基于单片机步进电机速度控制研究参考文本

基于单片机步进电机速度控制研究参考文本
基于单片机步进电机速度控制研究参考文本

基于单片机步进电机速度控制研究参考文本

In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each

Link To Achieve Risk Control And Planning

某某管理中心

XX年XX月

基于单片机步进电机速度控制研究参考

文本

使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。

本文对步进机一个全面的介绍,再基于单片机对步进

电机的控制。本文采用硬件控制系统,通过单片机

MC9S12XS128与光电编码器对步进电机进行速度的控

制。最后对步进电机的速度曲线进行研究。

步进电机又称为脉冲电动机或者阶跃电动机,作为

执行元件,是机电一体化的关键产品之一,广泛应用于各

种自动化控制系统之中,比如当今电子钟表、工业机械

手、包装机械和汽车制动元件的测试中等。步进电机在未

来应用前景会往更加小型化、从圆形电动机往方形电动机

和四相、五相往三相电动机发展。而这便需要对步进电机

的控制提出了更高的要求。

1.步进电机综合介绍

1.1.步进电机分类

步进电动机的种类很多,从广义上讲,步进电机的类型分为机械式、电磁式和组合式三大类型。按结构特点电磁式步进电机可分为反应式(VR)、永磁式(PM)和混合式(HB)三大类;按相数分则可分为单相、两相和多相三种。目前使用最为广泛的为反应式和混合式步进电机。

1.1.1.反应式步进电机

反应式步进电机的转子是由软磁材料制成的,转子中没有绕组。一般为三相,可实现大扭矩的输出,步进角一般为1.5度。它的结构简单,成本低,但噪音大。

1.1.

2.永磁式步进电机

永磁式步进电机的转子是用永磁材料制成,转子本身就是一个磁源。转子的极数和定子的极数相同,所以一般步距角比较大,步进角一般为7.5度或15度。它输出转

矩大,动态性能好,消耗功率小,但启动运行频率较低,还需正负脉冲供电。

1.1.3.混合式步进电机

混合式步进电机综合了反应式和永磁式两者的优点。它分为两相和五相,两相的步进角一般为1.8度,而五相的步进角为0.72度。混合式与传统的反应式相比,结构上转子加有永磁体,以提供软磁材料的工作点,而定子激磁只需提供变化的磁场而不必提供磁材料工作点的耗能,因此该电机效率高,电流小,发热低。

目前使用最为广泛的为反应式和混合式步进电机。

1.2.步进电机的工作原理

步进电机是将电脉冲信号转化为角位移增量,也即是说,当步进驱动器接收到一个脉冲信号时,便驱动电机按照设定的方向转动一定的角位移量。我们可以通过控制脉冲的个数来控制步进电机的角位移量,通过控制脉冲的

频率来控制速度与加速度。

定子齿有三个励磁绕组,其几何轴线分别于转子的轴线错开。当A相通电时,由于定齿的A齿与转子的1齿对齐,没有切向力,转子静止,接着B相通电,转子齿偏移定子一个角度,由于励磁磁通力图沿着磁阻最小的路径通过,因此对转子产生电磁吸力,迫使转子齿转过转动,当转子转到定子齿对齐位置时,因转子只受径向力而无切向力的作用,故转矩为零,转子被锁定在该位置上。综上可得出,错齿是促使步进机旋转的根本原因。

在非超载的情况下,电机转速、停止的位置只取决于脉冲信号的脉冲数和脉冲频率,而不受负荷变化的影响。本文是基于这个条件下进行步进电机速度控制研究。

2.步进电机控制系统的研究

2.1.脉冲控制的方法

实现脉冲的分配的方法有两种:软件法和硬件法。

软件法在电机运行的过程中,要不停地产生控制脉冲,占用了CPU大量的时间,可能会使单片机无法进行其它工作,所以现在大部分都是采用硬件法。

2.2.控制系统硬件设计的研究

良好的驱动系统方案能强有力的支撑步进电机升降速曲线的设计。控制系统每发一个脉冲信号, 通过驱动器就能够驱动步进电机旋转一个步距角。步进电机的转速与脉冲信号的频率成正比。角位移量与脉冲个数相关。步进电机停止旋转时,能够产生两种状态:制动加载能够产生最大或部分保持转矩(通常称为刹车保持,无需电磁制动或机械制动)及转子处于自由状态(能够被外部推力带动轻松旋转)。步进电机驱动器,必须与步进电机的型号相匹配。否则,将会损坏步进电机及驱动器。电机驱动系统的性能直接影响和制约加减速曲线的效果。

其硬件方面,基于MC9S12XS128 16位MCU以

及光电编码器、步进电机驱动电路、单片机最小系统板电路支撑软件平台。

MC9S12XS128是飞思卡尔公司为成本敏感型汽车车身电子应用而设计的16位微控制器,其相关特性足以满足此控制系统的设计要求。MC9S12XS128 MCU主要特性:

(1)S12X CPU,最高总线速度40MHz;

(2)2.128KB闪存,带有错误校正功能(ECC);

(3)带有ECC 的、4KB 至8KB DataFlash,用于实现数据或程序存储;

(4)可配置8 、10 或12 位模数转换器(ADC),转换时间3μs;

(5)支持控制区域网(CAN)、本地互联网(LIN)和串行外设接口(SPI)协议模块;

(6)带有16-位计数器的、8-通道定时器;

(7)出色的EMC,及运行和停止省电模式。

电机驱动电路的设计采用ULN2003芯片,

ULN2003是高耐压、大电流达林顿陈列,由七个硅NPN 达林顿管组成,其工作电压高,工作电流大,灌电流可达500mA,并且能够在关态时承受50V的电压,输出还可以在高负载电流并行运行。

基于步进电机升降速曲线的设计选用四相五线步进电机,最小步进角7.5度,通过电机驱动细分原理,可使最小步进角变为3.75度。四相电机常见的运行方式为四相四拍和四相八拍,四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即A-AB-B-BC-C-CD-D-DA-A。当电机绕组通电时序为AB-BC-CD-DA时电机为正转,改变通电时序为DA-CD-BC-AB时电机则为反转.

步进电机升降速曲线设计

步进电机启动和停止的时候,一般情况下,系统的

极限启动频率比较低,而要求的运行速度往往比较高,如果系统以要求的运行速度直接启动,因为该速度已经超过极限启动频率而不能正常启动,起则发生丢步,重则根本不能启动,产生堵转。系统运行起来后,如果达到终点时立即停止发送脉冲,令其立即停止,则由于系统惯性的作用,步进电机会转过控制器所希望的平衡位置,为了克服步进失步和过冲现象,应该在启动停止时加入适当的加减速控制。步进电机常用的升降频加减速控制方法有4种:

3.1.直线升降频

电机运动时,其运动过程是首先以一定的加速度加速运动,当速度达到指定的速度时,开始匀速运动,减速时,以一定的加速度减速运动到指定的速度后匀速运动或停下来。在步进电机升速过程中,直线规律速度控制是加速度保持一个恒定值不变,速度以直线规律上升,该种加减速方法快速性较好,控制方法计算简单, 所以适用于控制系统处理速度

较慢且对升降速过程要求不高的场合。将影响电机和机械系统的使用寿命,这种方法是以恒定的加速度进行升降,平稳性好,适用于速度变化较大的快速定位方式。加速时间虽然长,但软件实现比较简单。

以往研究表明,步进电机处于负载状态下可以按预期的目标升降速,但是反映出过冲量大,稳定性差,噪音大的现象。所以在短距离的步进电机加减速控制中不适合采用该方法。同时,由于这种速度控制方法的加速度是恒定的,其缺点是未充分考虑步进电机输出力矩随速度变化的特性,步进电机在高速时会发生失步"因此,除部分特殊场合,线性规律控制已逐步退出历史的舞台。

3.2.阶梯曲线升降频

将步进电机的升降过程离散为一个不连续的区间,控制器件所发出的驱动脉冲受阶梯函数的控制,即步进电机的转速每跃升1个台阶后,恒速运转一段时间,通过反馈机制比较

相关主题
相关文档
最新文档