激光原理复习

激光原理复习
激光原理复习

激光原理

第一章

1. 激光器的组成部分及作用

(1)工作物质(激活物质):用来实现粒子数反转和产生光的受激发射作用的 物质体系。

(2)泵浦源:提供能量,实现工作物质的粒子数反转。 (3)谐振腔:①提供轴向光波模的正反馈

②模式选择,保证激光器单模振荡,从而提高激光器的相干性。

2. 模式数的计算

单色模密度:

计算例:封闭腔在5000 ?处单色模密度。

3. 光谱宽度的计算

其中,为波列长度。

4. 本征状态的定义

给定空间内任一点处光的运动情况,在初始条件和边界条件确定后,原则上就可求解麦克斯韦方程组,一般可得到很多解,而且这些解的任何一种线性组合都可满足麦克斯韦方程,每一个特解,代表一种光的分布,即代表光的一种本振振动状态。

5. 光子简并度的定义

光子简并度对应于线度光源λ,在单位时间单位立体角内发出单位频宽的光子数(处于同一个相格中的光子数,处于一个模式中的光子数,处于相干体积内的光子数,处于同一量子态内的光子数,都有相同的含义,均定义为光子简并度)。并用表示:

V c V c g 3

22824νπννλπ?=???=3

28c n πνν=Hz c

1410

8

106105000103?=??==-λυ3

53821432s 1035.310310614.388-??=????==m c n )()(πυυc

l c t //1=?≈δνc l

δν

λνδ??Ω?=

=

?ΩS h P

g n )/2(2

6. 光子简并度与单色亮度之间的关系

光源的光子简并度,从微观上反映出光源的单色亮度。单色亮度:

。光子简并度与单色亮度之间的关系为:

7. 光子平均能量的表达

同一种光子运动状态(或同一种光波模式)的光子平均能量:

8. 光的自发辐射、受激吸收、受激辐射

自发辐射:处于的原子在无外来光子情况下自发地向能级跃迁,发射能量以光辐射形式放出即自发辐射。特点:自发辐射是仅与原子自身性质有关的随机过程,自发辐射的光在方向、偏振、相位方面都没有确定的关系,因此是不相干的。

受激吸收:原子在外来光子

作用下,若

,处于的原子由

于吸收该光子而受激跃迁到的过程。特点:受激吸收几率与外来光的频率有严格的选择性,与外来光辐射能量密度大小有关。外来光频率等于、的间隔所对应的频率时,受激吸收几率最大。

受激辐射:光的受激辐射是受激吸收的反过程。原子系统在外来光子作

用下,若

,处于的原子跃迁到,并辐射一个与外来光子相同的

光子的过程。特点:受激辐射与外来光子有关,辐射的光子与引起受激辐射的外来光子有相同的频率、位相、偏振以及传播方向。通过受激辐射,能够实现同态光子数放大,可以得到高光子简并度的相干光。

9. 爱因斯坦三系数的相互关系

在热平衡情况下,辐射率和吸收率应相等,即单位时间内物质辐射出的光子数,等于单位时间内被物质吸收的光子数:

?Ω??=

ννS P B δνB hv B v

22λδ=1

)ex p(-=

KT h h E νν

2E 1E 21

υh 1

221E E h -=υ1E 2E 2E 1E 21

υh 1

221E E h -=υ2E 1E ν

νρρ121212212B n B n A n =+

;为自发辐射爱因斯坦系数,

为受激吸收爱因斯坦系数,为受激辐射爱因斯坦系数。、分别表示能级和的简并度,上式称

为爱因斯坦关系式。当简并度=时,则=,即当其他条件相同时,受激辐射和受激吸收具有相同几率。正常情况下低能级原子数>高能级原子数

,即受激吸收比辐射更频繁发生,且波长越短,自发辐射的几率越大。

10. 速率方程理论的优点及局限性

优点:速率方程是在不考虑光子的相位特性和光子数的起伏特性情况下,它是全量子化理论的一种简化形式。速率方程理论主要用于描述激光的光强特性,近似地描述烧孔效应、兰姆凹陷与多模竞争等特性。

局限性:对于增益介质色散等频率特性和与量子起伏有关的激光特性研究,这一理论就不能解释。

11. 粒子数反转分布的定义

在激光器工作物质内部,由于外界能源的激励,破坏了热平衡,有可能使得处于高能级上的粒子数大大增加,达到>,这种情况称为粒子数反转分布,也称为集居数反转分布。

12. 增益系数的定义

光在激活物质内部将越走越强,使该激光工作物质输出的光能量超过入射光的能量,这就是光的放大过程,其放大作用的大小通常用增益系数G 来描述。

增益系数相当于光沿着Z 轴方向传播时,在单位距离内所增加

光强的百分比,其单位为。

13. 阈值条件的概念及定义

阈值条件(起振条件):激光器实现振荡所需要的最低条件。

定义式:

,式中,为增益系数,L 为谐振腔腔长,

???????==1821

12213

3

2121B B

g g c h B A νπ21A 12B 21B 1g 2g 1E 2E 1g 2g 12B 21B 1n 2n 2E 2n 2n 1n )()

()(Z Z dI I Z G d 1=

1

-cm )()(内21ln 21

r r L G -

≥αυ)(υG

和分别为量反射镜面的反射率,为除反射镜透射外的每单位长度上平均

损耗系数。

14. 能量的共振转移的定义

当激发态He 原子和基态Ne 原子发生非弹性碰撞并交换能量而将Ne 原子激励到Ne 的3s 和2s 能级,这个过程称为能量的共振转移。

15. 激光的特性(解释why )

(1)方向性:激光束好的方向性主要是由于激光器受激辐射的机理和光学谐振腔对光束的方向限制所决定。

(2)单色性:原子的激发态总有一定的能级宽度,也总有一定的频率宽度。谱

线宽度和频率宽度越窄,光的单色性越好,激光的谱线宽度可窄到<微米。

(3)高亮度:普通光源由于定向性很差,因此亮度极低;对于激光器来说,由

于谐振腔对光束的方向有限制作用,输出光束的发散角很小,因此定向亮度值很高。

(4)相干性:相干性分为空间相干性和时间相干性。激光源的光子简并度决定着激光的相干性,光子简并度越高,激光源的相干性越好。

第二章

1、光学谐振腔的作用

(1)提供光学正反馈作用(放大):使激活介质中产生的辐射能多次通过介质,当受激辐射提供的增益超过损耗时,在腔内得到放大,建立并维持自激振荡。光学反馈作用取决于:腔镜反射率和几何形状。 (2)产生对振荡光束的控制作用:表现为对腔内振荡光束的方向和频率的限制。 A 、控制腔内振荡光束纵向分布(纵模):使腔内建立的振荡被限制在腔所决定的少数本征模式中,从而提高单个模式内的光子数,获得单色性好、方向性好的强相干光。

B 、控制光束的横向分布持性、光斑大小及发散角等。

C 、改变腔内光束损耗

2、光学谐振腔的模式

通常将谐振腔内可能存在的电磁场本征状态称为腔的模式。腔的模式就是腔内可区分的光子状态,不同的模对应不同的场分布和振荡频率。光学谐振腔的模式可分为纵模和横模。

1r 2r 内 11-10

3、谐振腔的谐振频率

,其中为均匀介质折射率,为谐振腔腔长,为正整数。

4、纵模(整个一节)

(1)定义:通常把由整数q 所表征的腔内纵向稳定场分布称为激光的纵模。 (2) 纵模频率间隔:腔内两相邻纵模频率之差:

5、横模(自再现模)

(1)横模定义:腔内电磁场在垂直于其传播方向的横向面内存在稳定的场分布,通常称为横模。

(2)自再现模定义:光束在腔内多次往返传播后形成一种振幅和相位分布不再变化的稳态场,它的相对分布不再受衍射影响,在腔内往返一次能够“自再现”出发时的场分布,这种稳定场分布称为自再现模或横模。

(3)自再现模形成过程:入射光在进入第一个光阑之前,唱的振幅分布沿光阑是均匀的,经第一个光阑后,由于衍射作用将使波阵面发生畸变,部分光偏离原来的传播方向,产生一些衍射瓣,使光波的振幅和相位分布均发生一些变化。射到光阑以外的光将被黑体屏所完全吸收。每通过一次光阑,边缘部分的衍射波又被光阑所挡,使边缘强度比中心部分小,且振幅和相位分布又发生新的变化。通过一系列的光阑后,镜面上来回反射光波的相对振幅和相位分布不再发生变化,由此形成自再现模。

6、光学谐振腔的损耗有哪些类型?

(1)选择性损耗(随不同横模而异):几何损耗、衍射损耗

(2)非选择性损耗:腔镜反射不完全引起的损耗(吸收损耗、散射损耗、透射损耗)、非激活吸收散射等其他损耗。

(3)损耗:①几何偏折损耗:与腔的类型、腔的几何尺寸、模式有关。 ②衍射损耗:与腔的菲涅尔数、腔的几何参数、横模阶次有关。 ③腔镜反射不完全损耗:与腔镜的透射率、反射率有关。 ④材料中的非激活吸收、散射、腔内插入物所引起的损耗: 与介质材料的加工工艺有关。

7、光子的平均寿命

L C

q q ηυ2?=ηL q L c q q q ηννν21=

-=?+

定义:腔内的光强衰减为初始值的1/e 所需要的时间。 计算: ;为腔的光学长度,C 为真空中的光速,为腔损耗。

8、Q 值的定义

Q 值:衡量谐振腔的损耗大小。

普通定义式:

;其中为腔内电磁场的振荡频率。

光频谐振腔的一般表达式:;腔的损耗越小,Q 值越高。

9、简单光学元件的光线传播矩阵

符号规则:(1)X -轴线上方为“+”,-光线指向光轴上方为“+”; (2)折射面/反射面曲率半径R:凹面R>0,凸面R<0; (3)球面波波面曲率半径R:发散R>0,汇聚R<0。

(1)自由空间光线矩阵:

(2)薄透镜变换矩阵:

(3)球面反射镜:

10、谐振腔的稳定性图

C L R δτ'

=

'L δ单位时间损耗的能量腔内储藏的能量

πν

2=Q νc L Q R δπν

πντ'

22==?

???

??=101)(L L M ???? ??-=1/101

)(f

f M ?

??? ??-=1/201

)(R R M

,稳定腔:。

11、非稳定腔的一般特点

优点:

(1)大的可控模体积 (2)可控的衍射耦合输出 (3)易鉴别和控制横模

(4)易于得到单端输出和准直的平行光

缺点:输出光束截面呈环状,远场暗斑将消失,光强分布不均而显示衍射环。

12、选模技术

定义:为了使输出的激光有很好的单色性和相干性,获得基横模、单纵模激光束的技术。

13、横模的选择方法

(1)物理基础:不同横模有不同的衍射损耗。

(2)选模原则:在各个横模增益大体相同的条件下,不同横模间衍射损耗有差别,在稳定腔中,基膜的衍射损耗最低,随着横模阶次的增高,衍射损耗将迅速增加。如果降低基膜的衍射损耗,使之满足阈值条件(基膜的单程增益至少能补偿它在腔内的单程损耗),则其它模因损耗高而不能起振被抑制。 (3)选模方法:A 、g 参数选模

,R 增大,谐振腔向临界腔靠近,则

2

1212121))(()1)(1(R R L R L R R L R L g g --=--

=1021<

g -

=1

高阶模损耗增大速度加快;

B 、菲涅耳数N 选模

,a --腔镜口径,a 减小则高阶模的 损耗增大速度加快;

C 、小孔光阑法;

D 、腔内置入透镜法;

E 、聚焦光阑法;

F 、望远镜腔选模法;

G 、非稳腔选模法;

14、纵模的选择方法(了解)

(1)选模原则:一般谐振腔中有着相同的损耗,但由于频率的差异而具有不同的小信号增益系数。因此,扩大相邻纵模的增益差或人为引入损耗差是进行纵模选择的有效途径。

(2)纵模选择方法:①色散腔:腔内置入棱镜、光栅、薄透镜。 ②短腔法:频率间隔与腔长成反比。 ③F -P 标准具:对不同波长的光束具有不同的透过率环形行 波腔。 ④Q 开关法

第三章

1、瑞利长度的定义+计算

定义:当

时,;即光斑从最小半径增大到,这个范

围为瑞利范围。常取范围为高斯光束的准直范围,从最小光斑处算起的

这个长度即瑞利长度。

2、远场发散角的定义+计算

定义:时(远场处)高斯光束振幅减小到中心最大值1/e 处与z 轴的交角(半角)。(理论上为双曲线的渐近线与光轴的夹角)

计算:

为光斑最

小半径,f 为共焦参数。

λL a N 2

=

z z =002)(ωω=z 0ω

02ω0

z z ±=∞→z R

z f z z R z z

z z ))((

))

()

((

)

(022lim

πππλ

λωλπωλωωθ===+==∞

→0

ω

3、高斯光束的传输规律

(1)球面波在自由空间的传输规律: 规定:沿光传输方向的发散球面波的曲率半径为正,会聚球面波的曲率半径为负。

(2)高斯光束的传输规律:

①高斯光束可由波前曲率半径R(z)、光斑半径和位置z 中任意两个量来描述。 ②高斯光束传输变化规律:光斑和曲率半径如下:

光斑半径:

波前曲率半径:

③已知波前曲率半径R(z)和该位置光斑,可确定束腰位置和大小如下:

束腰位置:

束腰半径:

④高斯光束传输规律:高斯光束的复数曲率半径与普通球面波的曲率半径遵循相

同的传输规律。

z z R =)(L z R z z z R z R +=-+=)()()()(11212)(z ω02

2222

2

])(1[)(0

z z z z z +=

+=πλπωλωωz z z z z z R 20

222])(1[)(0

+=

+=λπω)(z ω2

2

)(

1πωλR R z +=

222

0)

(1R λπωωω+=

第四章

1、线型函数的定义

定义:自发辐射跃迁几率按频率的分布函数。

2、线宽的定义

定义:线型函数的半极值点间对应的频谱宽度,记作。

3、光谱线的加宽机制和类型

(1)均匀加宽: ①自然加宽(寿命加宽):仅由自发辐射跃迁几率所决定的 光谱线加宽。可以看做是介质中 一个孤立、静止的原子在自发辐 射时所产生的光谱线加宽,它是 自发辐射过程所固有的。光谱线 自然加宽的线型函数为洛仑兹函 数。

②碰撞加宽:大量原子(分子)间的无规则碰撞导致自身运 动状态的改变,从而引起的谱线加宽。

③晶格振动加宽:晶格热振动,晶体中激活离子的能级所对 应的能量在某一范围内变化而引起谱线加 宽。 (2)非均匀加宽:①多普勒加宽(气体):由做热运动的发光原子/分子所发出 的辐射存在多普勒频移引起。 ②晶格缺陷加宽(固体):晶格缺陷部位激活离子的能级发 生位移,处于晶体不同部位的激 活离子的发光中心频率不同即产 生非均匀加宽。 标准答案:

谱线加宽:由于各种因素的影响,自发辐射并不是单色的,而是分布在中心频率 附近一个很小的频率范围内,这就叫谱线加宽。 加宽类型及机制: ①均匀加宽

自然加宽机制:原子的自发辐射引起的。

碰撞加宽机制:大量原子(分子、离子)之间的无规则碰撞。 晶格振动加宽机制:晶格振动使激活离子处于随周期变化的晶格场,激活离子的 能级所对应的能量在某一范围内变化。 ②非均匀加宽

多普勒加宽机制:由于作热运动的发光原子(分子所发出)辐射的多普勒频移引 起的。

υυ?

晶格缺陷加宽机制:晶格缺陷部位的晶格场将和无缺陷部位的理想晶格场不同, 因而处于缺陷部位的激活离子的能级将发生位移,导致处于 镜体不同部位的激活离子的发光中心频率不同。

③综合加宽

气体工作物质的综合加宽机制:由碰撞引起的均匀加宽和多普勒非均匀加宽。 固体激光工作物质综合加宽机制:由晶格热振动引起的均匀加宽和晶格缺陷引起 的非均匀加宽。 液体工作物质的综合加宽机制:溶于液体中的发光分子与其它分子碰撞而导致自 发辐射的碰撞加宽。

第五章

1、吸收截面、发射截面的定义

吸收截面:下能级的每个原子对入射光波吸收功率所具有的有效俘获截面积。 发射截面:上能级的每个原子由于负吸收或受激发射所具有的有效俘获截面积 。

2、稳态增益、增益饱和的定义

稳态增益:

增益饱和:当光强足够强时,增益系数g 也随着光强的增加而减小,这一现象称 为增益饱和效应。

3、非均匀加宽介质“烧孔”效应的解释

烧孔效应:由于介质的强非均匀加宽跃迁特点,入射光仅与介质中表观中心频率

的原子产生强的共振互作用,且使其发生受激跃迁,结果使介质中原子

数反转密度按表观中心频率的分布,在与饱和光频率相应处产生局部饱和,小信号增益曲线在饱和光作用下呈现“烧孔”效应。饱和信号

愈强,烧孔愈

深且愈宽。

12σ21συ1

0'υυ=1υ1

υI 1

υI

4、兰姆下陷的定义

定义:激光器振荡模的频率被调谐至介质跃迁中心频率时,即输出功率呈现

出某种程度的降低 即兰姆下陷(或拉姆下陷)。下陷宽度大致等于介质 中均匀加宽的线宽。

5、频率牵引的定义

定义:激光器振荡模的精确谐振频率总是偏离无源腔相应模的频率,且较后者更靠近激活介质原子跃迁的中心频率

的现象。

原因:振荡模与介质原子相互作用引起的介质极化。

第六章

1、尖峰的定义

定义:激光器开启时发生的不连续的、尖锐的、大振幅脉冲为“尖峰”。

2、驰豫振荡的定义

υ0

υ

定义:连续运转时发生在稳态振荡附近的小振幅、准正弦阻尼振荡即“弛豫振荡”。

3、调Q及巨脉冲形成过程的描述

调Q:即调制谐振腔的损耗/阈值。

在泵浦激励开始时,谐振腔处于低Q值状态,此时激光器具有高的阈值,使激光振荡不能形成,上能级反转粒子数和腔内储能大量积累(储存时间决定于上能级寿命)。

当积累到饱和值时,突然降低腔的损耗到正常值,Q值突增,激光器的振荡阈值降低到正常水平,此时激光振荡迅速建立,在极短时间内上能级的反转粒子数以单一脉冲形式释放出来。介质的增益迅速下降,继而由于介质增益的继续饱和而使增益低于阈值,激光振荡迅速熄灭,于是在激光器中就形成了一个调Q 巨脉冲输出。

4、锁模的基本原理

定义:采用一定的技术,使各振荡纵模的频率间隔相等、相位互相锁定,则激光器将输出一列时间间隔一定的超短脉冲,这种技术即锁模技术。

(1)激光器输出是间隔为T=2L/c的规则脉冲序列。两相邻主脉冲间有2N个零点,2N-1个极大值(次脉冲,相对于主脉冲可忽略)。

(2)振荡线宽决定了锁模脉冲宽度的极限。

(3)脉冲峰值功率为自由运转时功率的(2N+1)倍。

(4)各振荡模发生功率耦合不独立,每个模的功率由所有振荡模提供。

5、锁模的常见方法

(1)主动锁模

在谐振腔内置入一个受外部信号控制的调制器,用一定的调制频率周期性地改变谐振腔内振荡模的振幅或相位,调制频率应精确地等于纵模间隔,得到重复频率f=c/2L的锁模脉冲序列。

通常有相位调制锁模和振幅调制锁模两种。

(2)被动锁模

①在谐振腔内置入可饱和吸收体,光场弱时对光吸收很强,透过率很低;光强增加吸收减小,当达到某特定值,透过率达100%,使强度最大的激光脉冲经受最小的损耗,从而得到很强的锁模脉冲。

②三个阶段:线性放大阶段、非线性吸收阶段、非线性放大阶段。

(3)自锁模(克尔透镜锁模)

①高斯分布的光场通过介质时,产生自聚焦效应,若腔内存在光阑,脉冲的中间部分不断增强,前沿和后沿不断损耗,脉宽被压缩。

②两个阶段:初始脉冲的形成、稳定锁模脉冲的形成。

(4)同步碰撞锁模

用一台锁模激光器脉冲序列作为泵浦源,通过调制另一激光器腔内增益的方法实现锁模。

激光原理复习题答案

激光原理复习题 1. 麦克斯韦方程中 0000./.0t t μμερε????=-???????=+????=???=?B E E B J E B 麦克斯韦方程最重要的贡献之一是揭示了电磁场的在矛盾和运动;不仅电荷和电流可以激发电磁场,而且变化的电场和磁场也可以相互激发。在方程组中是如何表示这一结果? 答:(1)麦克斯韦方程组中头两个分别表示电场和磁场的旋度,后两个分别表 示电场和磁场的散度; (2) 由方程组中的1式可知,这是由于具有旋度的随时间变化的电场(涡旋 电场),它不是由电荷激发的,而是由随时间变化的磁场激发的; (3)由方程组中的2式可知,在真空中,,J =0,则有 t E ??=? 00B *εμ ;这表明了随时间变化的电场会导致一个随时间变化的磁场;相反一个空间变化的磁场会导致一个随时间变化的电场。这 种交替的不断变换会导致电磁波的产生。 2, 产生电磁波的典型实验是哪个?基于的基本原理是什么? 答:产生电磁波的典型实验是赫兹实验。基于的基本原理:原子可视为一个偶 极子,它由一个正电荷和一个负电荷中心组成,偶极矩在平衡位置以高频做周期振荡就会向周围辐射电磁波。简单地说就是利用了振荡电偶极子产生电磁波。 3 光波是高频电磁波部分,高频电磁波的产生方法和机理与低频电磁波不同。对于可见光围的电磁波,它的产生是基于原子辐射方式。那么由此原理产生的光的特点是什么? 答:大量原子辐射产生的光具有方向不同,偏振方向不同,相位随机的光,它们是非相干光。 4激光的产生是基于爱因斯坦关于辐射的一般描述而提出的。请问爱因斯坦提出了几种辐射,其中那个辐射与激光的产生有关,为什么? 答:有三种:自发辐射,受激辐射,受激吸收。其中受激辐射与激光的产生有 关,因为受激辐射发出来的光子与外来光子具有相同的频率,相同的发射 方向,相同的偏振态和相同的相位,是相干光。

华中科技大学激光原理2002-2015历年真题

华科考研激光原理2002--2015真题 2015年(839) 一、简单 1、激光产生的必要条件? 2、激光的四种特性?选择一种说明其用途 3、谐振腔的稳区图,并写明稳定腔和非稳腔的位置 4、四能级系统速率方程和图示 二、共焦腔与一般稳定腔的对应计算 三、行波腔的均匀加宽和多普勒加宽的最大输出功率计算 四 2015激光原理(900) 一、简答题 1、△n 大于0,激光器是否能够产生自激振荡? 2、光学谐振腔的结构和作用 3、共焦腔与一般腔的等价性 4、均匀加宽与非均匀加宽的特点 5、连续激光器从开始振荡到产生稳定输出增益系数的变化情况 6、光学模式以及横模和纵模 二、三能级四能级的本质区别,以及为什么四能级更容易产生粒子数反转

三、三能级能级示意图,速率方程 四、稳定腔,非稳腔,临界腔计算判断(很简单) 五,光线传输矩阵相关的题 2014年 一.解释题 1.描述自然加宽和多普勒加宽的成因,说明他们属于什么加宽类型。(15) 2.描述一般稳定腔和对称共焦腔的等价性。(15) 3.增益饱和在连续激光器稳定输出中起什么作用? 谱线加宽是怎样影响增益饱和特性的?(15) 4.说明三能级系统和四能级系统的本质区别,哪个系统更容易形成粒子数反转,为什么?(15) 二.解答题 1. 一个折射率为η,厚度为d 的介质放在空气中,界面是曲率半径为R 的凹面镜和平面镜。 (1)求光线从空气入射到凹面镜并被凹面镜反射的光线变换矩阵。 (2)求光线从凹面镜进入介质经平面镜反射再从凹面镜射出介质的光线变换矩阵。 (3)求光线从凹面镜进入介质再从平面镜折射出介质的光线变换矩阵。(25) 2. 圆形镜共焦腔的腔长L=1m ,(1)求纵模间隔q υ?,横模间隔m υ?,n υ?. (2)若在增益阈值之上的增益线宽为60Mhz ,问腔内是否可能存在两个以上的纵模震荡,为什么?(25) 3. 虚共焦型非稳腔的腔长L=0.25m ,由凹面镜M1和凸面镜M2组成,M2的曲率半径和直径为m R 12-=,cm a 322=,若M2的尺寸不变,要求从M2单端输出,则M1的尺寸为多少;腔的往返放大率为多少。(20) 4. 某连续行波激光放大器,工作物质属于均匀加宽型,长度是L ,中心频率的小信号增益为m G ,初始光强为0I 中心频率饱和光强为s I ,腔内损耗系数为i α (m i G <<α),试证明有:

激光原理与技术期末总复习

激光原理与技术期末总复习 考试题型 ?一. 填空题(20分) ?二.选择题(30分) ?三.作图和简答题(30分) ?四.计算题(20分) 第一章辐射理论概要与激光产生的条件 1、激光与普通光源相比较的三个主要特点:方向性好,相干性好和亮度高 2、光速、频率和波长三者之间的关系: 线偏振光:如果光矢量始终只沿一个固定方向振动。 3、波面——相位相同的空间各点构成的面 4、平波面——波面是彼此平行的平面,且在无吸收介质中传播时,波的振幅保持不变。 5、单色平波面——具有单一频率的平面波。 6、ε= h v v —光的频率 h —普朗克常数 7、原子的能级和简并度 (1)四个量子数:主量子数n、辅量子数l、磁量子数m和自旋磁量子数ms。 (2)电子具有的量子数不同,表示电子的运动状态不同。 (3)电子能级:电子在原子系统中运动时,可以处在一系列不同的壳层状态活不同的轨道状态,电子在一系列确定的分立状态运动时,相 应地有一系列分立的不连续的能量值,这些能量通常叫做电子的能 级,依次用E1,E2,…..En表示。 基态:原子处于最低的能级状态成为基态。 激发态:能量高于基态的其他能级状态成为激发态。 (4)简并能级:两个或两个以上的不同运动状态的电子可以具有相同的能级,这样的能级叫做简并能级。 简并度:同一能级所对应的不同电子运动状态的数目,叫做简并 度,用g表示。 8、热平衡状态下,原子数按能级分布服从波耳兹曼定律 (1)处在基态的原子数最多,处于越高的激发能级的原子数越少; (2)能级越高原子数越少,能级越低原子数越多; (3)能级之间的能量间隔很小,粒子数基本相同。 9、跃迁: 粒子由一个能级过渡到另一能级的过程 (1.)辐射跃迁:发射或吸收光子从而使原子造成能级间跃迁的现象 ①发射跃迁: 粒子发射一光子ε = hv=E2-E1而由高能级跃迁至低能级; ②吸收跃迁: 粒子吸收一光子ε=hv=E2-E1 而由低能级跃迁至高能级. (2)非辐射跃迁:原子在不同能级跃迁时并不伴随光子的发射和吸收,而是把多余的能量传给了别的原子或吸收别的原子传给它的能量 10、光和物质相互作用的三种基本过程:自发辐射、受激辐射和受激吸收

08激光原理与技术试卷B

华南农业大学期末考试试卷(B 卷) 2008~2009学年第一学期 考试科目:激光原理与技术 考试类型:(闭卷) 考试时间:120分钟 姓名 年级专业 学号 一.填空题(每空2分,共30分) 1. 设小信号增益系数为0g ,平均损耗系数为α,则激光器的振荡条件为 g o > α 。 2. 相格 是相空间中用任何实验所能分辨的最小尺度。 3. 四能级系统中,设3E 能级向2E 能级无辐射跃迁的量子效率为1η,2E 能级向1E 能 级跃迁的荧光效率为2η,则总量子效率为 。。 4. 当统计权重21f f =时,两个爱因斯坦系数12B 和21B 的关系为 B 12=B 21 。 5. 从光与物质的相互作用的经典模型,可解释 色散 现象和 物质对光的 吸收 现象。 6. 线型函数的归一化条件数学上可写成 。 7. 临界腔满足的条件是 g1g2=1 或 g1g2=0 。 8. 把开腔镜面上的经过一次往返能再现的稳态场分布称为开腔的 自再现模 。 9. 对平面波阵面而言,从一个镜面中心看到另一个镜面上可以划分的菲涅耳半周期 带的数目称为 菲涅耳数 。

10. 均匀加宽指的是引起加宽的物理因素对各个原子是 等同的, 。 11. 入射光强和饱和光强相比拟时,增益随入射光强的增加而减少,称 增益饱和 现 象。 12.方形镜的mnq TEM 模式沿x 方向有 m 条节线,没y 方向有 n 条节线. 二.单项选择题(每题2分,共10分) 1. 关于高斯光束的说法,不正确的是( ) (A)束腰处的等相位面是平面; (B)无穷处的等相位面是平面; (C)相移只含几何相移部分; (D)横向光强分布是不均匀的。 2. 下列各模式中,和圆型共焦腔的模q n m TEM ,,有相同频率的是(A ) (A)1,,2-+q n m TEM ; (B) q n m TEM ,,2+; (C) 1,,1-+q n m TEM ; (D) 1,1,2-++q n m TEM 。 3. 下列各种特性中哪个特性可以概括激光的本质特性(C ) (A)单色性; (B)相干性; (C)高光子简并度; (D)方向性。 4. 下列加宽机制中,不属于均匀加宽的是(B ) (A)自然加宽; (B)晶格缺陷加宽; (C)碰撞加宽; (D)晶格振动加宽。 5. 下列方法中,不属于横模选择的是(D ) (A)小孔光阑选模; (B) 非稳腔选模; (C) 谐振腔参数N g ,选择法; (D)行波腔法。 三、简答题(每题4分,共20分)

激光原理简答题(西南科技大学)

光学谐振腔的作用 1、提供正反馈(放大)作用(1)腔镜的反射率(吸收、透射少,反射率大;反之亦然);(2)腔镜的形状及组合方式。 2、控制振荡光束,表现在三个方面(1)控制纵模的数目—光的模式少,光子的简并度高 (2)控制高阶横模—基模光强大、光斑小、发散角小(3)控制各种损耗—在增益一定的条件下,通过控制损耗来控制激光的输出。 横模的形成 a 、谐振腔中稳定的激光等效于任何波面的光通过一系相同列光栏后形成的自再现光场 b 、光栏有衍射,因此在光束的不同位置光将形成干涉叠加,这种稳定的叠加就形成了横模 c 、不同位置稳定场形成的条件不同,故而有不同频率。不同频率的横模的光场有不同的横向分布,它们是重叠在激光腔的同一空间内。 1、损耗的种类 (1)几何损耗:非平行轴的光线,折、反出腔外的损耗。 ① 光腔结构和尺寸影响的损耗;② 横模阶次的高低不同损耗不同。一般,高阶模的损耗大。 (2)衍射损耗:反射镜尺寸有限、腔中有插件,必有衍射。 ① 损耗与菲涅尔数N=a2/Lλ有关,该常数越小,损耗越大。② 与腔的几何结构有关,参数g=1-L/R 越小损耗越大。③ 与横模的阶次有关,阶次越高损耗越大。 (3)腔镜反射不完全引起的损耗 ① 反射镜吸收、散射引起的损耗;②反射镜的部分出射引起的损耗(对固体激光器可达50%) (4)非激活吸收、散射引起的损耗① 腔内加插件引起的损耗 a 、产生偏振光的布儒斯特窗口 b 、提高激光瞬间强输出功率的调Q 元件 c 、各种用途的加载调制元件 ② 非激活介质的吸收、散射 两个相同腔面共振漠视的积分方程 意义 腔内可能存在着得稳定的共振光波场,他们由一个腔面传播到另一个腔面的过程中虽然经受了衍射效应,但这些光波场在两个腔面处得相应振幅分布和相位分布保持不变,亦即共振光波场在腔内多次往返过程中始终保持自洽或自再现的条件。 方形镜共焦腔: 长椭球函数,在N 很大的情况,可以表示成厄米多项式与高斯函数乘积的形式。 圆形镜共焦腔: 超椭球函数,在N 很大的情况,可以表示成拉盖尔多项式与高斯函数乘积的形式。 单程衍射损耗 损耗随着菲涅耳系数N 的增大而迅速减小 菲涅耳系数相同时,不同横模的损耗不同,模的阶次越高,损耗越大; 共焦腔模的损耗要小于平面腔模的损耗,这是因为共焦腔对光束会聚作用的结果。 自再现模的衍射损耗小于均匀平面波的衍射损耗,因为自再现模的形成过程反应了衍射损耗的影响,从而使得边缘部分强度变小,衍射损耗的作用变小。 1 模式的损耗随菲涅耳数N 值的增大而急剧减小; 2 共焦腔损耗<共心腔损耗<平面腔损耗 3 基模的损耗<高阶模的损耗,模阶次越高,损耗越大; 稳定腔的优点:衍射损耗小 稳定腔的缺点:模体积小,利用的反转粒子数少, 平行平面腔的优点:模体积大 平行平面腔的缺点:调节精度很高 一、非稳定腔的优点和缺点: 非稳定腔的优点:大的可控模体积,通过扩大反射镜的尺寸,扩大模的横向尺寸; 可控的衍射耦合输出,输出耦合率与腔的几何参数g 有关;容易鉴别和控制横模; 易于得到单端输出和准直的平行光束。 非稳定腔的缺点:输出光束截面呈环状;光束强度分布是不均匀的,显示出某种衍射环。 高斯光束聚焦的方法(1)采用短焦距透镜,使f 尽量减小;(2)使入射高斯光束腰斑远离透镜焦点,满足: 若使一个稳定腔所产生的高斯光束与另一个稳定腔产生的高斯光束相匹配,需在合适的位置放置一个焦距适当的透镜,使两束高斯光束互为物象共轭光束。该透镜称为模匹配透镜。 f z

《激光原理》本科期末考试试卷及答案

系、班 姓 名 座 号 ………………密……………封……………线……………密……………封……………线………………… 华中科技大学2012年《激光原理》期末试题(A) 题 号 一 二 三 四 总分 复核人 得 分 评卷人 一. 填空: (每孔1分,共17分) 1. 通常三能级激光器的泵浦阈值比四能级激光器泵浦阈值 高 。 2. Nd:Y AG 激光器可发射以下三条激光谱线 946 nm 、 1319 nm 、 1064 nm 。其 中哪两条谱线属于四能级结构 1319 nm 、 1064 nm 。 3. 红宝石激光器属于 3 几能级激光器。He-Ne 激光器属于 4 能级激光器。 4. 激光具有四大特性,即单色性好、亮度高、方向性好和 相干性好 5. 激光器的基本组成部分 激活物质、 激光谐振腔 、 泵浦源 。 6. 激光器稳态运转时,腔内增益系数为 阈值 增益系数,此时腔内损耗激光光子的速率和生成激光的光子速率 相等. 7. 调Q 技术产生激光脉冲主要有 锁模 、 调Q 两种方法。 二、解释概念:(共15分,每小题5分)(选作3题) 题 号 一 二 三 合计 得 分 1. 基模高斯光束光斑半径: 激光光强下降为中心光强21 e 点所对应的光斑半径. 2. 光束衍射倍率因子 光束衍射倍率因子= 角 基膜高斯光束远场发散基膜高斯光束束腰半径实际光束远场发散角 实际光束束腰半径?? 3. 一般稳定球面腔与共焦腔的等价关系: 一般稳定球面腔与共焦腔的等价性:任何一个共焦腔与无穷多个稳定球面腔等价; 任何一个稳定球面腔唯一地等价于一个共焦腔。 三、问答题:(共32分,每小题8分) 题 号 一 二 三 四 合计 得 分 1. 画出四能级系统的能级简图并写出其速率方程组 ()()()() Rl l l l l N N n f f n dt dN n n n n n A n W n s n dt dn S n S A n N n f f n dt dn A S n W n dt dn τυννσυννσ-???? ??-==++++-=++-???? ??--=+-=02111220321303001010 3232121202111 222313230303 ,, W 03 A 03 S 03 S 32 S 21 A 21 W 21 W 12 E 3 E 2 E 1 E 0

激光原理MOOC答案详解

1.2 1 谁提出的理论奠定了激光的理论基础? ?A、汤斯 ?B、肖洛 ?C、爱因斯坦 ?D、梅曼 正确答案:C 我的答案:C得分: 10.0分 2 氢原子3p态的简并度为? ?A、2 ?B、10 ?C、6 正确答案:C 我的答案:C得分: 10.0分 3 热平衡状态下粒子数的正常分布为: ?A、处于低能级上的粒子数总是等于高能级上的粒子数?B、处于低能级上的粒子数总是少于高能级上的粒子数?C、处于低能级上的粒子数总是多于高能级上的粒子数正确答案:C 我的答案:C得分: 10.0分 4 原子最低的能量状态叫什么? ?A、激发态 ?B、基态 ?C、.亚稳态 正确答案:B 我的答案:B得分: 10.0分 5 对热辐射实验现象的研究导致了? ?A、德布罗意的物质波假说 ?B、爱因斯坦的光电效应

?C、普朗克的辐射的量子论 正确答案:C 我的答案:A得分: 0.0分 6 以下关于黑体辐射正确的说法是: ?A、辐射的能量是连续的 ?B、黑体一定是黑色的 ?C、 辐射能量以hν为单位 正确答案:C 我的答案:C得分: 10.0分 7 热平衡状态下各能级粒子数服从: ?A、A. 高斯分布 ?B、玻尔兹曼分布 ?C、正弦分布 ?D、余弦分布 正确答案:B 我的答案:B得分: 10.0分 8 以下说法正确的是: ?A、受激辐射光和自发辐射光都是相干的 ?B、受激辐射光和自发辐射光都是非相干的 ?C、受激辐射光是非相干的,自发辐射光是相干的 ?D、受激辐射光是相干的,自发辐射光是非相干的正确答案:D 我的答案:D得分: 10.0分 9 下列哪个物理量不仅与原子的性质有关,还与场的性质有关??A、自发跃迁几率 ?B、受激吸收跃迁几率 ?C、受激辐射跃迁爱因斯坦系数 正确答案:B 我的答案:B得分: 10.0分 10

激光原理简答题整理

1.什么是光波模式? 答:光波模式:在一个有边界条件限制的空间内,只能存在一系列独立的具有特定波矢的平面单色驻波。这种能够存在于腔内的驻波(以某一波矢为标志)称为光波模式。 2.如何理解光的相干性?何谓相干时间、相干长度? 答:光的相干性:在不同的空间点上、在不同的时刻的光波场的某些特性的相关性。相干时间: 光沿传播方向通过相干长度所需的时间,称为相干时间。相干长度:相干光能产生干涉效应的最大光程差,等于光源发出的光波的波列长度。 3.何谓光子简并度,有几种相同的含义?激光源的光子简并度与它的相干性什么联系? 答:光子简并度:处于同一光子态的光子数称为光子简并度。光子简并度有以下几种相同含义: 同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数。联系: 激光源的光子简并度决定着激光的相干性,光子简并度越高,激光源的相干性越好。 4.什么是黑体辐射?写出公式,并说明它的物理意义。 答:黑体辐射:当黑体处于某一温度的热平衡情况下,它所吸收的辐射能量应等于发出的辐射能量,即黑体与辐射场之间应处于能量(热)平衡状态,这种平衡必然导致空腔内存在完全确定的辐射场,这种辐射场称为黑体辐射或平衡辐射。物理意义:在单位体积内,频率处于附近的单位频率间隔中黑体的电磁辐射能量。 5.描述能级的光学跃迁的二大过程,并写出它们的特征和跃迁几率。 答:(1)自发辐射:处于高能级的一个原子自发的向跃迁,并发射一个能量为hv的光子,这种过程称为自发跃迁,由原子自发跃迁发出的光波称为自发辐射。 特征:a)自发辐射是一种只与原子本身性质有关而与辐射场无关的自发过程,无需外来光。b)每个发生辐射的原子都可看作是一个独立的发射单元,原子之间毫无联系而且各个原子开始发光的时间参差不一,所以各列光波频率虽然相同,均为V,各列光波之间没有固定的相位关系,各有不同的偏振方向,而且各个原子所发的光将向空间各个方向传播,即大量原子的自发辐射过程是杂乱无章的随机过程,所以自发辐射的光是非相干光。自发跃迁爱因斯坦系数: (2)受激吸收:处于低能态的一个原子,在频率为的辐射场作用(激励)下,吸收一个能量为的光子并向能态跃迁,这种过程称为受激吸收跃迁。 特征:a)只有外来光子能量时,才能引起受激辐射。 b)跃迁概率不仅与原子性质有关,还与辐射场的有关。受激吸收跃迁概率:(为受激吸收跃迁爱因斯坦系数,为辐射场) (3)受激辐射:处于上能级的原子在频率为的辐射场 作用下,跃迁至低能态并辐射一个能量为的光子。 受激辐射跃迁发出的光波称为受激辐射。特征:a) 只有外来光子能量时,才能引起受激辐射;b)受激 辐射所发出的光子与外来光子的频率、传播方向、 偏振方向、相位等性质完全相同。受激辐射跃迁概 率:(为受激辐射跃迁爱因斯坦系数,为辐射场) 6.激光器速率方程中的系数有哪些?它们之间的 关系是什么? 答:自发跃迁爱因斯坦系数,受激吸收跃迁爱因斯 坦系数,受激辐射跃迁爱因斯坦系数关系: 7.激光器主要由哪些部分组成?各部分的作用是 什么? 答:激光工作物质:用来实现粒子数反转和产生光的 受激发射作用的物质体系。接收来自泵浦源的能量, 对外发射光波并能够强烈发光的活跃状态,也称为 激活物质。泵浦源:提供能量,实现工作物质的粒子 数反转。光学谐振腔:a)提供轴向光波模的正反馈; b)模式选择,保证激光器单模振荡,从而提高激光 器的相干性。 8.什么是热平衡时能级粒子数的分布?什么是粒 子数反转?如何实现粒子数反转? 答:热平衡时能级粒子数的分布:在物质处于热平衡 状态时,各能级上的原子数(或集居数)服从玻尔 兹曼分布。粒子数反转:使高能级粒子数密度大于低 能级粒子数密度。 如何实现粒子数反转:外界向物质供给能量(称为激 励或泵浦过程),从而使物质处于非平衡状态。 9.如何定义激光增益?什么是小信号增益?大信 号增益?增益饱和? 答??激光增益定义:表示光通过单位长度激活物质 后光强增长的百分数。小信号增益:当光强很弱时, 集居数差值不随z变化,增益系数为一常数,称为 线性增益或小信号增益。大信号增益: 在放大器中 入射光强与(为饱和光强)相比拟时,,为大信号 增益。增益饱和:当光强足够强时,增益系数g也随 着光强的增加而减小,这一现象称为增益饱和效应。 10.什么是自激振荡?产生激光振荡的条件是什 么?答:自激振荡:不管初始光强多么微弱,只要放 大器足够长,就总是形成确定大小的光强,这就是 自激振荡的概念。 产生条件:满足腔的谐振条件,成为腔的梳状模之一; 频率落在工作物质的谱线范围内,即对应增益系数 大于等于阈值增益系数。 11.激光的基本特性是什么? 答:激光四性:单色性、相干性、方向性和高亮度。 这四性可归结为激光具有很高的光子简并度。 12.如何理解激光的空间相干性与方向性?如何 理解激光的时间相干性?如何理解激光的相干光 强? 答:(1)激光的方向性越好,它的空间相干性程度 越高。(2)激光的相干时间和单色性存在着简单关 系,即单色越好,相干时间越长。(3)激光具有很 高的亮度,激光的单色亮度,由于激光具有极好的 方向性和单色性,因而具有极高的光子简并度和单 色亮度。 13.什么是谐振腔的谐振条件?如何计算纵模的 频率、纵模间隔和纵模的数冃? 答:(1)谐振条件:谐振腔内的光要满足相长干涉 条件(也称为驻波条件)。波从某一点出发,经腔 内往返一周再回到原来位置时,应与初始出发波同 相(即相差为的整数倍)。如果以表示均匀平面波 在腔内往返一周时的相位滞后,则可以表示为。A 为光在真空中的波长,L为腔的光学长度,q为正 整数。 (2)如何计算纵模的频率、纵模间隔和纵模的数目、 纵模的频率、纵模间隔: 纵模的数目:对于满足谐振条件频率为的波,其纵 模数目,为小信号增益曲线中大于阈值增益系数的 那部分曲线所对应的频率范围(振荡带宽)。 14.在激光谐振腔中一般有哪些损耗因素,分别与 哪些因素有关? 答:损耗因素:a、几何偏折损耗:与腔的类型、腔 的几何尺寸、模式有关。b、衍射损耗:与腔的菲涅 尔数、腔的几何参数、横模阶次有关。c、腔镜反射 不完全引起的损耗:与腔镜的透射率、反射率有关。 d、材料中的非激活吸收、散射、腔内插入物所引起 的损耗:与介质材料的加工工艺有关。 15.哪些参数可以描述谐振腔的损耗?它们的关 系如何?(P29-31) 答:(1)描述参数:a)平均单程损耗因子:(为初始 光强,为往返一周后光强)b)腔内光子的平均寿命: c)品质因数:⑵去重:腔的损耗越小,平均单程损 耗因子越小,腔内光子的平均寿命越长,品质因数 越大。 16.如何理解激光谐振腔衍射理论的自再现模? 答:开腔镜面上,经过足够多次往返后,能形成这 样一种稳恒场,其分布不再受衍射的影响,在腔内 往返一次能够再现出发时的场分布。这种稳恒场经 一次往返后,唯一可能的变化是,镜面上各点的场 分布按同样的比例衰减,各点的相位发生同样大小 的滞后。把这种开腔镜面上的经一次往返能再现的 稳恒场分布称为开腔的自再现模。 17.求解菲涅尔-基尔霍夫衍射积分方程得到的本 征函数和本征值各代表什么? 答:本征函数:描述腔的一个自再现模式或横模。其 模描述镜面上场的振幅分布,幅角描述镜面上场的 相位分布。本征倌:表示自再现模在渡越一次时的幅 值衰减和相位滞后。其模值量度自再现模在腔内往 返一次的功率损耗,幅角量度自再现模的单程相移, 从而也决定模的谐振频率。

激光原理试卷

激光原理试卷

广东工业大学考试试卷( A ) 课程名称: 激光原理与技术 试卷满分100 分 考试时间: 2007年6月18日 (第16周 星期 一) 一、 选择题(每题3分,共30分) 1.世界上第一台激光器是 ( ) (A)氦氖激光器. (B)二氧化碳激光器. (C)钕玻璃激光器. (D)红宝石激光器. (E)砷化镓结型激光器. 2.按照原子的量子理论,原子可以通过自发辐射和受激辐射的方式发光,它们所产生的光的特点是:( ) (A)两个原子自发辐射的同频率的光是相干的,原子受激辐射的光与入射光是 不相干的. (B)两个原子自发辐射的同频率的光是不相干的,原子受激辐射的光与入射光 是相干的. (C)两个原子自发辐射的同频率的光是不相干的,原子受激辐射的光与入射光 是不相干的. (D)两个原子自发辐射的同频率的光是相干的,原子受激辐射的光与入射光是 相干的. 3.氦-氖激光器属于典型的( )系统 (A )二能级(B )三能级(C )四能级(D )多能级 4.体积3 cm 1=V ,线宽nm 10=?λ,中心波长60nm ,模式数目为( ) 20 201012104 (D) 102 (C) 104 (B) 102 )A (???? 5.多普勒加宽发生在( )介质中 6.半共心腔在稳定图上的坐标为(d ) (A )(-1,-1) (B ) (0,0) (C )(1,1) (D )(0,1) 7.对于均匀增宽介质,中心频率处小信号增益系数为)00 (v G ,当s I I =时 , 饱和显著,非小信号中心频率增益系数为:(c ) (A ) )00 (v G (B ) )00 (2v G (C ) )00(21v G (D ) )00 (3 1v G 8..一平凹腔,其凹面镜的半径R 等于腔长L,它是(b ) (A )稳定腔 (B )临界腔 (C )非稳腔 9.能够完善解释黑体辐射实验曲线的是( c ) (A )瑞利-金斯公式 (B )维恩公式 (C )普朗克公式 (D )爱因斯坦公式

激光原理考试基本概念

第一章 1、激光与普通光源相比有三个主要特点:方向性好,相干性好,亮度高。 2、激光主要是光的受激辐射,普通光源主要光的自发辐射。 3、光的一个基本性质就是具有波粒二象性。光波是一种电磁波,是一种横波。 4、常用电磁波在可见光或接近可见光的范围,波长为~30μm,其相应频率为10^15~10^13。 5、具有单一频率的平面波叫作单色平面波,如果频率宽度Δν<

d、ΔS=0,即跃迁时S不能发生改变。 10、大量原子所组成的系统在热平衡状态下,原子数按能级分布服从玻耳兹曼定律。 11、处于高能态的粒子数总是小于处在低能态的粒子数,这是热平衡情况的一般规律。 12、因发射或吸收光子从而使原子造成能级间跃迁的现象叫作辐射跃迁,必须满足辐射跃迁选择定则。 13、光与物质的相互作用有三种不同的基本过程:自发辐射,受激辐射,和受激吸收。 14、普通光源中自发辐射起主要作用,激光工作过程中受激辐射起主要作用。 15、与外界无关的、自发进行的辐射称为自发辐射。自发辐射的光是非相干光。 16、能级平均寿命等于自发跃迁几率的倒数。 17、受激辐射的特点是: a、只有外来光子的能量hv=E2-E1时,才能引起受激辐射。 b、受激辐射所发出的的光子与外来光子的特性完全相同(频率相同,相位相同,偏振方向相同,传播方向相同)。 18、受激辐射光子与入射(激励)光子属于同一光子态;受激辐射与入辐射场具有相同的频率、相位、波矢(传播方向)和偏振,是相干的。 19、自发辐射跃迁几率就是自发辐射系数本身,而受激辐射的跃迁几

激光原理复习知识点

一 名词解释 1. 损耗系数及振荡条件: 0)(m ≥-=ααS o I g I ,即α≥o g 。α为包括放大器损耗和谐振腔损耗在内 的平均损耗系数。 2. 线型函数:引入谱线的线型函数p v p v v )(),(g 0~ = ,线型函数的单位是S ,括号中的0v 表示线型函数的中心频率,且有 ?+∞∞-=1),(g 0~v v ,并在0v 加减2v ?时下降至最大值的一半。按上式定义的v ?称为谱线宽度。 3. 多普勒加宽:多普勒加宽是由于做热运动的发光原子所发出的辐射的多普勒频移所引起的加宽。 4. 纵模竞争效应:在均匀加宽激光器中,几个满足阈值条件的纵模在震荡过程中互相竞争,结果总是 靠近中心频率0v 的一个纵模得胜,形成稳定振荡,其他纵模都被抑制而熄灭的现象。 5. 谐振腔的Q 值:无论是LC 振荡回路,还是光频谐振腔,都采用品质因数Q 值来标识腔的特性。定义 p v P w Q ξπξ 2==。ξ为储存在腔内的总能量,p 为单位时间内损耗的总能量。v 为腔内电磁场 的振荡频率。 6. 兰姆凹陷:单模输出功率P 与单模频率q v 的关系曲线,在单模频率等于0的时候有一凹陷,称作兰 姆凹陷。 7. 锁模:一般非均匀加宽激光器如果不采取特殊的选模措施,总是得到多纵模输出,并且由于空间烧 孔效应,均匀加宽激光器的输出也往往具有多个纵模,但如果使各个振荡的纵模模式的频率间隔保持一定,并具有确定的相位关系,则激光器输出的是一列时间间隔一定的超短脉冲。这种使激光器获得更窄得脉冲技术称为锁模。 8. 光波模:在自由空间具有任意波矢K 的单色平面波都可以存在,但在一个有边界条件限制的空间V 内,只能存在一系列独立的具有特定波矢k 的平面单色驻波;这种能够存在腔内的驻波成为光波模。 9. 注入锁定:用一束弱的性能优良的激光注入一自由运转的激光器中,控制一个强激光器输出光束的 光谱特性及空间特性的锁定现象。(分为连续激光器的注入锁定和脉冲激光器的注入锁定)。 10. 谱线加宽:实际中的谱线加宽由于各种情况的影响,自发辐射并不是单色的,而是分布在中心频率 /)(12E E -附近一个很小的频率范围内。这就叫谱线加宽。 11. 频率牵引:在有源腔中,由于增益物质的色散,使纵模频率比无源腔纵模频率更靠近中心频率,这 种现象叫频率牵引。 12. 自发辐射:处于高能级E2的一个原子自发的向E1跃迁,并产生一个能量为hv的光子 13. 受及辐射:处于高能级E2的一个原子在频率为v的辐射场作用下,向E1跃迁,并产生一个能量 为hv的光子 14. 激光器的组成部分:谐振器,工作物质,泵浦源 15. 腔的模式:将光学谐振腔内肯能存在的电磁场的本征态称为‘’。 16. 光子简并度:处于同一光子态的光子数。含义:同态光子数、同一模式内的光子数、处于相干体积 内的光子数、处于同一相格内的光子数 17. 激光的特性:1.方向性好,最小发散角约等于衍射极限角2.单色性好3.亮度高4.相干性好 18. 粒子数反转:在外界激励下,物质处于非平衡状态,使得n2>n1 19. 增益系数:光通过单位长度激活物质后光强增长的百分数 20. 增益饱和:在抽运速率一定的条件下,当入射光的光强很弱时,增益系数是一个常数;当入射光的 光强增大到一定程度后,增益系数随光强的增大而减小。 21. Q 值:是评定激光器中光学谐振腔质量好坏的指标——品质因数。 22. 纵模:在腔的横截面内场分布是均匀的,而沿腔的轴线方向即纵向形成驻波,驻波的波节数由q 决 定将这种由整数q 所表征的腔内纵向场分布称为纵模 23. 横模:腔内垂直于光轴的横截面内的场分布称为横模 24. 菲涅尔数:N,即从一个镜面中心看到另一个镜面上可划分的菲涅尔半波带的数目。表征损耗的大小。 衍射损耗与N 成反比。

激光原理第七章答案

第七章 激光特性的控制与改善 习题 1.有一平凹氦氖激光器,腔长0.5m ,凹镜曲率半径为2m ,现欲用小孔光阑选出TEM 00模,试求光阑放于紧靠平面镜和紧靠凹面镜处的两种情况下小孔直径各为多少?(对于氦氖激光器,当小孔光阑的直径约等于基模半径的3.3倍时,可选出基模。) 解:腔长用L 表示,凹镜曲率半径用1R 表示,平面镜曲率半径用2R 表示,则 120.5m ,2m ,L R R ===∞ 由稳定腔求解的理论可以知道,腔内高斯光束光腰落在平面镜上,光腰半径为 0121 4 1 ()] 0.42m m w L R L = = -≈ 共焦参量为2 207 0.420.87m 632810 w f ππλ -?= = ≈? 凹面镜光斑半径为 10.484m m w w w ==≈ 所以平面镜端光阑直径为 03.3 1.386m m D w =?=平 凹面镜端光阑直径为 13.3 1.597m m D w =?=凹 2.图7.1所示激光器的M 1是平面输出镜,M 2是曲率半径为8cm 的凹面镜,透镜P 的焦距F =10cm ,用小孔光阑选TEM 00模。试标出P 、M 2和小孔光阑间的距离。若工作物质直径是5mm ,试问小孔光阑的直径应选多大? 图 7.1 1 2

解:如下图所示: 1 2 P 小孔光阑的直径为: 3 1.0610100 2 2mm 0.027mm 2.5 f d a λππ-??==? ≈? 其中的a 为工作物质的半径。 3.激光工作物质是钕玻璃,其荧光线宽F ν?=24.0nm ,折射率η=1.50,能用短腔选单纵模吗? 解:谐振腔纵模间隔 2 22q q c L L νηλ λη?=?= 所以若能用短腔选单纵模,则最大腔长应该为 2 15.6μm 2L λ ηλ = ≈? 所以说,这个时候用短腔选单纵模是不可能的。 6.若调Q 激光器的腔长L 大于工作物质长l ,η及' η分别为工作物质及腔中其余部分的折射率,试求峰值输出功率P m 表示式。 解:列出三能级系统速率方程如下: 2121 (1) 2 (2) R dN l N cN n dt L d n N n dt στσυ=?-'?=-? 式中,()L l L l ηη''=+-,η及' η分别为工作物质及腔中其余部分的折射率,N 为工作物质中的平均光子数密度,/,/R c L c υητδ'==。 由式(1)求得阈值反转粒子数密度为:

激光原理复习题重点难点

《激光原理》复习 第一部分知识点 第一章激光的基本原理 1、自发辐射受激辐射受激吸收的概念及相互关系 2、激光器的主要组成部分有哪些?各个部分的基本作用。激光器有哪些类型?如何对激光器进行分类。 3、什么是光波模式和光子状态?光波模式、光子状态和光子的相格空间是同一概念吗?何谓光子的简并度? 4、如何理解光的相干性?何谓相干时间,相干长度?如何理解激光的空间相干性与方向性,如何理解激光的时间相干性?如何理解激光的相干光强? 5、EINSTEIN系数和EINSTEIN关系的物理意义是什么?如何推导出EINSTEIN 关系? 4、产生激光的必要条件是什么?热平衡时粒子数的分布规律是什么? 5、什么是粒子数反转,如何实现粒子数反转? 6、如何定义激光增益,什么是小信号增益?什么是增益饱和? 7、什么是自激振荡?产生激光振荡的基本条件是什么? 8、如何理解激光横模、纵模? 第二章开放式光腔与高斯光束 1、描述激光谐振腔和激光镜片的类型?什么是谐振腔的谐振条件? 2、如何计算纵模的频率、纵模间隔? 3、如何理解无源谐振腔的损耗和Q值?在激光谐振腔中有哪些损耗因素?什么是腔的菲涅耳数,它与腔的损耗有什么关系? 4、写出(1)光束在自由空间的传播;(2)薄透镜变换;(3)凹面镜反射 5、什么是激光谐振腔的稳定性条件? 6、什么是自再现模,自再现模是如何形成的? 7、画出圆形镜谐振腔和方形镜谐振腔前几个模式的光场分布图,并说明意义 8、基模高斯光束的主要参量:束腰光斑的大小,束腰光斑的位置,镜面上光斑的大小?任意位置激光光斑的大小?等相位面曲率半径,光束的远场发散角,模体积 9、如何理解一般稳定球面腔与共焦腔的等价性?如何计算一般稳定球面腔中高斯光束的特征 10、高斯光束的特征参数?q参数的定义? 11、如何用ABCD方法来变换高斯光束? 12、非稳定腔与稳定腔的区别是什么?判断哪些是非稳定腔。 第三章电磁场与物质的共振相互作用 1、什么是谱线加宽?有哪些加宽的类型,它们的特点是什么?如何定义线宽和线型函数?什么是均匀加宽和非均匀加宽?它们各自的线型函数是什么? 2、自然加宽、碰撞加宽和多普勒加宽的线宽与哪些因素有关? 3、光学跃迁的速率方程,并考虑连续谱和单色谱光场与物质的作用和工作物质的线型函数。 4、画出激光三能级和四能级系统图,描述相关能级粒子的激发和去激发过程。建立相应能级系统的速率方程。 5、说明均匀加宽和非均匀加宽工作物质中增益饱和的机理。 6、描述非均匀加宽工作物质中增益饱和的“烧孔效应”,并说明它们的原理。

激光原理考试基本概念

激光原理考试基本概念 https://www.360docs.net/doc/3f17939567.html,work Information Technology Company.2020YEAR

第一章 1、激光与普通光源相比有三个主要特点:方向性好,相干性好,亮度高。 2、激光主要是光的受激辐射,普通光源主要光的自发辐射。 3、光的一个基本性质就是具有波粒二象性。光波是一种电磁波,是一种横波。 4、常用电磁波在可见光或接近可见光的范围,波长为0.3~30μm,其相应频率为10^15~10^13。 5、具有单一频率的平面波叫作单色平面波,如果频率宽度Δν<

c、ΔL=0,±1(L=0→L=0除外); d、ΔS=0,即跃迁时S不能发生改变。 10、大量原子所组成的系统在热平衡状态下,原子数按能级分布服从玻耳兹曼定律。 11、处于高能态的粒子数总是小于处在低能态的粒子数,这是热平衡情况的一般规律。 12、因发射或吸收光子从而使原子造成能级间跃迁的现象叫作辐射跃迁,必须满足辐射跃迁选择定则。 13、光与物质的相互作用有三种不同的基本过程:自发辐射,受激辐射,和受激吸收。 14、普通光源中自发辐射起主要作用,激光工作过程中受激辐射起主要作用。 15、与外界无关的、自发进行的辐射称为自发辐射。自发辐射的光是非相干光。 16、能级平均寿命等于自发跃迁几率的倒数。 17、受激辐射的特点是: a、只有外来光子的能量hv=E2-E1时,才能引起受激辐射。 b、受激辐射所发出的的光子与外来光子的特性完全相同(频率相同,相位相同,偏振方向相同,传播方向相同)。 18、受激辐射光子与入射(激励)光子属于同一光子态;受激辐射与入辐射场具有相同的频率、相位、波矢(传播方向)和偏振,是相干的。

激光原理试卷集锦

1:腔模,横模,纵模。 腔模:在具有一定边界条件的腔内,电磁场只能存在于一系列分立的本征状态之中。将谐振腔内可能存在的电磁场的本征态称为腔的模式。 横模:在垂直于腔轴的横截面内的稳定场分布称为谐振腔的横模。镜面上各点场的振幅按同样的比例衰减,各点的相位发生同样大小的滞后。这种在腔反射镜面上形成的经过一次往返传播后能自再现的稳定场分布称为自现模或横模。 纵模:腔模沿腔轴线方向的稳定场分布称为谐振腔的纵模。在腔的横截面内场分布是均匀的,而沿腔的轴线方向(纵向)形成驻波,驻波的波节数由q决定。通常将由整数q所表征的腔内纵向场分布称为腔的纵模。 2:频率牵引。 答:有源腔中的纵模频率总是比无源腔中同序列纵模频率更接近工作物质的中心频率,这种现象称为频率牵引。 3:光学谐振腔的作用是什么? 答:①提供轴向光波模的光学正反馈。②控制振荡模式的特性。 4:对称共焦腔镜面上基模的特点是什么? 答: ①基模为高斯分布,镜面中心光最大,向边缘平滑降落。 ②光斑的大小与反射镜的横向尺寸无关, 与波长和腔长有关(是共焦腔的一个重要特性。当然,这一结论只有在模的振幅分布可以用厄米-高斯函数近似表述的情况下才是正确)。 ③高斯光束的能量主要集中在束腰内部。 5:LD半导体的PN结实现粒子数目反转分布条件是什么?LD激光器的泵浦方式有哪些?答:①掺杂浓度足够高,使准Fermi能级分别进入导带和价带。 ②正向偏压V足够高,使eV>E g,从而E C F —E v F =eV>hv。 电注式,光泵浦,高能电子束 6:固体激光器激活介质的激光性质主要指什么?它们分别在固体激光设计时,决定什么?答:能级结构,吸收光谱,荧光光谱①能级结构:晶体的激光性质主要取决于Cr3+。Cr的外层电子组态为3d5 4s1 ,掺入Al2 O3 后失去3个电子,剩下3d壳层上3个外层电子(3d3 )。 ②吸收光谱:由于红宝石死各向异性晶体,故其吸收特性与光的偏振状态有关。 ③荧光光谱: 红宝石晶体有两条强荧光谱线,分别称为R1线和R2线。 R1 线中心波长为694.3nm,对应于E→4 A2 能级的自发辐射跃迁。 R2 线中心波长为692.9nm,对应于2A→ 4A2 能级的自发辐射跃迁。 7:常见的临界腔有哪些?其判定条件分别是什么? 答: 8:简并能级,简并度 答:简并能级:电子可以有两个或两个以上的不同运动状态具有相同的能级. 简并度:同一能级对应不同的电子状态的数目(处于同一光子太、态的光子数称为光源的光子简并度) 9:He—Ne激光器放电毛细管内径要很小的主要原因是什么? 答:Ne原子激光下能级2p和3p向基态的跃迁为选择定则所禁戒,粒子只能通过字发辐射跃迁到1s能级。由于1s能级向基态的跃迁也属禁戒,因此1s能级的Ne原子只有扩散到放电管管壁,通过与管壁碰撞释放能量后方能返回基态,称为“管壁效应”。激光下能级如不能被较快抽空,将会造成粒子的堆积,形成“瓶颈效应”。

(完整版)激光原理期末知识点总复习材料,推荐文档

激光原理期末知识点总复习材料 2.激光特性:单色性、方向性、相干性、高亮度 3.光和物质的三种相互作用:自发辐射,受激吸收,受激辐射 4.处于能级u 的原子在光的激发下以几率 向能级 1跃迁,并发射1个与入射光子全同的光子,Bul 为受激辐射系数。 5.自发辐射是非相干的。受激辐射与入射场具有相同的频率、相位和偏振态,并沿相同方 向传播,因而具有良好的相干性。 6.爱因斯坦辐射系数是一些只取决于原子性质而与辐射场无关的量,且三者之间存在一定 联系。7.产生激光的必要条件:工作物质处于粒子数反转分布状态 8.产生激光的充分条件:在增益介质的有效长度内光强可以从微小信号增长到饱和光强Is 9.谱线加宽特性通常用I 中频率处于ν~ν+d ν的部分为 I(ν)d ν,则线型函数定义为线型函数满足归一化条件: 10.的简化形式。11. 四能级比三能级好的原因:更容易形成粒子数反转 画出四能级系统的能级简图并写出其速率方程组 ()()()() Rl l l l l N N n f f n dt dN n n n n n A n W n s n dt dn S n S A n N n f f n dt dn A S n W n dt dn τυννσυννσ-???? ??-==++++-=++-???? ? ?--=+-=021112203213030010103232121202111222313230303,,ρul ul B W =1 )(=?∞ ∞-ννd g 1 21212)(-+=S A τ建议收藏下载本文,以便随时学习!

12 E 2 1 12.13.14.15.程的本征函数和本征值。研究方法:①几何光学分析方法②矩阵光学分析方法③波动光学 分析方法。处于运转状态的激光器的谐振腔都是存在增益介质的有源腔。 16.腔模沿腔轴线方向的稳定场分布称为谐振腔的纵模,在垂直于腔轴的横截面内的稳定场 分布称为谐振腔的横模。 17. 腔长和折射率越小,纵模间隔越大。对于给定的光腔,纵模间隔为常数,腔的纵模在频率尺上是等距排列的 不同的横模用横模序数m,n 描述。对于方形镜谐振腔这种轴对称系统来说,m,n 分别表示 沿腔镜面直角坐标系的水平和垂直坐标轴的光场节线数。对于圆形镜谐振腔这种旋转对称 系统来说,m,n 分别表示沿腔镜面极坐标系的角向和径向的光场节线数。 18. 腔内光子的平均寿命就等于腔的时间常数。 19. δ:平均单程损耗因子,τR :腔的时间常数,Q :品质因数,三个量都与腔的损耗有 20. 21.共轴球面腔的稳定性条件: 当g 1g 2=0或1时是临界腔,当g 1g 2>1或<0时是非稳定腔。 22.所谓自再现模就是这样一种稳定场分布,其在腔内渡越一次后,除振幅衰减和相位滞后 外,场的相对分布保持不变。

相关文档
最新文档