高频报告-可调增益宽带放大器设计

高频报告-可调增益宽带放大器设计
高频报告-可调增益宽带放大器设计

可变增益宽带放大器设计

1、应用背景

随着社会发展,随着计算机和互联网的迅速普及,多媒体信息的高速传输呈现飞速增长的趋势,各类型放大器的运用领域不断扩展。在当今科技和通讯高速发展下,各种自动化、智能化仪器装置对信号的要求越来越高,尤其在一些高精度的领域,对小信号的放大与处理要求更为严格。普通的运放存在着本身不可忽略的缺点,用普通的运放设计的放大器一般具有频带窄、噪声系数大、低增益的特点。宽带放大器可以对宽频带、小信号、交直流信号进行高增益的放大,广泛应用于军事、光纤通信、电子战设备及微波仪表和医用设备等高科技领域上,具有很好的发展前景。研究和设计一款高增益、高精度、低噪声、增益可控性高的宽带放大器成为了人们的广泛关注。[1]要同时满足这些性能指标,对电路设计提出了很高的要求,尤其是高频PCB 和电磁兼容的设计要求。

2、设计目的

要求所设计的高频小信号放大器输入/输出电压处于动态可变范围的前提下,同时兼顾增益与带宽的要求,使其具有较宽的频带,同时具备低噪声、工作稳定的特点。

3、系统设计

根据设计要求,可将系统分为以下几部分模块:前置放大电路、中间级增益可调放大电路、后级功率放大电路。为降低噪音,在多级放大电路中,应注意第一级放大电路的降噪设计,可通过选用低噪声芯片设计固定增益放大电路,并注意设计反馈电路。中间级增益可调放大电路可选择可编程增益芯片,通过调整接入电阻调整增益。[2]

图表一 系统设计框图 4、方案选择

4.1芯片类型选择

4.1.1AD603

AD603是一种具有程控增益调整功能的芯片。它是美国ADI 公司的专利产品,是一个低噪、90MHz 带宽增益可调的集成运放,它提供精确的引脚可选增益,90 MHz 带宽时增益范围为-11 dB 至+31 dB ,9 MHz 带宽时增益范围为+9 dB 至+51 dB 。用一个外部电阻便可获得任何中间增益范围。折合到输入的噪声谱密度仅为1.3 nV/√Hz ,采用推荐的±5 V 电源时功耗为125mW 。两片AD603级联时,总增益的控制范围为84.28dB ,因此符合增益可调,带宽较宽、低噪声的设计要求。

图 1AD609引脚图

4.1.2AD811

AD811是一款宽带电流反馈型运算放大器,-3 dB 带宽为120 MHz (G=+2),带宽达到35 MHz (0.1dB,G = +2)。低失真特性(带宽最高可达10 MHz)和宽单位增益带宽,使AD811非常适合用作数据采集系统中的ADC 或DAC 缓冲器。该放大器还具有1.9 nV/√Hz 的低电输入信号 输出信号

压噪声、20 pA/√Hz的低电流噪声以及出色的直流精度。但考虑到输出信号幅值随频率增大而减小,系统需采用数控电位计X9C102 来实现可变增益放大,即依据输出信号频率的不同来改变数控电位计的值,以改变增益,实现增益可控的目的。

图2AD811引脚图

4.1.3VCA820

VCA820是高增益调节范围的宽带可变增益放大器,具有±40dB的高增益调节范围,具有2.4nV/√Hz的低输入噪声电压,具有恒定带宽与增益,可达到35MHz。温度稳定高,其增益与控制电压呈线性关系,但是电路稳定的线性特性很难控制,增益调节精度不高,芯片性价比不高。且市面较难购得此款芯片,因此不采用这款芯片。[3]

图3VCA820引脚图

4.1.4OPA690

OPA690是宽带电压反馈运算放大器,常用于高频小信号放大电路,单位增益稳定为500MHz,小信号输入时,当放大倍数大于10时,高频放大性能变差。常用于高速成像通道、ADC缓冲器、便携式仪器等。[4]增益与带宽关系如下:

表1OPA690增益和带宽的关系

4.1.5OPA820

OPA820是单位增益稳定,低噪音电压反馈运算放大器,有一个很低的输入噪声电压和使用一个低的5.6mA供应电流产生高输出电流。在单位增益里, 当峰值<1dB时OPA820给出一个>800MHz的带宽。在低功耗情况下,OPA820补充这一高速操作装置具有优良的直流精度。最坏的情况下的偏置电压为±750μV和偏置电流为±400nA,它们给脉冲放大器应用程序一个优秀的绝对直流精度。

图5OPA820引脚图

4.2固定增益放大电路方案选择

4.2.1使用分立元件搭建共基极放大器

在三极管搭建的三类放大电路中,共基极放大器电压增益大,电流增益小,输出电阻小,适合于高频工作。但由于设计要求为宽带放大器,要求带宽较高,故对于三极管型号的选择以及电路的搭建布线等都要求较大,实行起来比较困难。

4.2.2采用集成运算放大器

集成芯片电路简单,使用方便,性能稳定,超高速集成运放放大电路OPA690 增益为63 dB,具有1 800 V/μs 的摆率。单位增益带宽积为500 MHz,3 dB时带宽为220 MHz,平坦度较好,符合相关要求,故选择此方案。[5]

4.3功率放大器方案选择

4.3.1使用分立元件搭建功率放大器

这种采用多级分立高频的放大电路路缺点十分明显,由于线路比较复杂,相互之间的影响比较大,难以精确地对参数进行调节,设计要求的带宽难以保证,因此不采用此方案。4.3.2采用集成运算放大器

THS3091驱动负载能力较大,是一个高电压,低失真,电流反馈运算放大器,该方法电路简单,增益可调,且可以通过运放并联的方法增加其驱动负载的能力,此方法电路简单,容易调试,故选择此方案。

4.4电源电路方案选择

该系统提供+5V单电源。若采用单电源VCC供电,则需将运放的输入端的一端电压抬高为VCC/2,这样才能获得最大幅值,但是这样的设计方案会增加系统的复杂性,运放的工作电流会非常大,运放发热量大,使系统难以保证稳定工作。为此,应采用双电源供电。

4.4.1方案一

如图6所示,采用两只阻值一样的大功率电阻,用电阻分压的方式获得正负电源,但是这种电路自身消耗大,阻值较大时带负载的能力又太弱。

图6电源设计方案一

4.4.2方案二

在方案一上加以改进,如图7增加两个三极管,加强了电路的带负载能力,其输出电流的大小取决于Q1和Q2的最大集电极电流ICM。通过反馈回路可使两路负载不相同时也能

保持正负电源基本对称,故采用此方案。

图7电源设计方案二

4.5稳压电路方案选择

由于宽带放大器的频率非常高,对电源的要求也十分苛刻,必须保证能提供低纹波的电源。因此需要设计稳压电路。

4.5.1采用7905,7805芯片设计正直流稳压电源

此系列芯片最大输出电流1.5A,能满足系统的电源要求,但是该系列稳压芯片的输出纹波比较大。

4.5.2采用LM317和LM337和四输出变压器组成两组直流可调稳压电源

此系统调压范围在1.26-37V之间,纹波可低于4mv,最大输出电流为1.5A,带负载能力强。可满足设计要求,故采用此方案。

5、理论分析与参数计算

5.1各级增益分配

本系统以可控增益放大器AD603为核心,两级级联其增益调节范围理论值为-20-60dB,其他各单元电路都是根据AD603性能进行设计。

由于中间级采用的可控增益放大器对输入、输出电压均有所限制,所以必须合理分配各级放大器的放大倍数。由于单级AD603在90M输出模式下,其增益变化范围为-11dB到30dB,因此系统采用两片AD603做增益可控部分,理论增益为-22dB-60dB,所以前级放大和后级功放总的固定增益为22dB,这样系统的总增益为0-82dB。

由于输入和输出部分总增益为22dB,为留一定余地,选择将输入、输出部分总增益设为20dB,考虑到AD603的输出电压有所限制,且幅值不宜过大,因此第一级放大级采用OPA690构成增益为两倍的放大器,后级功率放大级采用具有高驱动能力的THS3091构成,其放大倍数为五倍。

5.2频带内增益起伏的控制

为了更好地保障系统工作的稳定性,需要使用高稳定性的宽带放大器,OPA690单位增益稳定为500MHz,THS3091在正常供电情况下,在65M内有低于0.1dB的增益起伏,因此满足要求。

5.3阻抗匹配

阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不相等(即不匹配)时,在负载端就会产生反射。当阻抗不匹配时,便会导致放大器不工作甚至损坏。可以通过在两级之间接入LC型电路,构成匹配网络,以实现阻抗匹配。

图8匹配网络

5.4放大器提高稳定性措施

本系统为宽带放大器,频率很高,并且放大倍数较大,为不影响宽带,采用多级级联,但是系统稳定性容易受到影响并且容易产生自激现象。为了提高放大器的稳定性,必须要将供电电压滤波,否则容易混入高频噪声,这里我们通过屏蔽盒进一步对外界影响进行巩固。系统的稳定性主要取决于系统的相位裕量,所以必须要留有适当的相位裕量。在本系统中,将高频信号部分全部采用双面板印制,并且采用铜板大面积接地,减小接地回路,电容电阻全部采用贴片封装,减小元器件的影响。[6]

6、电路设计

6.1前级固定增益放大电路

图9前级固定增益放大电路

6.2中间级增益可调放大电路

图10中间级增益可调放大电路

6.3后级功率放大电路

图11后级功率放大电路

7、电路仿真

输入为5MHz,振幅为1mv的正弦波。

7.1前级固定增益放大电路

第一级放大倍数约为2-3倍,基本符合预期结果。

图12前级固定增益放大电路仿真

7.2中间级可调增益放大电路

7.2.1

当频率为5MHz时中间级第一级增益为48dB,两级级联增益为74dB,但波形有所失真。

图145MHz中间级后级仿真

7.2.2

当频率为50MHz时中间级第一级增益为12dB,两级级联增益为45dB,增益不满足预期结果。

图15 50MHz中间级前级仿真

7.2.3

当频率为20MHz时,两级级联增益为60dB,当频率为30MHz时,两级级联增益为52dB,说明随频率增加增益减小,说明有效带宽较小。

图17 20MHz两级级联仿真

图18 30MHz两级级联仿真

7.3后级功率放大电路

7.3.1

经过后级功率放大后,波形失真严重,增益为76dB。

图19 总电路波形仿真

7.3.2

若函数发生器直接接后级功率放大电路,波形没有失真,增益为13dB,基本符合预期要求。

图20后级功率放大电路仿真

8、结果分析

OPA690放大效果较好,可通过微调电阻调整其放大倍数;单级AD603放大效果较好,但两级级联后,后级受前级影响,会导致结果有所偏差,主要表现在波形失真与增益达不到预期结果。而后级功率放大电路单独运行无误,但在整个电路中却效果不佳,分析原因如下:

8.1系统稳定性不佳,导致波形失真。

8.2 AD603输出波形不够理想导致放大后失真愈发显著。

8.3电路参数设置仍存在缺陷,导致放大器工作不够理想。

8.4缺少完备的抗干扰组成,导致前后级之间干扰严重,影响结果。

8.5缺少滤波结构,混入杂波,影响波形。

9、总结与思考

本次设计报告主要倾向于对可调增益宽带放大器的设计,在电路选择与芯片选择方面,主要考虑芯片的使用性能及使用频率,通过选择合适的电路与芯片,简化电路设计方案,有

助于后续设计步骤的实现。通过此次电路设计,学习了高频放大电路的设计以及可调增益放大电路的设计,并了解了一些高频宽带运算放大器。但由于准备不够充分,电路设计仍存在一些漏洞,参数设置不够合理,导致最后结果不够理想,后续应继续学习探索,改进电路结构。

10、参考文献

[1]曾繁政,黄河.基于AD603的可控直流宽带放大器[J].大众科技,2010(4).

[2]B Hu,X Yu ,L He ,W Lim.Analysis and Design of Wideband Low Noise Amplifier With Digital Control.Radioengineering , 2010 , 19 (4).

[3]Texas Instruments. VCA820 WIDEband,>40dB Gain Adjust Range,Linear in V/VV ARIABLE GAIN AMPLIFIER[EB/OL].https://www.360docs.net/doc/3f16487594.html,.

[4]谢军,盛庆华、毛礼建.射频宽带放大器的增益控制设计与研究[J].现代电子技术,2015.3.

[5]王哲.射频宽带放大器的设计[J].天津科技,2017(2).

[6]蓝良生、赵翔.射频宽带放大器设计与实现[J].科技信息

音频功率放大器设计实验报告

题目:音频功率放大器电路 音频功率放大器设计任务 1、基本要求 (1)频带范围 200Hz —— 10KHz,失真度 < 5%。 (2)电压增益 >= 20dB。 (3)输出功率 >= 1 W (8欧姆负载)。 (4)功率放大电路部分使用分立元件设计。 发挥部分 (1)增加音调控制电路。 (2)增加话筒输入接口,灵敏度 5mV,输入阻抗 >> 20 欧姆。 (3)输出功率 >= 10W (8欧姆负载)。 (4)其他。 目录 1 引言····························································· 2 总体设计方案·····················································2.1 设计思路······················································· 2.2 总体设计框图··················································· 3 设计原理分析·····················································3.1设计总原理图 3.2设计的PCB电路图 ··· 1 引言 在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放而言,应该达到电气指标与实际听音指标的平衡与统一。

音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。本次设计旨在熟悉设计流程,达到基本指标。 2 总体方案 根据实验要求,本次设计主要是也能够是用集成功放TDA2030为主的电路 一、电路工作原理 图1所示电路为音频功率放大器原理图,其中TDA2030是高保真集成功率放大器芯片,输出功率大于10W,频率响应为10~1400Hz,输出电流峰值最大可达3.5A。其内部电路包含输入级、中间级和输出级,且有短路保护和过热保护,可确保电路工作安全可靠。TDA2030使用方便、外围所需元器少,一般不需要调试即可成功。 RP是音量调节电位器,C1是输入耦合电容,R1是TDA2030同相输入端偏置电阻。 R2、R3决定了该电路交流负反馈的强弱及闭环增益。该电路闭环增益为 (R2+R3)/R2=(0.68+22)/0.68=33.3倍,C2起隔直流作用,以使电路直流为100%负反馈。静态工作点稳定性好。 C4、C5为电源高频旁路电容,防止电路产生自激振荡。R4、R5称为茹贝网路,用以在电路接有感性负载扬声器时,保证高频稳定性。VD1、VD2是保护二极管,防止输出电压峰值损坏集成块TDA2030。 2.电流反馈 电流反馈是指在一个反馈电路中,若反馈量与输出电流成正比则为电流反馈;若反馈量与输出电压成正比则为电压反馈。通常可以采用负载短路法来判断。 从概念上说,若反馈量与输出电压(有时不一定是输出电压,而是取样处的电压)成正比则为电压反馈;若反馈量与输出电流(有时不一定是输出电流,而是取样处的电流)成正比则为电流反馈。在判断电压反馈和电流反馈时,除了上述方法外,也可以采用负载短路法。负载短路法实际上是一种反向推理法,假设将放大电路的负载电阻RL短路(此时,),若

(整理)1-宽带放大器(03)(通).

宽带放大器 摘要 本设计全部采用集成电路,具有硬件电路形式简单,调试容易,频带宽,增益高,AGC动态范围宽的特点,且增益可调,步进间隔小。本宽带放大器以可编程增益放大器AD603为核心,由三级放大器组成,前级放大主要是提高输入阻抗,对小信号进行放大;中间级为可变增益放大器,主要作用是实现增益可调及AGC功能,增益控制和AGC功能都由单片机控制,可预置并显示增益值,增益可调范围10dB~58dB,步进1dB,由单片机自动调节放大倍数可实现AGC功能,使输出电压稳定在4.5V~5.5V 之间;后级放大进一步增加放大倍数,扩大输出电流,提升放大器的带负载能力,提高输出电压幅度。后级输出接峰值检波电路,检波电路输出由单片机采样并计算后,用液晶显示屏显示输出正弦波电压的有效值和峰峰值。由于宽带放大器普遍存在容易自激及输出噪声过大的缺点,本系统采用多种形式的屏蔽措施减少干扰,抑制噪声,以改善系统性能。

一、方案论证与比较 1、总体方案 方案一:选用结电容小,f T高的晶体管,采用多种补偿法,多级放大加深度负反馈,以及组合各种组态的放大电路形式,可以组成优质的宽带放大器,而且成本较低。但若要全部采用晶体管实现题目要求,有一定困难,首先高频晶体管配对困难,不易购买;其次,理论计算往往与实际电路有一定差距,工作点不容易调整;而且,晶体管参数易受环境影响,影响系统总体性能。另外,晶体管电路增益调节较为复杂,不易实现题目要求的增益可调。 方案二:使用专用的集成宽带放大器。如TITHS6022、NE592等集成电路。通过外接少数的元件就可以满足本题目要求,甚至远超过题目要求的带宽和增益的指标,但这种放大器难以购买,价格较贵,灵活性不够,不易满足题目扩展功能要求。 方案三:市面上有多种型号、各具特色的宽频带集成运算放大器。这些集成运算放大器有的通频带宽,有足够的增益,有的可以输出较高电压,使用方便,有的甚至可以实现增益可调及AGC的功能。总体上硬件的实现和调试较为简单,所以,我们决定采用多个集成运放级连实现本题目。系统方框图如图1-1-1

通用可变增益放大器

通用可变增益放大器(B题) 摘要 本着简单、准确、可靠、通用的原则,采用了分级设计匹配互连的思想。本放大器系统分为前级放大部分、增益放大与控制电路部分、档位控制部分、后级稳压输出部分四部分。全系统采用单一的模拟电路方式,通过前级放大部分获得所需输入电压、输入阻抗等重要参数;通过拨码开关连接的反馈电阻进行精密全局控制,获得20dB至40dB之间分辨力不低于0.1%的可变增益范围;通过档位控制部分电路实现四个档位增益值转换,在衰减电路的作用下得到三个档位的增益值,即—20dB至0、0至20dB、20dB至40dB;最后通过后级稳压输出部分获得输出幅度不低于±8V的输出电压,此部分电路包括抑制零点漂移的调零电路。通过验证,本系统可以对输出电压数值的漂移,零点漂移等不良影响进行有效地抑制和降低。通过全面的调试和测量,使得本系统基本满足题目的基本部分和发挥部分的要求并融入了自己的创新思想,设计出了一个可控范围大、输出幅度高、稳定性好、抗干扰能力强、幅频特性好的通用可变增益放大器。

目录 摘要 (2) 目录 (3) 一、方案论证与比较 (4) 1、前级放大部分 (4) 2、增益放大与衰减控制电路 (4) 3、后级电压输出 (5) 二、系统设计 (5) 1、总体设计思路 (5) 2、主要电路原理分析与计算 (6) 2.1、前级放大电路 (6) 2.2、增益放大与控制电路 (6) 2.3、档位控制电路 (7) 2.4、电压输出电路 (7) 三、系统测试方法与测试数据 (8) 1、测试仪器 (8)

2、测试方法与测试数据 (8) 2.1、测前级放大电路 (8) 2.2、测增益放大与控制电路 (8) 2.3、各级电路调节好后,进行测量和详细记录 (8) 3、测试结果分析 (9) 3.1、测试结果分析 (9) 3.2、误差分析 (9) 3.3、测试心得 (10) 四、总结 (10) 一、方案论证与比较 1、前级放大部分 方案一:采用分立元件实现。此方案成本低,元器件易于得到,但是设计、调试难度过大,硬件电路连接与制作困难,在大赛规定的时间内很难保证作品的可靠性和指标,因此不

可变增益放大器

电 子 设 计 竞 赛 题目:可变增益放大器学院:自动化工程学院班级:08级自动化二班学号:200840604055 姓名:杨嘉伟 时间:2010年11月16日

设计任务 一、题目 设计制作一个增益可变的交流放大器。 二、要求 1.基本部分 (1)放大器增益可在0.5倍、1倍、2倍、3倍四档间巡回切换,切换频率为1Hz; (2)可以随机对当前增益进行保持,保持时间为5s,保持完后继续巡回状态; (3)对指定的任意一种增益进行选择和保持(保持时间为5s),保持完后返回巡回状态; (4)通过数码管显示当前放大电路的放大倍数,用0、1、2、3分别表示0.5、1、2、3倍; 2.发挥部分 (1)对于不同的输入信号自动变换增益: a.输入信号峰值为0—1V,增益为3; b.输入信号峰值为1—2V,增益为2; c.输入信号峰值为2—3V,增益为1; d.输入信号峰值为3V以上,增益为0.5; (2)通过数码管显示当前放大电路的放大倍数,用0、1、2、3分别表示0.5、1、2、3倍。 基础部分 一、设计方案及组成框图 分析设计要求,确定大致思路如下: ①这个电路可以采用反相比例放大器实现对输入信号进行放大。A u=-R f/R 控制反相比例放大电路的反馈电阻实现放大器增益的变换, 即控制R f的阻值。输出信号经过反相跟随器,使输入信号与放大信号同相。 ②想实现R f的自动变换,需的使用模拟开关进行控制。而要想实现电路的自动切换,需要使用多谐振荡器输出脉冲进行控制。 ③要想对一种增益进行选择和保持,需要用一个单稳态触发器来实现电路这一功能。 ④想随机和任意地对一种增益选择和保持,需要用到触发式单刀双掷开关以及逻辑与、逻辑或构成逻辑电路对其进行控制。 ⑤最后该电路主要部分,则通过计数器计数来控制模拟开关。另外想实现

音频功率放大器设计说明书要点

音频功率放大器的设计任务书 1 设计指标 (1)直接耦合的功率放大器,额定输出功率10W,负载阻抗8Ω;(2)具有频响宽、保真度度、动态特性好及易于集成化; (3)采用分立元件设计; (4)所设计的电路具有一定的抗干扰能力。 2 设计要求 (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)S C H文件生成与打印输出。 3 编写设计报告 写出设计的全过程,附上有关资料和图纸,有心得体会。 4 答辩 在规定时间内,完成叙述并回答问题。

音频功率放大器设计 摘要:这款功放采用了典型的OC L 功放电路,为全互补对称式纯甲类DC 结构,功放的每一级放大均工作于甲类状态。输入级和电压放大级采用线性较好的沃尔漫电路,差分管及电流推动管分别为很出名的K170、J 74(可用K389、J 109孪生对管对换)对管和K214、J77中功率M OS 管,功率输出级为2SC 5200和2S A1943大功率东芝管并联输出,功率强劲,驱动阻抗2Ω的喇叭也轻松自如,毫不费力。综合运用了我们前面所学的知识。设计完全符合要求。 关键字:沃尔漫电路 T IM 共源-共基电路 共射-共基电路 1 引言 在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放而言,应该达到电气指标与实际听音指标的平衡与统一。 2 设计思路 甲类放大器作为一种最古老,效率最低,最耗电,最笨重,最耗资,失真最小的放大器它有吸引人的音质。甲类放大器输出电路 本身具有抵消奇次谐波失真,且甲类放大器管子始终工作在线性曲线内,晶体管自始自终处于导通状态。因此,不存在开关失真和交越失真等问题。甲类放大器始终保持大电流的工作状态。所以对猝发性声音瞬间升降能迅速反映。因而输出功率发生急剧变化时,电 输入音 频信号 前置放大级电路 共射-共基电路 共射-共基电路 恒压源电路 推动级 反馈电路 至末级 功放 沃 尔漫电路 图1 前置放大电路框图

可变增益放大器的研究

长江大学 毕业设计开题报告 题目名称:可变增益放大器的研究院系:物理与光电学院 专业班级:应用物理11103班 学生姓名: 指导教师:李林 辅导教师:李林 开题报告日期:2015年4月2日

可变增益放大器的研究 学生:王双全物理与光电工程学院 导师:李林物理与光电工程学院 一.题目来源 题目来源于老师的科研项目 二.研究目的和意义 在大自然的空气中由于存在着各种不可预测的非理想因素,从而导致通信系统传输过程中的信号会有较大的变化,导致天线从外部接受的信号的强弱会有不同(绝大多数信号被衰减了)。而且传输信道的非线性因素的存在使得信号衰减,同时信道中的噪声也会对信号的传输有影响,导致信号的强度时大时小。信号强度的大小差别有时会很大,甚至会有几十个分贝。信号强度最大值和最小值的差值范围称为接收机的动态范围,为了使接受到的信号尽可能的可靠,自动增益控制电路(Automatic Gain Control,简称AGC)通常都是接收机系统中必不可少的。AGC 的作用是当输入信号的幅度值偏低时,AGC 会选择较大的增益使其输出的幅度值限定在一个需要的范围,同样当输入信号的幅度值偏高时,AGC 会选择较小的增益使其输出的幅度值限定在一个需要的范围,也就是说对于幅度值不固定的输入信号,AGC 可以保证输出幅度值在一定范围内,基本一致。性能优良的AGC 会把输出幅度值控制在下级ADC 最需要的输入信号动态范围内。而AGC 系统中最重要的部分就是可变增益放大器(Variable Gain Amplifier,简称VGA)。AGC 主要是由反馈控制器和控制对象(VGA)两部分组成,其中反馈控制器由电平检测器、低通滤波器、直流放大器、电压比较器、控制电压产生器构成的。而其控制着VGA 使得输出信号的幅度基本恒定不变。可变增益放大器不断的发展带动了AGC 的发展,使得AGC 在许多的测控设备、智能设备等领域的应用也越来越广泛。可变增益放大器的增益改变方式主要有连续变

一种增益可控的射频宽带放大器设计

一种增益可控的射频宽带放大器设计 射频宽带放大器是各类电子仪器与仪表里很常用、很重要的一个單元电路。为此,论述了一款增益可控的射频宽带放大器的设计选型的过程,给出了参数的计算过程和选型是要考虑的技术指标和功能。因此结论对模拟放大电路的设计具有一定的参考价值。 标签:射频;宽带放大器;参数计算;选型要求 doi:10.19311/https://www.360docs.net/doc/3f16487594.html,ki.16723198.2017.09.088 1理论计算 1.1设计要求 根据用户对高频、大信号的放大要求,课题研究小组进过分析和研究,得出下列的具体设计参数: (1)被设计的放大器的电压增益A V≥52dB,增益可控52dB,输入信号电压的有效值Vi≤5mV,其输入阻抗、输出阻抗均为50欧姆,负载电阻50欧姆,且输出电压有效值V o≥2V,波形无明显失真; (2)在50MHz~160MHz频率范围内增益波动不大于2dB; (3)-3dB的通频带不窄于40MHz~200MHz,即fL≤40MHz和fH≥200MHz; (4)电压增益A V≥52dB,当输入信号频率f≤20MHz或输入信号频率f≥270MHz时,实测电压增益A V均不大于20dB; (5)放大器采用+12V单电源供电,所需其它电源电压自行转换。 通过对上述设计要求的分析可知,此课题对宽带放大器的参数选型提出了很高的要求,诸如:压摆率、增益带宽积、最大输出功率、高频高输出摆幅等都要进行严格的计算。只有做到科学计算,才能为正确的集成放大器选型打下坚实的基础,为后续设计提供科学保障。 1.2放大器的参数计算 (1)最小增益需要达到52dB(400倍),带宽200MHz,系统增益带宽积高达8*109MHz(*此处应注意多级放大和增益分配*); (2)输入电压有效值最大5mv,需要做小信号低噪声放大;

OCL功率放大器的设计报告

课程设计报告 题目:由集成运放和晶体管组成的OCL 功率放大器的设计 学生:郭二珍 学生学号:1008220107 系别:电气学院 专业:自动化 届别:2015年 指导教师:廖晓纬 电气信息工程学院制 2014年3月

OCL功率放大器的设计 学生:郭二珍 指导老师:廖晓纬 电气学院10级自动化 1、绪论 功率放大器(简称功放)的作用是给音频放大器的负载R L(扬声器)提供一定的输出功率。当负载一定时,希望输出的功率尽可能大,输出信号的非线性失真尽可能地小,效率尽可能高。 OCL是英文Output Capacitor Less的缩写,意为无输出电容的功率放大器。采用了两组电源供电,使用了正负电源。在输入电压不太高的情况下,也能获得较大的输出频率。省去了输出端的耦合电容,使放大器的频率特性得到扩展。OCL功率放大器是一种直接耦合的功率放大器,它具有频响宽、保真度高、动态特性好及易于集成化等特点。性能优良的集成功率放大器给电子电路功放级的调试带来了极大的方便。集成功率放大电路还具有输出功率大、外围元件少、使用方便等优点,因此在收音机、电视机、扩音器、伺服放大电路中也得到了广泛的应用。 功率放大器可分为三种工作状态:(1)甲类工作状态Q点在交流负载的中点,输出的是一种没有削波失真的完整信号,但效率较低。(2)乙类工作状态Q点在交流负载线和IB=0输出特性曲线的交界处,放大器只有半波输出,存在严重的失真。(3)甲乙类工作状态Q点在交流负载线上略高于乙类工作点处,克服了乙类互补电路产生交越失真,提高了效率。

因此,本设计可采用甲乙类互补电路。 2、容摘要 本设计中要求设计一个由集成运放和晶体管组成的OCL功率放大器。在输入正弦波幅度Ui等于200mV,负载电阻R L等于8Ω的条件下最大输出不失真功率P o≥2W,功率放大器的频带宽度BW≥80Hz~10KHZ 功率放大电路实质上是能量转换电路,它主要要求输出功率尽可能大,效率尽可能的高,非线性失真尽可能要小,功率器件的散热较好。 本设计选用的是双电源供电的OCL互补推挽对称功放电路。 此推挽功率放大器的工作状态为甲乙类,其目的是为了减少“交越失真”。 由于两管的工作点稍高于截止点,因而均有一很小的静态工作电流I CQ。这样,便可克服管子的死区电压,使两管交替工作处的负载中电流能按正弦规律变化,从而克服了交越失真。 OCL互补推挽对称功放电路一般包括驱动级和功率输出级,前者为后者提供一定的电压幅度,后者则向负载提供足够的信号频率,以驱动负载工作。

基于vca820的压控增益放大器设计

基于vca820的压控增益放大器设计 摘要 对于压控增益放大器的设计,采用可调增益运放,并给出测试数据。关键词:VCA820 增益控制 一、设计要求 (一)设计要求采用压控增益放大(VCA820)。 (二)输入1mv输出1v。 (三)用TINA软件仿真,给出仿真结果,画出原理图。 二、方案设计 设计压控增益放大器有多种方案,本设计采用VCA820作为放大电路的核心部件。 VCA820的增益与控制电压成线性关系,最大带宽能达到150MHz,增益控制围为-20dB到20dB,精度较高。所以选用VCA820作为运放以达到实验的要求。

三、原理分析 电路前级可控增益放大,后级放大电路为OPA695控制的放大电路,VCA820放大电路接入反馈,经过后级放大输出达到设计的要求。系统实现框图如下: 图1 系统结构框图 四、系统硬件设计 (一)VCA820简介 TI公司的VCA820芯片是一款直流耦合、宽带宽线性放大器,通过改变控制电压能够连续改变放大倍数。它提供高阻抗单端转换的差分输入,增益控制一般通过设置增益电阻和反馈电阻从理论上最大值设定到40dB。VCA820的部结构由两个输入缓冲和集成了一个乘法器核的输出电路反馈放大级,该电路提供了一个无须外接缓冲就能有完整可变电压增益系统。最大增益由外部两个电阻设置,这为设计提供了很大灵活性。 VCA820带宽增益放大器,在控制电压作用下,该器件可以提供精确的增益,按Vout/Vin线性变化,基本增益为:Vout/Vin=RfRGVG+RfRG-RdR1,其中VG是控制电压输入,电压基本增益为(V/V),调节VG可实现对数增

音频功率放大器的设计报告

音频功率放大器的设计报告 目录 一、设计任务和要求 (2) 二、设计方案的选择与论证 (2) 三、电路设计计算与分析 (4) UA741介绍 (4) 前级电路原理图及仿真结果 (5) (6)TDA2030介绍·················································· 音频功放电路原理图及仿真结果 (7) 结果与分析 (8) 总原理图 (9) PCB图 (10) 四、总结及心得 (12) 五、附录 (14) 六、参考文献 (15)

音频功率放大器的设计 一、设计任务和要求 1、设计任务 设计一音频功率放大器,满足: (1)、输出功率为1W---2W; (2)、输出阻抗8-16欧姆; (3)、带宽:100Hz—10KHz; 2、设计要求 (1)、根据设计指标,确定电路的理论设计; (2)、学会合理的选择电路的元器件; (3)、利用multisim软件完成对相关电路模块的仿真分析; (4)、按时提交课程设计报告,画出设计电路图,交一份A3的图纸,完成相 应的答辩; 二、设计方案的选择与论证 音频功率放大器,简称音频功放,该设备主要用于推动扬声设备发声,因而,在很多电子设备上均有应用,比如,手机、电脑、电视机、音响设备等,是我们生活、学习不可或缺的重要设备,为我们的生活带来了很多便利。 音频功率放大器实际上就是对比较小的音频信号进行放大,使其功率增加,然后输出。前置放大主要完成对小信号的放大,使用一个同向放大电路对输入的音频小信号的电压进行放大,得到后一级所需要的输入。后一级的主要对音频进行功率放大,使其能够驱动电阻而得到需要的音频。设计时首先根据技术

增益可调差动放大器的设计(特别版)

说明:这篇课题设计是小酒花生为陈姐特别制作!如果需要可以进行修改,若觉得不是很满意,那么自己可以设计更好的;倘有不妥之处,还请多多指正,谢谢!!! 增益可调差动放大器的设计与仿真 物理信息学院08电科二班XXX20081030XX 摘要: 本课题设计利用增益可调放大器uA709芯片为设计核心,根据uA709的放大原理,利用公式计算出放大倍数,然后利用专业软件(如ORCAD)模拟和仿真增益可调放大器电路,并测出其电压及电压增益的实际值! 关键字:UA709LM709CN ORCAD 一﹑课题背景: 近年来随着计算机和互联网的迅速发展和普及,多媒体信息的高速传输呈现飞速增长的趋势。放大器作为集成电路的一种重要的组成部分是国内外研究的热点。目前集成放大器的研究主要集中在多级运放的补偿、宽带高速运放、满足专用放大器的特殊结构和提高通用放大器指标的方法等这几个方向。但是可调增益放大器的研究国外开展较多,国内目前已有少量关于可调增益放大器的研究,主要是基于CMOS工艺的可调增益放大器的设计放大。宽带放大器在光纤通信、电子战设备及微波仪表等方面应用越来越广泛。这些系统一般要求放大器具有增益可调、宽频带、低噪音、工艺稳定等特点。可调增益放大器是一种通过改变电路某一参对量对放大器增益进行调节的放大器,广泛应用于无线通讯、医疗设备、助听器、磁盘驱动等领域。 差动放大电路又叫差分电路,他不仅能有效的放大直流信号,而且能有效的减小由于电源波动和晶体管随温度变化多引起的零点漂移,因而获得广泛的应用。特别是大量的应用于集成运放电路,他常被用作多级放大器的前置级。 基本差动放大电路由两个完全对称的共发射极单管放大电路组成,该电路的输入端是两个信号的输入,这两个信号的差值,为电路有效输入信号,电路的输出是对这两个输入信号之差的放大。设想这样一种情景,如果存在干扰信号,会对两个输入信号产生相同的干扰,通过二者之差,干扰信号的有效输入为零,这就达到了抗共模干扰的目的。 第一个使用真空管设计的放大器大约在1930年前后完成,这个放大器可以执行加与减的工作。今日的运算放大器,无论是使用晶体管(transistor)或真空管 (vacuum tube)、分立式(discrete)元件或集成电路(integrated circuits) 元件,运算放大器的效能都已经逐渐接近理想运算放大器的要求。早期 的运算放大器是使用真空管设计,现在则多半是集成电路式的元件。但 是如果系统对于放大器的需求超出集成电路放大器的需求时,常常会利 用分立式元件来实现这些特殊规格的运算放大器。 1960年代晚期,仙童半导体(Fairchild Semiconductor)推出了第一个被广泛使用的集成电路运算放大器,型号为μA709,设计者则是鲍伯?韦勒(Bob Widlar)。但是709很快地被随后而来的新产品μA741取代,741有着更好的性能,更为稳定,也更容易使用。741运算放大器成了微电子工业发展历史上一个独一无二的象征,历经了数十年的演进仍然没有被取代,很多集成电路的制造商至今仍然在生产741。直到今天μA741仍然是各大学电子工程系中讲解运放原理的典型教材。

增益可控射频放大器

增益可控射频放大器 一、系统方案 1、方案分析与比较 方案1:以高增益精度的压控VGA芯片AD603作为核心放大器,但频率再高时,效果很不理想,并且在级联时,很容易产生自激现象。 方案2:采用宽带可变增益FET放大电路,其缺点是增益步进控制难以实现,高频时频率的稳定性不好,在75MHz~108MHZ增益起伏较大,不能满足要求。 方案3:采用射频放大器AD8321+衰减器HMC472+放大器AD809的形式。第一级为AD8321三级级联,使增益倍数达到52dB。考虑到输入信号为高频信号,随着频率增加,幅度衰减增大,所以第二级加上可设置分贝衰减器,衰减器随着频率升高衰减效果明显,通过这样的方式使输出幅度稳定。但考虑实际拟合后,增益会稍微下降,最后通过第三级放大器将增益值稳定至输入增益。AD8321是一款低成本、数字控制式可变增益放大器,所需输出增益由8比特串行字决定,方便STM32程控,输出增益范围为-27.4dB~26dB,增益变化为0.75 dB/LSB。具有极低输出噪声电平,上行带宽高达235 MHz(最小增益),符合题目200MHz要求。 综上考虑,AD8321具有频带宽、噪声低、增益可编程,易于与STM32进行串行通信等优点,选用方案3。 2、系统整体设计 根据题目要求,本系统主要由:键盘控制,液晶显示、语音播报模块,三级AD8321级联,衰减器,第二级放大模块,滤波器电路,电压转换电路组成。总体设计框图如图一所示:

图一 二、理论分析与计算 1、射频放大器设计 按照本设计要求,带宽为40MHz~200MHz ,电压增益为52dB 。所以采用AD8321三级级联的方式。8321最大增益为26dB ,理论上总增益=26+26+26=78dB ,符合设计要求。并且阻抗之间已经匹配,级联时无需额外电阻网络。为了防止高频走线间干扰,采用贴片式电路,原理图是根据器件手册的应用电路来设计。 2、频带内增益起伏控制 造成通频带内增益起伏的原因有很多,包括带内波动、运放幅频响应不平坦及供电电源电压不稳等,为了降低增益波动,在三级放大输出加上衰减器,利用衰减器HMC472随着频率增高衰减效果明显的特性,使频带内增益起伏得到控制。对幅度衰减特性进行补偿,最后再加一级AD809,将增益稳定。 3、射频放大器稳定性 由于本系统的处理对象是高频信号,所以整个系统对噪声的处理要求很高才能保证射频放大器的稳定性。噪声来源包括:电源、外界环境、级间干扰,以及走线间相互干扰等。针对不同的噪声,采用了不同的处理措施: (1)电源干扰:使用电感、电容构成滤波电路,能有效滤除纹波。在每个运放的电源引脚并联去耦电容。 (2)外界环境干扰,为了防止外界干扰,可以将电源线和地线加宽,并且在制PCB 板时加以覆铜;对自动增益级及功率放大级增加屏蔽罩,提高其抗干扰性能。 (3)级间干扰,各级之间,采用了高低频电容来滤除高低频噪声。 DC-DC (9V ) DC-DC (5V ) AD8321 AD8321 AD8321 STM32 液晶显示 键盘 直流稳压电源 输入 输出 语音播报 AD809 滤波器 衰减器

模电音频功率放大器课程设计

课程设计报告 学生姓名:张浩学学号:201130903013 7 学 院:电气工程学院 班 级: 电自1116(实验111) 题 目: 模电音频功率放大电路设计 指导教师:张光烈职称: 2013 年 7月 4 日

1、设计题目:音频功率放大电路 2、设计任务目的与要求: 要求:设计并制作用晶体管和集成运算放大器组成的音频功率放大电路,负载为扬声器,阻抗8。 指标:频带宽50HZ~20kHZ,输出波形基本不失真;电路输出功率大于8W;输入灵敏度为100mV,输入阻抗不低于47KΩ。 模电这门课程主要讲了二极管,三极管,几种放大电路,信号运算与处理电路,正弦信号产生电路,直流稳压电源。功率放大器的作用是给音响放大器的负载RL(扬声器)提供一定的输出频率。当负载一定时,希望输出的功率尽可能大,输出的信号的非线性失真尽可能小,效率尽可能高。功率放大器的常见电路形式有OTL电路和OCL电路。有用继承运算放大器和晶体管组成的功率放大器,也有专集成电路功率放大器。本实验设计的是一个OTL功率放大器,该放大器采用复合管无输出耦合电容,并采用单电源供电。主要涉及了放大器的偏置电路克服交越失真,复合管的基本组合提高电路功率,交直流反馈电路,对称电路,并用multism软件对OTL 功率放大器进行仿真实现。根据电路图和给定的原件参数,使用multism 软件模拟电路,并对其进行静态分析,动态分析,显示波形图,计算数据等操作。 3、整体电路设计: ⑴方案比较: ①利用运放芯片 LM1875和各元器件组成音频功率放大电路,有保护电路,电源分别接+30v和-30v并且电源功率至少要50w,输出功率30w。 ②利用运放芯片TDA2030和各元器件组成音频功率放大电路,有保护电路,电源只需接+19v,另一端接地,负载是阻抗为8Ω的扬声器,输出功率大于8w。 通过比较,方案①的输出功率有30w,但其输入要求比较苛刻,添加了实验难度。而方案②的要求不高,并能满足设计要求,所以选取方案②来进行设计。 ⑵整体电路框图:

宽带放大器(B题)

宽带放大器(B题) 本设计由三个模块电路构成:前级放大电路(带AGC部分)、后级放大电路和单片机显示与控制模块。在前级放大电路中,用宽带运算放大器AD603两级级联放大输入信号,输出放大一定倍数的电压,经过后级放大电路达到大于8V的有效值输出。ADUC812的单片机显示、控制和数据处理模块除可以程控调节放大器的增益外,还可以实时显示输出电压有效值。 本设计采用高级压控增益器件,进行合理的级联和阻抗匹配,加入后级负反馈互补输出级,全面提高了增益带宽积和输出电压幅度。应用单片机和数字信号处理技术对增益进行预置和控制,AGC稳定性好,可控范围大,完成了题目的所有基本和发挥要求。 方案论证与比较 1.可控增益放大器部分 方案一简单的放大电路可以由三极管搭接的放大电路实现,图1为分立元件放大器电路图。为了满足增益60dB的要求,可以采用多级放大电路实现。对电路输出用二极管检波产生反馈电压调节前级电路实现自动增益的调节。本方案由于大量采用分立元件,如三极管等,电路比较复杂,工作点难于调整,尤其增益的定量调节非常困难。此外,由于采用多级放大,电路稳定性差,容易产生自激现象。 方案二为了易于实现最大60dB增益的调节,可以采用D/A芯片AD7520的电阻权网络改变反馈电压进而控制电路增益。又考虑到AD7520是一种廉价型的10位D/A转换芯片,其输出V out=Dn×Vref/210,其中Dn为10位数字量输入的二进制值,可满足210=1024挡增益调节,满足题目的精度要求。它由CMOS 电流开关和梯形电阻网络构成,具有结构简单、精确度高、体积小、控制方便、外围布线简化等特点,故可以采用AD7520来实现信号的程控衰减。但由于AD7520对输入参考电压Vref有一定幅度要求,为使输入信号在mV~V每一数

功率放大器设计(DOC)

电子电路设计实践 设计题目:直流稳压电源设计 系别:电气工程学院专业:电子信息工程 班级:2011级1 班姓名:腾伟峰 学号:201151746 指导教师:张全禹 时间:2013年3月17日 绥化学院电气工程学院

高频功率放大器 1设计要求 1.1 已知条件 +VCC=+12V,晶体管3DG130的主要参数为PCM=700mW,ICM=300mA,VCES≤0.6V,hfe≥30,fT≥150MHz,放大器功率增益AP≥6dB。晶体管3DA1的主要参数为PCM=1W,ICM=750mA,VCES≥1.5V,hfe≥10,fT=70MHz,AP≥13dB。 1.2 主要技术参数 输出功率P0≥500mW,工作中心频率f0≈5MHz,效率η>50%,负载RL=50Ω。 1.3 具体要求 分析高频功率放大器原理,通过给定的技术指标要求确定甲类功率放大器和丙类谐振功率放大器设计的工作状态和计算出电路中各器件参数,利用电子设计工具软件multisim对电路进行仿真测试,分析电路的特性。

2原理分析 高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器。 利用选频网络作为负载回路的功率放大器称为谐振功率放大器,这是无线电发射机中的重要组成部分。根据放大器电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型的功率放大器。电流导通角θ愈小,放大器的效率η愈高。如甲类功放的θ=180,效率η最高也只能达到50%,而丙类功放的θ< 90o,效率η可达到80%,甲类功率放大器适合作为中间级或输出功率较小的末级功率放大器。丙类功率放大器通常作为末级功放以获得较大的输出功率和较高的效率。图 1为丙类谐振功率放大器。 图 1 丙类谐振功率放大器

高增益宽带放大器的研究与设计

南京师范大学中北学院 毕业设计(论文)(2013届) 题目:高增益宽带放大器的研究与设计 专业:电子信息工程 姓名:XXX 学号: XXX 指导教师:王兴和职称:教授 填写日期: 2013-5-10 南京师范大学中北学院教务处制

摘要 在无线通信系统中,高增益宽带放大是其重要的组成部分,它性能的好坏对整个系统起着重要的的作用。随着通信技术的发展,军用和民用对其提出了更高的要求,对射发系统的研制提出了更高的要求甚至是全新的要求。 文章介绍了一种基于模拟运算放大器实现的增益可控的宽带放大器。该器件由三个部分组成,第一部分由运算放大器OPA2613组成,第二部分中间级连续可调增益由放大器OPA842完成,第三部分功放由AD811完成。工作频带宽可达3.9MHZ,增益调节0dB-53dB。放大器噪声小, 动态范围宽。在通频带内增益起伏为1dB左右。通过反馈电阻可调,可实现增益的变化。通过Multisim的仿真能达到良好的效果。整个系统工作可靠,稳定,而且成本低效率高。 关键词:OPA2613 OPA8421 AD811 可控增益带宽放大器

ABSTRACT In a wireless communication system, high-gain broadband amplification is an important part of that, It is good or bad performance of the whole system plays an important role. With the development of communication technology, military and civilian put forward higher requirements for it, Hair on the radio system development put forward higher requirements even entirely new requirements. This paper presents a simulation-based operational amplifier gain controlled wideband amplifier. The device consists of three parts, the first part of the operational amplifier OPA2613, and the second part of the intermediate stage adjustable gain amplifier OPA842 completed by the third part of the amplifier by the AD811 is completed. Frequency band up to 3.9MHZ, gain adjustment 0dB-53dB. Amplifier noise, wide dynamic range. Ups and downs in the pass band gain is about 1dB.. Adjustable through the feedback resistor, the gain variation can be achieved. By Multisim simulation can achieve good results. The whole system is reliable, stable and cost-inefficient rate. Key words: OPA2613 OPA8421 AD811 Controllable gain Bandwidth amplifier

功率放大器课程设计

功率放大器课程设计

辽宁工业大学 模拟电子技术基础课程设计(论文)题目:OCL功率放大器

课程设计(论文)任务及评语 院(系):电子与信息工程学院教研室:电子信息与工程学号学生姓名专业班级 课程 设计 (论 OCL功率放大器 文) 题目

指 导 教 师 评 语 及 成 绩 平时:论文质量:答辩: 总成绩:指导教师签字:年月日 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 放大电路实质上都是能量转换电路。从能量控制的观点来看,功率放大电路和电压放大电路没有本质的区别。但是,功率放大电路和电压放大电路所要完成的任务是不同的。其中功率放大电路的要求为获得一定的不失真(或失真较小)的输出功率,而电压放大电路的主要要求为使其输出端得到不失真的电压信号。 OCL功率放大器是一种直接耦合的功率放大器,它具有频响宽,保真度高。动态特性好及易于集成化等特点。OCL是英文Output Capacitor Less的缩写,意为无输出电容。采用双端电源供电,使用了正负电源,在电压不太高的情况下,也能获得比较大的输出功率,省去了输出端的耦合电容。使放大器低频特性得到扩展。OCL功率放大电路也是定压式输出电路,由于电路性能比较好,所以广泛的应用在高保真扩音设备中。性能优良的集成功率放大器给电子电路的功放级的调试带来了极大的方便。本次课程设计主要采用分立元件电路法进行设计。分别设计直流稳压电源,前置放大电路以及功率放大电路。其中前置放大电路采用差分式放大电路。 关键词:OCL功率放大器;功率放大电路;无输出电容;能量转换电路

宽带直流放大器设计方案

宽带直流放大器方案设计 一、方案的选择和论证 分析题目要求,设计需要满足以下几个技术指标:在输入电压有效值Vi≤10 mV 情况下放大器电压增益必须大于60dB,且电压增益为60dB时,输出端噪声电压的峰-峰值VONPP≤0.3V。另外,3dB通频带0~10MHz;在0~9MHz通频带内增益起伏≤1dB,能为50欧姆的负载输出正弦有效值10V的电压。 基于以上要求,我们把整个放大器分为5个板块来设计。前置缓冲级,中间增益可调放大级,后级功率放大电路,电源部分和滤波器。 系统总体框图: 1.前置缓冲级方案论证 方案一:采用宽带高精度集成运放。 缓冲级对整个放大电路来说尤为重要,高质量的前级是放大电路的基本保障,故本设计中采用宽带高精度低噪声运算放大器OPA620构成电压增益为6dB的缓冲级。该运放增益宽带乘积为200M赫兹,能很好的满足题目要求。 方案二:采用普通运放。 普通运放虽然价格稍低,但是带宽和精度都十分有限,理论上虽然能用反馈的方式扩宽通频带,但是题目要求的10M赫兹频带太宽,故普通低价的运放很难达到实验要求。 比较上述两种方案,方案一能更好的完善题要求的指标,方案二虽然成本较低,但是不容易达到题目要求,且前级配置的高低对后级电路影响很大。故选择方案一。 2.中间增益放大级方案论证 方案一:采用三极管构成多级放大电路

若用分立元件构成60dB放大器,则须采用三极管构成的多级放大器。此方案有选材方便和成本较低的优点,但是选择性能合适的三级管比较费时间,选择合适的三极管配对组合更是不容易,并且题目给出的指标较高,三级管构成的多级放大器容易引起更多的干扰,影响放大质量。此外,晶体管构成的多级放大电路不易实现大范围的增益连续可调,这是相比于集成运算放大器的又一大缺点。所以,我们对下一种方案进行论证。 方案二:使用集成运放OPA620构成2级放大 单个OPA620的增益可调范围为 -20bB — +20dB ,采用两级相连,则可以实现-40dB-+40dB的可调范围。从厂商的数据手册可以看出,OPA620外围电路简单,容易操控,通频带内增益起伏小于0.05dB,且放大效果较好。但是若要求实现提高部分0-60dB全范围的连续可调,两级OPA620放大则不能达到题目要求。 方案三:使用低噪声增益可控放大器AD603 使用两级AD603构成的增益可调放大电路。 AD603是主要用于RF和IF AGC系统的低噪声可调增益放大器,它具有引脚可编程增益功能,可以使用一个外部电阻设置增益范围内的任何增益子范围,控制接口可以输入差分电压,也可以输入单端的正控制或负控制电压,使用十分方便。单级AD603便可以实现0-40dB的电压放大,且该增益范围内有30MHz的频带宽,性能优异,如果采用两级连放,理论上可以实现0-80dB的增益可调范围,能满足题目要求。其次,AD603构成的增益可控放大电路有很大的提升空间,可以通过电位器获取基准电压进行手动控制,通过模拟开关连接电阻器实现增益程控,通过单片机配合DAC模块实现不同精度的增益数控。 所以比较上述两种方案,AD603与OPA620相比,容易实现增益数控,AD603有更高的性价比,我们最终选择方案三。 3.增益控制电路 方案一:单片机和数模转换芯片实现增益可调 使用89C51单片机,选择稳定的基准电压,配合DAC0832输出电压信号控制AD603,从而实现增益数控。 DAC0832是采样频率为8位的D/A转换芯片,集成电路内有两级输入寄存器,D/A转换结果采用电流形式输出,理论精度为1/256,能满足增益步进5dB的要求。该芯片价格便宜,使用方便,算是较常用的8位DAC芯片。该芯片为电流输出型,若采用该芯片实现AD603的增益可控,则须在输出端加上运算放大器LM324,实现电流到电压的转换,从而稳定实现增益可调。 方案二:单片机、模拟开关和电阻网络实现增益可调 使用89C51单片机,配合模拟开关控制不少于12个串联的电阻,通过取得电阻上的稳定电压控制AD603,从而实现步进为5dB的增益数控。模拟开关控制电阻网络与DAC模块工作原理相似,但是精度就远远不如8位DAC,并且使用模拟开关和电阻网络扩大了控制电路,电路集成度降低,引入更多的干扰因素。再者,从成本上看来,该方案也是不经济的。 方案三:滑动变阻器实现增益手动可调 通过电位器获取与基准电压成一定比例的控制电压输入AD603控制端,实现手动增益可调。 该方案很容易实现增益连续可调,相比以上两种方案成本是最低的,理论控制精度最高,精度仅有电阻器可调精度决定,但是此方案仅适用于固定范围内的手动

相关文档
最新文档