DS1232外部看门狗模块原理图

DS1232外部看门狗模块原理图

STC89C52单片机开发板设计

STC89C52单片机开发板 一、方案设计 1.1 方案论证 在科技广泛发展的今天,计算机的发展已经越来越快,他的应用已经越来越广泛。二单片机的发展和应用是其中的重要一方面。单片机在工业生产(机电、化工、轻纺、自控等)和民用家电方面有广泛的应用。其中,单片机在工业生产中的应用尤其广泛。 单片机具有集成度高,处理能力强,可靠性高,系统结构简单,价格低廉的优点,因此被广泛应用。目前,单片机在工业控制系统诸多领域得到了极为广泛的应用。特别是C51系列的单片机稳定性好,运算精度高,推动了工业生产,影响着人们的工作和学习。而本次设计就是要通过对C52系列单片机最小系统进行开发板的设计。有助于当代大学生及涉及单片机领域的工作者们更深入的了解和学习单片机的开发机应用。 1.2 设计思路 (1)本设计采用STC89C52单片机为主控制核心。 (2)选择PCF8951实现A/D、D/A转换装置,与单片机接口为P2.1口和P2.0口。 (3)此外,还选择了NRF905无线通信模块及4*4矩阵键盘等模块进行开发与学习设计。 二、硬件设计 本设计由8部分组成:STC89C52单片机最小系统、PCF8951A/D转换电路、报警器模块、NRF905无线模块、矩阵键盘模块、温度传感器电路、红外接收模块、LED流水灯模块。电路原理图见附录。 2.1 STC89C52单片机最小系统模块 STC89C52是一种低功耗、高性能CMOS8位微控制器,具有8K 在系统可编程Flash 存储器。在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash,使得STC89C52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。具有以下标准功能:8k字节Flash,512字节RAM,32 位I/O 口线,看门狗定时器,内置4KB EEPROM,MAX810复位电路,三个16 位定时器/计数器,一个6向量2级中断结构,全双工串行口。另外STC89X52 可降至0Hz 静态逻辑操作,支持2种软件可选择节电模式。空闲模式下,CPU 停止工作,允许RAM、定时器/计数器、串口、中断继续工作。掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。最高运作频率35Mhz,6T/12T可选。

看门狗定时器参考资料

看门狗定时器参考资料: S3C2410A 的看门狗定时器有两个功能:作为常规时钟,并且可以产生中断; 作为看门狗定时器使用,当时钟计数减为0(超时)时,它将产生一个128 个时钟周期(PCLK)的复位信号. 主要特性如下: 通用的中断方式的16bit 定时器. 当计数器减到0(发生溢出) ,产生128 个PCLK 周期的复位信号. 下图为看门狗的电路示意图,看门狗时钟使用PCLK 作为他的时钟源,PCLK 通过预分频产生适合的看门狗时钟. 看门狗模块包括一个预比例因子放大器,一个是四分频器,一个16bit 计数器.看门狗的时钟源来自PCLK,为了得到较宽范围的看门狗信号,PCLK 先被预分频,之后再经过分频器分频.预分频比例因子的分频值,都可以由看门狗控制器(WTCON)决定,预分频值的有效范围从0 到256-1.分频因子可以选择16,32,64 或者128. 看门狗定时器记数值的计算公式如下: t_watchdog=1/ [PCLK/( prescaler value +1)/ Division_factor ] 看门狗的定时周期为T=WTCH×t_watchdog 一旦看门狗定时器被允许,看门狗定时器数据寄存器(WTDAT)的值不能被自动的装载到看门狗计数器(WTCNT)中.因此,看门狗启动前要将一个初始值写入看门狗计数器(WTCNT)中. 调试环境下的看门狗当S3C2410A 用嵌入式ICE 调试的时候,看门狗定时器的复位功能不能启动,看门狗定时器能从CPU 内核信号判断出当前CPU 是否处于调试状态, 如果看门狗定时器确定当前模式是调试模式,尽管看门狗能产生溢出信号,但是仍然不会产生复位信号. 5,S3C2410A 相关寄存器 WTCON――看门狗定时器控制寄存器看门狗控制寄存器能够禁止或者允许看门狗时钟,从四个不同的时钟源中挑选时钟信号,允许或禁止中断,并且能允许或禁止看门狗时钟输出.如果用户想要使用看门狗作为普通时钟,应该中断使能,禁止看门狗定时器复位. WTDAT――看门狗定时器数据寄存器WTDAT 用于设置看门狗定时器的超时时间值,在初始化看门狗过程中,WTDAT 的值不会自动加载到定时计数器中,首次使用定时器超时值为其初始值即0x8000,以后该寄存器的值会被自动加载到WTCNT 寄存器中. WTCNT――看门狗定时器计数寄存器WTCNT 为看门狗定时器工作的时间计数器的当前计数值,注意在初始化看门狗操作后,看门狗数据寄存器(WTDAT)的值不能自动装载到看门狗计数寄存器(WTCNT)中, 所以看门狗被允许之前应高初始化看门狗计数寄存器的值. 6,实验程序 由于看门狗是对系统的复位或者中断的操作,所以不需要外围的硬件电路.要实现看门狗的功能,只需要对看门狗的寄存器组进行操作.即对看门狗的控制寄存器(WTCON) , 看门狗数据寄存器(WTDAT) ,看门狗计数寄存器(WTCNT)的操作. 设计流程如下: 设置看门狗中断操作, 包括全局中断和看门狗中断的使能, 看门狗中断向量的定义. 对看门狗控制寄存器(WTCON)的设置,包括设置预分频比例因子,分频器的分 频值,中断使能和复位使能等. 对看门狗数据寄存器(WTDAT)和看门狗技术寄存器(WTCNT)的设置. 启动看门狗定时器. 6.1 主功能函数 int Main(void) { ChangeClockDivider(1,1); ChangeMPllValue(0xa1,0x3,0x1); Port_Init(); Uart_Select(0); Uart_Init(0,115200); Uart_Printf("watchdog test is beginning\n"); watchdog_test(); while(1); }

WiFi射频电路设计

WiFi产品的电路设计 I. 前言 这是一篇针对性很强的技术文章。在这篇文章中,我只是分析研究了Wi-Fi产品的一般射频电路设计,而且主要分析的是Atheros 和Ralink的解决方案,对于其他厂 商的解决方案并没有进行研究。 这是一篇针对性很不强的技术文章。在这篇文章中,我研究,讨论了Wi-Fi产品中的射频电路设计,包括各个组成部分,如无线收发器,功率放大器,低噪声放大器,如果把这里的某一部分深入展开讨论,都可以写成一本很厚的书。 这篇文章具有一般性。虽然说这篇文章主要分析了Atheros和Ralink的方案,但是这两家厂商的解决方案很具有代表性,而且具有很高的市场占有率,因此,大部分Wi-Fi 产品也必然是具有一致或者类似的架构。经常浏览相关网站的人一定知道,在中国市场热卖的无线路由器,无线AP很多都是这两家的解决方案。 这篇文章具有一定的实用性。这篇文章的编写是基于我们公司的二十余种参考设计电路,充分吸收了参考设计的精华,并提取其一般性,同时,本文也重在分析实际的电路结构和选择器件时应该注意的问题,并没有进行深入的理论研究,所以,本 文具有一定的实用性。 这篇文章是我在自己的业余时间编写的(也可以说我用这种方式消磨时间),如果这篇文章能够为大家的工作带来一点帮助,那将是我最高兴的事。由于时间有限,编写者水平更加有限,错误之处在所难免,欢迎大家批评指正。 第1章. 射频设计框图 做技术的,讲解某个设计的原理时,都会从讲解框图开始,本人也不例外,先给大家展示一下Wi-Fi产品的一般射频设计框图。

图1-1 Wi-Fi产品的一般射频设计框图 如图1-1所示,一般Wi-Fi产品的射频部分由五大部分组成(这是我个人的见解,不同的工程师可能会有不同的想法),蓝色的虚线框内统一看成是功率放大器部分。无线收发器(Radio Transceiver)一般是一个设计的核心器件之一,除了与射频电路的关系比较密切以外,一般还会与CPU有关,在这里,我们只关注其与射频电路相关的一些内容。发送信号时,收发器本身会直接输出小功率的微弱的射频信号,送至功率放大器(Power Amplifier,PA)进行功率放大,然后通过收发切换器(Transmit/Receive Switch)经由天线(Antenna)辐射至空间。接收信号时,天线会感应到空间中的电磁信号,通过切换器之后送至低噪声放大器(Low Noise Amplifier,LNA)进行放大,这样,放大后的信号就可以直接送给收发器进行处理, 进行解调。 在后续的讲解中,我会将图1-1中的各个部分逐个展开,将每一个都暴露在大家眼前,也会详细讲解每一部分的设计,相信大家在认真仔细的阅读这篇文档之后,就可以对射频的各个组成部分有一个比较清晰的认识。 第2章. 无线收发器 我把无线收发器(在本章的以下内容中简称收发器)放在了第一个模块,主要原因就是因为,它一般会是一个设计的核心器件之一,有的时候还可能集成在CPU上,就会是一个设计中的最重要的芯片,同时,理所当然,收发器的重要性决定了它的外围电路必然很复杂,实际上也是如此。而且,如果没有参考设计,完全由我们自主设计的时候,这颗芯片也是我们应该放在第一优先的位置去考虑,这颗芯片从根本上决定着整个设计的无线性能。这样,这一部分的设计讲解起来会比较困难,可 是还是想最先讲解这里。 收发器通常会有很多的管脚,在如图2-1中,我只给出了射频电路设计时会关注的管脚,可以看到,有几个电源管脚,数字地,模拟地(PLL,VCO),射频输出,

单片机开发板的制作步骤

单片机开发板的制作步骤 单片机技术自发展以来已走过了近20年的发展路程。单片机技术的发展以微处理器(MPU)技术及超大规模集成电路技术的发展为先导,以广泛的应用领域拉动,表现出较微处理器更具个性的发展趋势。小到遥控电子玩具,大到航空航天技术等电子行业都有单片机应用的影子。针对单片机技术在电子行业自动化方面的重要应用,为满足广大学生、爱好者、产品开发者迅速学会掌握单片机这门技术,于是产生单片机实验板普遍称为单片机开发板、也有单片机学习板的称呼。比较有名的例如电子人DZR-01A单片机开发板。 单片机开发板是用于学习51、STC、AVR型号的单片机实验设备。根据单片机使用的型号又有51单片机开发板、STC单片机开发板、AVR单片机开发板。常见配套有硬件、实验程序源码、电路原理图、电路PCB图等学习资料。例如电子人单片机开发板,针对部分学者需要特别配套有VB上位机软件开发,游戏开发等教程学习资料。开发此类单片机开发板的公司一般提供完善的售后服务与技术支持。单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。相当于一个微型的计算机,和计算机相比,单片机只缺少了I/O设备。概括的讲:一块芯片就成了一台计算机。它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。同时,学习使用单片机是了解计算机原理与结构的最佳选择。单片机的使用领域已十分广泛,如智能仪表、实时工控、通讯设备、导航系统、家用电器等。各种产品一旦用上了单片机,就能起到使产品升级换代的功效,常在产品名称前冠以形容词——“智能型”,如智能型洗衣机等。 单片机(Microcontrollers)诞生于1971年,经历了SCM、MCU、SoC三大阶段,早期的SCM单片机都是8位或4位的。其中最成功的是INTEL的8051,此后在8051上发展出了MCS51系列MCU系统。基于这一系统的单片机系统直到现在还在广泛使用。随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。 而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。高端的32位Soc单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端的型号也只有10美元。当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。 常见配套资源如下:

MAX813看门狗电路

看门狗电路设计 在工业现场运行的单片机应用系统,由于坏境恶劣,常有强磁场、电源尖峰、电火花等外界干扰,这些干扰可能造成仪表中单片机的程序运行出现“跑飞”现象,引起程序混乱,输出或显示不正确,甚至“死机”。系统无法继续正常的运行,处在一种瘫痪状态,它的硬件电路并没有损坏,只是内部程序运行出现了错误,这时,即使干扰消失,系统也不会恢复正常,这就需要采取一些措施来保障系统失控后能自动恢复正常,“程序运行几天来视系统”(Watchdog看门狗)就是常用的一种抗干扰措施,用以保证系统因干扰失控后能自动复位。为了提高仪表可靠性及抗干扰能力,通常在智能仪表中采用“看门狗”技术。 看门狗电路它实质上是一个可由CPU复位的定时器,它的定时时间是固定不变的,一旦定时时间到,电路就产生复位信号或中断信号。当程序正常运行时,在小于定时时间隔内,单片机输出一信号刷新定时器,定时器处于不断的重新定时过程,因此看门狗电路就不会产生复位信号或中断信号,反之,当程序因出现干扰而“跑飞”时,单片机不能刷新定时器,产生复位信号或产生中断信号使单片机复位或中断,在中断程序中使其返回到起始程序,恢复正常。 它的工作原理如同图3-4所示的两个计时周期不同的定时器T1和T2是两个时钟源相同的定时器,设T1=1.0s,T2=1.1s,而用T1定时器的溢出脉冲P1同时对T1和T2定时器清零,只要T1定时器工作正常,则定时器T2永远不可能计时溢出。当T1定时器不在计时,定时器T2则会计时溢出,并产生溢出脉冲P2。一旦产生溢出脉冲P2,则表明T1出了故障。这里的T2即是看门狗。利用溢出脉冲P2并进行巧妙的程序设计,可以检测系统的出错,而后使“飞掉”的程序重新恢复运行。 图3-4 看门狗工作原理示意图 看门狗电路的应用,使单片机可以在无人关态下实现连续工作。看门狗芯片和单片机的一个I/O引脚相连,该I/O引脚通过程序控制它定时地往看门狗的这

MSP430教程10:MSP430单片机WDT看门狗定时器解析

看门狗定时器用来防止程序因供电电源、空间电磁干扰或其它原因引起的强烈干扰噪声而跑飞的事故。程序中设置看门狗清零指令 WDTCTL=WDTPW+WDTCNTCL,当程序跑飞不能及时清零看门狗,导致看门狗溢出复位,这样程序可以恢复正常运行状态。 一、WDT寄存器包括WDTCNT和WDTCTL,两个寄存器在上电和系统复位内容全部清零 1.记数单元WDTCNT:WDTCNT是16位增记数器,由MSP430选定的时钟电路产生的固定周期脉冲信号对记数器进行加法记数。WDTCNT不能直接软件存取,必须通过看门狗定时器的控制寄存器WDTCTL来控制。 2.控制寄存器WDTCTL:WDTCTL由两部分组成,高8位用作口令,即5AH(头文件中定义为WDTPW),低8位是对WDT操作的控制命令。写入WDT控制命令时先写入口令WD TPW,口令写错将导致系统复位。读WDTCTL时不需口令,低字节WDTCTL的值,高字节读出始终为69H。 bit 15-8 7 6 5 4 3 2 1 0 口令HOLD NMIES NMI TMSE L CNTCL SSEL IS1 IS0 IS1 SI0 选择看门狗定时器的定时输出,T为WDTCNT的输入时钟源周期。 TMSEL W DT工作模式选择 0 0 T*2的15次 方 0 看门狗模式 0 1 T*2的13次

方 1 定时器模式 1 0 T*2的9次 方 NMI 选择RST/NMI 引脚功能 1 1 T*2的6次 方 RST/NMI为复位端 SSEL 选择WDTCNT的时钟 源 1 RST/NMI为非屏蔽中断输入 0 SMCL K 1 ACLK NMIES 选择NMI中断的边沿触发方 式 HOLD 停止看门狗定时器工作 0 上升沿触发NMI中 断 0 看门狗功能激活 1 下降沿触发NMI中 断 1 时钟禁止输入,记数停止

C51单片机看门狗电路及程序设计方案

C51单片机看门狗电路及 程序设计案 院系:信息工程学院 年级:2010级 电子一班禹豪 电子一班训虎 电子二班邓启新 一、引言 在由单片机构成的微型计算机系统中,程序的正常运行常常会因为来自外界的电磁场干扰等原因而被打断,从而造成程序的跑飞,而陷入死循环。由此导致单片机控制的系统无法继续工作,造成整个系统的陷入停滞状态,发生不可预料的后果,所以出于对单片机运行状态进行实时监测的考虑,便产生了一种专门用于监测单片机程序运行状态的芯片或程序,俗称"看门狗"(watchdog) (1)看门狗电路基本原理 看门狗电路的应用,使单片机可以在无人状态下实现连续工作,其工作原理是:看门狗芯片和单片机的一个I/O引脚相连**,该I/O引脚通过程序控制它定时地往看门狗的这个引脚上送入高电平(或低电平),这一程序语句是分散地放在单片机其他控制语句中间的,一旦单片机由于干扰造成程序跑飞后而陷入某一程序段进入死循环状态时,写看门狗引脚的程序便不能被执行,这个时候,看门狗电路就会由于得不到单片机送来的信号,便在它和单片机复位引脚相连的引脚上送出一个复位信号,使单片机发生复位,即程序从程序存储器的起始位置开始执行,这样便实现了单片机的自动复位。 *此处设计原理实际上为下文中硬件看门狗设计思路。

(2)看门狗电路一般设计式 “看门狗”电路一般分为硬件看门狗与软件看门狗两种设计式。 硬件看门狗是利用了一个定时器,来监控主程序的运行,也就是说在主程序的运行过程中,我们要在定时时间到之前对定时器进行复位。如果出现死循环,或者说PC指针不能回来,那么定时时间到后就会使单片机复位。常用的WDT芯片如MAX813,5045,IMP 813等,价格4~10元不等. 软件看门狗技术的原理和硬件看门狗类似,只不过是用软件的法实现(即利用单片机部定时器资源,通过编程模拟硬件看门狗工作式),以51系列为例:因在51单片机中有两个定时器,在利用部定时器资源来对主程序的运行进行监控时。可以对T1(或T0)设定一定的定时时间(设定的定时值要小于主程序的运行时间),当产生定时中断的时候对一个变量进行赋值(此变量在主程序运行的开始已有一个初值)。当主程序运行至最后时对此变量的值进行判断,如果值发生了预期的变化,就说明T0中断正常,如果没有发生变化则使程序复位。 考虑到设计要求,本设计采用软件看门狗设计思路。 二、看门狗电路整体设计思路 根据设计要求,本设计利用C51单片机部自带的定时器1进行编程,并配合少量电路实现“看门狗“电路功能。整个设计分为软件部分与硬件部分,如下: (1)软件部分设计原理: 软件设计分为三部分:“看门狗“定时器设置程序、溢出中断服务程序和喂狗代码。 1.1设计思路: 1)在主程序开头,“看门狗“定时器设置程序设置定时器1计时50ms。 2)当定时达50ms时,定时器1产生溢出中断,溢出中断服务程序开始工作,将看门狗标志num加1。当num的值等于100时,说明看门狗定时器已经计时5s,此时,单片机I/O端口P1.0输出高电平,对程序进行复位。 3)在此过程中,喂狗代码将被穿插于程序中循环体末尾。当循环体结束时,喂狗代码执行,关闭定时器1、清空num并重新初始化定时器设置。若循环体进入死循环,喂狗代码无法执行,num将一直累加至100,此时程序复位。 注:喂狗代码放置位置可根据num预计数值进行调整:当num门限值较小,即看门狗计数时间较短时,喂狗代码可放于程序中各循环体之后或均匀分布于整个主程序中。当num门限值较大,即看门狗计数时间较长时,喂狗代码可放于程序主循环体末尾。但是需注意看门狗计数时间必须长于正常工作时间,以免非正常复位。 1.2软件设计流程图:

RF射频电路设计

RF电路的PCB设计技巧 如今PCB的技术主要按电子产品的特性及要求而改变,在近年来电子产品日趋多功能、精巧并符合环保条例。故此,PCB的精密度日高,其软硬板结合应用也将增加。 PCB是信息产业的基础,从计算机、便携式电子设备等,几乎所有的电子电器产品中都有电路板的存在。随着通信技术的发展,手持无线射频电路技术运用越来越广,这些设备(如手机、无线PDA等)的一个最大特点是:第一、几乎囊括了便携式的所有子系统;第二、小型化,而小型化意味着元器件的密度很大,这使得元器件(包括SMD、SMC、裸片等)的相互干扰十分突出。因此,要设计一个完美的射频电路与音频电路的PCB,以防止并抑制电磁干扰从而提高电磁兼容性就成为一个非常重要的课题。 因为同一电路,不同的PCB设计结构,其性能指标会相差很大。尤其是当今手持式产品的音频功能在持续增加,必须给予音频电路PCB布局更加关注.据此本文对手持式产品RF电路与音频电路的PCB的巧妙设计(即包括元件布局、元件布置、布线与接地等技巧)作分析说明。 1、元件布局 先述布局总原则:元器件应尽可能同一方向排列,通过选择PCB进入熔锡系统的方向来减少甚至避免焊接不良的现象;由实践所知,元器件间最少要有 0.5mm的间距才能满足元器件的熔锡要求,若PCB板的空间允许,元器件的间距应尽可能宽。对于双面板一般应设计一面为SMD及SMC元件,另一面则为分立元件。 1.1 把PCB划分成数字区和模拟区 任何PCB设计的第一步当然是选择每个元件的PCB摆放位。我们把这一步称为“布板考虑“。仔细的元件布局可以减少信号互连、地线分割、噪音耦合以及占用电路板的面积。 电磁兼容性要求每个电路模块PCB设计时尽量不产生电磁辐射,并且具有一定的抗电磁干扰能力,因此,元器件的布局还直接影响到电路本身的干扰及抗干扰能力,这也直接关系到所设计电路的性能。

看门狗电路及原理

看门狗电路。在单片机中,为了能使得程序能够正常的运行。设定的及时根据程序所返回的值检测程序运行情况的定时电路。 在主程序中设定一定的值,把这个值在看门狗定时电路数值益处之前定时赋给看门狗赋给定时电路,让看门狗定时器复位。主程序的赋值周期要小于看门狗定时电路的运行周期。 看门狗 百科名片 单片机"看门狗" 在由单片机构成的微型计算机系统中,由于单片机的工作常常会受到来自外界电磁场的干扰,造成程序的跑飞,而陷入死循环,程序的正常运行被打断,由单片机控制的系统无法继续工作,会造成整个系统的陷入停滞状态,发生不可预料的后果,所以出于对单片机运行状态进行实时监测的考虑,便产生了一种专门用于监测单片机程序运行状态的芯片,俗称"看门狗"(watchdog) 目录[隐藏] 应用 基本原理 看门狗使用注意 看门狗运用 设计思路 [编辑本段]应用 看门狗电路的应用,使单片机可以在无人状态下实现连续工作,其工作原理是:看门狗芯片和单片机的一个I/O引脚相连,该I/O引脚通过程序控制它定时地往看门狗的这个引脚上送入高电平(或低电平),这一程序语句是分散地放在单片机其他控制语句中间的,一旦单片机由于干扰造成程序跑飞后而陷入某一程序段进入死循环状态时,写看门狗引脚的程序便不能被执行,这个时候,看门狗电路就会由于得不到单片机送来的信号,便在它和单片机复位引脚相连的引脚上送出一个复位信号,使单片机发生复位,

即程序从程序存储器的起始位置开始执行,这样便实现了单片机的自动复位。 [编辑本段]基本原理 看门狗,又叫watchdog timer,是一个定时器电路, 一般有一个输入,叫喂狗(kicking the dog or service the dog),一个输出到MCU的RST端,MCU正常工作的时候,每隔一端时间输出一个信号到喂狗端,给WDT 清零,如果超过规定的时间不喂狗,(一般在程序跑飞时),WDT 定时超过,就会给出一个复位信号到MCU,使MCU复位. 防止MCU死机. 看门狗的作用就是防止程序发生死循环,或者说程序跑飞。工作原理:在系统运行以后也就启动了看门狗的计数器,看门狗就开始自动计数,如果到了一定的时间还不去清看门狗,那么看门狗计数器就会溢出从而引起看门狗中断,造成系统复位。所以在使用有看门狗的芯片时要注意清看门狗。硬件看门狗是利用了一个定时器,来监控主程序的运行,也就是说在主程序的运行过程中,我们要在定时时间到之前对定时器进行复位如果出现死循环,或者说PC指针不能回来。那么定时时间到后就会使单片机复位。常用的WDT芯片如MAX813 ,5045, IMP 813等,价格4~10元不等. 软件看门狗技术的原理和这差不多,只不过是用软件的方法实现,我们还是以51系列来讲,我们知道在51单片机中有两个定时器,我们就可以用这两个定时器来对主程序的运行进行监控。我们可以对T0设定一定的定时时间,当产生定时中断的时候对一个变量进行赋值,而这个变量在主程序运行的开始已经有了一个初值,在这里我们要设定的定时值要小于主程序的运行时间,这样在主程序的尾部对变量的值进行判断,如果值发生了预期的变化,就说明T0中断正常,如果没有发生变化则使程序复位。对于T1我们用来监控主程序的运行,我们给T1设定一定的定时时间,在主程序中对其进行复位,如果不能在一定的时间里对其进行复位,T1 的定时中断就会使单片机复位。在这里T1的定时时间要设的大于主程序的运行时间,给主程序留有一定的的裕量。而T1的中断正常与否我们再由T0定时中断子程序来监视。这样就够成了一个循环,T0监视T1,T1监视主程序,主程序又来监视T0,从而保证系统的稳定运行。51 系列有专门的看门狗定时器,对系统频率进行分频计数,定时器溢出时,将引起复位.看门狗可设定溢出率,也可单独用来作为定时器使用。凌阳61的看门狗比较单一,一个是时间单一,第二是功能在实际的使用中只需在循环当中加入清狗的指令就OK了。AVR系列中,avr-libc 提供三个API 支持对器件内部Watchdog 的操作,它们分别是:wdt_reset() // Watchdog 复位wdt_enable(timeout) // Watchdog 使能wdt_disable() // Watchdog 禁止C8051Fxxx单片机内部也有一个21位的使用系统时钟的定时器,该定时器检测对其控制寄存器的两次特定写操作的时间间隔。如果这个时间间隔超过了编程的极限值,将产生一个WDT复位。-------------------------------------------------------------------------------- [编辑本段]看门狗使用注意

结构设计规范-射频模块结构设计流程

武汉虹信通信技术有限责任公司 WRI_HX 0 修改记录 版本号 C/0 武汉虹信通信技术有限责任公司 管理文件 文件编号 HX/QI/0363 实施日期 2009.05.04 结构设计规范—射频模块结构设计流程 页次: 1/11 目 录 0、修改记录 1、 模块总体设计原则 2、 模块机电交互设计原则 3、模块结构设计原则之零件建模 4、模块结构设计原则 5、模块加工、包装 编制 吴卫华 审核 甘洪文 批准 余勋林

1 模块总体设计原则 1.1模块总体设计原则之TOP-DOWN设计 ?总纲领:自顶向下的设计原则,是整机布局设计的后续任务; ?现在做了哪些:列出设计原则,设计要点; ?哪些还不完善:范例还不完善,技术还在发展; ?后期怎么去做:完善范例,追踪技术发展方向。 1.1.1 在整机设计中考虑模块体量 ?长度和宽度由整机布局给出参考尺寸; ?厚度由PCB堆叠的层数确定,堆叠的PCB间如果有电源,信号或射频的硬连接, 此两PCB的板间距离由连接器的高度确定,合理选择较高器件的封装形式; ?模块长度、宽度、以及安装孔的距离尺寸取到模数尺寸,优选为0或5结尾,次选 为3和8结尾; ?模块的安装厚度(既安装孔处的厚度)按照虹信公司紧固件规范选用。 1.1.2 在整机设计中考虑接口方式 ?电源的接口方式,有直接的插座引出,有和监控合并后的多PIN座转接或盲插; ?监控的接口方式,有直接的DB9座引出,有和电源合并后的多PIN座转接或盲插;

?射频的接口方式,方向上分有垂直向上和水平方向,按与外部电缆连接分有螺口和 卡口,常用规格有SMA和SMB和N型,根据整机布局,整机的射频指标、频率 和功率等合理选取; ?其他接口方式,可以参考上述3点,合理选取。 1.1.3 在整机设计中考虑安装方式 ?模块的四个对角应有安装孔,大功率射频模块靠近放大管的部位需根据情况加一安 装孔; ?若模块安装在中蓝顶(或类似侧壁安装的情况),模块的安装孔平面不可相对模块 顶部下沉; ?规定M3,M4用在哪些地方(根据功率大小); ?固定PCB用的M2、M2.5如何选用,材质确定(蓝白锌和不锈钢)。 1.1.4在整机设计中考虑模块的外部散热条件 ?由于整机的体积功率密度的限制,以及模块排列的日益紧凑化,应有整机散热方案; ?射频模块由于布板和结构限制,从热源到热沉的传热通道存在哪些瓶颈; ?分配到模块的结壳热阻会影响到模块的尺寸和PCB布局方式; ?目前公司可行的方法是热测试和软件模拟,基本满足设计要求。 1.1.5 在整机设计中考虑模块运动检查 ?模块安装操作空间,插座接头操作安装空间; ?模块的外部接口需要连接其他单板和模块;有一直线方向的运动距离; ?射频电缆接头是否为直头或弯头或受指标限制必须为直头等因素决定接头的类型; ?供电和监控是带导向的盲插还是软跳线决定插头型号和方向,在《模块结构设计输 入文件表》中说明,见附件。

单片机的电路原理

单片机的电路原理 单片机技术自发展以来已走过了近20年的发展路程。单片机技术的发展以微处理器(MPU)技术及超大规模集成电路技术的发展为先导,以广泛的应用领域拉动,表现出较微处理器更具个性的发展趋势。小到遥控电子玩具,大到航空航天技术等电子行业都有单片机应用的影子。针对单片机技术在电子行业自动化方面的重要应用,为满足广大学生、爱好者、产品开发者迅速学会掌握单片机这门技术,于是产生单片机实验板普遍称为单片机开发板、也有单片机学习板的称呼。比较有名的例如电子人DZR-01A单片机开发板。 单片机开发板是用于学习51、STC、AVR型号的单片机实验设备。根据单片机使用的型号又有51单片机开发板、STC单片机开发板、AVR单片机开发板。常见配套有硬件、实验程序源码、电路原理图、电路PCB图等学习资料。例如电子人单片机开发板,针对部分学者需要特别配套有VB上位机软件开发,游戏开发等教程学习资料。开发此类单片机开发板的公司一般提供完善的售后服务与技术支持。单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。相当于一个微型的计算机,和计算机相比,单片机只缺少了I/O设备。概括的讲:一块芯片就成了一台计算机。它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。同时,学习使用单片机是了解计算机原理与结构的最佳选择。单片机的使用领域已十分广泛,如智能仪表、实时工控、通讯设备、导航系统、家用电器等。各种产品一旦用上了单片机,就能起到使产品升级换代的功效,常在产品名称前冠以形容词——“智能型”,如智能型洗衣机等。 单片机(Microcontrollers)诞生于1971年,经历了SCM、MCU、SoC三大阶段,早期的SCM单片机都是8位或4位的。其中最成功的是INTEL的8051,此后在8051上发展出了MCS51系列MCU系统。基于这一系统的单片机系统直到现在还在广泛使用。随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。 而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。高端的32位Soc单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端的型号也只有10美元。当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。 常见配套资源如下: 1、硬件实验板及其配件如:连接线、CPU芯片、流水灯、点阵显示、ds18b20温度检测、彩色TFT液晶屏,SD卡,游戏开发(推箱子游戏)、收音机、mp3解码等。 2、实验程序源码,包含汇编源程序、C语言源程序。 3、电路原理图、PCB电路图。 4、实验手册、使用手册。 5、针对单片机开发板的详细讲解视频。 6、附加PCB设计制作、VB软件开发等计算机学习资料 1、8个LED灯,可以练习基本单片机IO操作,在其他程序中可以做指示灯使用。

看门狗控制器原理与编程笔记

S3C2410接口之看门狗控制器原理与编程 1.看门狗:是一种电路,具有监视并恢复程序正常运行的功能,从而达到增强系统的稳定性。它本质上是一种定时器电路 2.稳定性和定时器之间有什么样的关系呢? 3.看门狗增强系统稳定性的基本原理:设一系统程序完整运行一周期的时间是Tp,看狗的定时周期为Ti,要求Ti>Tp。在程序运行一周期后,修改定时器的计数值,只要程序正常运行,定时器就不会溢出。若由于干扰等原因使系统不能在Tp 时刻修改定时器的计数值,定时器将在Ti 时刻溢出,引发系统复位,使系统得以重新运行,从而起到监控作用。 s3c2410的看门狗控制器 S3C2410 的看门狗定时器有两个功能: (1)定时器功能:可以作为常规定时器使用,它是一个十六位的定时器,并且可以产生中断,中断名为INT_WDT,中断号是0x09。 (2)复位功能:作为看门狗定时器使用,当时钟计数减为0(超时)时,它将产生一个128个时钟周期的复位信号。 S3C2410 ARM9的看门狗主要由五部分构成:时钟、看门狗计时器、看门狗数据寄存器、复位信号发生器、控制逻辑等。 S3C2410 ARM9的看门狗工作原理: PCLK 经过预分频、再分频,使得到达看门狗的频率能够没有那么高,这样看门狗才处理得了。 ?S3C2410 看门狗定时时间 预分频器为8位,其值为:0---255 再分频器可选择值为:16、32、64、128 输入到计数器的时钟周期为: T_wtd=1/[PCLK/(Prescaler+1)/Division_factor] 看门狗的定时周期为: T=WTDAT(看门狗的计数器的初值)×T_wtd

射频电路设计技巧

实用资料——射频电路板设计技巧成功的RF设计必须仔细注意整个设计过程中每个步骤及每个细节,这意味着必须在设计开始阶段就要进行彻底的、仔细的规划,并对每个设计步骤的进展进行全面持续的评估。而这种细致的设计技巧正是国内大多数电子企业文化所欠缺的。 近几年来,由于蓝牙设备、无线局域网络(WLAN)设备,和移动电话的需求与成长,促使业者越来越关注RF电路设计的技巧。从过去到现在,RF电路板设计如同电磁干扰(EMI)问题一样,一直是工程师们最难掌控的部份,甚至是梦魇。若想要一次就设计成功,必须事先仔细规划和注重细节才能奏效。 射频(RF)电路板设计由于在理论上还有很多不确定性,因此常被形容为一种「黑色艺术」(black art) 。但这只是一种以偏盖全的观点,RF电路板设计还是有许多可以遵循的法则。不过,在实际设计时,真正实用的技巧是当这些法则因各种限制而无法实施时,如何对它们进行折衷处理。重要的RF设计课题包括:阻抗和阻抗匹配、绝缘层材料和层叠板、波长和谐波...等,本文将集中探讨与RF电路板分区设计有关的各种问题。 微过孔的种类 电路板上不同性质的电路必须分隔,但是又要在不产生电磁干扰的最佳情况下连接,这就需要用到微过孔(microvia)。通常微过孔直径为0.05mm至0.20mm,这些过孔一般分为三类,即盲孔(blind via)、埋孔(bury via)和通孔(through via)。盲孔位于印刷线路板的顶层和底层表面,具有一定深度,用于表层线路和下面的内层线路的连接,孔的深度通常不超过一定的比率(孔径)。埋孔是指位于印刷线路板内层的连接孔,它不会延伸到线路板的表面。上述两类孔都位于线路板的内层,层压前利用通孔成型制程完成,在过孔形成过程中可能还会重叠做好几个内层。第三种称为通孔,这种孔穿过整个线路板,可用于实现内部互连或作为组件的黏着定位孔。 采用分区技巧 在设计RF电路板时,应尽可能把高功率RF放大器(HPA)和低噪音放

“看门狗”开关原理

“看门狗”开关 一、开关介绍 户外分界断路器设备具备故障电流检测功能,保护控制功能(过流保护、速断保护、零序保护),适用于10kV 架空线路,可实现自动切除单相接地故障和自动切除相间短路故障。安装点适用于10kV 配电线路用户进户线的责任分界点处或主干线上运用短路保护等。

二、如何操作 2.1 机械操作

2.2 控制器电动操作 控制器通电延时 10 秒,自动检测开关储能信号,检测到分界断路器未储能则自动发出电动储能命令,分界断路器接收到储能命令后,自动完成电动储能。

三、基本功能与操作 1.开关本体手动分合功能 如同通用的断路器一样,分界断路器具备现场手动分合和电动分合控制功能。 2.模拟量检测功能 控制器与开关本体配合使用可检测线路的两相电流、零序电流和线路电压,上 述模拟量信号由开关本体航空插座输出,从控制器底部的CT/IO 插座通过航空插头接入控制器。通过控制器内部的信号转换和计算,可实时监测其运行值(用笔记本电脑通过控制器的维护通信口或配置通信模块后可接收及处理这些测量数值)。 3.保护控制功能 a)零序保护 通过对控制器的定值整定和对零序电流的监测,分界断路器能侦测和判定用户界内的单相接地故障,在延时达到整定值后执行分闸操作,自动切除接地故障;变电站及馈线上的其 它用户避免发生停电事故, 为了避免瞬时性故障造成开关分闸,可对分界断路器进行重合闸设置,重合闸时间可自行设定,为了避免永久性故障对线路造成严重损坏,或其它保护的时限配合问题,分界断路器做了重合闸后加速保护功能。 零序保护的控制功能适用于配电网中性点不接地系统、中性点经消弧线圈接地系统和 中性点经小电阻接地系统。 b)过流(速断)保护 通过定值整定和对相电流的监测,分界断路器能侦测和判定用户界内的相间短路故障,经延时判定后,控制器输出分闸命令使分界真空断路器自动分闸,自动切除过流故障,变电站及馈线上的其它用户避免发生停电事故, 为了避免瞬时性故障造成用户长时间停电,在控制器保护动作后,对分界断路器进行重合闸,重合闸时间可以设定,为了避免永久性故障对线路造成严重损坏,或其它保护的时限配合问题,控制器做了重合闸后加速保护功能。 4.线路失电状态下的分闸及保护告警功能 控制器在[自动]运行状态时,如用户界外发生相间短路故障后,会造成变电站出线开 关掉闸,控制器无输入电源,在整个装置失电后,控制器靠储能电容维持其正常工作,在此期间可执行分闸输出(DC 48 V)使开关可靠分闸。无论是单相接地故障还是相间短路故障致使分界断路器保护动作,控制器的ALARM告警指示灯均常亮或闪亮,提示用户界内发生了单相接地或相间短路故障。 5.自检功能 控制器在正常运行时定时自检(由程序控制自动进行),自检的对象包括定值区、输出 回路、采样通道、E2PROM等,自检异常时,点亮自检告警指示灯,并且闭锁跳合闸回路。 6.控制器的基本操作 控制器的所有操作均在其圆形罩壳的底部,COM内设TV输出回路保护熔管,当控制器内部电路发生故障时,保护开关本体内置TV不受影响。CT插座连接从开关侧引来的测量电缆,IO插座连接从开关侧引来的控制电缆。ALARM为保护动作发光二极管指示信号;定值设定窗口在设备正常运行时由一密封小盖关闭,当需要进行定值修改或检查控制作状态时则开启

单片机开发板操作手册.

单片机开发板操作手册 一、概述 1,多功能单片机开发板,板载资源非常丰富,仅是包括的功能(芯片)有:步进电机驱动芯片ULN2003、 八路并行AD转换芯片ADC0804、 八路并行DA转换芯片DAC0832、 光电耦合(转换)芯片MOC3063、 八路锁存器芯片74HC573、 实时时钟芯片DS1302及备用电池、 IIC总线芯片A T24C02、 串行下载芯片MAX232CPE, 双向可控硅BTA06-600B、 4*4矩阵键盘、 4位独立按键、 DC5V SONGLE继电器、 5V蜂鸣器、 八位八段共阴数码管 5V稳压集成块78M05 八路发光二极管显示 另还有功能接口(标准配置没有芯片但留有接口,可直接连接使用):单总线温度传感器DS18B2接口、 红外线遥控接收头SM003接口8、 蓝屏超亮字符型液晶1602接口、 蓝屏超亮点阵图形带中文字库液晶12864接口、 2(4)相五线制小功率步进电机接口、 外接交流(7V-15V)电源接口 USB直接取电接口 镀金MCU晶振座 40DIP锁紧座 外接电源和5V稳压电源的外接扩展接口及MCU所有IO口扩展2,可以完成的单片机实验: 1、LED显示实验(点亮某一个指示灯、流水灯), 2、八位八段数码管显示实验(你可以任意显示段字符和数字以及开发板所有功能芯 片的显示), 3、液晶显示(1602液晶显示、12864点阵中文图形液晶显示、可以显示出开发板所 有功能芯片的操作), 4、继电器的操作 5、蜂鸣器的操作(你可以编写程序让它发出美妙动听的歌声) 6、可控硅的操作(胆大的朋友就利用这一独有的功能吧,你见过实验室温度实验箱 没有,它的驱动就是这样的;聪明的朋友就可以自己写个程序把把加热温度温 度恒定在(X±0.5)度的范围内了 7、步进电机的操作(这个是迈向自动化控制的第一步,现在的数控机床、机器人呀

内部与外部看门狗定时器的比较

内部与外部看门狗定时器的比较 摘要:本文对内部(集成在处理器内部)看门狗定时器(WTD)与外部(基于硬件) WDT的优势和劣势进行了对比。内部看门狗便于设计,但容易失效。MAXQ2000微控制器的WDT可以作为内部看门狗的一个例子。基于硬件的看门狗定时器需要占用额外的电路板空间,但在对于可靠性要求较高的设计中确实不可或缺的。本文给出了一个对照表,总结了每种WDT方案的优缺点。 引言 看门狗定时器(WDT)在出现无效的软件运行状态时用来强行复位(硬件复位)嵌入式微处理器或微控制器,失效状态可以是简单地触发寄存器的某一位,或者是射线干扰或EMI (电磁辐射)。 本文介绍了一些针对具体应用选择最佳定时器的考虑。 WDT的典型应用 防止微处理器闭锁是WDT的一个典型应用,通常,嵌入式软件有一个“主循环”程序,用其调用子程序以实现不同的任务。每次程序循环对WDT进行一次复位,如果任何原因造成程序循环操作失败,看门狗定时器则发生超时,对器件进行复位。 具有WDT功能的系统非常适合检测误码,中断(包括存储器故障,EMI对存储器或接口放电)可能导致临时性的误码。这些误码会导致处理器输入、输出数据的极性翻转,当误码没引入到程序信息中时,微处理器将会执行错误的代码。很有可能造成处理器开始执行操作数,而非操作代码。程序开始执行这种错误代码时,将造成程序运行不正常,无法提供看门狗清零信号,从而导致处理器复位。合理的系统设计能够在复位后恢复系统的正常运行。 需要注意的是,WDT不能检测瞬态故障,按照定义,只有在WDT计数器达到预定的时间间隔时才会复位处理器。正是这一原因,需要选择一个最短超时周期,以便在系统失控之前由WDT产生复位,使系统恢复正常工作。 内部和外部WDT WDT可以内置于微处理器,例如:MAXQ2000微控制器;也可以是一个独立的IC (外部WDT),或作为支持ASIC的一部分。无论是内部WDT,还是外部WDT,各有其优缺点。内部定时器有助于节省成本,但容易受程序运行失效的影响。相对成本较高的外部WDT具有一个独立的时钟源,能够提供更高的可靠性;经过适当配置,外部WDT不会受程序失效的影响。 WDT的基本原理 WDT的核心电路是计数寄存器,时钟源连续递增计数寄存器的值,计数器发生溢出时,看门狗逻辑电路强制系统复位。为防止复位,必须周期性地将计数寄存器清零,称其为“喂

相关文档
最新文档