示 出优秀的性能,它能够在较强的噪声中提取信号,使测量精度大大提高,在科学 研究的各个领域得到了广泛的应用。它利用待测信号和参考信号的互相关检测原理实现对信号的窄带化处理,能有效地抑制噪声,实现对信号的检测和跟踪。 因此,学生掌握锁相放大技术的原理与应用具有重要的意义。关键词: 锁相放大器微弱信号 PSD信号 引言: 在进展一日千里的现代科技领域中,精密量测技术的发展对于近代工业有关键 性的影响。当我们研究的系统日趋庞大,交互作用复杂,但所欲了解的现象却越来越精细时,如何在一大堆讯号中获得我们真正想要的信息便成为一个重要的课题。一般的线性放大器可以将微弱的电子讯号放大,但若我们所要的信号中伴随着噪声信号,则两者都会一起放大,亦即此伴随的噪声无法滤除。尤其当噪声强度远大于所要的信号时,即必须藉助特殊的放大器以同时放大讯号并滤去噪声。锁相放大器是一种能测量极微弱的连续周期性信号的仪器。这些微弱信号可以小至数奈伏特(nV),甚至隐藏在大它数千倍的噪声当中,亦能精确的测得。连续周期性信号与噪声不同之处,在于前者具有固定的频率及相位,

后者则杂乱无章。锁相放大器便是利用所谓”相位灵敏侦测(phase-sensitive detection,PSD)” 的技术以取得具有特定频率与相位的信号,而不同于此频率 的噪声则被抑制下来,使输出讯号不受噪声影响。 实验方案: 实验原理 锁相放大器的基本结构如图所示,包括信号通道、参考通道、相敏检测器(PSD)和低通滤波器(LPF)等。 信号通道对调制正弦信号输入进行交流放大,将微弱信号放大到足以推动相敏检测器工作的平台,并且要滤除部分干扰和噪声,以提高相敏检测的动态范围。 参考通道对参考输入进行放大和衰减,以适应相敏检测器对幅度的要求。参考通道的另一个重要功能是对参考输入进行移相处理,以使各种不同的相移信号的检测结果达到最佳。 锁相放大器的核心部件是PSD,它以参考信号r(t)为基准,对有用信号x(t)进行相敏检测,从而实现频谱迁移过程。将x(t)的频谱由ω=ω0处,再经LPF滤除噪声,输出直流信号,其幅度与两路输入信号幅度及它们的相位有关。其输出 u0(t)对x(t)的幅度和相位都敏感,这样就达到了既鉴幅又鉴相的目的。因为LPF 的频带可以做得很窄,所以可使锁相放大器达到较大的SNIR。下图为不同相位时 相敏检测器的输出波形

锁相放大器 - 北京师范大学

锁相放大器 (仅供参考对比) 日期:今年最新指导教师:aunt 王 【摘要】本实验利用ND-501型微弱信号检测实验综合装置,对锁相放大器的参考信号通道,相敏检波器的特性进行了研究,并且测量和观察了相关器对谐波的响应、对不相关信号和噪声的抑制,由测量得到的数据计算出输入和输出信噪比,以及信噪比改善。 关键词:锁相放大器相敏检波器相关器谐波噪声信噪比 一、引言 锁相放大器(LIA)常用来检测淹没在噪声中的微弱信号,它利用待测信号和参考信号的相关性,采用互相关检测原理实现信号的窄带化处理,能有效地抑制噪声,实现对信号的检测和跟踪。自1962年第一台锁相放大器问世以来,几十年的发展,目前的锁相放大器已经能够从强噪声背景中检测出几纳伏(nV)的交流信号,成为了广泛应用于物理、化学、生物、电信、医学等现代科学技术领域必不可少的常用仪器。虽然它不能像光子计数器那样测量极微弱的光信号,但是它能测量宽范围内的光信号,而且不限于测量光信号。 二、实验原理 1、相关接收 被测信号和参考信号在时间上具有前后相关性是微弱信号检测的基础,相关即两个函数间存在一定关系,按照概念可分为自相关和互相关,检测微弱信号一般采用抗干扰能力较强的互相关检测。线性相关常采用相关函数来表征,不相关的两函数相关函数为零。 利用参考信号与有用信号具有相关性,参考信号与噪声不具有相关性的性质。通过互相关运算,就可以削弱噪声对有用信号的影响,具体来说,就是对混有噪声的待测信号和参考信号进行相乘和积分处理,就能够把掩埋在任意大噪声背景中的微弱有用信号检测出来。根据这一原理设计的相干检测器(相关器)构成了锁相放大器的核心部分。 2、相干检测的实现 实现求参考信号与被测信号间的相关函数的电子线路称为相干检测器(相关器),它有乘法器和积分器两部分组成。其中乘法器分模拟式乘法器(同步检测器)和开关式乘法器(相敏检波器,PSD,本实验采用),常用方波作为参考信号。积分器常用RC低通滤波器(LPF)

锁相放大器(Lock-in-Amplifier)的原理与应用

lock-in D y T nV?C a A i H μq C Lock-in-Amplifier D n u I ”ˉe ”?A q S v P A L o i q o C Lock-in-Amplifier ]PSD(phase sensitive detector)?A q S v B A L o L q H C Lock-in q n v A A O i A v f 1G )2sin(1111φπ+=f E e P )2sin(2222φπ+=f E e q L V (mixer)2V o μG G )2sin()2sin(221121213φπφπ++=×=f f E E e e e )]()(2cos[2 )]()(2cos[2212121212121φφπφφπ+++??+?= f f E E f f E E (difference frequency component) (sum frequency component) PSD AC A p q L C q o i A AC o C p G f 1μ¥f 2?éA difference frequency component DC A o p U PSD )cos(2 212 13φφ?= E E e )1)(cos(21≈?φφ

Lock-in lock-in i1V q A q I+P I- S C H q eμn u C B p U G 1.q e A i q q q A A P q q y p A o B n A P A q y a C 2.q(q u p)A i q(1M[B 10M[B100M[B1G[)M q y K q10K[(]q 10K[) 3. lock-in (1) ¥lock-in sensitivity A A lock-inμu(p G) μu C (2) °10-7A A i q10M[A q A A lock-in sensitivity A(1mV)A qμ 10V(q O lock-in q10μG)C (3) ?(OSC LvL)]1V A v(OSC F)P60 (p G23)A K P A(REF PH)Aμ(90o)μ0-V Bμê(270 o)μ0+V A(0 o B180 o)10V C p U G Lock-in A lock-inμq C 1.lock-in sensitivity A o i BP A time constant]1s A A lock-in I qμu(p)μu C 2. °10-7A A i q10M[A q A A lock-in sensitivity A(1mV)A qμ10V C

锁相放大器的工作原理

检测微弱信号的核心问题是对噪声的处理,最简单、最常用的办法是采用选频放大技术,使放大器的中心频率f 0与待测信号频率相同,从而对噪声进行抑制,但此法存在中心频度不稳、带宽不能太窄及对等测信号缺点。后来发展了锁相放大技术。它利用等测信号和参与信号的相互关检测原理实现对信号的窄带化处理,能有效的抑制噪声,实现对信号的检测和跟踪。目前,锁相放大技术已广泛地用于物理、化学、生物、电讯、医学等领域。因此,培养学生掌握这种技术的原理和应用,具有重要的现实意义。 1.锁相放大器的工作原理 1.相关检测及相关检测器。所谓相关,是指两个函数不相关(彼此独立); 如果它们的乘积对时间求平均(积分)为零,刚表明这两个函数的关系又可分为自相关和互相关两种。由于互相关检测抗干扰能力强,因此在微弱信号检测中大都采用互相关检测原理。 如果f1(t)和f2(t-τ)为两个功率有限信号,刚可定义它们的互相关函数为 (3.1.1) 令f1(t)=V1(t)+n1(t),f2(t)=V1(t)+n2(t),其中n1(t)和n2(t)分别代表与待测信号V1(t)及参考信号V2(t)混在一起的噪声,则式(3.1.1)可写成 (3.1.2) 式中Rsr(τ),Rr2(τ),Rr1(τ),R12(τ)分别是两信号之间,信号对噪声及噪声之间的函数。由于噪声的频率和相位都是随机量,他们的偶尔出现可用长时间积分使它不影响信号的输出。所以,可认为信号和噪声、噪声和噪声之间是互相独立的,他们的互相关函数为零。于是式(3.1.2)可写成 (3.1.3) 上式表明,对两个混有噪声的功率有限信号进行相乘和积分处理(即相关检测)后,可将信号从噪声中检出,噪声被抑制,不影响输出。根据此原理设计的相关检测器见图(3.1.1)所示。它是锁相放大器的心脏。

锁相放大器

LIA锁相放大器 王莲20140916 光学工程 锁相放大器的工作原理 相关检测及相关检测器。所谓相关,是指两个函数不相关(彼此独立);如果它们的乘积对时间求平均(积分)为零,刚表明这两个函数的关系又可分为自相关和互相关两种。由于互相关检测抗干扰能力强,因此在微弱信号检测中大都采用互相关检测原理。如果f1(t)和f2(t-τ)为两个功率有限信号,刚可定义它们的互相关函数为 (3.1.1) 令f1(t)=V1(t)+n1(t),f2(t)=V1(t)+n2(t),其中n1(t)和n2(t)分别代表与待测信号V1(t)及参考信号V2(t)混在一起的噪声,则式(3.1.1)可写成 (3.1.2) 式中Rsr(τ),Rr2(τ),Rr1(τ),R12(τ)分别是两信号之间,信号对噪声及噪声之间的函数。由于噪声的频率和相位都是随机量,他们的偶尔出现可用长时间积分使它不影响信号的输出。所以,可认为信号和噪声、噪声和噪声之间是互相独立的,他们的互相关函数为零。 于是式(3.1.2)可写成 (3.1.3) 上式表明,对两个混有噪声的功率有限信号进行相乘和积分处理(即相关检测)后,可将信号从噪声中检出,噪声被抑制,不影响输出。根据此原理设计的相关检测器见图(3.1.1)所 示。它是锁相放大器的心脏。 图3.1.1相关检测器 通常相关检测器由乘法器和积分器构成。乘法器有两种:一种是模拟式乘法器:另一种是开头式乘法器,常采用方波作参考信号,而积分通常由RC低通滤波器构成。

现在令式(3.1.3)中两个信号均为正弦波: 等测信号为 Vs(t)=escosωt; 参考信号为 Vr(t-τ)=ercos[(ω+Δω)t+φ]. 在式中r为两个信号的延迟时间。它们进入乘法器后变换输出为V(t), 即由原来以ω为中心频率的频谱变换成以Δω及和频2ω为中心的两个频谱,通过低通滤波器(简称LPF)后,和频信号被滤去,于是经LPF输出的信号为 若两信号频率相同(这符合大多数实验条件),则Δω=0,上式变为 (3.1.4) 式中K是与低通滤波器的传输系数有关的常数。 上式表明,若两个相关信号为同频正弦波时,经相关检测后,其相关函数与两信号幅度的乘积成正比,同时与它们之间位相差的余弦成正比,特别是当待测信号和参考信号同频同位相, 即Δω=0,φ=0时,输出最大,即 可见参考信号也参与了输出。为保证高质量的检测,参考信号必须非常稳定。实际常用的参考信号Vr(t)是方波。 对于Vr(t)是方波的情况,相应采用开关式乘法器,称为相敏检波器(简称PSD)。可将它等效为按输入信号Vs(t)的频率来改变极性的双刀掷开关(参见图10.2.2),此时可令 当待测信号频率和参考信号基波相同时,即ωr=ωs,LPE的输出为 ,(3.1.5) 式中k仍是与LPF传输系数有关的常数,式(3.1.5)表明,在Vr(t)为方波的情况,经相关检测后,其输出仅与待测信号的幅度es成正比,与两信号的相位差φ成正比。如图(3.1.2)中Vs(t)和Vr(t)同时改变极性,则两者相位差φ=0,则

锁相放大器的工作原理

锁相放大器的工作原理 一.什么是锁相放大器 锁相放大器是一种对交变信号进行相敏检波的放大器。它利用和被测信号有相同频率和相位关系的参考信号作为比较基准,只对被测信号本身和那些与参考信号同频(或者倍频)、同相的噪声分量有响应。因此,能大幅度抑制无用噪声,改善检测信噪比。此外,锁相放大器有很高的检测灵敏度,信号处理比较简单,是弱光信号检测的一种有效方法。 锁相放大器实物图 二.锁相放大器的构成 锁相放大器采用在无线电电路中已经非常成熟的外差式振荡技术,把被测量的信号通过频率变换的方式转变成为直流。在外差式振荡技术中被称为本地振荡(Local Oscillation)的、用于做乘法运算的信号,锁相放大器中被称为参照信号,是从外面输入的。锁相放大器能够(从被测量信号中)检测出与这个参照信号频率相同的分量。在被测量的信号里所包含的各种信号分量中,只有与参照信号频率相同的那个分量才会被转换成为直流,因而才能够通过低通滤波器(LPF)。其他频率的分量因为被转换成为频率不等于零的交流信号,所以被低通滤波器(LPF)滤除。在频率域中,如下图所示。 锁相放大器的基本组成 三.锁相放大器的应用

锁相放大器可用于检测到在杂噪信号中被埋没的微弱的信号。采用选频放大技术,使放大器的中心频率f 0与待测信号频率相同,从而对噪声进行抑制,但此法存在中心频度不稳、带宽不能太窄及对等测信号缺点。后来发展了锁相放大技术。它利用等测信号和参与信号的相互关检测原理实现对信号的窄带化处理,能有效的抑制噪声,实现对信号的检测和跟踪。目前,锁相放大技术已广泛地用于物理、化学、生物、电讯、医学等领域。 应用一:用于测量现场尘粒浓度。尘粒浓度测量仪采用光电收发对称式探测头,能够对温度、振动、器件老化等因素进行抑制。光信号在烟道中的衰减与烟道中尘粒浓度关系遵从朗伯-比尔定律。当烟道内尘粒浓度增大到一定程度,使得光信号大幅衰减,环境杂散光等成为不可忽视的噪声信号。 应用二:用于红外线温度传感器的低温范围拓展。 红外探测器易受杂散光,环境辐射,内部噪声等影响,尤其是低温时热辐射信号微弱,信噪比较低,信号将淹没在噪声中,这就限制了红外温度传感器的应用。锁相放大器可以将微弱的热辐射信号噪声中检测出来,从而拓展了红外线温度传感器在低温范围的应用。 应用三:相敏检波器组成的锁相环在电力系统同步谐波检测中的应用。红外探测器易受杂散光,环境辐射,内部噪声等影响,尤其是低温时热辐射信号微弱,信噪比较低,信号将淹没在噪声中,这就限制了红外温度传感器的应用 四.锁相放大器的工作原理 锁相放大器是以相干检测技术为基础,利用参考信号频率与输入输入信号频率相关,与噪声信号不相关,从而从较强的噪声中提取出有用信号,使得测量精度大大提高。所谓相关,是指两个函数不相关(彼此独立);如果它们的乘积对时间求平均(积分)为零,刚表明这两个函数的关系又可分为自相关和互相关两种。由于互相关检测抗干扰能力强,因此在微弱信号检测中大都采用互相关检测原理。

锁相放大器

2014江苏省大学生电子设计大赛 参赛学校: 参赛队编号: 参赛队员: 参赛试题:锁定放大器的设计(C题) 2014年8月

锁定放大器的设计(C题) 摘要 为了检测在强噪声背景下已知频率的微弱正弦波信号的幅度值,本系统基于锁定放大器设计了的微弱信号的检测装置。本系统由纯电阻衰减网络、前级放大模块、同向加法器、相敏检波器、整形移相驱动电路、带通滤波器等多级滤波电路和LCD显示电路组成。通过同向加法器和纯电阻衰减网络将信号和噪声进行叠加产生微小信号,之后采用检测电路和显示电路完成微小信号的检测和LCD显示。本系统是以相敏检波器为核心,将参考信号经过移相器后,通过电压比较器产生方波以驱动乘法器AD630,最后通过低通滤波器输出直流信号检测出微弱信号,将该直流信号送入单片机处理后,经LCD显示信号幅值。经过最终的测试,本系统能较好地完成检测微小信号的功能。 关键词:微弱信号强噪声移相器锁定放大相敏检波

目录 1系统设计 (1) 1.1设计要求................................... 错误!未定义书签。 1.1.1设计任务.............................. 错误!未定义书签。 1.1.2 设计要求............................. 错误!未定义书签。2系统方案 (3) 2.1 方案比较与论证 (3) 2.1.1 微弱信号检测电路方案比较论证 (3) 2.1.2 移相电路模块方案比较论证 (3) 2.1.3 纯电阻衰减网络方案比较论证 (4) 2.1.4 前级放大模块方案比较论证 (4) 2.2 总体方案论述 (5) 3理论分析与计算 (6) 3.1 锁定放大器原理 (6) 3.2 相敏检波器分析 (6) 3.3 移相网络原理 (7) 4 电路与程序设计 (8) 4.1 电路设计 (8) 4.1.1 纯电阻衰减网络 (8) 4.1.2 同向加法器 (9) 4.1.3 前级放大电路........................ 错误!未定义书签。0 4.1.4 移相电路............................ 错误!未定义书签。1 4.1.5 带通滤波器.......................... 错误!未定义书签。2 4.1.6 相敏检波器.......................... 错误!未定义书签。3 4.2 程序设计................................. 错误!未定义书签。4 4.2.1 测量结果标定........................ 错误!未定义书签。4 5 测试方案与测试结果 (15) 5.1测试仪器 (15) 5.2 测试方案 (15) 5.2.1 基本部分测试 (15) 5.3 测试结果及分析 (16) 6 总结 (17) 参考文献 (17)

相关文档
最新文档