Romax 箱体有限元应力分析图解流程

Romax 箱体有限元应力分析图解流程
Romax 箱体有限元应力分析图解流程

Romax 箱体有限元应力分析图解流程

主要分析流程

1.读入箱体的有限元模型;

2.将有限元模型与轴承中心点进行连接;

3.执行连接后的有限元模型的缩聚;

4.读入缩聚后的刚度矩阵;

5.执行箱体的应力和变形的计算;

具体步骤:

添加齿轮箱箱体模型;

提示你是否已经有刚度矩阵?如果没有则需要新建,此处因为是新建,因此选择“否”。

会列出所有滚动轴承,需要你从中选择哪些是架设在箱体上的。

选择完点击确定之后,界面显示如下:

(该文件在培训文件中可以找到S03-2_S11-1_1 Transaxle Casing.DAT)

选择匹配的单位制

读入的箱体有限元模型,需要作平移、旋转等操作,和Romax的齿轮传动系统模型匹配。

点击主菜单Connect with nodes,将轴承中心点与箱体有限元模型连接,下图提示有六个轴承中心点没有连接。

初次打开节点连接界面;

点击Estimate all,系统将自动按照默认参数选择箱体邻近轴承外圈范围内的节点与轴承中心点连接,如鼠标所选,显示所有已经连接好的节点。仍然有三个轴承没有连接好(图中所示为stiffness node1),需要手动连接。

点击Edit Parameters,将默认的Tolerance由1e-2调整为6e-2。放大搜索范围。

连接节点提示。

节点都连接完毕,如下图所示。

连接完后,点击主菜单Analysis,点击Condense FE model

点击ok

输入保存的文件名

将跳出下图所示界面,显示软件将调用Romax FE Solver来运行求解模型的缩聚。

几分钟之后,计算完毕,计算得到刚度矩阵,点击主菜单Properties下Stifness Data 菜单中import Stiffness matrix,从中选择Romax FE solver选项,

选择对应相同文件名的输出结果文件,点击ok,读入刚度矩阵;

之后点击主菜单Analysis下的Static Deflection of FE model,将弹出如下图所示的窗口。选择1st Speed载荷工况,点击Solve,将执行求解过程。注意,此时最

好选择系统变形计算完毕的载荷工况,因为系统变形计算将提供箱体变形计算的

力的边界条件。

约几分钟的计算之后(计算时间取决于用户计算机的计算能力以及有限元模型的复杂程度),点击Load,读入同名的结果文件,读入结果,如下图所示。

有限元分析 均布荷载作用下深梁的变形和应力

有 限 元 分 析 上 级 报 告 学院: 专业: 姓名: 班级: 学号:

均布荷载作用下深梁的变形和应力 两端简支,长度l=5m,高度h=1m的深梁,在均布荷载q =5000N/m作用下发生平面弯曲(如图4.1所示)。已知弹性模量为30Gpa,泊松比为0.3,试利用平面应力单元PLANE82,确定跨中的最大挠度,和上下边缘的最大拉压应力。 4.1 均布荷载作用下深梁计算模型 1.理论解 具有两个简支支座支承的简支梁,它的变形和应力分布在理论上是没有解析表达式。 在一般的弹性力学教科书中,只有将两边支座简化为等效力的条件,即在两个支座的侧表面上作用有均匀分布的剪力情况,才可以得到理论解答。 (1) 设定应力函数。 获得这种情况下的解答的主要思路是:按照应力解法,考虑到应力分量关于该梁中心 位置(x=2.5,y=0.5)有对称和反对称关系。可以首先假定一个应力函数为: Φ = A(y - 0.5)5+ B(x - 2.5)2 (y -0.5)3 +C(y -0.5)3+ D(x- 2.5)2+ E(x -2.5)2 (y - 0.5) (4.1) 依据这个应力函数,可以获得各个应力分量,按照上表面受均布压力作用简支梁的上 下表面和左右侧表面的应力边界条件,确定出应力函数(4.1)中的各个待定系数A,B,C,D和E。 按照应力求解平面应力问题方法,应力函数应该满足双调和函数: ?2?2Φ = 0 (4.2) 将(4.1)应力函数代入上式后,得到: 24 B( y - 0.5) +120A(y - 0.5) = 0 (4.3) 即: B = -5A (4.4) (2)确定应力分量。 应力函数与应力分量之间的关系为: (3) 利用梁的上下表面边界条件确定积分常数。 上表面受均布压力作用简支梁的上表面(y=h=1m)的应力边界条件:

有限元分析中的一些问题

有限元分析的一些基本考虑-—-—-单元形状对于计算精度的影响 笔者发现,在分析复杂问题时,我们所可能出现的错误,竟然是一些很根本的错误,这些根本错误是由于对有限元的基本理论理解不清晰而造成的。 鉴于这个原因,笔者决定对一些基本问题(例如单元形状问题,单元大小问题,应力集中问题等)展开调查,从而形成了一系列文章,本篇文章是这些系列文章中的第一篇. 本篇文章先考虑有限元分析中的第一个基本问题:单元形状问题。 我们知道,单元形状对于有限元分析的结果精度有着重要影响,而对单元形状的衡量又有着诸多指标,为便于探讨,这里首先只讨论第一个最基本的指标:长宽比(四边形单元的最长尺度与最短尺度之比),而且仅考虑平面单元的长宽比对于计算精度的影响。 为此,我们给出一个成熟的算例。该算例是一根悬臂梁,在其端面施加竖直向下的抛物线分布载荷,我们现在考察用不同尺度的单元划分该梁时,对于A点位移的影响。 这五种不同的划分方式,都使用矩形单元,只不过各单元的长宽比不同。 例如第一种(1)AR=1.1,就是长宽比接近1; 第二种(2)AR=1.5,就是长宽比是1。5.其它类推。 第五种(5)AR=24,此时单元的长度是宽度的24倍。 现在我们看看按照这五种单元划分方式对于A点位移的影响,顺便我们也算出了B点的位移,结果见下表.

我们现在仔细查看一下上表,并分析其含义。 我们先考虑第一行,它是第一种单元划分情况,此时每个单元的长宽比是1。1,由此我们计算出A点,B点的垂直位移,可以看到,A点的竖直位移是—1.093英寸,而B点的竖直位移是-0。346英寸。而这两点我们都是可以用弹性力学的方式得到精确解的,其精确解分别是-1。152以及—0。360。这样,我们可以得到此时A点位移误差的百分比是[(—1.093)—(-1。152)]/1。152 =5。2%. 对于其它情况,也采用类似的方式得到A点位移误差的百分比。 从上表可以看出来,随着长宽比的增加,位移误差越来越大,竟然大到56%.因此,如果我们是用长宽比为24的单元进行划分的话,那么我们的结果可以说是完全错误的. 下面按照上表绘制出一张图,该图从形象的角度表达了上表的含义.

基于有限元的钢板弹簧应力分析

基于有限元的钢板弹簧应力分析 蒋阳 西华大学交通与汽车工程学院 摘 要:本文讨论了利用ANSYS 软件对钢板弹簧进行映射网格划分,并在两簧片的接触区域生成ANSYS 软件所提供的接触单元,建立起多片钢板弹簧的有限元模型。分析了施加预负荷和工作负荷时,板簧应力值显著增长的部位,从而预测板簧产生断裂的部位,可为改进设计提供指导作用。关键词:板簧、仿真、模态 1引言 钢板弹簧具有结构简单,制造、维修方便,除了作为弹性元件外,还可兼起导向和传递侧向、纵向力和力矩的作用,其片间的接触、摩擦在弹簧振动时还将起到阻尼的作用,是重要的高负荷安全部件,目前在商用车上仍被广泛采用[1]。 传统的钢板弹簧设计方法分为:三角形板计算法,板端接触法,共同曲率法[2]。上述三种计算方法对实际工作中的钢板弹簧进行简化,并不能反应实际工作中存在的复杂的非线性状态以及接触情况。 本文利用有限元分析软件ANSYS,对十片钢板弹簧的装配过程和工作过程进行计算分析的基础上, 求得在预负荷和工作负荷作用下的应力与位移等响应情况,为实际钢板弹簧的设计中确定参数提供了依据。 2计算模型的建立 某车型的板簧总成的三维实体结构见图1。板簧建模时,考虑板簧总成对称性,同时为了方便建模,取其1/4为研究对象。通过单元solid45划分网格之后,得到12390个单元和12348个节点。 图1 板簧的三维模型图 3钢板弹簧的材料属性和网格划分 钢板弹簧的材料为60CrMnBa,弹性模量为206GPa,泊松比为0.26。 solid45单元用于构造三维实体结构。单元通过8个节点来定义,每个节点有3个沿着xyz方向平移的自由度。该六面体单元有8个节点,每个节点具有X、Y、Z 三个方向的平动自由度,可以进行塑性分析、蠕变分析、膨胀分析、应力硬化分析、大变形分析和大应变能力[1]。 用单元solid45划分网格之后,得到12390个单元和12348个节点。 4钢板弹簧的片间接触单元的建立 钢板弹簧总成的片与片之间,接触与否事先未知,而且接触后存在着滑移,所以在片与片的节点间建立接触单元,模拟片间的作用力。在ANSYS 中,接触单元是覆盖在分析模型接触面之上的一层单元,主要通过识别接触对与生成接触单元,设置单元关键字和实常数来创建。利用接触单元可以跟踪接触位置、保证接触协调性防止接触表面相互穿透;并在接触表面之间传递接触应力(正压力和摩擦力)。本文选用的接触单元分别是TARGE170 ( 三维目标单元) 与CONTA173(三维8节点面与面接触单元)[2]。本文单元的实常数采用默认值。摩擦采用库仑模型,钢板弹簧之间的摩 101

有限元分析理论基础

有限元分析概念 有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。

基于ANSYS的有限元分析

有限元大作业 基于ansys的有限元分析 班级: 学号: 姓名: 指导老师: 完成日期:

ANSYS软件是美国ANSYS公司研制的大型通用有限元分析(FEA)软件,是世界范围内增长最快的计算机辅助工程(CAE)软件,能与多数计算机辅助设计(CAD,computer Aided design)软件接口,实现数据的共享和交换,如Creo,NASTRAN, Alogor, I-DEAS, AutoCAD 等。是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。在核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、造船、生物医学、轻工、地矿、水利、日用家电等领域有着广泛的应用。ANSYS功能强大,操作简单方便,现在已成为国际最流行的有限元分析软件,在历年的FEA评比中都名列第一。目前,中国100多所理工院校采用ANSYS软件进行有限元分析或者作为标准教学软件。 2D Bracket 问题描述: We will model the bracket as a solid 8 node plane stress element. 1.Geometry: The thickness of the bracket is 3.125 mm 2.Material: steel with modulus of elasticity E=200 GPa. 3.Boundary conditions: The bracket is fixed at its left edge. 4.Loading: The bracket is loaded uniformly along its top surface. The load is 2625 N/m. 5.Objective: a.Plot deformed shape b.Determine the principal stress and the von Mises stress. (Use the stress plots to determine these) c.Remodel the bracket without the fillet at the corner or change the fillet radius to 0.012 and 0.006m, and see how d.principal stress and von Mises stress chang e.

UG有限元分析教程

第1章高级仿真入门 在本章中,将学习: ?高级仿真的功能。 ?由高级仿真使用的文件。 ?使用高级仿真的基本工作流程。 ?创建FEM和仿真文件。 ?用在仿真导航器中的文件。 ?在高级仿真中有限元分析工作的流程。 1.1综述 UG NX4高级仿真是一个综合性的有限元建模和结果可视化的产品,旨在满足设计工程师与分析师的需要。高级仿真包括一整套前处理和后处理工具,并支持广泛的产品性能评估解法。图1-1所示为一连杆分析实例。 图1-1连杆分析实例 高级仿真提供对许多业界标准解算器的无缝、透明支持,这样的解算器包括NX Nastran、MSC Nastran、ANSYS和ABAQUS。例如,如果结构仿真中创建网格或解法,则指定将要用于解算模型的解算器和要执行的分析类型。本软件使用该解算器的术语或“语言”及分析类型来展示所有网格划分、边界条件和解法选项。另外,还可以求解模型并直接在高级仿真中查看结果,不必首先导出解算器文件或导入结果。 高级仿真提供基本设计仿真中需要的所有功能,并支持高级分析流程的众多其他功能。 ?高级仿真的数据结构很有特色,例如具有独立的仿真文件和FEM文件,这有利于在分布式工作环境中开发有限元(FE)模型。这些数据结构还允许分析师轻松 地共享FE数据去执行多种类型分析。

UG NX4高级仿真培训教程 2 ?高级仿真提供世界级的网格划分功能。本软件旨在使用经济的单元计数来产生高质量网格。结构仿真支持完整的单元类型(1D、2D和3D)。另外,结构级仿真 使分析师能够控制特定网格公差。例如,这些公差控制着软件如何对复杂几何体 (例如圆角)划分网格。 ?高级仿真包括许多几何体简化工具,使分析师能够根据其分析需要来量身定制CAD几何体。例如,分析师可以使用这些工具提高其网格的整体质量,方法是消 除有问题的几何体(例如微小的边)。 ?高级仿真中专门包含有新的NX传热解算器和NX流体解算器。 NX传热解算器是一种完全集成的有限差分解算器。它允许热工程师预测承受热载荷系统中的热流和温度。 NX流体解算器是一种计算流体动力学(CFD)解算器。它允许分析师执行稳态、不可压缩的流分析,并对系统中的流体运动预测流率和压力梯度,也可 以使用NX传热和NX流体一起执行耦合传热/流体分析。 1.2仿真文件结构 当向前通过高级仿真工作流时,将利用4个分离并关联的文件去存储信息。要在高级仿真中高效地工作,需要了解哪些数据存储在哪个文件中,以及在创建那些数据时哪个文件必须是激活的工作部件。这4个文件平行于仿真过程,如图1-2所示。 图1-2仿真文件结构 设计部件文件的理想化复制 当一个理想化部件文件被建立时,默认有一.prt扩展名,fem#_i是对部件名的附加。例如,如果原部件是plate.prt,一个理想化部件被命名为plate_fem1_i.prt。 一个理想化部件是原设计部件的一个相关复制,可以修改它。 理想化工具让用户利用理想化部件对主模型的设计特征做改变。不修改主模型部件,

有限元分析中的一些问题

有限元分析的一些基本考虑-----单元形状对于计算精度的影响 笔者发现,在分析复杂问题时,我们所可能出现的错误,竟然是一些很根本的错误,这些根本错误是由于对有限元的基本理论理解不清晰而造成的。 鉴于这个原因,笔者决定对一些基本问题(例如单元形状问题,单元大小问题,应力集中问题等)展开调查,从而形成了一系列文章,本篇文章是这些系列文章中的第一篇。 本篇文章先考虑有限元分析中的第一个基本问题:单元形状问题。 我们知道,单元形状对于有限元分析的结果精度有着重要影响,而对单元形状的衡量又有着诸多指标,为便于探讨,这里首先只讨论第一个最基本的指标:长宽比(四边形单元的最长尺度与最短尺度之比),而且仅考虑平面单元的长宽比对于计算精度的影响。 为此,我们给出一个成熟的算例。该算例是一根悬臂梁,在其端面施加竖直向下的抛物线分布载荷,我们现在考察用不同尺度的单元划分该梁时,对于A点位移的影响。 这五种不同的划分方式,都使用矩形单元,只不过各单元的长宽比不同。 例如第一种(1)AR=1.1,就是长宽比接近1; 第二种(2)AR=1.5,就是长宽比是1.5.其它类推。 第五种(5)AR=24,此时单元的长度是宽度的24倍。 现在我们看看按照这五种单元划分方式对于A点位移的影响,顺便我们也算出了B点的位移,结果见下表。

我们现在仔细查看一下上表,并分析其含义。 我们先考虑第一行,它是第一种单元划分情况,此时每个单元的长宽比是1.1,由此我们计算出A点,B点的垂直位移,可以看到,A点的竖直位移是-1.093英寸,而B点的竖直位移是-0.346英寸。而这两点我们都是可以用弹性力学的方式得到精确解的,其精确解分别是-1.152以及-0.360.这样,我们可以得到此时A点位移误差的百分比是 [(-1.093)-(-1.152)]/1.152 = 5.2%. 对于其它情况,也采用类似的方式得到A点位移误差的百分比。 从上表可以看出来,随着长宽比的增加,位移误差越来越大,竟然大到56%。因此,如果我们是用长宽比为24的单元进行划分的话,那么我们的结果可以说是完全错误的。 下面按照上表绘制出一张图,该图从形象的角度表达了上表的含义。 由此可见,长宽比越接近于1,那么结算结果越精确,越远离1,则误差越大。

结构分析及有限元分析基础知识

第一章结构分析及有限元分析基础知识 注:摘自《NX知识工程应用技术——CAD/CAE篇》 洪如瑾编译 清华大学出版社 [目标] 本章将简述结构分析及有限元分析的基础知识,为学习与应用结构分析做好准备,包括: ※ 结构与结构分析定义 ※ 结构的线性静态分析 ※ 材料行为与故障 ※ 有限元分析的基本概念 ※ 有限元模型 1.1结构分析基础知识 1.1.1结构基本概念 1.结构定义 结构可以定义为一个正承受作用的载荷处于平衡中的系统。平衡条件意味着结构是不移动的。一个自由的支架不是一个结构,它未被连接到任一物体上并无载荷作用与它。仅当它附着到外部世界,并且有作用力、压力或力矩时,支架成为一个结构。 例如横跨江面的大桥就是一个普通的结构,一个支架通过它的支撑连接到地面上,桥的重量是在结构上的一种载荷(力)。当汽车通过桥时,附加的力作用于桥的不同位置。 一个好的结构必须满足以下标准: (1) 当预期的载荷作用时,结构必须不出现故障。这个似乎是显而易见的,并意味着结构必须是“强度足够的”。故障意味着结构破裂、分离、弯曲,以及支撑作用载荷失败。 注意:考虑到意外的载荷,通常在设计中提供安全余量。余量常常利用安全因素来描述。例如,如果在结构上期待载荷是10 000磅,规定安全因素是2.0,则结构将设计成能经受住20 000磅载荷。 (2) 当载荷作用时,结构必须不产生过分变形。这意味着结构必须“刚度足够”。 变形可接受的极限(弯曲度、挠度、拉伸等)取决于特定情况。例如,在通常住宅中的地板由足够的吊带支撑,以防止当人在地板岸上行走时有“柔软”的感觉。 (3) 在它的服务生命周期,结构的行为应不会恶化。这意味着结构必须“足够耐用”,必须考虑环境影响和“磨损与破裂”。如果一座桥假定维持50年,则桥的设计必须提供整个50年寿命的结构完整性与充分的安全余量。2.结构分析 结构分析是用于决定一个结构是否将正确完成任务的工程分析过程。结构将在某些方式中进行模拟和求解描述它的行为的数学方程。分析可以人工方法或用计算机方法来完成。 结构分析的结果(答案)用于评估性能,摘要如下: (1)“强度足够吗?”:应力必须是在一可接受的范围内。 (2)“刚度足够吗?”:位移必须是在一可接受的范围内。 (3)“耐用度足够?”:对一个长的疲劳周期应力必须足够低。

有限元分析基础教程(ANSYS算例)(曾攀)

有限元分析基础教程Fundamentals of Finite Element Analysis (ANSYS算例) 曾攀 清华大学 2008-12

有限元分析基础教程曾攀 有限元分析基础教程 Fundamentals of Finite Element Analysis 曾攀 (清华大学) 内容简介 全教程包括两大部分,共分9章;第一部分为有限元分析基本原理,包括第1章至第5章,内容有:绪论、有限元分析过程的概要、杆梁结构分析的有限元方法、连续体结构分析的有限元方法、有限元分析中的若干问题讨论;第二部分为有限元分析的典型应用领域,包括第6章至第9章,内容有:静力结构的有限元分析、结构振动的有限元分析、传热过程的有限元分析、弹塑性材料的有限元分析。本书以基本变量、基本方程、求解原理、单元构建、典型例题、MATLAB程序及算例、ANSYS算例等一系列规范性方式来描述有限元分析的力学原理、程序编制以及实例应用;给出的典型实例都详细提供有完整的数学推演过程以及ANSYS实现过程。本教程的基本理论阐述简明扼要,重点突出,实例丰富,教程中的二部分内容相互衔接,也可独立使用,适合于具有大学高年级学生程度的人员作为培训教材,也适合于不同程度的读者进行自学;对于希望在MATLAB程序以及ANSYS平台进行建模分析的读者,本教程更值得参考。 本基础教程的读者对象:机械、力学、土木、水利、航空航天等专业的工程技术人员、科研工作者。

目录 [[[[[[\\\\\\ 【ANSYS算例】3.3.7(3) 三梁平面框架结构的有限元分析 1 【ANSYS算例】4.3.2(4) 三角形单元与矩形单元的精细网格的计算比较 3 【ANSYS算例】5.3(8) 平面问题斜支座的处理 6 【ANSYS算例】6.2(2) 受均匀载荷方形板的有限元分析9 【ANSYS算例】6.4.2(1) 8万吨模锻液压机主牌坊的分析(GUI) 15 【ANSYS算例】6.4.2(2) 8万吨模锻液压机主牌坊的参数化建模与分析(命令流) 17 【ANSYS算例】7.2(1) 汽车悬挂系统的振动模态分析(GUI) 20 【ANSYS算例】7.2(2) 汽车悬挂系统的振动模态分析(命令流) 23 【ANSYS算例】7.3(1) 带有张拉的绳索的振动模态分析(GUI) 24 【ANSYS算例】7.3(2) 带有张拉的绳索的振动模态分析(命令流) 27 【ANSYS算例】7.4(1) 机翼模型的振动模态分析(GUI) 28 【ANSYS算例】7.4(2) 机翼模型的振动模态分析(命令流) 30 【ANSYS算例】8.2(1) 2D矩形板的稳态热对流的自适应分析(GUI) 31 【ANSYS算例】8.2(2) 2D矩形板的稳态热对流的自适应分析(命令流) 33 【ANSYS算例】8.3(1) 金属材料凝固过程的瞬态传热分析(GUI) 34 【ANSYS算例】8.3(2) 金属材料凝固过程的瞬态传热分析(命令流) 38 【ANSYS算例】8.4(1) 升温条件下杆件支撑结构的热应力分析(GUI) 39 【ANSYS算例】8.4(2) 升温条件下杆件支撑结构的热应力分析(命令流) 42 【ANSYS算例】9.2(2) 三杆结构塑性卸载后的残余应力计算(命令流) 45 【ANSYS算例】9.3(1) 悬臂梁在循环加载作用下的弹塑性计算(GUI) 46 【ANSYS算例】9.3(2) 悬臂梁在循环加载作用下的弹塑性计算(命令流) 49 附录 B ANSYS软件的基本操作52 B.1 基于图形界面(GUI)的交互式操作(step by step) 53 B.2 log命令流文件的调入操作(可由GUI环境下生成log文件) 56 B.3 完全的直接命令输入方式操作56 B.4 APDL参数化编程的初步操作57

圆孔应力有限元分析

圆孔应力有限元分析 陈春山 (安徽工业大学工商学院机械工程系) 摘要:ANSYS软件的应用领域非常广泛,可应用在以下领域:建筑、勘查、地质、水利、交通、电力、测绘、国土、环境、林业、冶金等方面,应用ANSYS软件,对平板中心圆孔的应力集中进行了有限元分析,对圆孔平板在单向和双向应力条件下的应力状况进行了计算和分析,并将有限元结果与解析解进行了比较。 关键词: 平板开小圆孔; 应力集中; 有限元分析 Round hole stress finite element analysis CHEN Chunshan (Industrial & commercial college , anhui university of technology department of mechanical engineering) Abst ract : ANSYS soft ware has a very wide range of applicat ions, can be used in t he following areas: construct ion, exp lorat ion, geology, survey ing an d mapp ing, land, wat er conservancy, t ransport at ion, elect ric p ower, environment, forestry, met allurgy, et c., t he app licat ion of ANSYS software, t he flat round hole at t he centre of the finit e element analysis of st ress concent rat ion of circle hole p lat e under t he condit ion of unidirect ional and bidirect ional st ress calculat ion and analysis, t he stress condit ion and t he finit e element result s are comp ared wit h those of t he analyt ical solut ion Key words: flat open small round hole; Stress concentration; The f inite element analysis l 前言

基于有限元ANSYS压力容器应力分析报告

压力容器分析报告

目录 1 设计分析依据 (1) 1.1 设计参数 (1) 1.2 计算及评定条件 (1) 1.3 材料性能参数 (1) 2 结构有限元分析 (2) 2.1 理论基础 (2) 2.2 有限元模型 (2) 2.3 划分网格 (3) 2.4 边界条件 (5) 3 应力分析及评定 (5) 3.1 应力分析 (5) 3.2 应力强度校核 (6) 4 分析结论 (8) 4.1 上封头接头外侧 (9) 4.2 上封头接头内侧 (11) 4.3 上封头壁厚 (13) 4.4 筒体上 (15) 4.5 筒体左 (17) 4.6 下封头接着外侧 (19) 4.7 下封头壁厚 (21)

1 设计分析依据 (1)压力容器安全技术监察规程 (2)JB4732-1995 《钢制压力容器-分析设计标准》-2005确认版 1.1 设计参数 表1 设备基本设计参数 正常设计压力MPa 7.2 最高工作压力MPa 6.3 设计温度℃0~55 工作温度℃5~55 工作介质压缩空气46#汽轮机油 焊接系数φ 1.0 腐蚀裕度mm 2.0 容积㎡ 4.0 容积类别第二类 计算厚度mm 筒体29.36 封头29.03 1.2 计算及评定条件 (1)静强度计算条件 表2 设备载荷参数 设计载荷工况工作载荷工况 设计压力7.2MPa 工作压力6.3MPa 设计温度55℃工作温度5~55℃ 注:在计算包括二次应力强度的组合应力强度时,应选用工作载荷进行计算,本报告中分别选用设计载荷进行计算,故采用设计载荷进行强度分析结果是偏安全的。 1.3 材料性能参数 材料性能参数见表3,其中弹性模型取自JB4732-95表G-5,泊松比根据JB4732-95的公式(5-1)计算得到,设计应力强度分别根据JB4732-95的表6-2、表6-4、表6-6确定。 表3 材料性能参数性能

有限元分析基础

有限元分析基础 第一章有限元法概述 在机械设计中,人们常常运用材料力学、结构力学等理论知识分析机械零构件的强度、刚度和稳定性问题。但对一些复杂的零构件,这种分析常常就必须对其受力状态和边界条件进行简化。否则力学分析将无法进行。但这种简化的处理常常导致计算结果与实际相差甚远,有时甚至失去了分析的意义。所以过去设计经验和类比占有较大比重。因为这个原因,人们也常常在设计中选择较大的安全系数。如此也就造成所设计的机械结构整体尺寸和重量偏大,而局部薄弱环节强度和刚度又不足的设计缺陷。 近年来,数值计算机在工程分析上的成功运用,产生了一门全新、高效的工程计算分析学科——有限元分析方法。该方法彻底改变了传统工程分析中的做法。使计算精度和计算领域大大改善。 §1.1 有限元方法的发展历史、现状和将来 一,历史 有限元法的起源应追溯到上世纪40年代(20世纪40年代)。1943年R.Courant从数学的角度提出了有限元法的基本观点。50年代中期在对飞机结构的分析中,诞生了结构分析的矩阵方法。1960年R.W.Clough在分析弹性力学平面问题时引入了“Finite Element Method”这一术语,从而标志着有限元法的思想在力学分析中的广泛推广。 60、70年代计算机技术的发展,极大地促进了有限元法的发展。具体表现在: 1)由弹性力学的平面问题扩展到空间、板壳问题。 2)由静力平衡问题——稳定性和动力学分析问题。 3)由弹性问题——弹塑性、粘弹性等问题。 二,现状 现在有限元分析法的应用领域已经由开始时的固体力学,扩展到流体力学、传热学和电磁力学等多个传统的领域。已经形成了一种非常成熟的数值分析计算方法。大型的商业化有限元分析软件也是层出不穷,如: SAP系列的代表SAP2000(Structure Analysis Program) 美国安世软件公司的ANSYS大型综合有限元分析软件 美国航天航空局的NASTRAN系列软件 除此以外,还有MASTER、ALGO、ABIQUES、ADINA、COSMOS等。 三,将来 有限元的发展方向最终将和CAD的发展相结合。运用“四个化”可以概括其今后的发展趋势。那就是:可视化、集成化、自动化和网络化。 §1.2 有限元法的特点 机械零构件的受力分析方法总体说来分为解析法和数值法两大类。如大家学过的材料力学、结构力学等就是经典的解析力学分析方法。在这些解析力学方法中,弹性力学的分析方法在数学理论上是最为严谨的一种分析方法。 其解题思路是:从静力、几何和物理三个方面综合考虑,建立描述弹性体的平衡、应力、应变和位移三者之间的微分方程,然后考虑边界条件,从而求出微分方程的解析解。其最大的有点就是,严密精确。缺点就是微分方程的求解困难,很多情况下,无法求解。 数值方法是一种近似的计算方法。具体又分为“有限差分法”和“有限元法”。 “有限差分法”是将得到的微分方程离散成近似的差分方程。通过对一系列离散的差分

土中应力计算__

第2章土中应力计算 一、知识点: 概述土中自重应力基底压力(接触应力) 2.3.1 基底压力的简化计算基底附加压力 地基附加应力 2.4.1 竖向集中力下的地基附加应力 2.4.2 矩形基础下的地基附加应力 2.4.3 线荷载和条形荷载下的地基附加应力非均质和各向异性地基中的附加应力 地基沉降的弹性力学公式 二、考试内容: 重点掌握内容 1.自重应力在地基土中的分布规律,均匀土、分层土和有地下水位时土中自重应力的计算方法。2.基底接触压力的概念,基底附加压力的概念及计算方法。 3.基底附加压力的概念,基底附加压力在地基土中的分布规律。应用角点法计算地基土中任意一点的竖向附加应力。 三、本章内容: § 概述 建筑物的建造使地基土中原有的应力状态发生变化,从而引起地基变形,出现基础沉降。由于建筑物荷载差异和地基不均匀等原因,基础各部分的沉降或多或少总是不均匀的,使得上部结构之中相应地产生额外的应力和变形。基础不均匀沉降超过了一定的限度,将导致建筑物的开裂、歪斜甚至破坏,例如砖墙出现裂缝、吊车轮子出现卡轨或滑轨、高耸构筑物倾斜、机器转轴偏斜以及与建筑物连接管道断裂等等。因此,研究地基变形,对于保证建筑物的正常使用、经济和牢固,都具有很大的意义。 地基的沉降,必须要从土的应力与应变的基本关系出发来研究。对于地基土的应力一般要考虑基底附加应力、地基自重应力和地基附加应力。地基的变形是由地基的附加应力导致,变形都有一个由开始到稳定的过程。我们把地基稳定后的累计变形量称为最终沉降量。地基应力一般包括由土自重引起的自重应力和由建筑物引起的附加应力,这两种应力的产生条件不相同,计算方法也有很大差别。此外,以常规方法计算由建筑物引起的地基附加应力时,事先确定基础底面的压力分布是不可缺少的条件。 从地基和基础相互作用的假设出发,来分析地基上梁或板的内力和变形,以便设计这类结构复杂的连续基础时,也要以本章的有关内容为前提。 地基土的变形都有一个由开始到稳定的过程,各种土随着荷载大小等条件的不同,其所需时间的差别很大,关于地基变形随时间而增长的过程是土力学中固结理论的研究内容。它是本章的一个重要组成部分。在工程实践中,往往需要确定施工期间和完工后某一时间的基础沉降量,以便控制施工速度,确定建筑物的使用措施,并要考虑建筑物有关部分之间的预留净空和连接方式,还必须考虑地基沉降与时间的关系。 § 土中自重应力 土是由土粒、水和气所组成的非连续介质。若把土体简化为连续体,而应用连续体力学(例如弹性力学)来研究土中应力的分布时,应注意到,土中任意截面上都包括有骨架和孔隙的面积在内,所

平面问题有限元应力分析程序

第六章有限元程序设计中的若干问题 基本步骤: ⅰ.结构离散化,输入或生成 结点信息-结点坐标 单元信息-单元结点编号 ⅱ.计算单元刚度矩阵,形成总体刚度矩阵,包括计算[]B ⅲ.形成结点载荷向量 ⅳ.引入约束条件 ⅴ.解线性方程组 ⅵ.求出结点位移 ⅶ.计算单元的应力并输出 §6-1 约束条件的处理 1.对称性与反对称性 (1)对称结构承受对称载荷作用时 (2)对称结构承受反对称载荷作用 2. 约束位移的引入 主元置1法 主元赋大值 §6-2 总刚度矩阵的存贮法 1.半带宽存贮法

2. 一维压缩存贮法 考虑到总体刚度矩阵中各行的带宽并不相等,有时由于结构的几何形状的原因,使总体刚度矩阵某些行的带宽特别大。这种情况下如采用半带宽存贮法,就可能把许多零元素也包含了进去,这对节省计算机的存贮量是很不利的。 一维压缩存贮法是将总体刚度矩阵的下三角形中每一行从第一个非零元素开始按行将元素排成一序列,存放于一维数组)(L SK 中。但是为了确定SK 中的元素在[K]中的行列号,还需要将[K]中各行对角线的元素在伊维数组中的序号存放于另一辅助数组KD (N2)中(N2是总刚度矩阵的阶数)。现举例说明这一存贮法: 设有一系数阵 ???? ? ??? ????????? ?----1.30 .00.00.06.00.00.00.04.87 . 10.00.00.00 .00.01.50.00.07.10.01.50.00.00.00.00.00.02.100.03.10 .03 .52.03.12.05.4 在一维数组SK (13)中依次存放的是 []1.3007.16.04.81.52.1003.13.52.05.4-- 而辅助数组KD (6)中存放的是 []1398631 KD (6)其实就是[K]中对角元素在一维数组SK (13)中的地址。 将一结构离散化后,对结点进行编号,就能依据单元号确定出总刚度矩阵[K]各行的带宽,由它依次累加就可得出其对角线元素一维存贮中的序号。 显然,形成了数组Kd ,就确定了[K]中被存贮的元素分布情况以及SK 和[K]中元素的对应关系,例如可求出[K]中第I 行带宽为

有限元分析基础教程

有限元分析基础教程

前言 有限元分析已经在教学、科研以及工程应用中成为重要而又普及的数值分析方法和工具;该基础教程力求提供具备现代特色的实用教程。在教材的内容体系上综合考虑有限元方法的力学分析原理、建模技巧、应用领域、软件平台、实例分析这几个方面,按照教科书的方式深入浅出地叙述有限元方法,并体现出有限元原理“在使用中学习,在学习中使用”的交互式特点,在介绍每一种单元的同时,提供完整的典型推导实例、MATLAB实际编程以及ANSYS应用数值算例,并且给出的各种类型的算例都具有较好的前后对应性,使学员在学习分析原理的同时,也进行实际编程和有限元分析软件的操作,经历实例建模、求解、分析和结果评判的全过程,在实践的基础上深刻理解和掌握有限元分析方法。 一本基础教材应该在培养学员掌握坚实的基础理论、系统的专业知识方面发挥作用,因此,教材不但要提供系统的、具有一定深度的基础理论,还要介绍相关的应用领域,以给学员进一步学习提供扩展空间,本教程正是按照这一思路进行设计的;全书的内容包括两个部分,共分9章;第一部分为有限元分析基本原理,包括第1章至第5章,内容有:绪论、有限元分析过程的概要、杆梁结构分析的有限元方法、连续体结构分析的有限元方法、有限元分析中的若干问题讨论;第二部分为有限元分析的典型应用领域,包括第6章至第9章,内容有:静力结构的有限元分析、结构振动的有限元分析、传热过程的有限元分析、弹塑性材料的有限元分析。在基本原理方面,以基本变量、基本方程、求解原理、单元构建等一系列规范的方式进行介绍;在阐述有限元分析与应用方面,采用典型例题、MATLAB程序及算例、ANSYS算例的方式,以体现出分析建模的不同阶段和层次,引导学员领会有限元方法的实质,还提供有大量的练习题。 本教程的重点是强调有限元方法的实质理解和融会贯通,力求精而透,强调学员综合能力(掌握和应用有限元方法)的培养,为学员亲自参与建模、以及使用先进的有限元软件平台提供较好的素材;同时,给学员进一步学习提供新的空间。 本教程力求体现以下特点。 (1)考虑教学适应性:强调对学员在数学原理、分析建模、软件应用几个方面的培养目标要求,注重学员在工程数值方面的基础训练,培养学员“使用先进软件+分析实际问题”的初步能力。 (2)考虑认知规律性:力求按照有限元分析方法的教学规律和认知规律,在教材中设计了“基本变量、基本方程、求解原理、单元构建”这样的模块;并体现出有限元原理“在使用中学习,在学习中使用”的交互式特点,在介绍每一种单元的同时,提供实用的MATLAB实际编程和数值实例;在每一章还进行要点总结,给出典型例题,以引导学员领会有限元方法的实质,体现教材的启发性,有利于激发学员学习兴趣和便于自学。 (3)考虑结构完整性:本教程提供完整的教材结构:绪论、正文、典型例题、基于MATLAB的编程算例与数值算例、具有一定深度的ANSYS算例、各章要点、习题、专业术语的英文标注、关键词中文和英文索引、参考文献,便于学员查阅。 (4)内容上的拓展性:除基本内容外,还介绍了较广泛的应用领域,包括:静力结构分析、结构振动分析、传热过程分析、弹塑性材料分析;提供了有关的典型问题的建模详细分析过程,基本上反映了有限元分析在一些主要领域的应用状况及建模方法。 (5)编排上的逻辑性:本教程力求做到具有分明的层次和清楚的条理,在每一章中重点突出有限元方法的思想、数理逻辑及建模过程,强调相应的工程概念,提供典型例题及详解,许多例题可作为读者进行编程校验的标准考题(Benchmark),还提供了对应的MATLAB编程算例与ANSYS算例,特别是介绍了基于APDL参数化的ANSYS建模方法,并给出具体的实例,力求反映有限元分析的内在联系及特有思维方式。

土中基底应力与附加应力计算[详细]

土中应力计算 1 土中自重应力 地基中的 应力分: 自重应力——地基中的 自重应力是指由土体本身的 有效重力产生的 应力. 附加应力——由建筑物荷载在地基土体中产生的 应力,在附加应力的 作用下,地基土将产生压缩变形,引起基础沉降. 计算土中应力时所用的 假定条件: 假定地基土为连续、匀质、各向同性的 半无限弹性体、按弹性理论计算. 地基中除有作用于水平面上的 竖向自重应力外,在竖直面上还作用有水平向的 侧向自重应力.由于沿任一水平面上均匀地无限分布,所以地基土在自重作用下只能产生竖向变形,而不能有侧向变形和剪切变形. 3.1.1均质土的 自重应力 a 、假定:在计算土中自重应力时,假设天然地面是一个无限大的 水平面,因而在任意竖直面和水平面上均无剪应力存在.可取作用于该水平面上任一单位面积的 土柱体自重计算. b 、均质土层Z 深度处单位面积上的 自重应力为: 应力图形为直线形. z cz γσ= σcz 随深度成正比例增加;沿水平面则为均匀分布. 必须指出,只有通过土粒接 触点传递的 粒间应力,才能使土

粒彼此挤紧,从而引起土体的 变形,而且粒间应力又是影响土体强度的 —个重要因素,所以粒间应力又称为有效应力.因此,土中自重应力可定义为土自身有效重力在土体中引起的 应力.土中竖向和侧向的 自重应力一般均指有效自重应力.并用符号σcz 表示 . 3.1.2成层土的 自重应力 地基土往往是成层的 ,成层土自重应力的 计算公式:∑== n i i i cz z 1 γ σ 结论:土的 自重应力随深度Z ↑而↑.其应力图形为折线形. 自然界中的 天然土层,一般形成至今已有很长的 地质年代,它在自重作用下的 变形早巳稳定.但对于近期沉积或堆积的 土层,应考虑它在自重应力作用下的 变形.此外,地下水位的 升降会引起土中自重应力的 变化(图2—4). 3.1.3 1、地下水对自重应力的 影响 地下水位以下的 土,受到水的 浮力作用,使土的 重度减轻.计算时采用水下土的 重度(w sat γγγ-=') 2、不透水层的 影响

有限元分析结果

3.4.2 钢板弹簧负载时有限元结果分析 钢板弹簧在受载时,尤其是超载的状况下,各片板簧应变及内部应力相比夹紧过程 又发生了变化。本研究所做板簧受载分析主要是在装配预应力分析的基础上对板簧进行 的超载状况下的受力分析。 求解后在后处理中观察总体模型受压方向变形结果如图3.22所示,从图中可以看出, 板簧的最大位移量仍为26.009mm,计算后弹簧的超载刚度为194.39MPa,与共同曲率法计算刚度值接近,验证有限元计算的可靠性。 图3.23 为多片钢板弹簧总体节点等效应变分布云图。图3.24 至3.31 分别为各片板 簧等效应变分布云图,从分析结果可以看出第1 片、第 5 片、第 6 片、第7 片应变较大,最大应变达到0.994*10-3mm,分布在主片簧的中部。此种工况下板簧的各片最大应力值 及应变值如表3.3 所示。表3.3 负载时各片应力及应变值 Table 3.3 The value of stress and strain of each leaf spring in loading state 对比表3.2 和表 3.3,我们可以看出,在超载状态下,钢板弹簧的每片的应力及应变 10 根据厂家提供的数据,该钢板弹簧的屈服应力为1160Mpa,许用应力为 682MPa。从以上结果可以看出,只有静态时的应力小于其许用应力,给定路况 下的动态应力全部超过屈服应力,所以容易断裂,而且应力集中的位置都在第 二片弹簧离中心螺孔53—230mm,基本与该钢板弹簧断裂位置相符合,很好地 解释了该钢板弹簧的断裂情况。以上结果是每一种动态激励下产生最大应力时 的整个钢板弹簧的应力分布,实际上,在每一种动态激励下,钢板弹簧的应力 大小和分布都是动态变化的,第一片弹簧和第二片弹簧之间的状态也是变化的, 它们有时接触,有时不接触,是一种典型的非线性。ANSYS的非线性接触分析 正是根据实际的几何结构、材料属性、载荷和边界条件,采用几何边界条件和 力学边界条件进行接触状态的判定和迭代,故此能准确地反映其真实的应力状 态。 3.3原始情况的模态振型分析 经过有限元建模,进行模态分析,得到主簧的前三阶模态振型和自然频率 分别为: 图3—8第一片第一阶:f=23.7Hz 图3—9第二片第一阶:f232-3Hz 图3—10第一片第二阶:f=144.4Hz 图3—11 第_二片第一_=阶:f2198.4Hz 图3—1 2

相关文档
最新文档