单纯形法原理推导过程

单纯形法原理推导过程
单纯形法原理推导过程

单纯形法的综述及其应用-文献综述

毕业论文文献综述 数学与应用数学 单纯形法的综述及其应用 一、 前言部分(说明写作的目的,介绍有关概念、综述范围,扼要说明有关 主题争论焦点) 1.写作目的 本文主要在于介绍单纯形法的历史背景,基本计算方法,改进的计算方法,以及单纯形法的应用.目的在于对单纯形法的历史背景,计算方法等进行综述,并总结单纯形法在生活各个领域的应用,单纯形法是求解线性规划问题很有效的方法,通过对单纯形法的进一步了解,最后提出一实际问题利用单纯法进行分析求解. 2.有关概念 LP 问题的一般形式[1] ()1122. Max min n n ob Z c x c x c x =+++L ()()()11112211 211222221122 12..: ,,,0 n n n n m m mn n m n a x a x a x b a x a x a x b s t a x a x a x b x x x +++≤≥?? +++≤≥?? ??+++≤≥??≥? L L L L L 线性规划问题的标准型为[2] ()()()11221111221121122222 m1122 12min a a s.t.a 01,2,,,,,n n n n n n m mn n m j n S c x c x c x S x a x a x b x a x a x b x a x a x b x j n x x x =+++?+++=? +++=?? ??+++=??≥=? L L L L L L 为目标函数(1)为决策变量 其矩阵形式为 min s.t.0 S CX AX b X ==?? ≥?(2)

其中,()12,,,n C c c c =L ,决策向量()()1212,,,,,,,T T n m X x x x b b b b ==L L . A 为约束条件中的系数矩阵, 即 1112121 22212 n n m m mm a a a a a a A a a a ??????=??????L L M M M M L 本文除了介绍线性规划问题的一般形式、标准形式和矩阵形式以外还列举了一些定义. 定义1[3]:设矩阵A 的秩为m ,矩阵B 是A 中的一个m 阶满秩子方阵,则B 为一个基矩阵.矩阵A 中剩余元素组成的子阵为N ,即[]A BN =.把x 的分量相应地分成两部分,记成B x 和N x ,B x 的分量与B 的列对应,称为基变量;N x 的分量与N 中的列对应,称为非基 变量.在约束Ax b =中令所有的非基变量取值为零时,得到解10B N x B b x x -?? ??==???????? ,称为相 应于B 的基本解. 定义2[3]:基本解得基变量都取非负值时,即满足1 0B x B b -=≥的基本解为基本可行解. 定义3[4]:满足式(1)各约束条件的解()12,,,T n X x x x =L 称为可行解.全部可行解的集合称为可行域.目标函数1 min n j j j Z c x == ∑达到最大值的可行解称为最优解. 定义4[4]:设 A 为约束方程组1 (1,...,)n ij j i j a x b i m ===∑的m n ?阶系数矩阵, 设(n m >),其秩为m ,B 为矩阵A 中的一个m m ?阶的满秩子矩阵,称B 为线性规划问题的一个基.不失一般性,设 11111...(,...,)...m m m mm a a B a a αα?? ??==?? ???? M M B 中每一个向量(1,..,)j j m α=称为基向量;与基向量j α对应的变量j x 称为基变量. 基变量以外的的变量称为非基变量. 定义5[4] :在约束方程组 1 (1,...,)n ij j i j a x b i m ===∑中,令所有非基变量

单纯形法基本原理

工程优化设计中单纯形法的基本原理 张云龙 (大连海洋大学土木工程学院辽宁大连116023) 摘要:从实例出发提出线性规划的数学模型,给出图解法的基本原理,进而重点讲述它的标准解法——单纯形法。在此基础上进一步讨论单纯形法的推广,即大M法和两相法。 关键词:线性规划图解法单纯形法大M法 THE BASIC PRINCIPLES OF SIMPLEX METHOD TO THE ENGINEERING OPTIMIZE DESIGN ZHANG Y un-long (Dalian Ocean University, College of Civil Engineering, Liaoning, Dalian 16023) Abstract: From the instance of the starting linear programming mathematical model of the basic principles of the graphic method, and then focus on the standard solution - simplex method. To promote further discussion on this basis, the simplex method, that is, the big M method and two-phase method. Key W ords: Linear programming;Graphic method;Simplex Method; Big M Method 1引言 在工程优化设计问题中,当约束集由一组线性函数所确定时,其最优化问题的求解已有比较系统的技巧。如果连目标函数也是线性的,也即线性规划问题,则是目前对规划问题研究最透彻最完善的一类问题,而且有比较成熟的解法。线性规划在工程实例中的应用已相当广泛。 虽然大多数设计问题是非线性的,但对线性规划的研究仍然占据突出地位。其原因是:有一部分实际问题,诸如运输问题,分配问题等,确实可以用线性规划问题来求解。尤为重要的是,对于几乎所有规划问题的讨论都与线性规划有关,有时用线性逼近法去直接求解非线性问题;有时则利用线性规划,作为求解在最优化过程中所提出的那些子问题的一个工具,例如,可用来求解可行方向法中的方向寻求问题等错误!未找到引用源。。 因此,深刻理解线性规划问题及其标准解法——单纯形法,显得尤为关键。 2线性规划问题 2.1数学模型 线性规划主要解决:如何利用现有的资源,使得预期目标达到最优。例如,美佳公司计划制造Ⅰ、Ⅱ两种家电产品。已知各制造一件时分别占用的设备A、B的台时、调试工序及每天可用于这两种家电的能力、各售出一件时的获利情况,如表1-1所示。问该公司应制造两种家电各多少件,使获取的利润最大? 表1-1 工时及利润简表

使用单纯形法解线性规划问题

使用单纯形法解线性规划问题 要求:目标函数为:123min 3z x x x =-- 约束条件为: 123123 1312321142321,,0 x x x x x x x x x x x -+≤??-++≥?? -+=??≥? 用单纯形法列表求解,写出计算过程。 解: 1) 将线性规划问题标准化如下: 目标函数为:123max max()3f z x x x =-=-++ s.t.: 123412356 1371234567211 42321,,,,,,0 x x x x x x x x x x x x x x x x x x x -++=??-++-+=??-++=??≥? 2) 找出初始基变量,为x 4、x 6、x 7,做出单纯形表如下: 表一:最初的单纯形表 变量 基变量 x 1 x 2 x 3 x 4 x 5 x 6 x 7 b i x 4 1 -2 1 1 0 0 0 11 x 6 -4 1 2 0 -1 1 0 3 x 7 -2 0 1 0 0 0 1 1 -f -3 1 1 3) 换入变量有两种取法,第一种取为x 2,相应的换出变量为x 6,进行第一次迭代。迭代后新的单纯形表为: 表二:第一种换入换出变量取法迭代后的单纯形表 变量 基变量 x 1 x 2 x 3 x 4 x 5 x 6 x 7 b i x 4 -7 5 1 -2 2 3

x2-4120-1103 x7-20100011 -f10-101-10-3 由于x1和x5对应的系数不是0就是负数,所以此时用单纯形法得不到最优解。 表一中也可以把换入变量取为x3,相应的换出变量为x7,进行一次迭代后的单纯形表为: 表三:第二种换入换出变量取法迭代后的单纯形表 变量 基变量x1x2x3x4x5x6x7 b i x43-20100-110 x60100-11-21 x3-20100011 -f-110000-1-1 4)表三中,取换入变量为x2,换出变量为x6,进行第二次迭代。之后的单纯形 表为: 表四:第二次迭代后的单纯形表 变量 基变量x1x2x3x4x5x6x7 b i x43001-22-512 x20100-11-21 x3-20100011 -f-10001-11-2 5)表四中,取换入变量为x7,换出变量为x3,进行第三次迭代。之后的单纯形 表为: 表五:第三次迭代后的单纯形表 变量 基变量x1x2x3x4x5x6x7 b i x4-7051-22017 x2-4120-1103 x7-20100011 -f10-101-10-3可以看出,此时x1,x5对应的系数全部非零即负,故迭代结束,没有最优解。 结论: 综上所述,本线性规划问题,使用单纯形法得不到最优解。

单纯形法求解线性规划的步骤

单纯形法求解线性规划的步骤

单纯形法求解线性规划的步骤 1>初始化 将给定的线性规划问题化成标准形式,并建立一个初始表格,它最右边的单元格都是非负的(否则无解),接下来的m列组成一个m*m的单元矩阵(目标行的单元格则不必满足这一条件),这m列确定了初始的基本可行解的基本变量,而表格中行用基本变量来表示 2>最优化测试 如果目标行的所有单元格都是非负的(除了最右列中代表目标函数值的那个单元格),就可以停止了,该表格代表了一个最优解,它的基本变量的值在最右列中,而剩下的非基本变量都为0 3>确定输入变量 从目标行的前n个单元格中选择一个负的单元格(选择绝对值最大的那个)该单元格所在的列确定的输入变量及主元列 4>确定分离变量 对于主元列的每个正单元格,求出θ比率(如果主元格的单元格为负或为0,说明该问题是无解的,算法终止),找出θ比率最小的列,改行确定了分离变量和主元行 5>建立下一张表格 将主元行的所有单元格除以主元得到新的主元行,包括主元行在内的每一行,要减去改行主元列单元格和新主元行的成绩(除主元行为1外,这一步将主元列的所有单元格变成0).把主元列的变量名进行代换,得到新的单纯形表,返回第一步 为求简单 在本程序中,需要自己建立标准矩阵(比如加入松弛变量等工作需要用户自己完成),程序的输入有两种方式: 1:指定行和列,由用户自行输入每一个元素SimpleMatrix(introw=0,int col=0); 2:直接在主程序中初始化一个二维数组,然后利用构造函数SimpleMatrix(introw,int col,double **M) 来初始化和处理(本程序所用的实例用的是这种方法) 程序中主要的函数以及说明 ~SimpleMatrix(); 销毁动态分配的数组.用于很难预先估计矩阵的行和列,所以在程序中才了动态的内存分配.需要重载析构函数 bool Is_objectLine_All_Positive(); //判断目标行是否全部为非负数,最后一列不作考虑 这个函数用来判断是否已经存在最优解 bool Is_MainCol_All_Negative(int col);//判断主元列是否全部为负数或零 这个函数用来判断线性规划是否是无解的 bool Is_column_all_Positive(int col); //判断col列中是否全部为正(不包括目标行)

单纯形法求解原理过程

单纯形法 需要解决的问题: 如何确定初始基本可行解; 如何由一个基本可行解迭代出另一个基本可行解,同时使目标函数获得较大的下降; 如何判断一个基本可行解是否为最优解。 min f(X)=-60x1-120x2 s.t. 9x1+4x2+x3=360 3x1+10x2+x4=300 4x1+5x2+x5=200 x i≥0 (i=1,2,3,4,5) (1) 初始基本可行解的求法。当用添加松弛变量的方法把不等式约 束换成等式约束时,我们往往会发现这些松弛变量就可以作为 初始基本可行解中的一部分基本变量。 例如:x1-x2+x3≤5 x1+2x2+x3≤10 x i≥0 引入松弛变量x4,x5后,可将前两个不等式约束换成标准形式 x1-x2+x3+x4=5 x1+2x2+x3+x5=10 x i≥0 (i=1,2,3,4,5) 令x1=x2=x3=0,则可立即得到一组基本可行解 x1=x2=x3=0,x4=5,x5=10 同理在该实例中,从约束方程式的系数矩阵 中可以看出其中有个标准基,即 与B对应的变量x3,x4,x5为基本变量,所以可将约束方程写成 X3=360-9x1-4x2 x4=300-3x1-10x2 x5=200-4x1-5x2 若令非基变量x1=x2=0,则可得到一个初始基本可行解X0 X0=[0,0,360,300,200] T 判别初始基本可行解是否是最优解。此时可将上式代入到目标函数中,得:

F(X)=-60x1-120x2 对应的函数值为f(X0)=0。 由于上式中x1,x2系数为负,因而f(X0)=0不是最小值。因此所得的解不是最优解。 (2) 从初始基本可行解X0迭代出另一个基本可行解X1,并判断X1是否 为最优解。从一个基本可行解迭代出另一个基本可行解可分为 两步进行: 第一步,从原来的非基变量中选一个(称为进基变量)使其成为基本变量; 第二步,从原来的基本变量中选一个(称为离基变量)使其成为新的非基变量。 选择进基和离基变量的原则是使目标函数值得到最快的下降和使所有的基本变量值必须是非负。 在目标函数表达式中,非基变量x1,x2的系数是负值可知,若x1,x2不取零而取正值时,则目标函数还可以下降。因此,只要目标函数式中还存在负系数的非基变量,就表明目标函数还有下降的可能。也就还需要将非基本变量和基本变量进行对换。一般选择目标函数式中系数最小的(即绝对值最大的负系数)非基变量x2换入基本变量,然后从x3,x4,x5中换出一个基本变量,并保证经变换后得到的基本变量均为非负。 当x1=0,约束表达式为: X3=360-4x2≥0 x4=300-10x2≥0 x5=200-5x2≥0 从上式中可以看出,只有选择 x2=min{}=30 才能使上式成立。由于当x2=30时,原基本变量x4=0,其余x3和x5都满足非负要求。因此,可以将x2,x4互换。于是原约束方程式可得到:4x2+x3=360-9x1 10x2 =300-3x1-x4 5x2+x5=200-4x1 用消元法将上式中x2的系数列向量变[4,10,5]T换成标准基向量[0,1,0]T。其具体运算过程如下: -*4/10 : x3=240-78x1/10+4 x4/10 /10 : x2 =30-3x1/10-x4/10

单纯形法在线性规划中的实际应用

单纯形法在线性规划中的实际应用 摘要:线性规划是以数学模型为基础,研究如何在一定条件下实现目标最优化,而单纯形法是求解线性规划问题的主要方法,有效提升了数学规划的应用。本文介绍了线性规划的基本理论及单纯形法的基本理论和具体算法,然后将两者结合进行实际的应用。最终以的公交排班表和蛋糕店的加工计划为例通过模型的建立与求解制定了更加合理的公交排班时刻表和各时段的司机分配数量;解决在激烈竞争市场中如何利用有限的资源、人力、时间进行统筹安排,提高效率,降低成本使总的经济效益达到最佳。 关键词 : 线性规划;单纯形法;最优性;Lingo Abstract:Linear programming is based on the mathematical model to study how to achieve th e goal optimization under certain conditions, and the simplex method is the main method to solve t he linear programming problem, which effectively improves the application of mathematical progra mming. This paper introduces the basic theory of linear programming and the basic theory and spec ific algorithm of simplex method, and then combines the two into practical application. Finally, the bus schedule and the processing plan of the cake shop in Chongqing second Teachers ' College (Na nshan Campus) are used as examples to establish a more reasonable bus scheduling timetable and t he number of drivers assigned to each period. To solve the problem of how to make use of the limit ed resources, manpower and time in the competitive market to improve the efficiency Reduce costs to achieve the best overall economic benefits. Key words: Linear programming; Simplex method; Optimality; Lingo

图解法和单纯形法求解线性规划问题

图解法和单纯形法求解以下线性规划问题 1.1 图解法解线性规划问题 只含两个变量的线性规划问题,可以通过在平面上作图的方法求解,步骤如下: (1)以变量x1为横坐标轴,x2为纵坐标轴,适当选取单位坐标长度建立平面坐标直 角坐标系。由变量的非负性约束性可知,满足该约束条件的解均在第一象限内。 (2)图示约束条件,找出可行域(所有约束条件共同构成的图形)。 (3)画出目标函数等值线,并确定函数增大(或减小)的方向。 (4)可行域中使目标函数达到最优的点即为最优解。 然而,由于图解法不适用于求解大规模的线性规划问题,其实用意义不大。 1.2 单纯形法解线性规划问题 它的理论根据是:线性规划问题的可行域是n维向量空间Rn中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到。顶点所对应的可行解称为基本可行解。 单纯形法的基本思想是:先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。如果问题无最优解也可用此法判别。 单纯形法的一般解题步骤可归纳如下:①把线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基本可行解。②若基本可行解不存在,即约束条件有矛盾,则问题无解。③若基本可行解存在,从初始基本可行解作为起点,根据最优性条件和可行性条件,引入非基变量取代某一基变量,找出目标函数值更优的另一基本可行解。④按步骤3进行迭代,直到对应检验数满足最优性条件(这时目标函数值不能再改善),即得到问题的最优解。⑤若迭代过程中发现问题的目标函数值无界,则终止迭代。 1.3 线性规划问题的标准化 使用单纯形法求解线性规划时,首先要化问题为标准形式

单纯形法在经济管理中的应用

单纯形法在经济管理中的应用 [摘要]发展生产力,提高经济效益是人类发展不可或缺的要求,是合理利用现有的人力,物力资源,使经济效益达到最好的重要途径,而这些正是线性规划所研究的主要内容。本篇论文主要探讨单纯形法在经济管理中的应用,即应用单纯形法及其改进的方法来求解经济管理中的线性规划问题。详细介绍线性规划问题的基本思想和数学模型,深入研究单纯形法的原理和解法,将方法运用到生产计划模型和投资模型中。分析模型的求解结果,比较各种算法之间的优劣性,进一步说明单纯形法的实用性。 [关键字]线性规划单纯形法生产计划模型投资计划模型

The application of simplex method in economic management [Abstract]Development of productivity and economic efficiency are indispensable requirement of human development. Rational use of human and material resources is an important way to achieve the best economic benefits, which is the main contents the linear programming studies. This paper mainly discusses the application of the simplex method in economic management, namely Simplex method and the improved methods are applied to solving the economic management of the linear programming problem. The basic ideas and mathematical models of linear programming problems will be introduced in detail the research on the theory and solution of the simplex method is studied, and apply these methods to the production planning model and investment model . The results of the model will be analyzed. By comparing the advantages and disadvantages between various algorithms, the practicality of the simplex method is further illustrated. [Key words]Linear Programming Simplex Method Production planning model Investment Planning Model

使用单纯形法解线性规划问题

使用单纯形法解线性规划 问题 The Standardization Office was revised on the afternoon of December 13, 2020

使用单纯形法解线性规划问题 要求:目标函数为:123min 3z x x x =-- 约束条件为: 123123 1312321142321,,0 x x x x x x x x x x x -+≤??-++≥?? -+=??≥? 用单纯形法列表求解,写出计算过程。 解: 1)将线性规划问题标准化如下: 目标函数为:123max max()3f z x x x =-=-++ .: 1234123561371234567211 42321,,,,,,0x x x x x x x x x x x x x x x x x x x -++=??-++-+=??-++=??≥? 2)找出初始基变量,为x 4、x 6、x 7,做出单纯形表如下: 表一:最初的单纯形表 3) 换入变量有两种取法,第一种取为x 2,相应的换出变量为x 6,进行第一 次迭代。迭代后新的单纯形表为: 表二:第一种换入换出变量取法迭代后的单纯形表

由于x1和x5对应的系数不是0就是负数,所以此时用单纯形法得不到最优解。 表一中也可以把换入变量取为x3,相应的换出变量为x7,进行一次迭代后的单纯形表为: 表三:第二种换入换出变量取法迭代后的单纯形表 4)表三中,取换入变量为x2,换出变量为x6,进行第二次迭代。之后的单纯形表为: 表四:第二次迭代后的单纯形表 5)表四中,取换入变量为x7,换出变量为x3,进行第三次迭代。之后的单纯形表为: 表五:第三次迭代后的单纯形表

单纯形法求解线性规划的步骤

单纯形法求解线性规划的步骤 1>初始化 将给定的线性规划问题化成标准形式,并建立一个初始表格,它最右边的单元格都就是非负的(否则无解),接下来的m 列组成一个m*m的单元矩阵(目标行的单元格则不必满足这一条件),这m列确定了初始的基本可行解的基本变量,而表格中行用基本变量来表示 2>最优化测试 如果目标行的所有单元格都就是非负的(除了最右列中代表目标函数值的那个单元格),就可以停止了,该表格代表了一个最优解,它的基本变量的值在最右列中,而剩下的非基本变量都为0 3>确定输入变量 从目标行的前n个单元格中选择一个负的单元格(选择绝对值最大的那个)该单元格所在的列确定的输入变量及主元列 4>确定分离变量 对于主元列的每个正单元格,求出θ比率(如果主元格的单元格为负或为0,说明该问题就是无解的,算法终止),找出θ比率最小的列,改行确定了分离变量与主元行 5>建立下一张表格 将主元行的所有单元格除以主元得到新的主元行,包括主元行在内的每一行,要减去改行主元列单元格与新主元行的成绩(除主元行为1外,这一步将主元列的所有单元格变成0)、把主元列的变量名进行代换,得到新的单纯形表,返回第一步 为求简单 在本程序中,需要自己建立标准矩阵(比如加入松弛变量等工作需要用户自己完成),程序的输入有两种方式: 1:指定行与列,由用户自行输入每一个元素SimpleMatrix(introw=0,int col=0); 2:直接在主程序中初始化一个二维数组,然后利用构造函数SimpleMatrix(introw,int col,double **M) 来初始化与处理(本程序所用的实例用的就是这种方法) 程序中主要的函数以及说明 ~SimpleMatrix(); 销毁动态分配的数组、用于很难预先估计矩阵的行与列,所以在程序中才了动态的内存分配、需要重载析构函数bool Is_objectLine_All_Positive(); //判断目标行就是否全部为非负数,最后一列不作考虑 这个函数用来判断就是否已经存在最优解 bool Is_MainCol_All_Negative(int col);//判断主元列就是否全部为负数或零 这个函数用来判断线性规划就是否就是无解的 bool Is_column_all_Positive(int col); //判断col列中就是否全部为正(不包括目标行)

使用单纯形法解线性规划问题

使用单纯形法解线性规划问题 要求:目标函数为:123min 3z x x x =-- 约束条件为: 123123 1312321142321,,0 x x x x x x x x x x x -+≤??-++≥?? -+=??≥? 用单纯形法列表求解,写出计算过程。 解: 1) 将线性规划问题标准化如下: 目标函数为:123max max()3f z x x x =-=-++ s.t.: 123412356 1371234567211 42321,,,,,,0 x x x x x x x x x x x x x x x x x x x -++=??-++-+=??-++=??≥? 2) 找出初始基变量,为x 4、x 6、x 7,做出单纯形表如下: 表一:最初的单纯形表 3) 换入变量有两种取法,第一种取为x 2,相应的换出变量为x 6,进行第一次迭代。迭代后新的单纯形表为: 表二:第一种换入换出变量取法迭代后的单纯形表

由于x1和x5对应的系数不是0就是负数,所以此时用单纯形法得不到最优解。 表一中也可以把换入变量取为x3,相应的换出变量为x7,进行一次迭代后的单纯形表为: 表三:第二种换入换出变量取法迭代后的单纯形表 4)表三中,取换入变量为x2,换出变量为x6,进行第二次迭代。之后的单纯形表为: 表四:第二次迭代后的单纯形表 5)表四中,取换入变量为x7,换出变量为x3,进行第三次迭代。之后的单纯形表为: 表五:第三次迭代后的单纯形表 可以看出,此时x1,x5对应的系数全部非零即负,故迭代结束,没有最优解。 结论: 综上所述,本线性规划问题,使用单纯形法得不到最优解。

单纯形法及其应用

单纯形法及其应用 摘要 单纯形法是一种主要的解决线性规划问题的方法,它在生活的成本问题、交通选择或规划学术问题等方面得到广泛应用.本文系统的研究了单纯形法的相关概念以及原理.并阐述了用单纯形法解决线性规划问题的步骤与方法及不同方法的特殊性.正确的应用单纯形法解决问题能够提高准确率,从而进行合理的规划安排,使得效果或收益达到期待化或最优化. 关键词:单纯形法;单纯形表;最优性

The Simplex Method and its Application Abstract:Simplex method is a main to solve linear programming problems, it in life cost, the choice of traffic or academic planning problems are widely used. This paper study the simplex method of the related concepts and principles. It describes the steps and methods to use simplex method to solve linear programming problems, and the different method. Correct application of the simplex method problem solving is able to improve the accuracy, in order to carry out reasonable planning arrangements, makes the effect or income reached expectations or optimization. Keywords:simplex method;simplex tableau;optimality

单纯形法在线性规划中的应用。

单纯形法在线性规划中的应用 摘要 求解线性规划问题,就是在各项资源条件的限制下,如何确定方案,使预期的目标达到最优。本文重点介绍了求解线性规划问题目前最常见的两种方法,图解法和单纯形法。图解法适合于只含两个变量的线性规划问题,文中只做了简单的描述。而单纯形法是求解线性规划问题的通用方法,适合于求解大规模的线性规划问题,本文作了重点描述,对单纯形法中的基本概念如基变量、非基变量、基向量、非基向量、可行基以及基本可行解等概念作了详细的陈述,在此基础上,介绍了线性规划问题的标准化、单纯形法的基本原理、确定初始可行解、最优性检验、解的判别、基本可行解的改进、换入变量的确定-最大增加原则、换出变量的确定-最小比值原则、表格单纯形法、大M法、两阶段法等。 关键词:线性规划图解法单纯形法基变量基向量可行基基本可行解

正文 引言 在生产管理和经济活动中,经常遇到这些问题,如生产计划问题,即如何合理利用有限的人、财、物等资源,以便得到最好的经济效果;材料利用问题,即如何下料使用材最少;配料问题,即在原料供应量的限制下如何获取最大利润;劳动力安排问题,即如何用最少的劳动力来满足工作的需要;运输问题,即如何制定调运方案,使总运费最小;投资问题,即从投资项目中选取方案,使投资回报最大等等。对于这些问题,都能建立相应的线性规划模型。事实上,线性规划就是利用数学为工具,来研究在一定条件下,如何实现目标最优化。 解线性规划问题目前最常见的方法有两种,图解法和单纯形法。单纯形法是求解线性规划问题的通用方法。 1 线性规划问题的求解方法 1.1 图解法解线性规划问题 只含两个变量的线性规划问题,可以通过在平面上作图的方法求解,步骤如下: (1)以变量x 1为横坐标轴,x 2 为纵坐标轴,适当选取单位坐标长度建立平面 坐标直角坐标系。由变量的非负性约束性可知,满足该约束条件的解均在第一象限内。 (2)图示约束条件,找出可行域(所有约束条件共同构成的图形)。 (3)画出目标函数等值线,并确定函数增大(或减小)的方向。 (4)可行域中使目标函数达到最优的点即为最优解。 然而,图解法虽然直观、简便,但当变量数多于三个以上时,其实用意义不大。

用单纯形法求解线性规划问题

目录 一.摘要 (2) 二.实验目的 (2) 三.实验内容 (2) 四.建立数学模型 (3) 五.实验原理 (5) 六.MALTAB程序代码及注释 (7) 七.结果运行测试 (13) 八.心得与感悟 (15)

一.摘要: 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.研究线性约束条件下线性目标函数的极值问题的数学理论和方法,英文缩写LP。 自1946年G.B.Dantizig提出单纯形法以来,它一直是求解线性规划问题的最有效的数学方法之一。单纯形法的理论根据是:线性规划问题的可行域是 n 维向量空间Rn中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到。顶点所对应的可行解称为基本可行解。通过引入普通单纯形法,依次迭代并判断,逐步逼近,最后得到最优解。若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。如果问题无最优解也可用此法判别。 关键字:线性规划,单纯形法,最优值,最优解 二.实验目的: 1.加强学生分析问题能力,锻炼数学建模能力。 2.了解并掌握MATLAB软件中的线性规划问题的编程、求解和分析。 3.利用所学的MALTAB语言,完成对单纯形法问题的编程设计。 三.实验内容: 某商场决定,营业员每周连续工作5天后连续休息2天,轮流休息,据统计,商场每天需要营业员如下:星期一:300,二:300;三:350,四:400,五:480,六:600;日:500; (1)商场人力资源部应如何安排每天上班的人数才能使商场总的营业员最少 (2)若商场可以雇佣临时工,上班时间同正式工,若正式工每天工资80,临时工每天100,问商场是否应雇佣临时工及雇佣多少名?

单纯形法课程论文

最优化方法课程论文 题目:单纯形法的发展及其应用 系别:理学院 专业:信息与计算科学 姓名: 班级:信息101班

单纯形法的发展及其应用 一.单纯形法简介: 单纯形法,求解线性规划问题的通用方法。单纯形是美国数学家G.B.丹齐克于1947年首先提出来的。它的理论根据是:线性规划问题的可行域是n维向量空间Rn中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到。顶点所对应的可行解称为基本可行解。单纯形法的基本思想是:先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。如果问题无最优解也可用此法判别。 二.单纯形法在线性规划中的应用 1.单纯形法解线性规划问题 在生产管理和经济活动中,经常遇到这些问题,如生产计划问题,即如何合理利用有限的人、财、物等资源,以便得到最好的经济效果;材料利用问题,即如何下料使用材最少;配料问题,即在原料供应量的限制下如何获取最大利润;劳动力安排问题,即如何用最少的劳动力来满足工作的需要;运输问题,即如何制定调运方案,使总运费最小;投资问题,即从投资项目中选取方案,使投资回报最大等等。对

于这些问题,都能建立相应的线性规划模型。事实上,线性规划就是利用数学为工具,来研究在一定条件下,如何实现目标最优化。单纯形法是求解线性规划问题的通用方法。 (1)单纯形法解线性规划问题的理论根据是: 线性规划问题的可行域是 n维向量空间Rn中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到。顶点所对应的可行解称为基本可行解。 (2)单纯形法的基本思想是: 先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。如果问题无最优解也可用此法判别。 (3)单纯形法的一般解题步骤可归纳如下: ①把线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基本可行解。②若基本可行解不存在,即约束条件有矛盾,则问题无解。③若基本可行解存在,从初始基本可行解作为起点,根据最优性条件和可行性条件,引入非基变量取代某一基变量,找出目标函数值更优的另一基本可行解。④按步骤3进行迭代,直到对应检验数满足最优性条件(这时目标函数值不能再改善),即得到

单纯形法的计算方法

第4章 单纯形法的计算方法 单纯形法求解线性规划的思路: 一般线性规划问题具有线性方程组的变量数大于方程个数, 这时有不定的解。但可以从线性方程组中找出一个个的单纯形, 每一个单纯形可以求得一组解, 然后再判断该解使目标函数值是增大还是变小, 决定下一步选择的单纯形。这就是迭代, 直到目标函数实现最大值或最小值为止。 4.1 初始基可行解的确定 为了确定初始基可行解, 要首先找出初始可行基, 其方法如下。 (1)第一种情况:若线性规划问题 max z =n j j j=1c x ∑ 1,1,2,...,0,1,2,...n ij j i j j a x b i m x j n =?==???≥=?∑ 从Pj ( j = 1 , 2 , ? , n )中一般能直接观察到存在一个初始可行基 121(,,...,)n B P P P 0 0?? ?0 1 0 ?== ? ?0 0 1?? (2)第二种情况:对所有约束条件是“ ≤”形式的不等式, 可以利用化为标准型的方法, 在每个约束条件的左端加上一个松弛变量。经过整理, 重新对 j x 及ij a ( i = 1 , 2 , ? , m ; j = 1 , 2 , ? , n )进行编号, 则可得下列方 程组 11,1111 22,1122,1112.........,,...,0 m m n n m m n n m m m m nn n n n x a x a x b x a x a x b x a x a x b x x x +++++++++=?? +++=?? ??+++=??≥? 显然得到一个m ×m 单位矩阵

单纯形法的简述及应用

单纯形法的简述及应用 摘要 自1947年G.B.Dantzig提出单纯形法以来,他一直是求线性规划的最有效的计算方法。但是,单纯形法要求已知一个基本可行解,且线性规划需化典式。而在一般情况下,线性规划问题并无明显的可行解。如用两阶段法获得基本可行解,必须增加人工变量,从而增加计算量。针对这一问题,本文提出了改进单纯形法(一),在不增加人工变量的前提下,采用较简单的方法,求出一基本可行解,并在求解过程中剔除多余约束,判断问题是否有解,同时将线性规划的约束方程化为典式。此方法减少了比较次数,且简单易行,容易在计算机上实现。本文针对线性规划问题在变量和约束的个数较多时,传统单纯形法占据较大的内存空间,且有不少多余计算的情况提出改进单纯形法(二),能以较少的计算量及较小的占用存储空间方法从基的逆矩阵计算出新基的逆矩阵。从而既能使迭代过程持续进行下去,又能克服上述单纯形法的不足,是解决这些问题的一种实用且较有效的方法。 关键词:线性规划、单纯形法、基本可行解、初等变换。 绪论 引言 运筹学是近六十年发展起来的一门学科。运筹学在生产管理、工程技术、军事作战、科学实验。财政经济。社会科学以及自然科学和其他学科都应经取得了很多令人瞩目的成果。线性规划是运筹学的一个重要分支,是运筹学中最重要的一种数量方法,其应用范围非常广泛。主要用于研究解决有限资源的最佳分配问题,即如何对有限的资源做出最佳方式的调配和最有力的使用,以便最充分地发挥资源的效能去获取最佳经济效益。从数学的角度来说,也就是在对决策变量施加一组线性等式、不等式以及等号的约束下,求决策变量的线性目标函数的最大化和最小化。 与其他的数学学科相比,线性规划是一个相当年轻又非常活跃的应用数学分支。自从一般线性规划问题求解的方法——单纯形法被提出之后,线性规划在理论上趋向成熟,在使用中日益广发与深入。线性规划的广泛应用以及涉及到的数学理论和计算方法,都引起了专业人员和学者们的很大兴趣。 线性规划基础及单纯形法 线性规划问题及数学模型 凡是同时满足以下三个条件的问题,就叫做线性规划问题: (1)可用一些变量表示问题的待定方案,这些变量的一组定值就代表一个具体的方案。因此,可将这些变量称为决策变量,并往往要求它们为非负的。 (2)存在一定的约束条件,这些约束条件都能用关于决策变量的线性等式或线性不等式来表示。 (3)有一个期望达到的目标,它可用决策变量的线性函数(称为目标函数)来表示,根据具体问题的不同,要求目标函数实现最大化或最小化。 线性规划就是研究并解决上述问题的一种理论和方法。满足以上三个条件的数学模型称为线性规划的数学期望,简称线性规划模型。期一般形式如下:

单纯形法matlab程序

算法实现与分析 算法1.单纯形法 具体算例: min z=?3x1+x2+2x3 3x1+2x2?3x3=6 x1?2x2+x3+x5=4 x1,x2,x3≥0 标准化后: min z=?3x1+x2+2x3+Mx4+Mx5 3x1+2x2?3x3+x4=6 x1?2x2+x3+x5=4 x1,x2,x3,x4,x5≥0 用单纯形法求解,程序如下: clear clc M=1000000; A=[3,2,-3,1,0;1,-2,1,0,1];%系数矩阵 C=[-3,1,2,M,M,0];%价值矩阵 B=[6;4]; Xt=[4 5]; for i=1:length(C)-1 D=0; for j=1:length(Xt) D=D+A(j,i)*C(Xt(j)); end xi(i)=C(i)-D; end s=[]; for i=1:length(xi) if xi(i)<0 s=[s,i]; end end f=length(s); h=1; while(f) for k=1:length(s) j=1; A x=[]; for i=1:length(Xt) if A(i,s(k))>0

x(j)=i; j=j+1; end end x if(length(x)+1==1) break; end y=1 x for i=1:length(x) if B(x(i))/A(x(i),s(k))

相关文档
最新文档