工业硅技术问答

工业硅技术问答
工业硅技术问答

工业硅技术问答

1.什么是硅和工业硅?

元素硅(Si)原来称为矽,工业硅(也称金属硅或结晶硅)是指以含氧化硅的矿物和碳质还原剂等为原料经矿热炉熔炼制得的含Si97%以上的产物。“工业硅”之称是我国于1981年GB2881-81国家标准公布时正式定名,其含意主要是指这种硅之纯度是接近于99%的工业纯度,英文称为金属硅,俄文称为结晶硅。现在人工制得硅的纯度,实际上已达到99999999999%。

2.硅和工业硅有那些特性?

①硅的主要物理性质为:密度(25℃)2.329g/cm3(纯度99.9%),熔点1413℃,沸点3145℃,平均比热(0~100℃)为729J /(kg·K),熔化热为50.66kJ/mol,纯度为99.41%的硅抗压强度极限为9.43kgf/cm2。

②硅的化学性质:硅在元素周期表中属ⅣA族,原子序数为14,原子量为28.0855,化合价表现为四价或二价(四价化合物为稳定型)。因晶体硅的每个硅原子与另外四个硅原子形成共价键,其Si-Si键长2.35A,成为正四面体型结构,与金刚石结构相近,所以硅的硬度大,熔点、沸点高。

硅不溶于任何浓度的酸中,但能溶于硝酸与氢氟酸的混合液中,与1:l浓度的混合稀酸发生如下反应:

Si+4HF+4HNO3=SiF4↑+4NO2↑+4H2O

3Si+12HF+4HNO3=3SiF4↑+4NO2↑+8H2O

这个特性可用于硅的化学分析中,即先将试样硅中的硅以氟化物形式挥发,而分析硅中残留的铁、铝、钙元素。

硅能与碱反应,生成硅酸盐,同时放出氢气,如:

Si+2NaOH+H2O=Na2SiO3+2H2↑

这是野外制氢的好办法。

硅与卤族元素反应,生成相应化合物,如:

Si+2F2=SiF4

Si+2Cl2=SiCl4

这是利用工业硅制取多晶硅的主要反应之一。

硅在高温下能与氧化合,生成SiO2或SiO:

2Si+O2=2SiO

这是工业硅生产中,发生在电弧区的副反应,可造成硅的挥发损失,降低冶炼中硅的实收率。固体SiO的密度为2.13~2.15g/cm 3。

硅的其它化合物:硅与硫的化合物有:SiS、SiS2,高温下易挥发。硅可以与氢、氮化合生成SiH4、SiH6……和Si2N3、Si3N4等化合物。硅几乎能与所有非金属生成化合物,如:

Si+C=SiC

SiC具有良好的耐磨、耐高温性能。在工业上,SiC是在电阻炉内用硅石、石油焦、木屑等制得的,主要用做磨料、耐火材料和电热元件。

硅可与大多数熔融金属互溶,并生成多种硅化物。

硅的氧化物:硅的氧化物有SiO和SiO2两种。SiO2熔点为1720℃,沸点为3500℃。

③工业硅的物理化学性质

工业硅除含有97%以上的硅外,还含有不同数量的其他元素,除了含有铁、铝、钙等金属元素的氧化物外,尚含有钛、锰、镍,锌、镁等金属元素,约占工业硅的0.08~0.10%,含有氧、碳、硼、磷等非金属杂质,占工业硅的0.2~0.3%。此外,硅锭中还含有其他一些夹杂物。一般情况下,工业硅中铁、铝、钙外的各种杂质总量约为工业硅的0.5%,致使工业硅的物理化学性质与元素硅略有不同,其特性值不是一个定数,而是一个范围。如密度为2.3~2.4g/cm3(20℃时),熔点1410℃左右,电阻率约为1×10-3Ω·cm(1700℃时)。多种杂质元素及其化合物的存在和参与反应,致使工业硅生产的化学反应机构和生成物及相图等更为复杂。

3.工业硅有哪些用途?

工业硅现已广泛用于配制合金、制取高纯半导体材料和有机硅等方面。

(1)配制合金

①配制铝基合金:铝硅合金是铸造合金中品种最多、用量最大的合金。工业用铝硅合金硅含量可达25%。硅加入铝合金后,可提高合金的强度,增大抗氧化和耐腐蚀能力,密度变小,热膨胀系数小,铸造性能好,合金铸件具有高抗冲击性和高压下的致密性。

②配制铜基合金及其他合金:硅的铜基合金,如硅青铜,有良好的焊接性能,可作储罐,冲击时不易产生火花,可以防爆。ZQSiD3青铜在海水或石油中有高的抗蚀性。

③制作冷轧硅钢片:钢中加入硅后,能大大改善钢的磁性,增大导磁率,降低磁滞和涡流损失。含硅4%左右的硅钢片,可用于制造变压器和电机的铁芯。现在正向生产高硅含量的硅钢发展,外国已能生产含硅12%、冷轧厚度0.08mm的硅钢片。

(2)制造高纯半导体

用作半导体的材料种类很多,但最为通用的还是硅和锗。硅的熔点高、热稳定性好(锗元件的工作温度低于80℃,而硅元件的工作温度可达200℃),且禁带宽度大,资源丰富,硅的应用已超过锗。当今在新的产业革命浪潮中,社会己进人信息化,用硅半导体制成的集成电路和大型集成电路,在工业发达国家已应用于各个领域,被称为“产业之米”,人们已把20世纪称为“原子能和半导体世纪”。

半导体硅的制取,一般分为两个阶段:工业硅先通过化学、物理方式提纯制取高纯多晶硅,再进一步提纯多晶硅,并将晶体无序排列的多晶硅熔化拉制成单一方向结晶的单晶硅。单晶硅主要用作集成电路和电子元器件及太阳能电池等各方面。太阳能电

池的研制是近年来随着新能源的开发兴起的,近年来我国正在大力发展太阳能电池产业。

(2)制作有机硅

工业硅用于有机硅的发展最快,应用的领域也最广,可合成的产品种类达5000多种,故被称为“工业味精”。

有机硅的制造可分为单体合成、水解、缩合三步。单体合成,以甲基单体为例,是用200目硅粉与氯化铜按Cu:Si=15:85混合,在270~300℃下通入CH3Cl而制得。生成1kS甲基单体耗用硅粉0.46kg。合成的主要反应为:

Si十3CH3C1→CH3SiCl2+C2H6

此外还可生成(CH3)2SiCl2;(CH3)3SiCl。通常把CH3SiCl3、(CH3)2SiCl2,(CH3)3SiCl分别称为I甲基、Ⅱ甲基、Ⅲ甲基单体。除甲基单体外,还有苯基单体,通式为(C6H5)n SiCl4-n(n=1,2,3)。由这些单体可制成硅橡胶、硅树脂、硅油。

硅橡胶是由极纯的Ⅱ甲基单体水解成极长的硅氧键,在--70℃奎200℃范围内能保持弹性,可做高温垫圈等。

硅树脂是由1甲基与I甲基单体水解缩合成的网状结构体,用于生产绝缘漆、耐热温度达180~200℃,还可用于生产高温涂料。此外,聚乙烯硅铜钠等树脂。涂在化工加热蒸发结晶的换热器上,可延缓结垢速度,提高热交换效率。

硅油是由Ⅱ甲基与置甲基单体水解缩合成的链状分子结构油状物,其粘度受温度影响很小,用于高级润滑剂、上光剂、流体弹簧、介电液体等方面,还可加工成无色透明的液体,喷在建筑物上防水。

(4)制作耐高温材料和其他材料

制作氮化硅(Si3N4)。氮化硅是新型的耐热、耐磨、耐腐材料。它是在氮气氛下,将粒度小于250目的硅粉加热到1250—1400℃而制得:

3Si十2N2=Si3N4

制作涂面材料。将硅、碳化硅磨成200目粉末后与其他物质混合,用ZCDP-3型金属喷枪,喷到石墨电极表面,涂层厚0.5~1.0mm,这样可提高电极氧化温度,在相同使用条件下,电极净耗降低17%。

钢件表面渗硅。钢件在1000~1200℃下的SiCl4相中进行表面渗硅,渗硅过程的机理是:

4Fe+3SiCl4→3Si+4FeCi3

析出的硅形成Si-Fe扩散层覆盖在钢件表面,可提高钢件的抗腐性能。

用于硅热法冶炼高熔点工业硅或微碳工业硅。其机理是:

MeO十Si→SiO2+Me

即硅还原某种金属的金属氧化物。多数工业硅用硅铁做还原剂,如生产钼铁用75%SiFe,铌铁用90%SiFe,钒铁用90%SiFe。但少数合金,如含钨80%的钨铁等需用工业硅做还原剂。

把硅、二氧化硅与石灰石等混合,进行水热反应,可生成泡沫铝的发泡剂。泡沫铝耐火、耐热性能高,易加工,是理想的装饰材料。人们还研制出把硅、锌和铜的再生物加工成混合物,掺人剧纺织品中,制成不沾附尘土和脏物的权料,这种衣料不需经常洗涤,能经久耐用。

随着国民经济和近代科学技术的发展,工业硅的应用领域和用量仍在不断扩大。

4.我国工业硅产品的标准是什么?

不同国家的化学用硅,是根据实际需要按不同标准生产的。

⑴1961年冶金工业部颁布了YB94-60《结晶硅分类及技术条件》,1981年经国家标准总局批准,发布了GB2881-81《工业硅技术条件》如下表:

⑵我国国家技术监督局1991年10月5日发布的GB/T 2881—91《工业硅技术条件》,首次列出了我国的化学用硅标准。1991年修订的工业硅化学成分如下表:

⑶我国国家质量监督检验检疫总局和国家标准管理委员会于2008年3月31日发布的GB/T 2881-2008《工业硅标准》(替代GB/T 2881-1991《工业硅技术条件》)。标准规定的工业硅化学成分如下表:

5.工业硅生产的任务是什么?

工业硅生产的基本任务就是把硅元素从硅石或氧化物中提取出来。理论上可以通过热分解、还原剂还原和电解等方法生产。在这三种方法中,最后一种方法属于湿法冶金范畴,在湿法冶金中予以讨论。

第一种方法在实际生产中会带来很多困难,因为组成工业硅的各类元素与氧的亲和力很大,除了少数元素的高价氧化物外,其他的氧化物都很稳定,通常要在2000℃以上才能分解,这样高的温度在实际生产中会带来很多困难,因此目前没有一种工业硅是用热分解方法制取的。绝大多数工业硅都足通过第二种方法即用还原剂还原来制取。

6.工业硅生产方法的特点什么?

工业硅生产采用三相矿热炉,用连续操作法进行生产。

所谓连续操作法,就是随着炉料经受高温后,不断地反应和熔化,使料面相应地下降;同时不断地补加新炉料,炉膛中的炉料始终保持饱满状态。根据炉内熔炼积存的硅量定期地放出。在整个冶炼过程中,电极插入炉料内较深,不露电弧,故热量损失少,炉温高。由于工业硅冶炼的这些特点,整个冶炼过程不分阶段,这种方法叫连续操作法。

使用矿热炉生产工业硅采用连续加料方法,根据电极有效相电压和炉膛的电流密度保持炉料层距炉底的高度。采用该种方法生产工业硅能够降低电耗和提高硅从原料中的回收率。

7.什么是硅的电热熔炼法及其优点?

电热法特点:以电流电弧作为高温热源,同时还有电流通过炉料时产生的电阻热和还原剂潜热,因而能量集中,形成高温反应区,特别适合一些高熔点或难还原氧化物的还原熔炼。

电热法同其他冶炼方法相比还有优点:

①熔炼加热过程主要是由取决于输入电压和电流的电炉容量决定的,过程易于管理、调整和控制。

②就加热过程而言,与炉内气体的形式和组成无关,不受燃料质量和种类等外部因素的影响。

③用碳还原氧化物可产生高发热量的气体,如能有效回收之,可用做热源或其他目的。

④特别有效的是缺乏固体、液体燃料而有丰富水电的地区。

⑤电热法同生产铝等电解法比,具有单位产能投资少,单体设备生产率高,不需变交流为直流电的整流装置等优点。

8.碳热还原有什么特点?

①用碳还原氧化硅,形成的气态反应产物——碳的氧化物可连续从反应区排出,有利于还原反应向制得金属的方向进行。

②碳还原氧化物的能力随温度的升高而增强,各种金属氧化

物,在一定条件下几乎都能被碳还原。

③碳质原料(石油焦、低灰分烟煤、木炭、沥青焦等)来源较广泛,价格较便宜。

④用碳还原氧化硅,可产生碳化硅,如处理不当,可造成金属损失,给熔炼过程造成困难。

⑤在高温下随着碳热还原过程的进行,还要吸收大量的热。

9. 工业硅炉的是怎么分类的?

工业硅炉一般根据矿热炉的设备特点分以下几种类型:

⑴按电极相数分为单相单电极、三相三电极和三相六电极电炉;

⑵按烟罩或炉盖设置形式可分为高烟罩及矮烟罩敞口式电炉、矮烟罩半封闭式电炉和全封闭式电炉;

⑶按炉体可分为固定式和旋转式电炉。

我国大多数采用矮烟罩半封闭式固定式电炉,少数采用全封闭式旋转电炉。

工业硅炉大小是根据矿热炉变压器容量大小而定的,可分为小型电炉(≤2000kVA)、中型电炉(2000~9000 kVA)和大型电炉(>9000 kVA)。目前我国大多数容量为6300~12500 kVA,也有少数的16500~25500 kVA,最大容量为39000 kVA,而南非已于70年代建成48000 kVA容量的工业硅炉。

10.工业硅的生产工艺流程是什么?

原3mm)

准8mm

备弃掉

(20~合格料(煤~20mm)

合格料合格料合格料木块(50~150mm)

熔水

炼电极

碎合格粒度硅块(6~100mm)

第2章工业硅冶炼原理

11.用还原剂还原法制取工业硅的反应通式是什么?

通常用还原剂还原法制取工业硅反应的通式为:

yA m O x +nxB=myA+xB n O y

式中A m O x-矿石中含合金元素的氧化物;

B—所用的还原剂;

A—提取的合金元素;

R n O y—还原剂被氧化后生成的氧化物。

这个式子意味着,还原剂B对氧的亲和力大于被还原的金属对氧的亲和力,这就是金属氧化物还原的热力学条件。这个式子也规定了还原剂的条件是:作为还原剂,它对氧的亲和力必须大于被还原金属对氧的亲和力。

12.反应热效应的意义是什么?

反应的热效应是一个重要的热力学函数。当物质进行化学反应和物理变化时,放出和吸收的热叫这个过程的热效应,热效应用ΔH 表示。

热效应在冶金中得到了广泛的应用,例如在工业硅生产中,使用的主要物质和炉内各相的主要成分是互相联系的,彼此进行着物质、热量和能量的交换,因此用热效应研究和分析反应进行的可能性和金属氧化物可还原性的顺序,对工业硅的生产具有重要的意义。

13.反应的标准吉布斯自由能变化△G θ

的意义是什么? 反应的标准吉布斯自由能变化△G θ是一个重要的热力学函数,用它可以判断过程自动进行的方向,在工业硅生产中得到广泛的应用。可以创造条件使反应沿着预期的方向进行,达到预期的目的。

欲使反应向冶炼需要的方向进行,即向生成物A 的方向进行,

则反应的标准吉布斯自由能变化必须是负值,即ΔG θ〈0。反应的

标准吉布斯自由能变化△G θ可以根据标准生成吉布斯自由能数据

计算得到,即:

ΔG θ-∑n j ΔθG (生成物)-∑n i ΔθG (反应物) 14.氧化物的稳定性有哪些表示方法?

在火法冶金和湿法冶金中研究人员对氧化物的稳定性进行了广泛的研究。氧化物的稳定性可用氧化物分解压大小表示。在一定温度下,分解压越小,该氧化物越稳定,越不易分解和被还原;相反,分解压越大,该氧化物越不稳定,易分解和被还原。

例如,氧化物CaO 、Cr 2O 3、SiO 2、Al 2O 3,在1600℃时它们的分解压分别为CO O 2p =5. 830×10-19 Pa ,522O Cr O p =1. 570×10-7Pa ,22SiO

O p =2.

166×10-11 Pa ,322O Al O p =2. 730×10-15

Pa ,因此它们的稳定性由大到小的次序为:CaO ,A12O 3,SiO 2,Cr 203。

氧化物的稳定性也可用标准生成自由能表示,即1mol 氧与某单质化合的生成自由能负值越大,则该氧化物就越稳定。

15.化学反应速率的意义是什么?

我们研究了反应的自由能变化ΔG θ和平衡常数K ,它们分别表

示反应进行的方向和限度,这是两个重要的热力学函数。然而热力学只能给我们指明反应的可能性,而反应的实现则需要考虑反应速率等动力学因素,因此我们要简单研究一下反应速率。化学反应速率通常用一个参与反应的物质的浓度随时间的变化速率表示,化学反应速率的通式为: n kc dt dc

=-

式中 c ——反应物的浓度;

n ——反应的级数;

k ——反应速率常数,与温度、压力、扩散速度、相界面大小等因素有关。

式中,负号“-”表示反应物浓度逐渐减少的方向。当用反应物表示浓度时,前面为负号;当用生成物表示浓度时,前面不加负号。

影响化学反应速率的因素很多,化学反应速率除与物质的本性有关外,还与催化剂种类、浓度、压力、温度、扩散速度和相界面大小等因素有关。例如扩散速度大,相界面大反应速度就快,为了扩大相界面,选用的还原剂粒度要适当小些;同时采用各种手段进行搅拌,以增大相界面积扩散速度;而温度越高,熔体的流动性就越好。工业硅生产主要是熔体与还原剂的反应,要获得流动性良好的熔体必须将熔渣过热到一定温度,实际生产时冶炼温度通常比熔渣的熔点高100~200℃。

16.工业硅冶炼的基本原理是什么?

冶炼工业硅主要原料是硅石,硅石中含二氧化硅约99%。二氧化硅很稳定.硅和氧之间的亲和力很强,不易分离。生产上为了把氧从二氧化硅分离除去,采用在矿热炉内高温条件下,以炭质还原剂中的碳夺取二氧化硅中的氧。而且温度越高,碳夺取氧的能力随之增强,这是因为在高温条件下,碳对氧的结合力比硅对氧的结合力大。可见高温时有了碳,二氧化硅就不稳定了,这时二氧化硅中的氧和碳进行反应,生成气态的一氧化碳,通过料层从炉口逸出。二氧化硅中的氧被碳夺走后,剩下的硅形成工业硅。

二氧化硅与碳作用其反应式如下:

SiO2+2C=Si+2CO↑

上式是吸热反应,从反应式中可知,为了加速反应的进行,应把电极往炉料中插的深些,以提高炉温,扩大坩埚区,同时应增加料面的透气性,使一氧化碳气体尽快逸出。如采取扎透气眼、捣炉等措施,均有利于二氧化硅与碳的反应加速进行,使工业硅较快地生成。

从化学反应上说一般认为,氧化物中的氧被其他物质夺去的反应,叫还原反应。夺取氧的物质,叫还原剂如石油焦等。

依上述工业硅冶炼原理是还原过程。

反应过程中,硅石内的二氧化硅绝大部分被碳还原之外,其他杂质和还原剂带入的灰分,如 (Fe2O3)、三氧化二铝(A1203)和氧化钙(CaO)等也被碳还原,其中三氧化二铁绝大部分被还原。各反应式如下:

Fe2O3+3C=2Fe+3CO↑

Al2O3+3C=2A1+3CO↑

CaO+C=Ca+CO↑

各反应中生成的一氧化碳气体,从炉口逸出,其他生成物如铁、铝和钙等进入工业硅中,因此,要求原料中的杂质尽量少,以保证工业硅的质量。

在冶炼过程中有少部分的二氧化硅,三氧二化铝和氧化钙等未被还原,而形成炉渣。炉渣成分约含SiO 230~40%;Al 2O 345~60%;CaO10~20%。此种炉渣熔点约为1600—1700℃。渣量大时,消耗电量增加,同时过粘的炉渣,不易从炉内排除,引起炉况恶化。故要采用较好的原料,以减少渣量,降低单位电耗。

正常情况下,渣量控制在不大于工业硅量的百分之五为宜,以上是工业硅冶炼基本原理,工业硅冶炼的基本反应是:

SiO 2+2C=Si +2CO ↑

实际炉内的化学反应比这复杂。实验证明氧化物的还原,是由高价氧化物逐步还原成低价氧化物。二氧化硅的还原,在高温情况下,首先被还原成一氧化硅(SiO),而后再被还原成硅(Si),其顺序是SiO 2→SiO →Si

17.一氧化硅在冶炼反应中的作用是什么?

冶炼工业硅,在1700~1800℃时,将发生如下反应:

SiO 2+C=SiO +CO ↑

也就是说二氧化硅首先被碳还原成一氧化硅,然后再被还原成硅,其反应式如下:

SiO +C=Si +CO ↑

被还原出来的硅,部分的将和二氧化硅作用,又产生一氧化硅,其反应式如下:

SiO 2+Si=2SiO

从上述的三个反应式中,可以看到一氧化硅对促进冶炼反应的进行是个重要环节。一氧化硅在高温情况下是以气体状态存在,低温时不稳定。因此,一氧化硅在炉内坩埚中是气体,少量的一氧化硅从炉口逸出后,被空气氧化(SiO+2

1O 2=SiO 2)而成为二氧化硅,冷却后呈灰白色,部分凝结在电极、铜瓦等处。在约为1700℃以上高温时,大部分的一氧化硅挥发到还原剂的气孔中,广泛地和碳接触并作用,按第二个反应式,还原成硅,其中大部分硅形

成工业硅,少部分的硅在高温区与二氧化硅作用,按最后反应式又生成一氧化硅,然后又和碳进行反应,结果反应连续不断地进行。由此可知.一氧化硅不但是反应的中间产物,同时,它可促进反应加速进行。

由于一氧化硅在高温下是气体,易挥发而损失掉,尤其当塌料或大刺火时,逸出或喷出的白色气体多是一氧化硅。因此,要求及时处理塌料或大刺火的现象,否则,将造成一氧化硅的大量损失,减少产量,增高单位电耗。

18.反应中碳化硅的产生和破坏的原因是什么?

冶炼工业硅时在反应中二氧化硅首先被还原成一氧化硅。部分的一氧化硅气体在上升过程中与料层中还原剂接触并作用后,较易生成碳化硅。其反应式如下:

SiO+2C=SiC+C0↑

冶炼过程中,还原剂加入量过多时,更易产生碳化硅。其反应式如下:

SiO2+3C=SiC+2CO↑

往往在修炉时于料层内部发现大量碳化硅(冷却后呈褐色,稍有光泽并是针状结晶),说明产生碳化硅的反应是存在的,并且是中间产物。

碳化硅(SiC)的熔点约为2500℃,不易熔化,电阻小,导电性强。因此,炉中积存过多碳化硅,使炉况恶化。

冶炼工业硅,碳化硅不易被破坏,所以,碳化硅对炉况影响很大。碳化硅在高温时可被二氧化硅所破坏,其反应式如下:

SiO2+2SiC=3Si+2CO↑

2SiO2+SiC=3SiO+CO↑

较大容量工业硅电炉,因炉温高,碳化硅易被破坏。碳化硅在高温时还可以被一氧化硅破坏,其反应如下:

SiO+SiC=2Si+CO↑

较小容量的电炉中冶炼工业硅时,由于炉内温度较低,破坏碳化硅的反应,不易充分进行,因此,有时有较多的碳化硅存在炉内,因它的熔点高,导电性强,致使电极不能较深地插入炉料,造成炉况恶化。此种情况在较小容量的工业硅电炉是比较经常发现的,为了纠正这种不正常现象,应将炉中碳化硅尽量掘出,同时适当地减少还原剂加入量,以改善炉况。

待续

工业企业会计每月工作流程

工业企业会计每月工作流程 1、审核原始凭证。 2、根据原始凭证编制记账凭证。 3、根据记账凭证登记各种明细账。 4、产品成本核算: (1 )核算间接部门费用(制造费用) 直接部门的投入(生产成本) (2 )制造费用在间接部门之间分摊,然后结转入生产成本。 (3 )计算当期材料收发存。 (4 )生产成本在完工产品与在产品之间分配。 5、月末作相关的提取、摊销、结转凭证。 6、根据记账凭证、结转凭证编制科目汇总表。 7、根据科目汇总表登记总帐。 8、月末结帐、对帐,做到帐证相符、帐帐相符、帐实相符。 9、编制会计报表。 10、装订凭证。 11、每月的纳税申报一定要及时。 会计处理流程: 如果企业的规模小,业务量不多,可以不设置明细分类账,直接将逐笔业务登记总账。实际会计实务要求会计人员每发生一笔业务就要登记入明细分类账中。而总账中的数额是直接将科目汇总表的数额抄过去。企业可以根据业务量每隔五天,十天,十五天,或是一个月编制一次科目汇总表。如果业务相当大。也可以一天一编的。 二、具体内容: 1、每个月所要做的第一件事就是根据原始凭证登记记账凭证(做记账凭证时一定要有财务(经理)有签字权的人签字后你在做),然后月末或定期编制科目汇总表登记总账(之所以月末登记就是因为要通过科目汇总表试算平衡,保证记录记算不出错),每发生一笔业务就根据记账凭证登记明细账。 2、月末还要注意提取折旧,待摊费用的摊销等,若是新的企业开办费在第一个月全部转入费用。计提折旧的分录是借管理费用或是制造费用贷累计折旧,这个折旧额是根据固定资产原值,净值和使用年限计算出来的。月末还要提取税金及附加,实际是地税这一块。就是提取税金及附加,有城建税,教育费附加等,有税务决定。 3、月末编制完科目汇总表之后,编制两个分录。第一个分录:将损益类科目的总发生额转入本年利润,借主营业务收入(投资收益,其他业务收入等)贷本年利润。第二个分录:借本年利润贷主营业务成本(主营业务税金及附加,其他业务成本等)。转入后如果差额在借方则为亏损不需要交所得税,如果在贷方则说明盈利需交所得税,计算方法,所得税=贷方差额*所得税税率,然后做记账凭证,借所得税贷应交税金--应交所得税,借本年利润贷所得税( 所得税虽然和利润有关,但并不是亏损一定不交纳所得税,主要是看调整后的应纳税所得额是否是正数,如果是正数就要计算所得税,同时还要注意所得税核算方法,采用应付税款法时,所得税科目和应交税金科目金额是相等的,采用纳税影响法时,存在时间性差异时所得税科目和应交税金科目金额是不相等的)。 4、最后根据总账的资产(货币资金,固定资产,应收账款,应收票据,短期投资等)负债(应付票据,应附账款等)所有者权益(实收资料,资本公积,未分配利润,盈余公积)科目的余额(是指总账科目上的最后一天上面所登记的数额)编制资产负债表,根据总账或科目汇总表的损益类科目(如管理费用,主营业务

硅材料的制备

门户--黄页--价格监测--光伏杂志--专题 导语:现阶段光伏行业,单晶硅电池和多晶硅电池是比较常见的两种太阳能电池,他们各有优缺点,近来集合两种电池 优点于一身的准单晶电池逐渐进入人们的视野。生产制造这几种太阳能电池的原材料是硅锭,根据分类的不同,硅锭可 以由多种不同的制备方法制得。硅锭再经过表面整形、定向、切割、研磨、腐蚀、抛光和清洗等一系列工艺处理之后, 加工成制造太阳能电池的基本材料——硅片。 一、单晶硅

1.概念 单晶硅,英文,Monocrystalline silicon,是硅的单晶体。具有基本完整的点阵结构的晶体。不同的方向具有不同的性质,是一种良好的半导材料。纯度要求达到99.9999%,甚至达到99.9999999%以上。用于制造半导体器件、太阳能电池等。用高纯度的多晶硅在单晶炉内拉制而成。 熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。 单晶硅 2.制备方法 单晶硅按晶体生长方法的不同,主要分为直拉法(CZ)和区熔法(FZ)。 直拉法:直拉法又称切克劳斯基法,它是在1917年有切克劳斯基(Czochralski)建立起来的一种晶体生长方法,简称CZ法。直拉单晶制造是把原料多硅晶块放入石英坩埚中,在单晶炉中加热融化,再将一根直径只有10mm的棒状晶种(称籽晶)浸入融液中。在合适的温度下,融液中的硅原子会顺着晶种的硅原子排列结构在固液交界面上形成规则的结晶,成为单晶体。把晶种微微的旋转向上提升,融液中的硅原子会在前面形成的单晶体上继续

结晶,并延续其规则的原子排列结构。若整个结晶环境稳定,就可以周而复始的形成结晶,最后形成一根圆柱形的原子排列整齐的硅单晶晶体,即硅单晶锭。当结晶加快时,晶体直径会变粗,提高升速可以使直径变细,增加温度能抑制结晶速度。反之,若结晶变慢,直径变细,则通过降低拉速和降温去控制。拉晶开始,先引出一定长度,直径为3~5mm的细颈,以消除结晶位错,这个过程叫做引晶。然后放大单晶体直径至工艺要求,进入等径阶段,直至大部分硅融液都结晶成单晶锭,只剩下少量剩料。 控制直径,保证晶体等径生长是单晶制造的重要环节。硅的熔点约为1450℃,拉晶过程始终保持在高温负压的环境中进行。直径检测必须隔着观察窗在拉晶炉体外部非接触式实现。拉晶过程中,固态晶体与液态融液的交界处会形成一个明亮的光环,亮度很高,称为光圈。它其实是固液交界面处的弯月面对坩埚壁亮光的反射。当晶体变粗时,光圈直径变大,反之则变小。通过对光圈直径变化的检测,可以反映出单晶直径的变化情况。自动直径检测就是基于这个原理发展起来的。 直拉法

生产工艺流程简述

生产工艺流程简述 清棉工序 1.主要任务:(1)将紧压的原纤维松解成较小的纤维块或纤维束,以利混合、除杂作用的顺利进行;(2)清除原纤维中的大部分杂质、疵点及不宜纺纱的短纤维。(3)将不同批次的纤维进行充分而均匀地混和,以利棉纱质量的稳定。(4)成卷:制成一定重量、长度、厚薄均匀、外形良好的棉纤维卷。 梳棉工序 1.主要任务 (1)分梳:将纤维分解成单纤维状态,改善纤维伸直平行状态。(2)混合:使纤维进一步充分均匀混合。(4)成条:制成符合要求的棉条。 精梳工序 主要任务: 1.除杂:清除纤维中细小的纤维疵点。 2.梳理:进一步分离纤维,排除一定长度以下的短纤维,提高纤维的长度整齐度和伸直度。 3.牵伸:将棉条拉细到一定粗细,并提高纤维平行伸直度。 4.成条:制成符合要求的棉条。

并条工序 主要任务 1.并合:一般用6-8根纤维条进行并合,改善棉条长片段不匀。2.牵伸:把纤维条拉长抽细到规定重量,并进一步提高纤维的伸直平行程度。3.混合:利用并合与牵扯伸,使纤维进一步均匀混合,不同唛头、不同工艺处理的纤维条,在并条机上进行混和。4.成条:做成圈条成型良好的熟条,有规则地盘放在棉条桶内,供后工序使用。 粗纱工序 主要任务: 1.牵伸:将熟条均匀地拉长抽细,并使纤维进一步伸直平行。2.加捻:将牵伸后的须条加以适当的捻回,使纱条具有一定的强力,以利粗纱卷绕和细纱机上的退绕。 细纱工序 主要任务: 1.牵伸:将粗纱拉细到所需细度,使纤维伸直平行。 2.加捻:将须条加以捻回,成为具有一定捻度、一定强力的细纱。3.卷绕:将加捻后的细纱卷绕在筒管上。4.成型:制成一定大小和形状的管纱,便于搬运及后工序加工。

工业硅电炉烟气净化技术

工业硅电炉烟气净化技术 工业硅电炉的烟气治理,目前各级政府高度重视,各厂家急需解决的首要问题。一谈到烟气治理,大家就想到先进的治理技术和投资,如何去治理的问题。根据多年的生产实践经验证明,烟气量产生的大小与厂家的技术和管理关系很大。生产技术稳定、管理先进的企业,产品质量高,消耗低,除尘效果好,排放达标。技术管理差的企业,产品质量差,消耗高,污染严重。在生产过程中,除设备结构影响外,生产操作技术的控制直接影响电炉烟气量的大小。目前研究回收一吨硅微粉价值的人多,研究在炉内变成一吨硅价值多少的人少。要解决工业硅厂家的经济技术问题,彻底治理烟气,提高经济社会效率,其措施是: (1)减少烟气量,提高生产操作技术水平。 操作技术不当是造成烟气量增大的主要原因。大多厂家存在的问题是电炉结构参数不匹配,高电压、高产量、超负荷错误用电造成了严重刺火,配比不严格,冶炼方法不当造成严重的刺火。工业硅熔炼是在电炉埋弧状态下连续进行的。操作中要做到闭弧操作,适时加料和捣炉,调整炉料电阻和电流电压的比值。闭弧操作的优点是:炉内料层结构能形成一个完整的体系,炉料依次下沉;弧光不外露,保持高炉温;电极消耗平衡稳定,避免发生电极折断;料面温度较低,提高电炉设备的利用率;粉尘量较少,可使电炉操作有一个较好的环境。无论电炉容量大小,都能做到闭弧操作,这是减少烟气量,提高硅回收率,降低消耗,解决操作和烟尘净化之间恶性循环的重要措施。 (2)烟气净化设备的选择。 熔炼一吨工业硅约产生2000-2600M3的烟气,经炉口燃烧后混入大量冷空气,硅微粉在空气中停留时间长,不易沉降,比电阻大,硅粉带油性,粘度随温度的增高而增大。因此,要净化收集硅微粉,就要必须对烟气进行二次燃烧降温和预除尘等一系列处理。6300KVA电炉的二次燃烧室选择25-30M3;预除尘器采用二级旋风除尘器;热交换器采用循环给水控制;风机功率选用180-250KVA;除尘器采用正压大布袋除尘器,设备根据实际情况,大多采用非标准件。 (3)净化原理。 采用火花捕集装置进行充分燃烧,将未燃尽带有火花的炭粒收集下来,消除了火花烧坏

工业企业成本会计工作流程

工业企业成本会计工作流程 基础工作 1、收集材料单,入库单,与仓库材料会计或保管员/仓库记账员接口,做好协调工作。 2、确定最合适你公司材料成本计算方法:先进先出,后进先出,加权平均等。 3、建立材料明细账,确定产品分类。 4、月底根据发出材料,购进材料单,汇总合计,与仓库材料会计核对。 5、根据计算方法确定单位成本,及结存成本。 6、期间末做材料预算,成本对比,进销差价分析。控制生产成本。 1、成本项目中一个重要的内容就是直接消耗的主要原材料,一般企业都在60%以上。所以就这个问题,企业的成本会计和仓库和车间要密切配合,搞好原材料的核算工作。归集原材料成本主要根据车间开具的领料单,这个领料单一般是一式三份:车间留存一份;仓库一份、财务一份。在实际工作中,月末三家要核对领料单,差一张也不行。之后成本会计根据领料单编制本月材料耗用明细表,据此进行会计处理。 2、财务制度规定,要划分产成本和在产品的成本界限,所以到月末成本会计要和车间一起盘点在产品,如果主要原材料成本占总成本的比重比较大,那么在产品成本可以只计算原材料成本,不计算加工成本。根据上月在产+本月领料-本月在产=本月实际消耗,计算出实际的材料成本。 3、正确核算当月的产成数量,因为这是计算当月成本的基础,这也需要成本会计和成品库还有车间核对当月的入库单,三家要把产成数对齐了。 以上三点是成本会计和材料库、成品库和生产车间要协调的工作,这些工作做好了,就为成本核算工作奠定了坚实的基础。 “成本会计”和“出纳”、“应收账款会计”、“应付账款会计”都是会计工作的基础岗位。“现金流”循环中从现金变存货,再由存货变为现金,一般企业特别是工业企业,存货在资产负债表中所占的比重很高,可以说流动资产中大部分是存货,都在至少三个月销售额以上。就是说企业的现金流中承上启下的就是“成本会计”。他要核算和控制的是从材料变为在产品,最终成为产成品的所有财税处理。“成本会计”可能是会计工作中最烦琐的工作。因为原材料、在产品、产成品的种类繁多,要核算清楚是工作量巨大。要了解每一个BOM,有差错要一颗颗料去查。每天就在做表,查差异。还要去了解企业的研发、生产、销售等实际情况。

工业硅工艺流程资料讲解

.1项目主要建设内容 主要建设内容为:建设生产厂房8000平方米,供水系统、环保系统等配套设施用房10000平方米,厂区道路及停车场等4800平方米,厂区绿化3400平方米。购置和制作生产所需的冶炼炉、精炼炉、除尘系统等生产设备326台(套),监测、化验及其他设备9台套。 1.2.2产品规模 年产高纯工业硅5万吨,其中:1101级高纯工业硅4万吨,3N级高纯工业硅6000吨, 4N 级高纯工业硅4000吨。 1.2.3生产方案 1、产品方案 目前,国内外工业硅市场1101级以下(不包括1101级)产品基本处于供大于求的状况,且短时期内不会有很大变化。结合全油焦生产工艺产品产出比例,本项目产品方案为:年产高纯工业硅5万吨,其中:1101级高纯工业硅4万吨,3N级高纯工业硅6000吨, 4N级高纯工业硅4000吨。 2、技术方案 1)国内外现状和技术发展趋势 冶金级工业硅由于生产技术简单,全世界生产企业众多,产量较大,供需基本保持平衡,且耗能高、附加值低,属国家限制类行业。目前国外有工业硅生产厂家30多家,主要集中在美国、巴西和挪威三国,占世界生产能力的65%,最大生产厂家主要有挪威的埃肯、巴西的莱阿沙、美国的全球冶金,电炉变压器容量大多在10000KVA—60000KVA,通用炉型为3000 0KVA,小于10000KVA的电炉基本停用。其发展趋势是矿热炉大容量化,由敞开式的固定炉体向旋转、封闭炉体发展,自焙电极的应用、炉气净化处理、新型还原剂的开发与应用、炉外精炼技术的发展和应用、生产过程中的计算机管理和控制。其特点是电炉容量大、劳动生产率高、单位产品投资少、有利于机械化、自动化生产和控制环境污染。我国工业硅生产起步于上世纪的50年代,目前仍在生产的厂家约有300多家,电炉400多台,产能约为90—120万吨/年,产量约为70—90万吨。且大部分分布在福建和云、贵、川等小水电资源丰富的地区,受季节性影响较大。其突出特点是电炉容量小、台数多,厂家多而分散,操作机械化水平低、劳动生产率低,产品质量不稳,化学级工业硅产量低(不到产量的1/8),且能源消耗、原材料消耗和生产成本偏高(行业内称为“三高”)。从电炉变压器容量看,我国以3200Kva至6300kVA的电炉为主要炉型,2006年国内已建成的10000kVA工业硅电炉仅有

半封闭式工业硅矿热炉主要技术方案

宜兴市中宇电冶设备有限公司 33000KVA半封闭式工业硅矿热炉 技术方案 1电炉设备

1.2 电炉设备设计 1.2.1矿热炉设备设计要求 矿热电炉采用半封闭型式,采用铜瓦压力环式电极把持器,电炉炉底通风冷却,炉体采用旋转炉体,炉体测温,变压器长期具备20%的长期超负荷能力。 短网系统、铜瓦、进线电缆都长期具备20%以上的超负荷能力。 烟道与炉盖之间设置了可靠绝缘。 液压系统采用组合阀,并设置储能器。 电极升降油缸上、下两端均设绝缘加以保护。高压油管两端全部带绝缘。 为防止电极偏斜,设计时在炉盖、平台及电极导向装置,电极导向装置设绝缘。 所有管道均设管道沟,便于检修。闸阀采用不锈钢丝杆,以增加其使用寿命。 每组分水器设3路备用水路,分水器阀门采用不锈钢或铜球阀,分水器给、回水路布局合理。 炉盖采用框架式水冷结构,中心区采用不导磁材料制作。 电炉烟道在二、三楼之间设水冷段,以降低烟气温度。 1.2.2工艺设计要求 电炉厂房柱子跨距按6m、7.5m布置。 电炉车间分设四个跨区,分别是变压器跨(偏跨)7.5m、电炉跨18m、浇注跨24m、成品跨18m。 电炉跨初定为五层平台分别为: a)+0.0m出渣铁轨道平台 包括铁道、出铁车和铁包、出渣车和渣包等。 其中+2.4m平台为局部出铁操作平台:该平台正对出铁口,包括烧穿器、出铁挡板等出炉工具等。 b)+7.0m电炉炉口操作平台

电炉控制室计算机室布置在此平台上,冷却水系统的分水器和回水槽布置在该平台上、炉口操作工具等。 C)+11.8变压器放置平台 电炉设有三台单相变压器,放置在此平台上成三角形布置,为方便变压器安装、检修、更换设有变压器吊装孔。 d)+18.3m电极升降机构平台 平台空间内安装有电极升降、压放装置及电炉料管插板阀。液压站也布置在此平台上。 e)+24.8m电炉电极支承及接长电极壳、加入电极糊及加料平台 炉顶料仓座在此平台上。环形加料机及布料皮带均布置在该平台上,此层平台布置有可储存5~8批混合料的中间过度料仓。 1.3 矿热炉结构 1.3.1矿热炉炉体 组成:炉体旋转机构、炉底、炉壳、出铁口等。 炉体旋转机构严格按图纸要求施工,炉底设计、制作、安装时其平面度误差+10mm。工字钢板下部用钢板连接并焊制一起。炉壳内径9200mm,高度5000mm,炉壳采用焊接形式。侧壁采用20mm钢板焊接,底部采用22mm钢板制作。 炉体设有5个出炉口,出铁口夹角72o 炉壳分瓣制作,组装后炉壳的直径极限偏差为+18mm。 1.3.2铁口出铁排烟系统 组成:由烟罩、烟气管道、电动翻板阀、烟罩及烟道吊挂等组成。在出炉时,用于对出炉口烟气进行收集、输送。排烟罩上喷涂耐火材料及打结需要的锚钩,防止烟气温度高使之变形。 1.3.4 矿热炉电极把持器 组成:组合式把持器由上、下两部分组成。电极把持器上部主要包括:电极升降装置、电极抱紧压放装置,上部把持器桶及导向系统、液压机管路等。电极把持器下部主要包括:下部把持筒、防磁不锈钢水冷保护屏、炉内导电铜管、铜瓦、压力环及绝缘系统等部件。每相电极把持器设10片铜瓦,一个压力环、4

工业硅生产常识问答

1、硅的主要物理化学性质有哪些 答:硅的主要物理化学性质如下: 原子量:28.086 比重:2.34g/cm3 沸点:3427 C 熔点:1413 C 比热:(25 C时)4.89卡/克分子度 比电阻:(25 C时)214000欧姆厘米 纯净结晶硅是一种深灰色、不透明、有金属光泽的晶体物质。它即不是金属,又不是 非金属,介于两者之间的物质。它质硬而脆,是一种良好的半导体材料。硅在常温下很不活 泼,但在高温下很容易和氧、硫、氮、卤素金属化合成相应的硅化物。 硅与氧的化学亲合力很大,硅与氧作用产生大量的热,并形成SiO2: Si+ O2= SiO2 △ H298=-21O.2千克/克分子 二氧化硅在自然界中有两种存在形式:结晶态和无定形态。结晶态二氧化硅主要以简 单氧化物及复杂氧化物(硅酸盐)的形式存在于自然界。冶炼硅所用硅石,就是以简单氧化 物形式广泛存在的结晶态二氧化硅。结晶态二氧化硅根据其晶型不同,在自然界存在三种不同的形态:石英、鳞石英、方石英。这几种形态的二氧化硅又各有高温型和低温型两种变体。 因而结晶态二氧化硅实际上有六种不同的晶体,各种不同的晶型存在范围、转化情况,随压 力温度的变化二氧化硅的晶型转化不同,不仅晶型发生变化,而且晶体体积也随着自发生变 化。特别是从石英转化成鳞石英时,体积发生明显的膨胀,这就是硅石在冶炼过程中发生爆 裂的主要原因。 结晶的二氧化硅是一种硬、较脆,难熔的固体。二氧化硅的熔点为1713C 、沸点为2590C 。二氧化硅的化学性质很不活泼,是一种很稳定的氧化物。除氢氟酸外、二氧化硅不溶于任何 一种酸。在低温下比电阻很高(1.0 to3Q?Cm但温度升高时,二氧化硅的比电阻急剧下降,

硅化学制法

硅的化学制法 学院:洛阳理工学院 系别:材料科学与工程系 专业:无机非金属专业 班级:B070104 学号:B07010419 姓名:孙俊

硅的化学制法 摘要:本文通过对硅的分类介绍,简要的对硅进行了分析,同过对硅的用途认识,详细地研究了硅的普通化学制法及国内外多晶硅生产的主要工艺技术。 关键词:硅,单晶硅,多晶硅,化学制法 正文 硅有晶态和无定形两种同素异形体。晶态硅又分为单晶硅和多晶硅,它们均具有金刚石晶格,晶体硬而脆,具有金属光泽,能导电,但导电率不及金属,且随温度升高而增加,具有半导体性质。以下对单晶硅和多晶硅进行简单的介绍。 硅,英文名: Monocrystalline silicon ,分子式: Si 。硅的单晶体。具有基本完整的点阵结构的晶体。不同的方向具有不同的性质,是一种良好的半导材料。纯度要求达到99.9999%,甚至达到99.9999999%以上。用于制造半导体器件、太阳能电池等。用高纯度的多晶硅在单晶炉内拉制而成。熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。单晶硅具有准金属的物理性质,有较弱的导电性,其电导率随温度的升高而增加,有显著的半导电性。超纯的单晶硅是本征半导体。 硅是制造半导体硅器件的原料,用于制大功率整流器、大功率晶体管、二极管、开关器件等。单晶硅是一种比较活泼的非金属元素,是晶体材料的重要组成部分,处于新材料发展的前沿。其主要用途是用作半导体材料和利用太阳能光伏发电、供热等。由于太阳能具有清洁、环保、方便等诸多优势,近三十年来,太阳能利用技术在研究开发、商业化生产、市场开拓方面都获得了长足发展,成为世界快速、稳定发展的新兴产业之一。 单晶硅建设项目具有巨大的市场和广阔的发展空间。在地壳中含量达25.8%的硅元素,为单晶硅的生产提供了取之不尽的源泉。 近年来,各种晶体材料,特别是以单晶硅为代表的高科技附加值材料及其相关高技术产业的发展,成为当代信息技术产业的支柱,并使信息产业成为全球经济发展中增长最快的先导产业。单晶硅作为一种极具潜能,亟待开发利用的高资源,正引起越来越多的关注和重视。 多晶硅,英文名:polycrystalline silicon ,性质:灰色金属光泽。密度2.32~2.34。熔点1410℃。沸点2355℃。溶于氢氟酸和硝酸的混酸中,不溶于水、硝酸和盐酸。硬度介于锗和石英之间,室温下质脆,切割时易碎裂。加热至800℃以上即有延性,1300℃时显出明显变形。常温下不活泼,高温下与氧、氮、硫等反应。高温熔融状态下,具有较大的化学活泼性,能与几乎任何材料作用。具有半导体性质,是极为重要的优良半导体材料,但微量的杂质即可大大影

工业硅技术安全操作规程.

12500KVA工业硅电炉 工业硅技术安全操作规程

基本原理 工业硅是以硅石为原料,用石油焦、精洗烟煤等作为原料,在矿热 炉内高温下发生还原反应而制取的。总反应式为 SiO2+2C=Si+2CO t=1650 o C 在实际生产中,二氧化硅的还原是个十分复杂的过程,并分很多 阶段进行。其主要反应及相关温度: SiO2+3C=SiC+2CO t=1257 SiO2+C=SiO+CO t=1310 SiO2+Si=2SiO t=1390 o C SiO+C=Si+CO t=1650 o C SiO+SiC=2Si+CO t=1775 o C SiO2+2SiC=3Si+2CO t=2158 o C 上述各化学反应,随操作条件的变化而变化。 适宜的温度和合理的配碳量是炉内化学反应顺利进行的基本条 件,因此准确掌握配料比是搞好工业硅生产的关键。炉料中配碳量的多少,直接影响炉料的电阻,从而影响电极埋入深度,决定炉况的好坏。当配碳量过剩时,炉料电阻小,炉料导电性增加,电极间侧部电流增大,电极埋入炉料的深度减少,热损失增加,炉底温度降低,出炉困难,同时加快碳化硅生成结壳,坩锅缩小,炉料熔化量减少,生产效率降低;当配碳量过少时,炉料发粘,透气性差,电流波动大,容易刺火,化料慢,金属氧化物还原率低,炉料易形成渣堵塞炉眼,增加出炉困难,易涨炉底。 用碳还原二氧化硅,理论上每生产一吨硅相应的产生二吨一氧化碳气体和大量的 SiO 气体,这些气体由反应区逸出,带走大量热量并造成 SiO 损失。因此,有了正确的配炭量,还要有正确的配送电和加料、捣炉、打眼等一系列正确操作方法,达到保持电极深埋,增加炉料透气性,防止局部喷火,使料面冒

工业企业生产流程

工业企业生产流程:签订合同,原料采购,验收入库,生产领用,生产加工,检验,装配产品,验收入库,签订销售合同,收款,发货,开票结算。这是大致的工业生产企业流程。 一、审计立项与授权(一)审计立项审计立项是指确定具体的内部审计项目,即审计对象。审计对象包括集团下属的各子公司,集团内部的各职能部门、各项经营活动或项目、系统等 一、审计立项与授权 (一)审计立项 审计立项是指确定具体的内部审计项目,即审计对象。审计对象包括集团下属的各子公司,集团内部的各职能部门、各项经营活动或项目、系统等。 审计对象的选择一般由以下三种方式决定: 1、集团法审部通过对集团的经营活动进行系统地分析风险来制定年度内部审计工作计划表,经批准后逐项实施。 2、由集团总经理或董事会下达的计划外专项审计任务。 3、由被审计者提出审计要求,经批准实施审计业务。 (二)审计批准与授权 对于已立项的审计项目,法审部应在审计实施前以正式报告的形式报集团总经理/主管副总经理审核、批准与授权。 二、审计准备 在确定内部审计事项后,审计人员开始审计准备工作,制订审计计划。审计准备工作包括以下内容: (一)初步确定具体审计目标和范围 1、内部审计的总目标是审查和评价集团各项经营管理活动,协助集团组织的成员有效地履行他们的职责。针对已确定的具体审计任务,审计人员应制定具体的审计目标以有助于拟定审计方案和审计工作结束后的审计评价。 2、内部审计的范围一般包括以下几个方面: 1)公司内部控制系统的恰当性、有效性。 2)财务会计信息、资料的准确性、完整性、可靠性。 3)经营活动的效率和效果。 4)资产的完整和利用情况。 5)工程项目的预(概)、决算情况。 6)投资项目的可行性、可控性和效益性。

工业硅冶炼操作工艺

工业硅冶炼操作工艺 西安宏信矿热炉有限公司

一、工业硅生产工艺流程图

二、工业硅生产安全管理制度 工业硅生产是铁合金生产中最为精细的一种产业,要求每个操作人员必须经过严格培训,掌握生产个环节的重点和工艺要素,作到心中有数。只有这样才能将生产管理规范化、精细化,生产出高品级的工业硅。 1、冶炼工技术操作职责 ?保证高温冶炼,尽量减少热损失,使SiC的形成和破坏保持相对平衡。 ?炉料混合均匀后加入炉内。 ?正常冶炼的操作程序是沉料—攒热料—加新料—焖扎盖。 ?要垂直于电极加料,不要切线加料。料落点距电极100mm左右,不允许抛散炉料。 ?炉料形状和分布要合理,集中加料后,使料面呈馒头形状,料面要高于炉口200—300mm。 ?每班接时要捣炉,捣出的黏料捣碎后推到炉心。 ?沉料、捣炉时动作要块,不要碰撞电极、铜瓦和水套。 ?根据炉料融化情况加料,尽量做到加料量、用料量和出硅量相适应。 ?保持合理的料层结构,捣松的炉料就地下沉,不要大翻炉膛。 ?使用铁质工具沉料、捣炉时,动作要块,避免融化铁铲和捣炉棒。 ⑴木块等碳质还原剂在加料平台上可单独堆放,沉料结束或处理炉况时先加木块于电极根部凹坑处,然后加混合料盖住。 ⑵ 仔细观察仪表,协调其他人员用计算机控制电极的压放,使三根电极平衡运行。 ⑶ 随时了解电炉电流、电压的变化情况,给予适当的调整。

2、出炉工技术操作职责 ①正常情况下,每班出3—4炉,尽量大流量、快出硅。 ②出炉前先将炉眼、流槽清理干净,准备好出炉工具和材料。 ③用烧穿器前,要先将钢钎清除炉嘴外的结渣硅,使炉眼保持φ150mm左右的喇叭口形状,然后用烧穿器烧开炉眼。能用钢钎捅开时不用烧穿器。 ④当流量小时,要用木棒捅炉眼、拉渣,用烧穿器协助出硅。 ⑤堵炉眼前炉眼四周和内部渣滓扒净,用烧穿器修理炉眼至通畅光滑,然后堵眼,深度超过或达到炉墙厚度。 ⑥堵眼时如果炉气压力过大无法堵塞,要停电堵眼。 ⑦出炉口和硅包附近要保持干燥,禁止积水,防止跑眼爆炸。 ⑧精练产品要按方案进行,不可随意改变供气量、精练时间、造渣剂的比例等。精练时注意安全,防止硅液飞溅、过大氧气回火等事故发生。 ⑨浇注前要修补好锭模,放好挡渣棒,锭模底部可适当放适量合格硅粒,或涂脱模剂,保护锭模。 ⑩浇注时,硅包倾倒至硅液快要流出时,稍停片刻,使硅渣稳定,再使硅液从包嘴慢慢流入缓冲槽。 ⑴工业硅锭冷却到乌红时,用专用吊具从锭模中吊出,转移到冷却间。严禁用水急冷。 3、电工技术操作职责 ①持证上岗,遵守供用电制度,要求与变电站和生产指挥紧密配合。 ②电工作到四会:会原理、会检修、会接线、会操作

工业硅技术问答5

16.工业硅冶炼的基本原理是什么? 冶炼工业硅主要原料是硅石,硅石中含二氧化硅约99%。二氧化硅很稳定.硅和氧之间的亲和力很强,不易分离。生产上为了把氧从二氧化硅分离除去,采用在矿热炉内高温条件下,以炭质还原剂中的碳夺取二氧化硅中的氧。而且温度越高,碳夺取氧的能力随之增强,这是因为在高温条件下,碳对氧的结合力比硅对氧的结合力大。可见高温时有了碳,二氧化硅就不稳定了,这时二氧化硅中的氧和碳进行反应,生成气态的一氧化碳,通过料层从炉口逸出。二氧化硅中的氧被碳夺走后,剩下的硅形成工业硅。 二氧化硅与碳作用其反应式如下: SiO2+2C=Si+2CO↑ 上式是吸热反应,从反应式中可知,为了加速反应的进行,应把电极往炉料中插的深些,以提高炉温,扩大坩埚区,同时应增加料面的透气性,使一氧化碳气体尽快逸出。如采取扎透气眼、捣炉等措施,均有利于二氧化硅与碳的反应加速进行,使工业硅较快地生成。 从化学反应上说一般认为,氧化物中的氧被其他物质夺去的反应,叫还原反应。夺取氧的物质,叫还原剂如石油焦等。 依上述工业硅冶炼原理是还原过程。 反应过程中,硅石内的二氧化硅绝大部分被碳还原之外,其他杂质和还原剂带入的灰分,如 (Fe2O3)、三氧化二铝(A1203)和氧化钙(CaO)等也被碳还原,其中三氧化二铁绝大部分被还原。各反应式如下: Fe2O3+3C=2Fe+3CO↑ Al2O3+3C=2A1+3CO↑ CaO+C=Ca+CO↑ 各反应中生成的一氧化碳气体,从炉口逸出,其他生成物如铁、铝和钙等进入工业硅中,因此,要求原料中的杂质尽量少,以保证工业硅的质量。

在冶炼过程中有少部分的二氧化硅,三氧二化铝和氧化钙等未被还原,而形成炉渣。炉渣成分约含SiO 230~40%;Al 2O 345~60%;CaO10~20%。此种炉渣熔点约为1600—1700℃。渣量大时,消耗电量增加,同时过粘的炉渣,不易从炉内排除,引起炉况恶化。故要采用较好的原料,以减少渣量,降低单位电耗。 正常情况下,渣量控制在不大于工业硅量的百分之五为宜,以上是工业硅冶炼基本原理,工业硅冶炼的基本反应是: SiO 2+2C=Si +2CO ↑ 实际炉内的化学反应比这复杂。实验证明氧化物的还原,是由高价氧化物逐步还原成低价氧化物。二氧化硅的还原,在高温情况下,首先被还原成一氧化硅(SiO),而后再被还原成硅(Si),其顺序是SiO 2→SiO →Si 17.一氧化硅在冶炼反应中的作用是什么? 冶炼工业硅,在1700~1800℃时,将发生如下反应: SiO 2+C=SiO +CO ↑ 也就是说二氧化硅首先被碳还原成一氧化硅,然后再被还原成硅,其反应式如下: SiO +C=Si +CO ↑ 被还原出来的硅,部分的将和二氧化硅作用,又产生一氧化硅,其反应式如下: SiO 2+Si=2SiO 从上述的三个反应式中,可以看到一氧化硅对促进冶炼反应的进行是个重要环节。一氧化硅在高温情况下是以气体状态存在,低温时不稳定。因此,一氧化硅在炉内坩埚中是气体,少量的一氧化硅从炉口逸出后,被空气氧化(SiO+2 1O 2=SiO 2)而成为二氧化硅,冷却后呈灰白色,部分凝结在电极、铜瓦等处。在约为1700℃以上高温时,大部分的一氧化硅挥发到还原剂的气孔中,广泛地和碳接触并作用,按第二个反应式,还原成硅,其中大部分硅形

高纯硅的制备

高纯硅的制备一般首先由硅石(SiO2)制得工业硅(粗硅),再制成高纯的多晶硅,最后拉制成半导体材料硅单晶。 工业上是用硅石(SiO2)和焦炭以一定比例混合,在电炉中加热至1600~1800C而制 得纯度为95%~99的粗硅,其反应如下:SiO2+2C=Si+2CO 粗硅中一般含有铁、铝、碳、硼、磷、铜等杂质,这些杂质多以硅化构成硅酸盐的形式存在,为了进一步提高工业粗硅的纯度,可采用酸浸洗法,使杂质大部分溶解(有少数的碳化硅不溶)。其生产工艺过程是:将粗硅粉碎后,依次用盐酸、王水、(HF+H2SQ4混合酸处理,最后用蒸馏水洗至中性,烘干后可得含量为99.9%的工业粗硅。 高纯多晶硅的制备方法很多,据布完全统计有十几种,但所有的方法都是从工业硅(或称硅铁,因为含铁较多)开始,首先制取既易提纯又易分解(即还原)的含硅的中间化合物如SiCl4、SiHCl3、SiH4等,再使这些中间化合物提纯、分解或还原成高纯度的多晶硅 目前我国制备高纯硅多晶硅主要采用三氯氢硅氢还原法、硅烷热解法和四氯化硅氢还原法。一般说来,由于三氯氢硅还原法具有一定优点,目前比较广泛的被应用。此外,由于SiH4 具有易提纯的特点,因此硅烷热分解法是制备高纯硅的很有发展潜力的方法。下面我们就分别介绍上述三种方法制备高纯硅的化学原理。 1. 三氯氢硅还原法 (1)三氯氢硅的合成第一步:由硅石制取粗硅硅石(SiO2)和适量的焦炭混合,并在电炉内加

热至1600~1800C 可制得纯度为95%~99的粗硅。其反应式如下: SiO2+3C=SiC+2CO (g)T 2SiC+SiO2=3Si+2CO (g)T 总反应式: SiO2+2C=Si+2CO (g)T 生成的硅由电炉底部放出,浇铸成锭。用此法生产的粗硅经酸处理后,其纯度可达到99.9%. 第二步:三氯氢硅的合成三氯氢硅是由干燥的氯化氢气体和粗硅粉在合成炉中(250C) 进行合成的。其主要反应式如下:Si+3HCI=SiHCI3+H2 (g) (2)三氯氢硅的提纯 由合成炉中得到的三氯氢硅往往混有硼、磷、砷、铝等杂质,并且它们是有害杂质, 对单晶硅质量影响极大,必须设法除去。 近年来三氯氢硅的提纯方法发展很快,但由于精馏法工艺简单、操作方便,所以, 目前工业上主要用精馏法。三氯氢硅精馏是利用三氯氢硅与杂质氯化物的沸点不同而分离 提纯的。

工业硅技术问答.

工业硅技术问答 1.什么是硅和工业硅? 元素硅(Si)原来称为矽,工业硅(也称金属硅或结晶硅)是指以含氧化硅的矿物和碳质还原剂等为原料经矿热炉熔炼制得的含Si97%以上的产物。“工业硅”之称是我国于1981年GB2881-81国家标准公布时正式定名,其含意主要是指这种硅之纯度是接近于99%的工业纯度,英文称为金属硅,俄文称为结晶硅。现在人工制得硅的纯度,实际上已达到99999999999%。 2.硅和工业硅有那些特性? ①硅的主要物理性质为:密度(25℃)2.329g/cm3(纯度99.9%),熔点1413℃,沸点3145℃,平均比热(0~100℃)为729J /(kg·K),熔化热为50.66kJ/mol,纯度为99.41%的硅抗压强度极限为9.43kgf/cm2。 ②硅的化学性质:硅在元素周期表中属ⅣA族,原子序数为14,原子量为28.0855,化合价表现为四价或二价(四价化合物为稳定型)。因晶体硅的每个硅原子与另外四个硅原子形成共价键,其Si-Si键长2.35A,成为正四面体型结构,与金刚石结构相近,所以硅的硬度大,熔点、沸点高。 硅不溶于任何浓度的酸中,但能溶于硝酸与氢氟酸的混合液中,与1:l浓度的混合稀酸发生如下反应: Si+4HF+4HNO3=SiF4↑+4NO2↑+4H2O 3Si+12HF+4HNO3=3SiF4↑+4NO2↑+8H2O 这个特性可用于硅的化学分析中,即先将试样硅中的硅以氟化物形式挥发,而分析硅中残留的铁、铝、钙元素。 硅能与碱反应,生成硅酸盐,同时放出氢气,如: Si+2NaOH+H2O=Na2SiO3+2H2↑ 这是野外制氢的好办法。

详解纯硅制取

详解纯硅制取 1.首先工业上在电炉内,用硅石和碳反应得粗硅和一氧化碳,然后用粗硅和氯气反应得四氯化硅,再用四氯化硅和氢气反应的纯硅和氯化氢,这样就完成硅的制造。(第一步完全相同,第二部有三种方法,工业上用的的是西门子的方法,其他两种不常见。) 反应方程式 A, 石英制硅(冶金级),这一步是粗硅制取 硅商业上是由高纯度的石英砂和木头,焦炭和煤使用碳棒电极在电弧炉中制得。在高于1900 °C的温度下,依照下列方程式碳把石英砂还原成硅: SiO2 + C →Si + CO2. SiO2 + 2C →Si + 2CO. 这一过程所的硅称为冶金级硅。纯度为98%-99%。该种2000年0.8美元/公斤,2005年1.7美元/公斤。世界每年制造冶金硅400万吨。 另外,硅制备办法还有熔盐电解法,即电解熔解的二氧化硅。但该研究也只是在2000年才见报道,目前还没有工业化。该方法是不释放二氧化碳。 这种硅的耗能:14千瓦时/公斤硅 B, 高纯硅的制备 1,改进的西门子法 在制备高纯硅之前,需要把粗硅转化成三氯化氢硅(300°C): Si + 3HCl →HSiCl3 + H2 接着,通过精馏使SiHC13与其它氯化物分离,经过精馏的SiHCl3,其杂质水平可低于10-10%的电子级硅要求。 然后,提纯后的SiHC13通过CVD原理在1150°C下制备出多晶硅粉。 2 HSiCl 3 →Si + 2 HCl + SiCl4.

这个过程的能耗是:150千瓦时/公斤。 2,杜邦法 在950°C下,用锌还原四氯化硅: SiCl4 + 2 Zn ? Si + 2 ZnCl2 但是, 因为副产品氯化锌经常阻赛生产线而被西门子法取代。 3,REC法 据报道,2006 REC宣布建设一个基于下列反应制备硅的厂: 3SiCl4 + Si + 2H2 ? 4HSiCl3 4HSiCl3 ? 3SiCl4 + SiH4 SiH4 ? Si + 2H2 但是,没有细节的报道。 2.主要用于生产有机硅、制取高纯度的半导体材料以及配制有特殊用途的合金等。 硅炭素属于吸附和离子交换过滤方式。吸附功能主要体现在吸附离子半径小于硅炭素孔穴半径的离子类似于活性炭的功能;其离子交换能量和范围高于树脂40倍。 工作原理如下: 硅炭素滤料是硅、铝、氧晶格状四面体。三价铝,四价硅,硅与铝交换形成电位差,需要带正电荷的离子补充。当水与硅炭素接触时,水中带正电荷的离子恰好补充了硅炭素的电位差,水中的离子便被硅炭素吸附,固定在硅炭素的骨架上,有效达到过滤效果。

如何提炼硅

如何提炼硅&多晶硅生产工艺 纯净的硅(Si)是从自然界中的石英矿石(主要成分二氧化硅)中提取出来的,分几步反应: 1.二氧化硅和炭粉在高温条件下反应,生成粗硅: SiO2+2C==Si(粗)+2CO 2.粗硅和氯气在高温条件下反应生成氯化硅: Si(粗)+2Cl2==SiCl4 3.氯化硅和氢气在高温条件下反应得到纯净硅: SiCl4+2H2==Si(纯)+4HCl 以上是硅的工业制法,在实验室中可以用以下方法制得较纯的硅: 1.将细砂粉(SiO2)和镁粉混合加热,制得粗硅: SiO2+2Mg==2MgO+Si(粗) 2.这些粗硅中往往含有镁,氧化镁和硅化镁,这些杂质可以用盐酸除去: Mg+2HCl==MgCl2+H2 MgO+2HCl==MgCl2+H2O Mg2Si+4HCl==2MgCl2+SiH4 3.过滤,滤渣即为纯硅 (一)国内外多晶硅生产的主要工艺技术 1,改良西门子法——闭环式三氯氢硅氢还原法 改良西门子法是用氯和氢合成氯化氢(或外购氯化氢),氯化氢和工业硅粉在一定的温度下合成三氯氢硅,然后对三氯氢硅进行分离精馏提纯,提纯后的三氯氢硅在氢还原炉内进行CVD反应生产高纯多晶硅。 国内外现有的多晶硅厂绝大部分采用此法生产电子级与太阳能级多晶硅。 2,硅烷法——硅烷热分解法 硅烷(SiH4)是以四氯化硅氢化法、硅合金分解法、氢化物还原法、硅的直接氢化法等方法制取。然后将制得的硅烷气提纯后在热分解炉生产纯度较高的棒状多晶硅。以前只有日本小松掌握此技术,由于发生过严重的爆炸事故后,没有继续扩大生产。但美国Asimi和SGS 公司仍采用硅烷气热分解生产纯度较高的电子级多晶硅产品。 3,流化床法 以四氯化硅、氢气、氯化氢和工业硅为原料在流化床内(沸腾床)高温高压下生成三氯氢硅,将三氯氢硅再进一步歧化加氢反应生成二氯二氢硅,继而生成硅烷气。 制得的硅烷气通入加有小颗粒硅粉的流化床反应炉内进行连续热分解反应,生成粒状多晶硅产品。因为在流化床反应炉内参与反应的硅表面积大,生产效率高,电耗低与成本低,适用于大规模生产太阳能级多晶硅。唯一的缺点是安全性差,危险性大。其次是产品纯度 不高,但基本能满足太阳能电池生产的使用。 此法是美国联合碳化合物公司早年研究的工艺技术。目前世界上只有美国MEMC公司采用此法生产粒状多晶硅。此法比较适合生产价廉的太阳能级多晶硅。 4,太阳能级多晶硅新工艺技术 除了上述改良西门子法、硅烷热分解法、流化床反应炉法三种方法生产电子级与太阳能级多晶硅以外,还涌现出几种专门生产太阳能级多晶硅新工艺技术。 1)冶金法生产太阳能级多晶硅 据资料报导[1]日本川崎制铁公司采用冶金法制得的多晶硅已在世界上最大的太阳能电池厂(SHARP公司)应用,现已形成800吨/年的生产能力,全量供给SHARP公司。 主要工艺是:选择纯度较好的工业硅(即冶金硅)进行水平区熔单向凝固成硅锭,去除硅锭

工业硅项目投资计划书

工业硅项目 投资计划书 规划设计/投资分析/产业运营

工业硅项目投资计划书说明 工业硅位于硅基新材料产业链的顶端,是光伏、有机硅、合金等国民 经济重要部门的核心原料。随着近年来我国经济的快速发展,我国的工业 硅产能也呈现了持续、快速、稳定发展的态势。 该工业硅项目计划总投资10634.03万元,其中:固定资产投资 7942.66万元,占项目总投资的74.69%;流动资金2691.37万元,占项目 总投资的25.31%。 达产年营业收入18402.00万元,总成本费用13821.48万元,税金及 附加198.89万元,利润总额4580.52万元,利税总额5411.21万元,税后 净利润3435.39万元,达产年纳税总额1975.82万元;达产年投资利润率43.07%,投资利税率50.89%,投资回报率32.31%,全部投资回收期4.60年,提供就业职位307个。 坚持“实事求是”原则。项目承办单位的管理决策层要以求实、科学 的态度,严格按国家《建设项目经济评价方法与参数》(第三版)的要求,在全面完成调查研究基础上,进行细致的论证和比较,做到技术先进、可靠、经济合理,为投资决策提供可靠的依据,同时,以客观公正立场、科 学严谨的态度对项目的经济效益做出科学的评价。 ......

报告主要内容:项目基本信息、项目背景研究分析、市场前景分析、投资方案、项目选址研究、土建方案说明、工艺说明、环境保护、安全卫生、投资风险分析、项目节能评价、项目进度计划、项目投资方案分析、项目经济效益分析、项目总结、建议等。

第一章项目基本信息 一、项目概况 (一)项目名称 工业硅项目 工业硅位于硅基新材料产业链的顶端,是光伏、有机硅、合金等国民经济重要部门的核心原料。随着近年来我国经济的快速发展,我国的工业硅产能也呈现了持续、快速、稳定发展的态势。 (二)项目选址 xx产业园区 (三)项目用地规模 项目总用地面积30768.71平方米(折合约46.13亩)。 (四)项目用地控制指标 该工程规划建筑系数65.72%,建筑容积率1.22,建设区域绿化覆盖率5.23%,固定资产投资强度172.18万元/亩。 (五)土建工程指标 项目净用地面积30768.71平方米,建筑物基底占地面积20221.20平方米,总建筑面积37537.83平方米,其中:规划建设主体工程23369.02平方米,项目规划绿化面积1961.99平方米。

相关文档
最新文档