压缩空气基础知识

压缩空气基础知识
压缩空气基础知识

压缩空气净化系统技术问答汇编

一、相关知识

l一1什么叫饱和空气?

答:在一定的温度和压力下,湿空气中水蒸气的含量(即水蒸气密度)是有一定限度的;在某一温度下所含水蒸气的量达到最大可能含量时,这时的湿空气叫饱和空气。水蒸气未达最大可能含量时的湿气就叫未饱和空气。

l一2什么是大气压?什么是绝对压力?什么是表压力?

答:包围在地球表面一层很厚的大气层对地球表面或表面物体所造成的压力称为“大气压”,符号为B,直接作用于容器或物体表面的压力,称为“绝对压力”,绝对压力值以绝对真空作为起点,符号为PABS;

用压力表、真空表、u形管等仪器测出来的压力叫“表压力”(又叫相对压力,)“表压力”以大气压为起点,符号为Pg。

三者之间的关系是:PABS=B+Pg :

压力的法定单位是帕(Pa),大一些单位是兆帕(Mpa)1 MPa=106Pa ;

1标准大气压=0.1013MPa

在旧的单位制中,压力用kgf/cm2(公斤/平方厘米)作单位,1kd/cm2=0.098Mpa.

1—3什么叫温度?常用温度单位有哪些?

答:温度是物质分子热运动的统计平均值。

绝对温度:以气体分子停止运动时的最低极限温度为起点的温度,记为T。

单位为“开(开尔文)”,单位符号为K。

摄氏温度:以冰的融点为起点的温度,单位为“摄氏度”,单位符号为oC

此外英美国家还经常用“华氏温度”,单位符号为F。

温度单位之间的换算关系是:T(K)=t(℃)+273.16 t(F):1.8t(℃)+32

l一4什么叫空气的湿度?湿度有几种?

答:表示空气干湿程度的物理置叫“湿度”。“含湿量”。

常用的湿度表示方法直::绝对湿度”、“相对湿度”

在标准状态下,lm3容积中湿空气含有水蒸气的重量称为“绝对湿度”,单位是g/m3。绝对湿度只表明单位体积湿空气中。含有多少水蒸气,而不能表示湿空气吸收水蒸气的能力,即不能表示湿空气的潮湿程度。绝对湿度也就是湿空气中水蒸气的密度。

湿空气中实际所含的水蒸气量与同温度下最大可能含有水蒸气量的比值称为“相对湿度”,相对湿度φ在O一100%之间。φ值越小.空气越干燥,吸水能力越强。φ值越大,空气越潮湿。吸水能力越弱。

1—5什么含湿量?含湿量怎样计算?

答:在湿空气中,Ikg干空气含有水蒸气的重量叫做“含湿量”,常用d来表示,单位:g/kg干空气。含湿量的计算公式是:

式中:p--空气压力(Pa),Ps一水蒸气分压力(Pa).Psb—饱和水蒸气分压(Pa),φ一相对湿度(%)。

从上式可以看出,含湿量d几乎同水蒸气分压力Ps成正比,而同空气总压力P成反比。d确切反映了空气中含有的水蒸气量的多少。由于在某一地区,大气压力基本上是定值.所以空气含湿量仅同水蒸气分压力Ps有关.

1一6什么是空气的标准状态?

答:在温度t=20℃,绝对压力P=0.1Mpa,相对湿度…p=65%时的空气状态叫空气的标准状态。

在标准状态下,空气密度是1.185kg/m3。(空压机排气量、干燥机、过滤器等后处理设备的处理能力都是以空气标准状态下的流量来标注的,单位写作Nm3/min也可以m3/min后加ANR)。

实际空气状态与标准状态通过状态方程进行转换。状态方程有多种形式。其中一种形式是

式中:P--气体的绝对压力(Pa),V一气体的比容(m?/kg),T--气体的温度(K)

(单位符号带脚标0的是标准状态参量,带l的是实际状态参量)

因为加压前后空气质量是不变的。利用状态方程可以计算出加压后空气的体积:

1—7什么是压缩空气?有哪些特点?

答:空气具有可压缩性,经空气压缩机做机械功使本身体积缩小,压力提高后的空气叫压缩空气。压缩空气是一种重要的动力源。与其它能源比,它具有下列明显的特点:清晰透明,输送方便,没有特殊的有害性能.没有起火危险,不怕超负荷,能在许多不利环境下工作,空气在地面上到处都有,取之

不尽。

1-8压缩空气里含有哪些杂质?

答:空压机排出的压缩空气里含有很多杂质:①水,包括水雾、水蒸汽、凝结水;②油,包括油污、油蒸汽;③各种固态物质如:锈泥、金属粉末、橡胶细末、焦油粒及滤材、密封材料的细末等;此外还有多种有害的化学异昧物质等。

l—9什么是气源系统?

答:由产生、处理和储存压缩空气的设备所组成的系统称为气源系统。典型的气源系统由下列部分组成:空气压缩机、后部冷却器、过滤器(包括前置过滤器、油水分离器、管道过滤器、除油过滤器、除臭过滤器、灭菌过滤器等等)、稳压储气罐、干燥机(冷冻式或吸附式)、自动排水排污器,输气管道、管路阀件、仪表等。上述设备根据工艺流程的不同需要,组合成完整的气源系统。

二、

l—10为什么必须对气源系统进行处理?

答:从空压机输出的压缩空气中含有大量有害杂质,不通过适当的方法清除这些杂质,会对气源系统造成很大的危害:

变质的润滑油(油分)会使橡胶、塑料、密封材料变质,堵塞小孔,造成阀类动作失灵,污染产品:

水分和粉尘会造成金属器件、管道生锈腐蚀,造成运动部件卡死或磨损,使气动元件动作失灵和漏气,水分和尘土还会堵塞节流小孔或过滤网;在寒冷地区,水分结冰会造成管道冻结或冻裂。

由于空气质量不良,使气动系统的可靠性和使用寿命大大降低,由此造成的损失往往大大超过气源处理装置的成本和维修费用,故正确选用气源处理系统是绝对必要的。

1—11气源质量的标准有哪些?

答:不同用户对气源质量有不同要求。国家标准GB/T13277.9I<一般用压缩空气质量等级)(等效采用IS08573)就是为此而制订的。该标准对压缩空气中固体粒子、水分及含油量作出了量的规定。

从更广的意义上讲,一个良好的气源还应当在使用过程中压力是稳定的,对周围环境造成的污染是最小的。

l-12压缩空气干燥方法有哪几种?

答:压缩空气可以通过加压、降温、吸附等方法来除去其中的水蒸汽。可通过加热—过滤—机械分离等方法除去液态水分。

冷冻式干燥机就是对压缩空气进行降温桌排除其中所含水蒸气,获得相对干燥压缩空气的一种设备。

二、“压力露点”及测量

2.1什么叫露点?它和什么有关?

答:未饱和空气在保持水蒸气分压不变(即保持绝对含水量不变)情况下降低温度,使之达到饱和状态时的温度叫“露点”。温度降至露点时,湿空气中便有凝结水滴析出。

湿空气的露点不仅与温度有关,而且与湿空气中水分含量的多少有关。含水量大的露点高,含水量少的露点低。

2—2什么是“压力露点”?

答:湿空气被压缩后,水蒸气密度增加,温度也上升。压缩空气冷却时,相对湿度便增加,当温度继续下降到相对湿度达100%时,便有水滴从压缩空气中析出,这时的温度就是压缩空气的“压力露点”。

2—3“压力露点”与“常压露点”有什么关系?

答:“压力露点”与常压露点之间的对应关系与“压缩比”有关,一般用图表来表示。在“压力露点”相同情况下,“压缩比”越大,所对应的常压露点越低。例如:O.7MPa的压缩空气压力露点为2℃时,相当于常压露点为一23℃。当压力提高到1.0MPa时,同样压力露点为2℃时.对应的常压露点降到一28℃(见附表)

2—4压缩空气露点用什么仪器来测量?

答:压力露点单位虽然是℃,但它的内涵是压缩空气的含水量。因此测量露点实际上就是测空

气的含水量。测量压缩空气露点的仪器很多,有用氮气、乙醚等作冷源的“镜面露点仪”,有用五氧化二磷、氯化锂等作电解质的“电解湿度计”等等。目前工业上普遍使用专用的气体露点计来测量压缩空气的露点,如英国的SHAW露点仪,该仪器的测量范围可达一80℃。

2—5用露点仪测量压缩空气露点时应注意什么?.

答:用露点仪测量空气露点,特别是在被测空气含水量极低时,操作要十分仔细和耐心。气体采样设备及

连接管路必须是干燥的(至少要比被测气体干燥),管路连接应是完全密封的,气体流速应按规定选取,而且要求有足够长的预处理时间,稍一不慎,就会带来很大误差。实际证明用五氧化二磷作电解质的“微水分测定仪”来测量经冷干机处理的压缩空气的“压力露点”时,误差很大。据厂家解释,这是由于在测试过程中压缩空气会产生“二次电解”,使读数值比实际高。

并且冷干机处理后的压缩空气含水量约在1000ppm左右,已超出了该仪器的测量范围。所以在测量冷干机处理的压缩空气露点时,不应当使用这类仪器。

2一6压缩空气的“压力露点”应在干燥机哪个部位测量?

答:用露点仪测量压缩空气的“压力露点”,取样点应放在干燥机的排气管道内,且样气中不能含有液态水滴。其他采样点测出的露点都有误差。

2—7在什么情况下可以用测量温度的办法来代替“压力露点”?

答:工业现场用SHAW露点计间歇取样测量空气“压力露点”步聚相当麻烦,往往因测试条件不完备而影响测试结果。因此在要求不十分严格的场合,往往用温度计来近似测量压缩空气的“压力露点”。

用温度计测量压缩空气“压力露点”的理论依据是:如果被蒸发器强制冷却后通过“气水分离器”进入预冷器的压缩空气,其中所带的凝结水在“气水分离器”得到完全分离,那么此时所测得的压缩空气温度即是它的“压力露点”。虽然实际上“气水分离器”的分离效率不可能达到100%,但在预冷器与蒸发器凝结水排出良好的情况下。进入“气水分离器”并需通过“气水分离器”排除的凝结水只占全部凝结水量的很少一部分。因此用这种方法测“压力露点”误差并不很大。

用这种方法测量压缩空气“压力露点”时,温度测点应选择在冷干机蒸发器末端或“气水分离器”内。因为这点压缩空气温度最低。

在国外原装进口的冷干机中也有用这种方法来测量成品气“露点温度”的。

三、过滤器

3一l为什么空气中油的危害是最大的?

答:在一些要求严格的地方,比如气动控制系统中,一滴油能改变气孔的状况。使原本正常自动运行的生产线瘫痪。有时,油还会将气动阀门的密封圈和柱体胀大,造成操作迟缓,严重的甚至堵塞。在由空气完成的工序中,如吹形件,油还会造成产品外形缺陷或外表污染。

3—2油污的主要来源是怎样的?

答:由于大部分压缩空气系统都使用润滑油式压缩机,该机在工作中将油汽化变成油滴。它以二种方式形成的:

一种是由于活塞压缩或叶片旋转的剪切作用产生的所谓“分散型液滴”。其直径从1~50μm,

另一种是在润滑油冷却高温的机体时,汽化形成的“冷凝型液滴”,其直径一般小于lμm.这种冷凝油滴通常占全部油污重量超过50%,占全部油污实际颗粒数量超过99%。

3—3油量常用的计量标准是什么?

答:油污量一般采用一种很小的计量标准来清晰地表示出其累积的状态。lOOsefm(每分钟标准立方尺)空气中含有lppmW/W(重量的百万分之几)油流量相当于每月150ml。

3—4无油压缩机可以完全消除污染物的产生吗?

答:不能。在最理想的工作状态下,此类压缩机也会产生不少于0.5ppmW/W的碳氢化合物,即使按lOOscfm气量计,每月产生的汽化冷凝液也超过15mL。

3—5什么叫压缩空气过滤器?

答:压缩空气过滤器就是对压缩空气进行过滤、净化处理的装置。我们一般特指压缩空气系统管路中的高效精密过滤器。

3—6过滤器的工作原理是什么?

答:一般过滤器滤芯是由纤维介质、滤网、海绵等材料组成,压缩空气中的固体的、液体的微粒(滴)经过过滤材料的拦截后,凝聚在滤芯表面(内外侧)。积聚在滤芯表面的液滴和杂质经过重力的作用沉淀到过滤器的底部再经自动排水器或人工排出。

3—7几种一般类型过滤器的特点是什么?

答:利用表面产生吸引力的吸附式(活性碳)过滤器,存在着使用周期有限,吸附剂吸收油后其吸附能力也随之降低等问题。

吸收式过滤器的主要材质吸收剂,如羊毛、油毡和棉花,在将液体吸收至内部并侵满后,会失去其结构上优势而迅速失效。

机械式分离器和筛网式空气过滤器,通常按5、lO、20、和40μm来分类,对于占油滴中大部分的微小颗粒是无效的。

3—8玻璃纤维材质应用于过滤中有什么特点?

答:玻璃纤维能十分有效地分离直径从50~0.0lμm间的润滑油滴,它在过滤时既不必吸附也不用吸收。而且十分有效,比其他材质更优胜。

3—9由玻璃纤维材质为滤芯核心的凝聚式过滤器的工作机理是怎样的?

答:空气从滤芯中部流入,通过重力作用、惯性碰撞、直接拦截和渗透四种机理将油滴收集起来。

·重力作用:当过滤器内气流速度较低时,直径20—50μm的油滴在到达滤层前,经重力自由落体大部分被收集起来,而且气流在流经滤网时也继续落下而收集。气流速度越大,其效率越低。

·惯性碰撞:通常直径大于lμm的悬浮颗粒具有很大的冲量。与气流路径不常一致.因而会惯性地撞上纤维层。气流速度越大,碰撞率越大。

·直接拦截:直径从0.3-1μm的颗粒是随气流运动的,它们大部分将被滤芯l/2处的纤维层拦截而分离出来。粒子越小,拦截率越低。

·渗透:直径小于O.3μm的颗粒。因其质量太小已不具有液体的通常特性了。它们以一种无规则的布朗运动方式运动着.与气流路径是不一致的.正因这种运动方式使其能被更细密的滤层俘获。粒子越小。布朗运动越剧烈,捕捉机率越大。

3一lO高效过滤器的主要特点是什么?

答:直径为O.3μm的颗粒既不能用机械方式也不能有效地去捕获。评价一个过滤器是否高效是看其是否有能力最大限度内地俘获这类尺寸的颗粒。

3一11高效的凝聚式过滤器的简单工作过程是怎样的?

答:压缩空气进入滤芯的中部后,经重力、碰撞、拦截和渗透作用被滤层搜集起来。当油滴被滤层清除后,首先要收集它们。小油滴先聚合成大油滴,聚合的大油滴质量足够大时,会沉降至滤层底部。然后流入过滤糟内,经人工或自动排油装置从系统中排除。

3一12高效的凝聚式过滤器有哪些设计要求?

答:玻璃纤维具有防水性却不防油。油会在纤维表面形成薄膜,影响搜集并增加了筛芯的功能直径。对此,设计中就必须选择更加纤细的纤维。

过滤层的设计主要考虑控制气流速度和过滤层的物理环境。只有保证材质有足够大的表面积,使气流速度尽量低,从而使拦截、碰撞和扩散作用更加有效,另一方面,设计的滤床也要足够厚,使粒子有充足的停留时间。最后,滤芯中不能有太多的纤维层,这会阻碍排水,增大压损,使过滤器效益降低。

油滴的收集是一个物理过程,压力、流速、湿度和杂质本身的物理特性都会影响聚集结果。因此,过滤层的配置、安排、尺寸以及类型选择也很关健。

3一13凝聚式过滤器的滤芯有使用寿命吗?

答:有。理论上,过滤层可无限次地清除液体并保持其高效性。事实上,因滤网在使用中不断收集液体而产生压降增加,会导致过滤层有一定的有效使用寿命。

3一14凝聚式过滤器的滤芯为什么使用多孔泡沫层(或罩)?

答:一般凝聚式过滤器的滤芯设计中会在过滤层内、外设置多孔泡沫层或罩。

当含油质的气流经过滤中心层的作用放射状地流人柔韧的内多孔泡沫套层。它一方面对气流起到分散器、预过滤器和空间稳定器的作用;另一方面通过自身调整改变气流(扩张或收缩),使气流对过滤层产生柔和压力,保证其工作时完整而有效。

气流经过滤层时,油滴被拦截和收集。油聚集后,经过一层硬质金属管流到外层多孔泡沫罩(套在金属管外)。外层多孔泡沫罩具有较大的不吸收表面,可使油迅速覆盖在其表面,在重力作用下.流至底部,从而阻止了油重回气流的情况产生。当油积聚在罩底(无气流死区)时,泡沫孔被堵满,油降至收集槽内.

3一15过滤器滤芯的等级标准划分依据是什么?

答:根据ISO 8573.1质量等级,过滤器处理压缩空气所达到的等级.一般根据滤芯处理后固态污染物粒子的尺寸大小、液态水的含量和油滴、油雾、油汽的含量来划分。

3一16过滤器的等级是如何具体划分的?

答:一般过滤器的等级可分为预过滤、初过滤、精过滤和活性碳过滤。其中预过滤器一般滤除直径3~5μm 微粒,初过滤器一般滤除直径O.5~1μ微粒和油雾剩余含量1ppm w/w,精过滤器一般滤除直径0.01μm 微粒和油雾剩余含量0.0lppm w/w.活性碳过滤器则主要用来去除臭味和油蒸汽(油雾剩余含量仅0.003ppm w/w).

3一17过滤器不同等级标准的适用场合如何?

答:预过滤器一般用于压缩机(后冷却器)的下游,使用场合要求不高。初过滤器一般用于工具、马达、气缸等。精过滤器一般用于喷漆、注塑、仪表、控制阀、传动、搅拌、电子元件制造、氮分离等。活性碳过滤器一般用于食品和药品制造、呼吸空气、气体加工等。

3一18为什么过滤器要搭配选购?

答:一般人的误区是,认为根据所需要的空气质量选择对应处理精度的单支过滤器就能达到要求,并且节约开支。其实不然,所需要的空气质量虽然由所选的单支过滤器的处理精度决定,但没有前置低一级过滤器的预处理保护,高精密滤芯很快就会因负载过大而堵塞,加快了滤芯的更换频率,从而会变相地增加生产成本。

3一19过滤器能否降低空气露点?

答:过滤器一般只能除去固体的、液体的微粒(滴),而水蒸气和油蒸气却可以毫无阻挡地通过过滤材料弯弯曲曲的通径。所以,机械式过滤器无法将其滤除(活性碳过滤器除外)。要从根本上去除水蒸气和油蒸气,只有用干燥机降低空气的露点温度。

3—20过滤器效率与空气温度的关系是什么?

答:压缩空气中所含油和水的温度,影响着过滤器效率。如:当温度为30℃时,流经过滤器的油含量为

20℃时的5倍;当温度上升为40℃时,流经过滤器的油含量为20℃时的10倍。所以过滤器一般要安装在压缩空气系统的温度最低点。

3—22过滤器的选购件有哪些?

答:过滤器的选购件一般包括:内部自动排水器、外接自动排水器、压差表、压差计、电子压差指示器和液位指示器。

3—23过滤器的选购件有何用途?

答:过滤器选购件中内部自动排水器和外接自动排水器用于将滤芯过滤出的油、水与尘的混合物自动排出过滤器,减少人为因素影响系统的过滤效率。压差表、压差计、电子压差指示器用于指导更换滤芯的时间。液位指示器用于指示过滤器内部油、水、尘等的混合污染物的多少(可监测内部自动排水器的工作状况和指导人工手动排污)。

3—24过滤器滤芯的更换周期如何确定?

答:滤芯的更换周期由它的压力降决定,一般来说压力降超过了0.68kgf/cm2,过滤器压差计指针指向红色区域,或工作满6000—8000小时(一年)即要更换。活性碳滤芯则在下游测到气味时更换。

3—25为什么要定期更换过滤器滤芯?

答:因为滤芯持续被污染后,将导致气体的流量在系统中变小而压降变高,同时,能源电力上消耗也因此上升.结果导致操作和生产的成本提高,并增加环境的负担。

3—26过滤器安装应注意哪些方面?

答:(a)工作压力不能超过过滤器所标明的最大压力。

(b)过滤器一般要安装在后冷却器和储气罐之后,尽量靠近使用点和温度最低点。

(c)过滤器不应安装在快速开启阀之后,并防止回流和冲击现象。

(d)过滤器应垂直安装,并在下方留有足够空间更换滤芯。

(e)较大过滤器在管线中应有适当支撑。

3—27更换滤芯的注意事项是什么?

答:(a)隔离过滤器,关闭进气阀或压缩空气供应系统,完全卸压后再关闭出气阀(或关闭有关阀后通过过滤器排水孔完全卸压)。

(b)拧掉壳体,取下旧滤芯。

(c)清洗过滤器壳体。

(d)换上新滤芯(不要遗漏密封圈,滤芯应装紧装正.

四吸附式干燥机

4一1吸附式干燥机的分类是什么?

答:吸附式干燥机分为简易型吸附式干燥机(一次性)和再生型吸附式干燥机(自动循环型)。我们日常多采用再生型吸附式干燥机,简易型吸附式干燥机多用于小型实验室。

再生型吸附式干燥机一般分为无热再生吸附式干燥机和有热再生吸附式干燥机。

有热再生吸附式干燥机根据加热方式又可分为内加热型吸附式干燥机和外加热型吸附式干燥机。

4—2再生吸附式干燥机的运行原理是什么?

答:再生吸附式干燥机由两个双联机简组成,机筒里装满干燥剂(干燥剂的表面能吸收水份)。两个机筒轮流接通和关闭气流,交替进行干燥和再生运行,从而使气流能持续接触干的干燥剂来达到脱湿干燥的目的。

4—3无热再生吸附式干燥机的干燥原理是什么?

答:无热再生吸附式干燥机是通过“压力变化”来达到干燥效果。由于空气容纳水汽的能力与压力呈反比。其干燥后的一部分干燥空气(称为再生气)减压膨胀至大气压,这种压力变化使膨胀空气变得更加干燥,然后让它流过未接通气流的需再生的干燥剂层(即已吸收足够水汽的干燥塔),干燥的再生气吸出于燥剂里的水分,将其带出干燥机来达到脱湿干燥的目的。

无热再生吸附式干燥机一般要消耗15%左右的再生压缩空气。

4—5吸附式干燥机的干燥剂有哪些?

答:吸附式干燥机一般采用硅胶、活性氧化铝、分子筛作为干燥剂。

4—6各类干燥剂的特点是什么?

答:硅胶较易受水份潮解。

活性氧化铝的吸附性能很强、很稳定,遇到水分不潮解,且具有高抗碎强度和抗磨蚀性,适用范围较广。

分子筛由于在相对湿度20%以下有较好的干燥性能,常常仅作为深度干燥的干燥剂。

4—7吸附式干燥机的适用范围如何?

答:吸附式干燥机用于压力露点要求在零度(O℃)以下的场合。它能达到冷冻式干燥机远远不能达到的干燥效果。

4—8吸附式干燥机的干燥效率与气流温度的关系是什么?

答:气流的温度越低,吸附式干燥机的干燥效率越高。因为空气温度越低,容纳的水分越少,对吸附式干燥机的干燥负载就越低,吸附式干燥机的干燥能力就越强,故而效率越高。

4—9无热吸附式干燥机的干燥效率与气流压力的关系是什么?

答:无热吸附式干燥机是通过变压(即压力变化)来进行干燥达到除湿效果的。干燥剂再生时气流的压力差越大,再生气吸出的干燥剂里水分就越多,干燥剂的再生效果就越好,下一工作周期时的干燥效果就越佳。一般来说,无热吸附式干燥机都有它额定的最小工作压力,否则达不到干燥机设定的干燥效果。

4一lO吸附式干燥机前置过滤器有何作用?

答:吸附式干燥机的前置过滤器用于清除压缩空气中的固态和液态污染物,延长干燥剂层的使用寿命(尤其是油污染会造成干燥剂因“中毒”而失效)。

4一11吸附式干燥机后置过滤器有何作用?

答:吸附式干燥机后置过滤器用于清除干燥剂粉尘,防止下游有尘埃污染物。

4—12加大吸附式干燥机的吸附床有何作用?

答:l、增加压缩空气与吸附剂的接触时间;

2、额外的吸附剂用于补偿干燥剂的自然老化:

3、确保出口露点温度稳定;

4、保存足够吸附热以备正常再生之需。

4一13国产吸附式干燥机与进口吸附式干燥机的差距?

答:首先。由于国内的干燥剂(例如活性氧化铝等)的吸附性能不佳,国产吸附式干燥机在压

力露点:20℃以下就无能为力了。

其次.国内的阀门阀件的性能不佳.开启不很顺畅,造成国产吸附式干燥机的故障不断,工作不稳定.

再次,国产吸附式干燥机的设计落后。要知道合适的干燥剂层、机筒、管路、阀门设计可以减少压降。提高干燥效果。

特别是塔体尺寸和分流器的设计,关系到气流在塔体内的均匀走向和气流与干燥剂的接触时间,从而直接影响干燥机的干燥效率。

4一15吸附式干燥机出口露点为什么会过高?

答:l、超出最大流量值和超过设计条件。

2、干燥剂没有吸附作用:

a、使用寿命已结束;

b、干燥剂已被污染(如被油污染);

c、过早饱和(吸水过多)。

3、气流进入干燥机前没有预处理除去液态水。

4一16干燥剂过早饱和的原因是什么?

答:l、再生气率不足:

a、再生气阀排放不出;

b、再生循环时,工作塔压力并未完全下降I无法降到2kgf/cm2以下),造成压力差太小。

2、排气消音器堵塞;

3、排气阀无法打开:

4、单向阀卡住无法正常关闭:

a、设置不当:

b、定时器故障。

4一17吸附式干燥机工作塔压为什么达不到系统压力?

答:1、再生气/升压阀无法关闭;

2、下游空气的需求量过大。

4—18吸附式干燥机再生塔压为什么无法降到2kgf/cm2以下?

答:l、消音器堵塞;

2、单向阀失灵;

3、排气阀开启过久;

4、再生气/升压阀无法开启.

4一19吸附式干燥机再生循环时再生气排放量为什么过大?答:l、进气阀无法关闭;

2、单向阀失灵;

压缩空气基础知识

压缩空气基础知识 温度露点及相对湿度 状态及气量 温度 1、温度 温度是指衡量某一物质在某一时间能量水平的方法。(或更简单的说,某一事物有多少热或多少冷)。 温度范围是根据水的冰点和沸点。在摄氏温度计上,水的冰点为零度,沸点为100 度。在华氏温度计上,水的冰点为32度,沸点为212度。从华氏转换成摄氏:华氏=1.8 摄氏+32,摄氏=5/9 (华氏-32 ) 2、绝对温度 这是用绝对零度作为基点来解释的温度。 基点零度为华氏零下459.67 度或摄氏零下273.15 度 绝对零度是指从物质上除去所有的热量时所存在的温度或从理论上某一容积的气体缩到零时所存在的温度。 3、冷却温度差 冷却温度差是确定冷却器的效率的术语。因为冷却器不可能达到100%的效率,我们只能用冷却 温差衡量冷却器的效率。 冷却温度差是进入冷却器的冷水或冷空气温度和压缩空气冷却后的温度之差。 4、中间冷却器 中间冷却器是用于冷却多级压缩机中的级与级之间的压缩空气或气体使温度降低的器件。中间冷却器通过降低进入下一级压缩空气温度达到降低压缩功率以有助于增加效率。 返回顶部 露点和相对湿度 1、露点和相对湿度就象晚上温度下降会产生露水一样,压缩空气系统内的温度下降也会产生水气。露点就是当湿空气在水蒸气分压力不变的情况下冷却至饱和的温度。 这是为什么呢? 含有水分的空气只能容纳一定量的水分。如果通过压力或冷却使体积缩小,就没有足够的空气来容纳所有的水分,因此多于的水分析出成为冷凝水。 离开后冷却器的空气通常是完全饱和的。分离器内的冷凝水就显示了这一点,因此空气温度有任何的降低,就会产

设定的湿度可认为是湿空气所含水蒸气的重量,即:水蒸气重量和干燥空气重量之比。 相对湿度 X -湿度Ps 屮= ..................... = ............. X0- 饱和绝对湿度Pb 当Ps=O, =0时,称为干空气; Ps=Pb, =1时,称为饱和空气。 绝对湿度——1M3 湿空气所含水蒸气的重量。 Gs—水蒸气重量 X = --------------------- V—湿空气体积 水蒸气重量 含湿量= -------------------- 干空气重量 2、饱和空气 当没有再多的水气能容纳在空气中时,就产生了空气的饱和,任何加压或降温均会导致冷凝水的析出。 3、水气分离器水气分离器是用于收集和除去在冷却过程中从空气或气体中冷凝出来水的器件。储气筒是用于储存压缩机排放出来的压缩空气和气体的容器。储气筒有利于消除排气管路中的脉冲,并在需求量大于压缩机的能力时,可起储存和补充提供压缩空气的作用。 4、干燥机 干燥机是用于干燥空气的装置。用我们的术语,就是用其干燥的压缩空气。离开后冷却器的空气通常是完全饱和的,就是说任何降温都会产生冷凝水。冷冻式干燥机是通过降低压缩空气的温度,析去水分,然后将空气再加热到接近原来的温度。 再生式干燥机是使空气通过含有化学物质的过滤器以析出水分。这种装置比冷冻式装置更能吸附水气。

压缩空气管道规范

压缩空气管道规范 为避免重复建设和节约投资,压缩空气管道考虑近期发展的需要是必要的。近期发展应包括对流量、压力及品质的要求。 9.0.2 本条是原规范第9.0.1 条后段的修订条文。 压缩空气管道系统有辐射状、树枝状和环状三种形式。其中,厂(矿区)管道一般采用辐射状和树枝状系统,车间采用树枝状和环状系统。辐射状系统便于集中调节用气量,压力和泄漏损失小,但一次性投资大,管网较复杂;树枝状系统的优缺点则与辐射状系统相反;环状系统的主要特点是供气可靠,压力稳定。由于各有优缺点,并且在不同的使用条件下均能获得较好的效益,所以,笼统地推荐一种系统是不合适的,特别是近年来,许多厂(矿)已经采用了树枝与辐射混合型的管网系统,其效益也是明显的。在设计管道系统时,可以根据当地的实际情况,因地制宜地选择合适的管道系统。 管道的三种敷设方式:架空、管沟和埋地,各有其特点和使用条件。架空管道安装、维修方便、直观,也便于以后改造。这种敷设方式被夏热冬暖地区、温和地区、夏热冬冷地区和寒冷地区的大多数厂(矿)采用。管沟敷设如能与热力管道同沟,将是经济合理的。直接埋地敷设在寒冷地区及总平面布置不希望有架空管线的厂(矿)采用较多。 寒冷地区和严寒地区的饱和压缩空气管道架空敷设时,冻结的可能性比较大,尤其是严寒地区需采取严格的防冻措施。 9.0.3 本条是原规范第9.0.2 条的修订条文。 管道设坡度有利于排放油水,但也有许多单位在管道设计时均不设坡度。多年来的使用证明,只要设有排除油水的装置,一般是没有问题的,尤其在不冻结地区,并且还有设计和施工方便的优点,因此,本条文对坡度设置问题未作规定,仅规定了管道应设置可排放油水的装置。如有坡度敷设时,推荐不小于0.002。 条文中提到的“饱和压缩空气”是指未经干燥处理或干燥处理后其露点温度仍然高于当地极端环 境最低温度的压缩空气,这样的压缩空气在架空管道中会析出水分,所以,架空敷设时需考虑防冻措施。 干燥、净化压缩空气管道的管材和附件的选择,对于确保供应用气设备符合要求的干燥、净化压缩空气十分重要。若管材和附件选择不当,常会使已经干燥、净化的压缩空气受到污染。根据对各行业企业的调查,将压缩空气按干燥净化程度分为四档,分别推荐使用不同的管材,这样既节约了成本,又保证了压缩空气的品质。 对于近年来出现的PVC塑料管、铝塑管、不锈钢复合管等新材料,由于尚无使用的成熟经验,故这里未予列出。 现在用于干燥和净化压缩空气管道的阀门和附件品种及材质较多,凡在强度、密封、抗腐蚀性方面满足要求者均可采用。 管道连接采用焊接,已有多年成熟的经验。焊接比法兰或螺纹连接更具有省料、施工快和严密性好等优点,故推荐采用。 干燥和净化压缩空气管道的焊接方式与一般压缩空气管道的焊接方式有所不同,这在《洁净厂房设计规范》(GB 50073)中已有明确的规定,因此,本条文要求遵照执行。 9.0.7 本条为新增条文。

空调系统、水系统、压缩空气工作原理2014

1.1空调净化系统的简要描述: (1)净化空调机组送、回、排风系统原理图: 空气通过新风口的金属滤网,阻挡昆虫、异物杂质等;在混合段与回风混合后进入初效过滤截留大气中大粒径微粒,过滤对象是5μm以上的悬浮性微粒;在表冷段及加湿段通过制冷机组或蒸汽进行温湿度控制;在中效段进行高效的预过滤处理,主要用以截留1~5μm的悬浮性微粒,同时对高效进行保护;进入送风段对洁净区进行送风,通过洁净区末端高效过滤器进入洁净区,最终实现车间洁净度的要求。 (2)设计标准及运行情况: 制剂车间及前处理车间原设计洁净级别为10万级,依据新版GMP (2010年修订)要求及《洁净室施工及验收规范》(GB 50591-2010),洁净区空气洁净度符合新版标准。因此制剂车间及前处理车间原空调机组无需改造,需加强管理,有效保证洁净区相对压差,防止外界环境对净化区域的污染。

综合制剂车间洁净区改造设计标准: 液体剂(一区)空调系统设计总送风量:19000m3/h 固体剂(二区)空调系统设计总送风量:36560m3/h 丸剂(三区)空调系统设计总送风量:37100m3/h 制剂车间洁净区改造设计标准: 空调系统设计总送风量:92660m3/h 温度控制:18℃~26℃ 湿度控制:45%RH~65%RH 相对压差控制:不同洁净级别之间及洁净区与非洁净区之间应≥10Pa 经过验证确认,系统送风量能满足实际需风量要求。 空调系统送风量测试:系统最大需送风量能满足使用要求; 压差测定结果:压差值均在合格范围; 温湿度测试结果:最高温度23度,最低温度21度,最大湿度50%,最小湿度48%; 噪声测定结果:最高60分贝,最低30分贝,均符合要求; 消毒效果确认:符合要求; 检漏及气流组织确认:对高效过滤器进行了悬浮粒子扫描测试,测试结果符合规定;对高效送风形态、压差梯度分布状态进行了气流组织流向测试,符合工艺要求; 尘粒测试结果:各房间检测结果显示,尘粒数控制良好; 沉降菌检测结果:沉降菌检测及微生物控制良好; 照度测试结果:关键房间均达到300LX,完全能够满足生产工艺要求; 通过对车间洁净区域的洁净级别认定,空调机组改造后洁净区洁净度级别满足新版《GMP》(2010年修订)洁净度级别要求,洁净区各项性能测试符合GMP指标。

压缩空气储能

压缩空气储能:高效率储能技术 2014-1-13 压缩空气储能电站(CAES)是一种用来调峰的燃气轮机发电厂,主要利用电网负荷低谷时的剩余电力压缩空气,并将其储藏在典型压力7.5 MPa 的高压密封设施内,在用电高峰释放出来驱动燃气轮机发电。在燃气轮机发电过程中,燃料的2/3 用于空气压缩,其燃料消耗可以减少1/3,所消耗的燃气要比常规燃气轮机少40%,同时可以降低投资费用、减少排放。 值得注意的是,压缩空气储能电站建设投资和发电成本均低于抽水储能电站,但其能量密度低,并受岩层等地形条件的限制。不过,压缩空气储能电站的优势也非常明显,其储气库漏气开裂可能性极小,安全系数高,寿命长,可以冷启动、黑启动,响应速度快,主要用于峰谷电能回收调节、平衡负荷、频率调制、分布式储能和发电系统备用。 尽管这种“压缩气体能源储备”的概念已经提出了30多年,但目前全世界仅有德国、美国两家压缩空气发电厂。 这两家发电厂分别创建于19世纪中后期和19世纪末。目前,两家压缩空气发电厂都运营正常。同时,美国艾奥瓦州正在建设全球第三家压缩空气发电厂,负责“艾奥瓦储备能源公园”(ISEP)项目设计工作的美国圣地亚国家实验室已经得到了来自美国能源部的资金支持,预计将于2012年投入运营。 据了解,艾奥瓦储备能源公园是一个压缩空气发电厂,该发电厂将充分利用艾奥瓦州丰富的风力资源作为发电厂的运行能源,存储容量可用于50小时发电。一旦该项目开始运营,其每年发电量将占艾奥瓦州用电量的20%左右,每年可以为艾奥瓦州节省大约500万美元的能源成本。 不过,建设压缩空气发电厂并非易事。建设的首要任务之一,就是必须找到一个支持空气压缩存储的地质空间,但这需要占用大面积土地,因此,选址也成为制约其发展的决定性因素之一。 尽管在压缩空气储能技术准备相关设施的时候产生很多费用,但是相关科学家还是认为这种形式的储存模式比制造电池便宜得多。另外,它的高容量和高效率已成为其区别于其他储能方式的决定性优势。

压缩空气基础知识

实用标准文档 压缩空气基础知识 温度 露点及相对湿度 状态及气量 温度 1、温度 温度是指衡量某一物质在某一时间能量水平的方法。(或更简单的说,某一事物有多少热或多少 冷)。 温度范围是根据水的冰点和沸点。在摄氏温度计上,水的冰点为零度,沸点为100度。在华氏温 度计上,水的冰点为32度,沸点为212度。从华氏转换成摄氏:华氏=1.8摄氏+32,摄氏 =5/9(华氏-32) 2、绝对温度 这是用绝对零度作为基点来解释的温度。 基点零度为华氏零下459.67度或摄氏零下273.15度 绝对零度是指从物质上除去所有的热量时所存在的温度或从理论上某一容积的气 体缩到零时所存在的温度。 3、冷却温度差 冷却温度差是确定冷却器的效率的术语。因为冷却器不可能达到100%的效率,我们只能用冷却 温差衡量冷却器的效率。 冷却温度差是进入冷却器的冷水或冷空气温度和压缩空气冷却后的温度之差。 4、中间冷却器 中间冷却器是用于冷却多级压缩机中的级与级之间的压缩空气或气体使温度降低的器件。中间冷却器通过降低进入下一级压缩空气温度达到降低压缩功率以有助于增加效率。 返回顶部 露点和相对湿度 1、露点和相对湿度 就象晚上温度下降会产生露水一样,压缩空气系统内的温度下降也会产生水气。露点就是当湿空 气在水蒸气分压力不变的情况下冷却至饱和的温度。 这是为什么呢?含有水分的空气只能容纳一定量的水分。如果通过压力或冷却使体积缩小,就没 有足够的空气来容纳所有的水分,因此多于的水分析出成为冷凝水。

文案大全

实用标准文档 离开后冷却器的空气通常是完全饱和的。分离器内的冷凝水就显示了这一点,因此空气温度有任 何的降低,就会产生冷凝水。 设定的湿度可认为是湿空气所含水蒸气的重量,即:水蒸气重量和干燥空气重量之比。 相对湿度ψ χ-湿度Ps ψ=-----------------=----------- χ0-饱和绝对湿度Pb 当Ps=0, ψ=0时,称为干空气; Ps=Pb,ψ=1时,称为饱和空气。 绝对湿度——1M3湿空气所含水蒸气的重量。 Gs—水蒸气重量 χ=---------------------- V—湿空气体积 水蒸气重量 含湿量=--------------------- 干空气重量 2、饱和空气 当没有再多的水气能容纳在空气中时,就产生了空气的饱和,任何加压或降温均会导致冷凝水的 析出。 3、水气分离器 水气分离器是用于收集和除去在冷却过程中从空气或气体中冷凝出来水的器件。 储气筒是用于储存压缩机排放出来的压缩空气和气体的容器。储气筒有利于消除排气管路 中的脉冲,并在需求量大于压缩机的能力时,可起储存和补充提供压缩空气的作用。 4、干燥机 干燥机是用于干燥空气的装置。用我们的术语,就是用其干燥的压缩空气。离开后冷却器的 空气通常是完全饱和的,就是说任何降温都会产生冷凝水。冷冻式干燥机是通过降低压缩空 气的温度,析去水分,然后将空气再加热到接近原来的温度。 再生式干燥机是使空气通过含有化学物质的过滤器以析出水分。这种装置比冷冻式装置更能吸附 水气。 返回顶部 状态及气量 1、标准状态

压缩空气管道施工方案

压缩空气管道施工 方案

XXXXXXXXX工程 XXXX 压缩空气管道施工方案 编写人:日期: 审核人:日期: 批准人:日期: XXXXXXXXXX项目经理部 压缩空气管道施工方案

一、编制依据: 1、建设指挥部有关建设管理文件、会议纪要和设计单位提供的施工图设计文件。 2、根据现场勘察情况和前湾港站内运营规定。 3、《采暖通风与空气调节设计规范》GB50019- 。 4、《工业金属管道设计规范》GB50316- 。 5、《压力管道安全与监察规定》、《工业金属管道工程施工及验收规范》GB50235-97。 6、《现场设备、工业管道焊接工程与施工验收规范》GB50236-97。 7、《工业设备及管道绝热施工及验收规范》GBJ126。 二、编制范围:

本工程为XXXXX试风设备综合楼室外压缩空气管道设计。 三、工程概括: 1、本工程位于既有1股与新1股之间,施工里程为GLK1+772至GLK2+766范围内,压缩空气管道采用无缝钢管。 2、压缩空气管道及组成件属于压力管道,类别为GC3级,流体类别为D类,设计压力0.8MPa,水压试验为1.2MPa。 3、室外压缩空气管道采用无缝钢管直埋敷设,管道连接采用焊接连接,管道阀门为截断塞门,管道外刷防锈漆两道,银粉一道。埋地管道穿越铁路时需设套管保护,管顶距铁路轨面不小于1.2m。管道外壁与套管两端部的间隙用浸沥青的麻丝填实,再在外端用沥青堵塞。气源由空压机室外部储风缸接引。微控试风设备的试风柜距脱轨器轨边设备20m,埋设管道作加强环氧沥青防腐层,防腐层厚度不小于

6mm。 四、施工方案及工艺 (一)、压缩空气管道系统 自然界的空气经空气压缩机压缩后称为压缩空气。压缩空气是一种重要的动力源。 1、压缩空气站的组成 1)、压缩空气站工艺生产流程 压缩空气的生产流程主要包括空气的过滤、空气的压缩、压缩空气的冷却及油和水分的排除、压缩空气的贮存与输送等。 2)、压缩空气站设备 (1)空气压缩机 在一般的压缩空气站中,最广泛采用的是活塞式空气压缩机。在

制药工厂压缩空气系统设计

制药工厂压缩空气系统设计 1、引言 新建或改建一个制药工厂,设计是一项重要工作,其中包括制药工艺、设备、土建、空调、给排水、动力等方面,是多种专业配合的整体工作。制药工厂设计与机械工厂设计比较,有许多特殊之处,本文仅就制药工厂压缩空气系统设计方面的问题,结合近年来的一些设计实践做一简述。 2、制药工厂压缩空气的用途及品质要求 2.1压缩空气主要用途 在制药工厂中,压缩空气主要用于液体制剂中的灌装机,固体制剂中的制粒机、加浆机、填充机、包装机、印字机,提取工艺中的提取罐,此外,还有化验中试用气、物料输送、干燥、吹扫、气动仪表、自动控制用气等等。上述所述的压缩空气用途中,很多情况下压缩空气与药品直接接触,所以,在制药工厂设计中对压缩空气的品质有着严格的要求。 2.2压缩空气品质控制的必要性 制药工厂压缩空气的品质主要是控制其含水量、含油量、含尘粒量和含生物粒子量,同时还要求压缩空气无气味。 含有油份的压缩空气直接与药物接触会污染药物。含有液态水滴的压缩空气会使管道阀门和设备产生锈蚀,水滴锈渍同样也会污染药物,影响药品质量。 空气中含有大量尘粒和微生物粒子,对医药工业来说,微粒特别是尘粒会直接影响药品质量,进而危及人们生命安全。微生物(生物粒子)对人体的危害更强,微生物多指细菌和真菌,污染药品后不但会使药品本身燃菌、变质,一旦误用,无论从肠道或非肠道进入人体,都会直接影响人体健康,其后果更为严重。所以制药工厂所用压缩空气必须以微粒和微生物为主要控制对象,这一点就是制药工厂与只控制微粒的其他工厂(如电子、机械工厂等)的主要区别之一。 2.3压缩空气品质控制指标 a、仪表、自动控制等用气的质量标准可由GB/T13277-91《一般用压缩空气质量等级》(等效采用ISO8573/1)中查出。这个标准根据固体粒子尺寸和含量、水蒸气含量及含油量4项控制指标划分质量等级,见表1。 对于仪表、自动控制用压缩空气的质量等级要求,推荐4项指标为2.3.3级,具体指标为:颗粒尺寸最大1μm颗粒含量1mg/m3,水含量(压力露点)最高-20℃,油含量最大值1mg/m3。 b、制药用压缩空气质量指标

液态空气储能发电的原理优缺点发展环境

3、液态空气储能发电的原理、优缺点、发展环境 (1)原理: 液态空气储能系统的原理是利用价格低廉的谷电,CryoEnergy System吸收环境中的空气,然后将其冷却直至其成为液体,然后存储与低温达-196摄氏度的储藏罐中。用电高峰时再从罐中释放液态空气并升压升温,推动汽轮机发电。从而实现谷电峰用。 具体操作步骤: 1)液化过程。电网夜间富余的电能驱动液化空气装置,使环境中的空气先洁净再压缩,然后通入到换热器中与气液分离器返回的冷空气和蓄冷装置中的冷空气进行换热冷却。被冷却的冷空气依次通过膨胀机和节流阀,降温降压,一部分被冷凝为液体,一部分仍为气体,最后在气液分离器中被分离。从气液分离器上端口出来的冷空气返回到换热器中冷却被压缩机压缩后的空气。 2)能量存储过程。经气液分离器分离后的液态空气从气液分离器下端口流到液化空气储罐中储存,液化过程中消耗的大部分电能被转化成了液态空气的冷能。 3)电力恢复过程。低温储罐中液态空气被引出,经低温泵加压后送入气化换热器中吸热气化。被气化的空气再通入热交换器中,被进一步加热升温、升压。从热交换器中出来的高压气体通到透平中做功,透平与发电机相连,带动发电机旋转发电。 从透平里出来的高温空气依次经过热交换器和气化换热器被冷却,然后流到蓄冷装置中与换热器里被压缩机压缩后的空气换热。因为液态空气的沸点比较低,所以在电力恢复过程中供应给热交换器里低温空气的热量可以是来自于液化过程中的废热或外部环境的热量。 把这个设备建在工厂或电站附近,利用里面的废热加热液态空气,效率可以达到70%。

(2)优缺点:液化空气储能技术的存储容量可达到10~200 MW,相当于大型压缩空气储能容量的一半。可液化空气储能技术的比能为214 Wh/kg,相当于大型压缩空气储能技术的四倍。液化空气储能技术储能的持续时间可达12 h以上,使用寿命为25年,相对较高。液化空气储能的效率为55%~90%,其效率值与整个系统能量能否充分利用息息相关。为了提高液化空气储能系统的效率,就需要选择合适的液化空气储能装置,尽量减少装置运转过程中不必要的能量损失。对于液化过程中产生的废热可以用于电力恢复过程中加热液态空气,使能量得到充分利用,提高了整个循环的效率。对于液化过程用于加热液态空气的热量也可以是环境中的热量和工业中产生的废热。同理,还可以将液态空气气化产生的冷量应用于储能过程中对气态的空气进行预冷,同样也可以提高液化空气储能系统的效率。 (3)我国的发展现状:由中国科学院理化技术研究所、清华大学及中国电力科学研究院共同研制的“500kW非补燃压缩空气储能发电示范系统”在安徽芜湖成功实现励磁发电,完成100kW发电的阶段目标。此次系统发电成功,标志着理化所在大规模储能技术领域的一项重要突破,对推进我国储能产业的发展具有重要意义。 压缩空气储能系统具有储能容量大、电能转换效率高、安全可靠、环境友好等特性,被视为继抽水蓄能电站之后又一种极具潜力的大规模储能系统,其在智能电网建设、大规模可再生能源接入、电网负荷调节以及保障电力系统安全性等方面,具有极大的应用前景。但是目前常规压缩空气储能系统采用燃料补燃的形式,存在系统储能效率偏低、补燃产生排放污染等问题,阻碍了技术的推广应用。 为获得高效、环保的压缩空气储能新流程,中科院理化所、清华大学和中国电力科学研究院在国家电网“压缩空气储能发电关键技术及工程实用方案研究”科技项目的支持下,组建了以理化所热力过程与节能技术研究中心主任王俊杰研究员为首的研究团队,对压缩空气储能系统所涉及的众多研究领域基础问题、关键设备和关键技术进行了系统和深入的研究,创新性地提出了基于双作用和自卸荷的非稳态压缩、热量梯级存储回馈、多级再热膨胀等流程方案。该项目的顺利实施,为发展更大规模绿色化储能系统奠定了坚实的技术基础。

压缩空气基础知识

压缩空气净化系统技术问答汇编 一、相关知识 l一1什么叫饱和空气? 答:在一定的温度和压力下,湿空气中水蒸气的含量(即水蒸气密度)是有一定限度的;在某一温度下所含水蒸气的量达到最大可能含量时,这时的湿空气叫饱和空气。水蒸气未达最大可能含量时的湿气就叫未饱和空气。 l一2什么是大气压?什么是绝对压力?什么是表压力? 答:包围在地球表面一层很厚的大气层对地球表面或表面物体所造成的压力称为“大气压”,符号为B,直接作用于容器或物体表面的压力,称为“绝对压力”,绝对压力值以绝对真空作为起点,符号为PABS; 用压力表、真空表、u形管等仪器测出来的压力叫“表压力”(又叫相对压力,)“表压力”以大气压为起点,符号为Pg。 三者之间的关系是:PABS=B+Pg : 压力的法定单位是帕(Pa),大一些单位是兆帕(Mpa)1 MPa=106Pa ; 1标准大气压=0.1013MPa 在旧的单位制中,压力用kgf/cm2(公斤/平方厘米)作单位,1kd/cm2=0.098Mpa. 1—3什么叫温度?常用温度单位有哪些? 答:温度是物质分子热运动的统计平均值。 绝对温度:以气体分子停止运动时的最低极限温度为起点的温度,记为T。 单位为“开(开尔文)”,单位符号为K。 摄氏温度:以冰的融点为起点的温度,单位为“摄氏度”,单位符号为oC 此外英美国家还经常用“华氏温度”,单位符号为F。 温度单位之间的换算关系是:T(K)=t(℃)+273.16 t(F):1.8t(℃)+32 l一4什么叫空气的湿度?湿度有几种? 答:表示空气干湿程度的物理置叫“湿度”。“含湿量”。

常用的湿度表示方法直::绝对湿度”、“相对湿度” 在标准状态下,lm3容积中湿空气含有水蒸气的重量称为“绝对湿度”,单位是g/m3。绝对湿度只表明单位体积湿空气中。含有多少水蒸气,而不能表示湿空气吸收水蒸气的能力,即不能表示湿空气的潮湿程度。绝对湿度也就是湿空气中水蒸气的密度。 湿空气中实际所含的水蒸气量与同温度下最大可能含有水蒸气量的比值称为“相对湿度”,相对湿度φ在O一100%之间。φ值越小.空气越干燥,吸水能力越强。φ值越大,空气越潮湿。吸水能力越弱。 1—5什么含湿量?含湿量怎样计算? 答:在湿空气中,Ikg干空气含有水蒸气的重量叫做“含湿量”,常用d来表示,单位:g/kg干空气。含湿量的计算公式是: 式中:p--空气压力(Pa),Ps一水蒸气分压力(Pa).Psb—饱和水蒸气分压(Pa),φ一相对湿度(%)。 从上式可以看出,含湿量d几乎同水蒸气分压力Ps成正比,而同空气总压力P成反比。d确切反映了空气中含有的水蒸气量的多少。由于在某一地区,大气压力基本上是定值.所以空气含湿量仅同水蒸气分压力Ps有关. 1一6什么是空气的标准状态? 答:在温度t=20℃,绝对压力P=0.1Mpa,相对湿度‘p=65%时的空气状态叫空气的标准状态。 在标准状态下,空气密度是1.185kg/m3。(空压机排气量、干燥机、过滤器等后处理设备的处理能力都是以空气标准状态下的流量来标注的,单位写作Nm3/min也可以m3/min后加ANR)。 实际空气状态与标准状态通过状态方程进行转换。状态方程有多种形式。其中一种形式是 式中:P--气体的绝对压力(Pa),V一气体的比容(m’/kg),T--气体的温度(K) (单位符号带脚标0的是标准状态参量,带l的是实际状态参量) 因为加压前后空气质量是不变的。利用状态方程可以计算出加压后空气的体积: 1—7什么是压缩空气?有哪些特点? 答:空气具有可压缩性,经空气压缩机做机械功使本身体积缩小,压力提高后的空气叫压缩空气。压缩空气是一种重要的动力源。与其它能源比,它具有下列明显的特点:清晰透明,输送方便,没有特殊的有害性能.没有起火危险,不怕超负荷,能在许多不利环境下工作,空气在地面上到处都有,取之

压缩空气系统风险评估

洁净压缩空气系统 风险评估报告 1. 概述 本风险评估的洁净压缩空气系统主要为车间工艺用气设备与设备仪表用气提供气源,以满足车间生产用气需求。该制备系统利用螺杆空压机进行空气压缩,通过预过滤器、吸附干燥机、精密过滤器、高效精密过滤器、活性炭过滤器等设备进行除油、除水、除悬浮粒子剂微生物,保证无油压缩空气的悬浮粒子、残余油量、微生物、水蒸汽含量符合工艺及使用的要求。 2. 目的 压缩空气系统制备、储存、分配、清洁消毒等过程均有可能影响洁净压缩空气质量,进而影响生产的正常进行或产品质量。为保证洁净压缩空气系统的正常运行,提高压缩空气质量,预防和控制由压缩空气质量而引发的质量事故,故此对洁净压缩空气系统进行风险分析,依据评估的结果对洁净压缩空气系统存在的风险制订纠正和预防措施。从而降低洁净压缩空气系统的风险顺序数。将洁净压缩空气系统风险水平降低至可接受水平。 3. 风险评估方法: 根据鱼骨图和失效模式与影响分析(FMEA)进行风险评估和评分。 4. 风险评估标准 4.1. 本文应用鱼骨图和失败模式效果分析,识别潜在的失败模式,根据经验和历史生产数据对风险的严重度、发生概率和可检测性评分。 严重程度S(severity)评定标准

说明:上述“描述”中的内容为并列关系,只要符合其中一条即可判断对应分值。 发生概率P(probability)评定标准

说明:上述“描述”中的内容为并列关系,只要符合其中一条即可判断对应分值,发生的概率是相对的,可根据实际情况确定。 可检测性D(detection)评定标准

说明:上述“可检测性描述”中的内容为并列关系,只要符合其中一条即可判断对应分值。 4.2. RPN(风险顺序数)计算: 将各不同因素相乘;严重程度、可能性及可检测性,可获得风险指数。 ( RPN = S×P×D )

压缩空气基本理论知识

压缩空气基本理论知识 压缩和压缩比 1、压缩 绝热压缩是一种在压缩过程中气体热量不产生明显传入或传出的压缩过程。在一个完全隔热的气缸上述过程可成为现实。等温压缩是一种在压缩过程中气体保持温度不变的压缩过程。 2、压缩比:(R ) 压缩比是指压缩机排气和进气的绝对压力之比。例:在海平面时进气绝对压力为0.1 MPa ,排气压力为绝对压力0. 8MPa 。则压缩比: R=81 .08.012==P P 多级压缩的优点: (1)、节省压缩功; (2)、降低排气温度; (3)、提高容积系数; (4)、对活塞压缩机来说,降低气体对活塞的推力。 压缩介质 为什么要用空气来作压缩介质? 因为空气是可压缩、清晰透明的,并且输送方便(不凝结)、无害性、安全、取之不尽。 惰性气体是一种对环境不起化学作用的气体,标准压缩机能一样压缩惰性气体。干氮和二氧化碳均为惰性气体。 空气的性质: 干空气成分:氮气(N2) 氧气(O2) 二氧化碳(CO2) 78.03% 20.93% 0.03% 分子量:28.96 比重:在0℃、760mmHg 柱时,r0=1.2931kg/m3 比热:在25℃、1个大气压时,Cp=0.241大卡/kg -℃ 在t℃、压力为H (mmhg )时,空气的比重: rt=1.2931× t +273273× 760 H kg/m 3 湿空气的比重,还应考虑饱和水蒸气分压力(0.378ψ,Pb )。 压力 1、压力 这只是某一单位面积的力,如平方米上受1牛顿力度压力单位为1帕斯卡:

即:1Pa = 1N/m 2 1Kpa = 1,000 Pa = 0.01 kg/cm 2 1Mpa = 106Pa = 10 kg/ cm 2 2、绝对压力 绝对压力是考虑到与完全真空或绝对零值相比,我们所居住的环境大气具有0.1Mpa 的绝对压力。在海平面上,仪表压力加上0.1MPa 的大气压力可得出绝对压力。高度越高大气压力就越低。 3、大气压力 气压表是用于衡量大气的压力。当加上仪表压力上就可得出绝对压力。 绝对压力=压力计压力+大气压力 大气压力通常是以水银MM 为单位,但是任何一个压力单位都能作出同样很好的解释: 1个物理大气压力 = 760毫米汞柱 = 10.33米水柱 =1.033kgf/cm2≌0.1MPa. 大气压同海拔高度的关系: P=P 0 ×(1- 44300 H )5.256 mmHg H ——海拔高度, P 0=大气压(0℃,760mmHg ) 4、压力单位换算: 单位: MPa ,Psi(bf/in 2) 1Psi=0.006895MPa, 1bar=0.1MPa, 1kgf/cm2=98.066KPa=0.098066MPa ≌0.1Mpa 温度 1、温度 温度是指衡量某一物质在某一时间能量水平的方法。(或更简单的说,某一事物有多少热或多少冷)。 温度围是根据水的冰点和沸点。在摄氏温度计上,水的冰点为零度,沸点为100度。在华氏温度计上,水的冰点为32度,沸点为212度。 从华氏转换成摄氏:华氏=1.8摄氏+32, 摄氏=5/9(华氏-32) 2、绝对温度 这是用绝对零度作为基点来解释的温度。 基点零度为华氏零下459.67度或摄氏零下273.15度 绝对零度是指从物质上除去所有的热量时所存在的温度或从理论上某一容积的气体缩到零时所存在的温度。 3、冷却温度差 冷却温度差是确定冷却器的效率的术语。因为冷却器不可能达到100%的效率,我们只能用冷却温差衡量冷却器的效率。 冷却温度差是进入冷却器的冷水或冷空气温度和压缩空气冷却后的温度之差。 4、中间冷却器 中间冷却器是用于冷却多级压缩机中的级与级之间的压缩空气或气体使温度降低的器件。中间冷却器通过降低进入下一级压缩空气温度达到降低压缩功率以有助于增加效率。

压缩空气管道的施工工艺

压缩空气管道安装施工工艺标准 1.范围 1.2本章适用于工业管道工程中压缩空气管道安装工程的施工。 2. 施工准备 2.1 材料准备 2.1.1 材料、设备确认合格,准备齐全,送到现场。 2.1.2所有材料进场时应对品种规格外观等进行验收。包装应完好,材料表面无划痕及外力冲击破损。不合格的材料不得入库,入库的合格材料保管应分类挂牌堆放。 2.1.3管道组成件及管道支撑件的材质、规格、型号、质量应符合设计文件的规定,并应按国家现行标准进行外观检验,不合格者不得使用。 2.1.4 主要器具和设备必须有完整的安装使用说明书。在运输、保管和施工过程中,应采取有效措施防止损坏或腐蚀。 2.1.5管道组成件及管道支撑件在施工过程中应妥善保管,不得混淆或损坏,其色标或标记应明显清晰。材质为不锈钢、有色金属的管道组成件及管道支撑件,在储存期间不得与碳素钢接触。暂时不能安装的管子,应封闭管口。 2.1.6阀门应从每批中抽查10%,且不少于1个,进行壳体压力试验和密封试验。当不合格时,应加倍检查,仍不合格时,该批阀门不得使用。 2.1.7 阀门的壳体试验压力不得小于公称压力的1.5倍,试验时间不得少于5min,以壳体填料无渗漏为合格。密封试验以公称压力进行,以阀瓣密封面不漏为合格。 2.1.8试验合格的阀门,应及时排尽内部的积水,并吹干。密封面上涂防锈油,关闭阀门,封闭出入口,做出明显的标记,填写“阀门试验记录”。 2.2 主要机具 2.2.1机械:套螺纹机、台钻、电焊机、切割机、煨弯机、坡口机、滚槽机、试压泵等。 2.2.2工具:工作台、管子压力钳、钢锯弓、割管器、电钻、电锤、热熔连接工具、管子钳、手锤、活动扳手、套筒扳手、梅花扳手、链钳、弯管弹簧、管剪、扩圆器、捻凿、焊钳、氧气乙炔瓶、减压表、皮管、割炬、链条葫芦、钢丝绳、滑轮、梯子等。 2.2.3量具:水准仪、水平尺、钢卷尺、钢板尺、角尺、焊接检验尺、线坠、压力表等。 2.3 作业条件 2.3.1 设计图纸及其他技术文件齐全,确认具备施工条件。 2.3.2组织设计或施工方案经过批准,经过必要的技术培训,技术交底、安全交底已进行完毕。 2.3.3根据施工方案安排好现场的工作场地,加工车间库房。 2.3.4与管道安装有关的土建工作已经检验合格,满足安装要求,并已办理交接手续。 2.3.5材料、设备确认合格,准备齐全,送到现场。 2.3.6与管道连接的设备已经找平、找正合格,就位固定完毕。 2.3.7 必须在管道安装前完成的工序,如清洗、脱脂、内部防腐与衬里已进行完毕,并验收合格。2.3.8管子、管件、仪表及阀门等已经校验合格,并具备有关的技术文件,且确认符合设计要求。 2.3.9管子、管件、阀门等,内部已清理干净,无杂物。对管内有特殊要求的管道,其质量已符合设计文件的规定。 2.3.10与管道安装的有关施工机械已经安排落实,且能满足施工的技术及进度要求。 3.操作工艺 3.1工艺流程 支架安装→管道预制→管道焊接→管道安装→管道试压→管道吹扫→防腐、刷油→管道验收 3.2支架安装 3.2.1管道支架应安装牢固,位置正确,无歪斜活动现象。立管垂直度:长度在4m以上时允许偏差12mm,

压缩空气系统IQOQ方案样本

浙江康乐药业股份有限公司 验证文献 题目:原料药一车间压缩空气系统IQ、OQ方案 文献编号:06-QP-002 文献保管部门:工程部 部门:原料药一车间

签名记录 验证方案审批表 原料药一车间压缩空气系统IQ、OQ方案 您签名表白您已经审视/批准了这份文献,这份文献符合验证总筹划、公司原则、SOP或制度,部门规定和现行GMP原则。表中所有人员签字确认后方可实行本方案。

验证小构成员培训及会审会签表 原料药一车间压缩空气系统IQ、OQ方案 您签名表白您已经审视了这份文献,并明白您在本验证中所承担职责和工作。

原料药一车间压缩空气系统IQ、OQ方案 1.目 依照药物生产质量管理规范(GMP)规定,对原料药一车间压缩空气系统进行确认。本确认是为了以文献形式证明原料药一车间压缩空气系统安装和运营符合设计文献规定。 2.范畴 确认原料药一车间压缩空气系统,涉及空气压缩机、冷干机、过滤器、空气储罐、空压管道、阀门等。 3.概述· 3.1.原料药一车间压缩空气系统共有16个使用点,其中1个使用点为制氮机用气, 其她15个使用点均为仪表控制用,与生产物料无接触。 3.2.构造特性: 由1台空压机作为气源,经空气储罐,再依次经一级过滤器、冷冻式压缩空气干燥器、二级过滤器、三级过滤器,送至各压缩空气使用点。 空压系统各部件信息: 空气压缩机铭牌信息:

4.职责 4.1.计量主管 4.1.1.起草压缩空气系统确认方案。 4.1.2.负责与设施、设备供应商在确认过程中沟通工作。 4.2.工程部经理:负责人组织、协调确认工作。 4.3.QA主任:审核设施、设备确认方案。 4.4.质量部经理:负责批精确认方案。 5.安装确认 5.1.目:确认设备安装条件、使用条件、电源条件与否符合设备技术规定,满足设备正常运 转规定。 5.2.环节: 5.2.1.外观确认:检查系统各组件外观,与否有碰、磕、激烈振动等引起变形、划伤。将成 果记入表1“系统外观检查确认”。 5.2.2.材质确认:核对空气储罐、管道、阀门、密封垫等部件材质报告,确认其与否符合设 计规定。确认成果记入表2“材质确认”。 5.2.3.文献确认:确认随机文献,涉及:合格证、使用阐明书、附件清单、材质报告及有关 图纸等,并作好记录,确认成果记入表3“文献确认”。 5.2.4.仪器仪表校验确认:确认系统所包括及本次确认活动中使用仪器仪表已通过校验,并 在校验合格有效期之内。确认成果记入表4“仪器仪表校验确认”。 5.2.5.公共设施安装确认:确认现场提供公共设施涉及配电系统与否与本设备匹配,完全满 足本设备技术规定。确认成果记入表5“公共设施安装确认”。 5.2. 6.将确认过程中所发生偏差,记录于偏差记录。

压缩空气储能电站的市场前景概要

压缩空气储能电站的市场前景 更新:2011-01-23 15:12:29 作者:escn来源:中国储能网点击:442次 压缩空气蓄能电站是一种新的解决方案 世界电力供应系统正趋向跨地区或全国联网,甚至跨国联网,实行全天候供电。然而供电与用电总是不匹配,尤其在深夜,过剩电力“大放空”几乎无法避免。为改变这个局面,人们殚思竭虑地寻找蓄能“蓄电”方法。比如蓄电池组、机械飞轮、超级电容器堆、超导磁储电,等等。终因效率不高,寿命短,存取不便,蓄能容量偏小,投资成本大等,难以运作。 目前已经广泛采用的是抽水蓄能电站和压缩空气蓄能电站。我国已建成投产的有:浙江安吉天荒坪电站、广州(从化)抽水蓄能电站。天荒坪电站,2000年建,至今已成功运行6年,装机容量为180万KW,年发电量31.60亿KW·h,总投资63亿人民币,在调荷和回收电能方面发挥了重要功能。 压缩空气蓄能电站是一种新型蓄能蓄电技术。早在1978年,德国建成世界第一座示范性压缩空气蓄能电站获得成功,紧跟其后的是美国、日本和以色列,都已建成使用,我国有识之士早已呼吁多年,但尚未引起决策者响应。而国外的实践告诉我们,这确实是一个新的解决方案。压缩空气蓄能发电技术具有显著的比较优势和市场前景,请看压缩空气蓄能电站与抽水蓄能电站对比分析: 1.建电站地理条件要求

抽水电站:建站地理条件要求苛刻,上水库建在面积较大的山顶上,高度、面积、地质结构要求严格。下水库占地面积也大。并且水源、道路交通都有特定要求。 压气电站:无特定地理要求,山洞、山脚、荒滩、废矿井,甚至海滩、海底都可以,储气库深埋地下,几乎不占用土地。 抽水电站:装机容量180万KW,投资额65~90亿元,建设周期6~8年。3611-5000元/kw 压气电站:装机容量180万KW,投资额55~60亿元,建设周期3~5年。3056-3333元/kw 3.建站占地面积与工程量 抽水电站:建站占地4000~5000亩,工程量包括上下两个水库、引水管、导流管、盘山公路、引水渠等等。 压气电站:占地少,厂房及设施只需占地10亩。储气库深埋地下,地面可以种农作物。 4.运行效率与成本 抽水电站:能量转换效率70~73%,水资源成本需支付费用,并需连续补充失耗的水量。 压气电站:能量转换效率达到77~90%,空气不要付费,使用中没有“相变”能量损失。 5.安全性 抽水电站:地震、滑坡、暴风雨、泥石流、岩石风化、坝体开裂、热胀冷缩破裂等等都存在风险。

压缩空气系统知识

压缩空气系统━耗电大户 根据美国能源部的统计, 在美国,空压机是工业中耗电最多的设备之一。尽管美国能源部一度认为电动机是耗电最多的设备, 改进压缩空气系统设计和运行所得到的节能大大超过电动机效率提高所产生的节能。 通过改进压缩空气系统的设计和运行可节能20-50%。许多企业将压缩空气视为等同于煤, 电, 水的实用品。它与其它实用品不同, 很少有人知道每立方米/分压缩空气的成本。 每立方米/分压缩空气的成本 通过下列计算可得到, ·假定: 电机服务系数 = 110% 功率因子 = 0.9 ·一台典型的空压机每1 HP可产生4CFM ·1 HP = 110%x0.746kW/0.9 = 0.912kW ·所以产生1CFM压缩空气需0.228kW ·如果每度电费为0.65元: 1CFM = 0.1482元/小时 ·1立方米/分= 35.315CFM ·所以 1立方米/分 = 5.23元/小时 ·所以一台10立方米/分的空压机运行8,000小时将耗电: 10 x 8,000 x 5.23 = 418,694元 何处可节约你的电费? 在一个典型的工厂, 压缩空气泄漏占总需求量的20%. 假定一个工厂的压缩空气系统 ·每年运行8,000小时 ·每度电费 0.65元 ·管路压力 = 7.0 kgf/cm2 ·工厂用气: 10立方米/分 ·管路泄漏: 20% : 2立方米/分 ·总需气量: 12立方米/分 压缩空气的电费 10 x 8,000 小时 x 5.23 元 = 418,694 元 2 x 8,000 小时 x 5.2 3 元 = 83,738 元 合计 502,433 元 泄漏也产生足够的附加载荷迫使2台空压机同时运行. ·没有备机 ·不能对任何一台进行维护保养

压缩空气管道安装标准

压缩空气管道安装标准 The manuscript was revised on the evening of 2021

压缩空气管道安装标准 压缩空气管道安装标准和气动设备工程安装验收标准参照GB5038-2006一般规定管子与管子,管子与设备连接不得进行强力对口。压缩空气碳素钢管道涂漆前应清除其表面的铁锈、焊渣、毛刺、油和水等污物,试压前焊缝不得涂漆管道焊接压缩空气碳素钢管对接焊缝应采用氩弧焊接或氩弧焊打底,电弧填充。压缩空气碳素钢管道对接焊缝外观质量不允许有裂纹、气孔、夹渣、溶合性飞溅和未焊透:咬边深度小于,且焊缝两侧的总长度小于焊缝全长的10%,焊缝与高小于或等于1+(b为焊缝宽度),且不大于3mm。管道制作管子切断、管子坡口应采用机械加工方法。切口端面应平整,端面应与管子轴线垂直,允许偏差为管子直径的1%且不应大于。管子焊接坡口形式、尺寸应符合焊接作业指导书的规定,坡口加工完应将铁屑、毛刺等清除干净。管子制弯应符合下列规定:1、弯管宜采用冷弯,弯管的最小弯曲半径不应小于 管子外径的3倍;采用冲压弯头时,弯曲半径不就小于管子外径的1倍。2、管子弯制后的最大外径与最小外径之差不应超过管径的8%。3、管子弯曲部位不宜有皱纹、起皮等缺陷。4、管道螺纹加工应符合设计技术文件的规定。螺纹加工完成后,表面应无裂纹、凹陷、毛刺等缺陷。有轻微机械损伤或断面不完整的螺纹,全长累计不应大于1/3圈,螺纹牙高减少不应大于其高度的1/5。管道安装压缩空气碳素钢管道的敷设应符合下列规定:1、管道走向应符合设计技术文件要求,水平管道平直度允许偏差为2/1000,且不大于30mm;立管垂直度允许偏差为3/1000,且不大于20mm;按设计技术文件规定的坐标位置和标高尺寸安装管道,坐标位置允许偏差为15mm,标高允许偏差为±15mm。2、管子

相关文档
最新文档