高阶系统的零、极点分析 自控课设

高阶系统的零、极点分析     自控课设
高阶系统的零、极点分析     自控课设

课程设计任务书

学生姓名: 专业班级:

指导教师: 工作单位:自动化学院

题 目: 高阶系统的零、极点分析 初始条件:设单位系统的开环传递函数为

2

(),()(48)p K s b

G s D s s s s s a

+=

=+++ 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写

等具体要求)

1、 当系统开环传递函数为()p G s 时,绘制根轨迹并用Matlab 求取当K=15单

位阶跃响应、单位斜坡响应,并求取动态和稳态性能指标。

2、 当系统开环传递函数为()()p G s D s ,a=0.1,b=0.11时,绘制根轨迹并用

Matlab 求取当K=15单位阶跃响应、单位斜坡响应,并求取动态和稳态性

能指标。

3、 当系统开环传递函数为()()p G s D s ,a =b=20时,绘制根轨迹并用Matlab 求取K=15单位阶跃响应、单位斜坡响应,并求取动态和稳态性能指标。

4、 比较上述三种情况的仿真结果,分析原因,说明偶极子对系统的影响。

时间安排:

指导教师签名: 年 月 日

系主任(或责任教师)签名:年月日

目录

摘要................................................................ I

1 线性高阶系统的零极点分析简介 (2)

2 线性高阶系统的数学模型 (3)

3 高阶系统零极点分布对系统性能影响分析 (4)

3.1系统开环传递函数为

()

p

G s

的根轨迹 (4)

3.1.1系统开环传递函数为

()

p

G s

,单位阶跃输入时的根轨迹 (5)

3.1.2系统开环传递函数为

()

p

G s

,单位斜坡输入时的根轨迹 (6)

3.1.3动态性能、稳态性能分析 (7)

3.1.4参考程序法 (8)

3.2系统开环传递函数为

()()

p

G s D s

(a=0.1,b=0.11)的根轨迹 (9)

3.2.1系统开环传递函数为

()()

p

G s D s

,单位阶跃输入时的根轨迹 (9)

3.2.2系统开环传递函数为

()()

p

G s D s

,单位斜坡输入时的根轨迹 (10)

3.2.3动态性能、稳态性能分析 (11)

3.3系统开环传递函数为

()()

p

G s D s

(a=b=20)的根轨迹 (12)

3.3.1系统开环传递函数为

()()

p

G s D s

,单位阶跃输入时的根轨迹 (13)

3.3.2系统开环传递函数为

()()

p

G s D s

,单位斜坡输入时的根轨迹 (13)

3.3.3动态性能、稳态性能分析 (14)

4 分析比较 (16)

4.1三种仿真结果的比较: (16)

4.2高阶系统偶极子对系统性能的影响 (16)

4.3 综合分析 (18)

5 心得体会 (19)

参考文献 (20)

摘要

三阶及三阶以上的系统通常称为高阶系统,即用高阶微分方程描述的系统。在控制工程中,高阶系统非常普遍,而分析起来却十分复杂。

在自动控制系统中,对系统的各项性能如稳定性、动态性能和稳态性能等有一定的要求。稳定性是控制系统的本质,指的是控制系统偏离平衡状态后自动回复到平衡状态的能力。系统动态性能是在零初始条件下通过阶跃响应来定义的,对于稳定的系统,动态性能一般指的系统的超调量、超调时间、上升时间、调整时间,描述的是系统的最大偏差以及反映的快速性;稳态性能指的是系统的稳态误差,描述的是系统的控制精度。

在本文中,主要分析高阶系统的各项性能指标,对于高阶系统,分析其各项性能指标有很多方法,本文采用高阶零级点的分布来研究系统的各项性能指标,主要借助工程软件Matlab通过编程来绘制系统的根轨迹与阶跃响应、斜坡响应曲线,研究系统的零极点分布,进而分析系统的各项性能指标。

关键词:自动控制动态性能稳态性能高阶系统阶跃响应斜坡响应

高阶系统的零、极点分析

1 线性高阶系统的零极点分析简介

线性系统的动态性能与系统的闭环零极点在S 平面的分布有着密切的联系,系统的开环零极点一般是比较容易求得的,但对于高阶系统,利用古典的分解因式的方法求闭环特征方程的极点是十分困难的,当系统的某一参数发生改变时,需要反复的求解特征方程的根,从而研究系统的动态性能。这里,选用根轨迹的方法研究闭环系统零极点分布对系统性能的影响。

当闭环传递函数在S 平面的右半平面存在极点时,系统是不稳定的;只有闭环传递函数的极点均位于S 平面的左半平面,系统才稳定;当闭环极点位于坐标虚轴上时,系统临界稳定。

如果闭环系统无零点且闭环极点均为实数极点,则系统的响应是单调的;如果闭环极点均为复数极点,那么响应一般是振荡的。

闭环系统的超调量%p σ主要由闭环传递函数复数主导极点的衰减率

1//d σωζ=决定,而且还与其它闭环零、极点接近坐标原点的程度密切相关。

闭环系统的调节时间s t 主要取决于最靠近虚轴的闭环复数极点实部绝对值

1σ=n ζω;如果实数极点距离虚轴最近而且其附近没有实数零点,则系统的调节

时间主要由该极点的模值决定。

给闭环控制系统增加零点减小了系统的阻尼比,使系统的超调时间p t 减小,超调量%p σ增大,而闭环系统的极点增大了系统的阻尼比,使系统的超调时间变长,而超调量减小。

闭环零极点的对高阶系统性能的影响随其接近坐标原点的程度而增强。

2 线性高阶系统的数学模型

系统的闭环传递函数为

()()

()()1()()

C s G s s R s G s H s Φ=

=

+ (2-1) 式(1)中,R(s)为系统输入的Laplace 变换,C (s )为系统输出的Laplace 变换,G(s)为前向通道传递函数,H(s)为反馈传递函数。在一般情况下,G (s )和H(s)都是s 的多项式之比,故式(1)可以写

1()011(),1()011m m b s b s b s b M s m m s m n n n D s a s a s a a

n n

-++++-Φ==

≤-++++- (2-2) 为了便于求取高阶系统的单位阶跃输入响应和单位斜坡输入响应,一般将式(2)的分子多项式和分母多项式利用根轨迹法进行因式分解,写成如下因式的乘积形式

11

()

()()

()()()

()

m

i i n

j

j K s z C s M s s R s D s s s ==-Φ===

-∏∏ (2-3)

式(3)中,i z 为闭环系统的零点,j s 为闭环系统的极点,K 为开环根轨迹增益。由于M(s)和D(s)均为实系数多项式,故i z 和j s 只能是实数或共轭复数。在实际控制系统中,一般闭环极点都不相同,因此一般将输出量的Laplace 变换写为

1

2

21

1

()

()()(2)

m

i i q r

j

k k k j k K s z C s s s s

w s w ξ===-=

-++∏∏∏ (2-4)

式(4)中,q+2r=n,q 为实数极点的个数,r 为共轭复数极点的对数。 在本次设计中,2(),()(48)p K s b

G s D s s s s s a

+=

=+++(a=0.01,b=0.011或

a=b=20), ()G s H s ?()=()p G s 或()G s H s ?()=()p G s D (s )。

3 高阶系统零极点分布对系统性能影响分析

根轨迹是指当开环系统的某一参数从零变到无穷大时,闭环系统的极点复平面上移动的轨迹。一般情况下,根轨迹指的是当增益K 由零变到无穷大时根的轨迹。当高阶系统开环传递函数某一参数发生改变时,利用根轨迹可以很直观的观察出开环零极点对闭环系统特性的影响,并且进行高阶系统各项特性的分析与计算。借助Matlab 软件,可以利用其中提供的rlocus 函数直接进行系统根轨迹的绘制。

3.1系统开环传递函数为()p G s 的根轨迹

当开环传递函数为2

()(48)

p K

G s s s s =

++时,在Matlab 中首先构建开环传递 函数,然后直接调用rlocus 函数精确的绘制系统的根轨迹,具体的程序代码如下:

num=[0,1]; %开环系统传递函数分子 den=[1,4,8,0]; %开环系统传递函数分母 G=tf(num,den); %构建开环系统传递函数 K=[15];

rlocus(G) % 直接调用函数画根轨迹图

程序运行结果如图3-1所示。

图3-1 ()p G s =

2

(48)

K

s s s ++(k=15)时系统的根轨迹图 3.1.1系统开环传递函数为()p G s ,单位阶跃输入时的根轨迹

当系统输入为单位阶跃函数时,输入函数Laplace 变换R(s)= 1/s ,开环传递函数()G s H s ?()= ()p G s 或()p G s D (s )

。 当开环传递函数为()2G s H s ()(48)

p K

G s s s s ?==++()

时,在Matlab 中首先

构建开环传递函数,然后直接调用rlocus 函数精确的绘制系统的根轨迹,具体的程序代码如下: sys=tf(15,[1 4 8 0]); sysc=feedback(sys,1);

step(sysc)

程序运行结果如图3-2所示。

图3-2 ()G s H s ?()=

2(48)

K

s s s ++(k=15)单位阶跃响应时系统的根轨迹图

3.1.2系统开环传递函数为()p G s ,单位斜坡输入时的根轨迹

当系统输入为单位斜坡函数时,r(t)=t,输入函数Laplace 变换R(s)= 2

1s , 开环传递函数G(s)H(s)= ()p G s =

2(48)

K

s s s ++,系统均为I 型单位反馈系统。单

位斜坡输入系统稳态误差也被称为速度误差,但并非指系统稳态输出与输入之间存在速度上的误差,而是指系统在斜坡输入作用下,系统输出与输入之间存在位置上的误差。系统在单位斜坡输入时的根轨迹,具体的程序代码如下:

num=[0 0 0 15]; den=[1 4 8 0]; step(num,den,3) grid

程序运行结果如图3-3所示

图3-3 ()G s H s ?()=

2

(48)

K

s s s ++(k=15)单位斜坡响应时系统的根轨迹图 3.1.3动态性能、稳态性能分析

稳定是控制系统能够运行的首要条件,在此,分析动态性能时一般以阶跃输入为代表,测定计算系统动态性能,稳态性能分析单位阶跃输入的稳态误差为标准。

单位阶跃输入响应下其动态性能分析如下,如上图2所示可得:

上升时间risetime:0.699sec

调节时间settingtime:7.65sec

峰值peakamplitutd:1.37

稳定值final valvue: 1

超调量overshoot :36.8 at time:1.83sec

稳态误差:0.0625

3.1.4参考程序法

另可采用程序求动态稳态性能,程序如下:

G=tf([0 0 0 1], [1 4 8 0]);

[y,t]=step(G);

C=dcgain(G); %求调节时间setllingtime

i =length(t);

while(y(i)>0.98*C)&(y(i)<1.02*C)

i =i-1;

end

setllingtime=t(i)

C=dcgain(G); %最大(百分比)超调量percentovershoot [Y,k]=max(y);

percentovershoot=100*(Y-C)/C

[Y,k]=max(y); %峰值时间( timetopeak )

timetopeak=t(k)

C=dcgain(G); %上升时间risetime

n =1

while y(n)

n =n+1;

end

risetime=t(n)

3.2系统开环传递函数为()()p G s D s (a=0.1,b=0.11)的根轨迹

当开环传递函数为()p G s D (s )=

())

1.0)(84(11.02

++++s s s s s K 时,在Matlab 中首先 构建开环传递函数,然后直接调用rlocus 函数精确的绘制系统的根轨迹,具体的程序代码如下: n=[0 0 0 15 1.65] d=[1 4.1 8.4 0.8 0] rlocus (n,d)

程序运行结果如图3-4所示

图3-4 ()p G s D (s )=

())

1.0)(84(11.02

++++s s s s s K (k=15)时系统的根轨迹图 3.2.1系统开环传递函数为()()p G s D s ,单位阶跃输入时的根轨迹

当开环传递函数为()p G s D (s )=

())

1.0)(84(11.02

++++s s s s s K 时,在Matlab 中首先 构建开环传递函数,然后直接调用rlocus 函数精确的绘制系统的根轨迹,具体的程序代码如下:

sys=tf([0 0 0 15 1.65], [1 4.1 8.4 0.8 0]); sysc=feedback(sys,1); step(sysc)

程序运行结果如图3-5所示

图3-5()p G s D (s )=

())

1.0)(84(11.02

++++s s s s s K (k=15)在单位阶跃响应下系统的根轨迹图 3.2.2系统开环传递函数为()()p G s D s ,单位斜坡输入时的根轨迹

系统在单位斜坡输入时的根轨迹,具体的程序代码如下:

num=[0 0 0 15 1.65];

den=[1 4.1 8.4 0.8 0]; step(num,den,3) grid

程序运行结果如图3-6所示

图3-6()p G s D (s )=

())

1.0)(84(11.02

++++s s s s s K (k=15)在单位斜坡响应下系统的根轨迹图 3.2.3动态性能、稳态性能分析

单位阶跃输入响应下其动态性能分析如下,如上图5所示可得: 上升时间risetime : 0.697sec 调节时间settingtime : 7.82sec 峰值 peakamplitutd :1.38 稳定值 final valvue : 1

超调量 overshoot : 37.6 at time :1.83sec 稳态误差:0.0667

3.3系统开环传递函数为()()p G s D s (a =b=20)的根轨迹

当开环传递函数为()p G s D (s )=

)

20)(84()

20(2

++++s s s s s K 时,在Matlab 中首先 构建开环传递函数,然后直接调用rlocus 函数精确的绘制系统的根轨迹,具体的程序代码如下: n=[0 0 0 15 300] d=[1 24 88 160 0] rlocus (n,d)

程序运行结果如图3-7所示

图3-7 ()p G s D (s )=

)

20)(84()

20(2

++++s s s s s K (k=15)时系统的根轨迹图

3.3.1系统开环传递函数为()()p G s D s ,单位阶跃输入时的根轨迹

当开环传递函数为()p G s D (s )=

)

20)(84()

20(2

++++s s s s s K 时,在Matlab 中首先 构建开环传递函数,然后直接调用rlocus 函数精确的绘制系统的根轨迹,具体的程序代码如下:

sys=tf([0 0 0 15 300], [1 24 88 160 0]); sysc=feedback(sys,1); step(sysc)

程序运行结果如图3-8所示

图3-8 ()p G s D (s )=

)

20)(84()

20(2

++++s s s s s K (k=15)单位阶跃响应系统的根轨迹图 3.3.2系统开环传递函数为()()p G s D s ,单位斜坡输入时的根轨迹

系统在单位斜坡输入时的根轨迹,具体的程序代码如下:

num=[0 0 0 15 300]; den=[1 24 88 160 0]; step(num,den,3) grid

程序运行结果如图3-9所示

图3-9 ()p G s D (s )=

)

20)(84()

20(2

++++s s s s s K (k=15)单位斜坡响应系统的根轨迹图 3.3.3动态性能、稳态性能分析

单位阶跃输入响应下其动态性能分析如下,如上图8所示可得: 上升时间risetime : 0.699sec 调节时间settingtime : 7.65sec 峰值 peakamplitutd :1.37

稳定值final valvue: 1

超调量overshoot :36.8 at time:1.83sec 稳态误差:0.0667

4 分析比较

4.1三种仿真结果的比较:

表格 1三种情况下的动态性能对照表

(1)系统开环传递函数为

p 时与系统开环传递函数为p ,

a=0.1,b=0.11时较:系统开环传递函数为()()

p G s D s ,a=0.1,b=0.11时,系统零

点、极点数增加,使得上升时间减小,调节时间增大,超调量增大,稳态误差变大,峰值和峰值时间不变。

(2)系统开环传递函数为()()

p G s D s ,a=0.1,b=0.11时与系统开环传递函数为()()p G s D s ,a =b=20时比较:系统开环传递函数为()()

p G s D s ,a =b=20时上升时间增大,调节时间减小,峰值减小,超调量减小,稳态值、稳态误差和峰值时间都不变。

(3)系统开环传递函数为

()

p G s 时与系统开环传递函数为

()()

p G s D s ,a =b=20

时比较:由于两者传递函数一样,动态性能近乎完全相同,仅仅是稳态误差存在误差,但相差不大。

4.2高阶系统偶极子对系统性能的影响

如果闭环系统的零极点相距很近,那么这样的闭环零极点则被称为偶极子。偶极子有实数偶极子和复数偶极子之分,而复数偶极子是以共轭复数的形式出现的。对于远离坐标原点的偶极子,其对系统动态性能的影响几乎可以忽略不计。

在本设计中,给定的开环传递函数为()2G s H s (48)

K

s s s ?=++()

,由前面的

分析可知,闭环传递函数增加一对接近原点的偶极子时,系统的根轨迹基本上没有变化,系统在增益K 值一定的情况下,其对阶跃输入的闭环系统的动态性能产生了影响,使系统的超调量增加,峰值时间滞后,但对系统的稳态性能没有

影响;对于斜坡输入的闭环系统,增加的这对接近原点的偶极子提高了系统的稳态误差系数,使系统的稳态性能得到了改善。当增加一对远离坐标原点的偶极子时,在增益K 值相同情况下,阶跃输入系统的动态性能和稳态性能均没有改变,斜坡输入的稳态性能也没有改变,由此可得,当系统增加了一对远离坐标原点的偶极子时,其对系统的动态性能几乎没有影响。

下面分析偶极子离坐标原点不同位置时对系统性能造成不同影响的原因。

(1)当输入为阶跃信号时,研究闭环传递函数为

2

2()

()(

)()(22)

a s a s a s a s s δδ++Φ=++++时系统的响应,在这种情况下,闭环系统有一对 复数极点1j -±,一个实数极点a -和和一个实数零点()a δ-+。当0δ→时,实数闭环零极点十分接近,构成偶极子,当a -不非常接近坐标原点时,系统单位阶跃响应为

222()1()(22)()11

sin(135)1

1

at t

a h t e e a a a a t arctg

arctg

a a δδδδ--=-+?

+-++?+--+-- (5)

当0δ→时上式可简化为

2

2()1sin(135)1sin(135)(22)

at t t h t e e t e t a a a δ

---≈-

-=--+ (6) 当a -远离原点时,式(6)可进一步简化为

()1sin(135)t h t e t -≈+

- (7)

此时,偶极子的影响完全可以忽略不计,系统的单位阶跃响应完全由主导极点决定。

当偶极子十分接近坐标原点时,0a →时,式(6)只可简化为

()1sin(135)t h t e t a

δ

-≈-

+

- (8)

此时,δ与a 可比,a

δ

影响不能忽略,所以接近坐标原点的偶极子对系统动态性

能的影响必须考虑。

以上结论对不同闭环传递函数的高阶系统同样适用,在本设计中,增加的偶极子为—0.11和—0.1时,十分接近原点,其对系统的动态性能的影响不能够忽

现代控制理论实验报告

实验报告 ( 2016-2017年度第二学期) 名称:《现代控制理论基础》 题目:状态空间模型分析 院系:控制科学与工程学院 班级: ___ 学号: __ 学生姓名: ______ 指导教师: _______ 成绩: 日期: 2017年 4月 15日

线控实验报告 一、实验目的: l.加强对现代控制理论相关知识的理解; 2.掌握用 matlab 进行系统李雅普诺夫稳定性分析、能控能观性分析; 二、实验内容 1 第一题:已知某系统的传递函数为G (s) S23S2 求解下列问题: (1)用 matlab 表示系统传递函数 num=[1]; den=[1 3 2]; sys=tf(num,den); sys1=zpk([],[-1 -2],1); 结果: sys = 1 ------------- s^2 + 3 s + 2 sys1 = 1 ----------- (s+1) (s+2) (2)求该系统状态空间表达式: [A1,B1,C1,D1]=tf2ss(num,den); A = -3-2 10 B = 1 C = 0 1

第二题:已知某系统的状态空间表达式为: 321 A ,B,C 01:10 求解下列问题: (1)求该系统的传递函数矩阵: (2)该系统的能观性和能空性: (3)求该系统的对角标准型: (4)求该系统能控标准型: (5)求该系统能观标准型: (6)求该系统的单位阶跃状态响应以及零输入响应:解题过程: 程序: A=[-3 -2;1 0];B=[1 0]';C=[0 1];D=0; [num,den]=ss2tf(A,B,C,D); co=ctrb(A,B); t1=rank(co); ob=obsv(A,C); t2=rank(ob); [At,Bt,Ct,Dt,T]=canon(A,B,C,D, 'modal' ); [Ac,Bc,Cc,Dc,Tc]=canon(A,B,C,D, 'companion' ); Ao=Ac'; Bo=Cc'; Co=Bc'; 结果: (1) num = 0 01 den = 1 32 (2)能控判别矩阵为: co = 1-3 0 1 能控判别矩阵的秩为: t1 = 2 故系统能控。 (3)能观判别矩阵为: ob = 0 1

控制器极点配置方法

控制器极点配置方法 如果已知系统的模型或传递函数,通过引入某种控制器,使得闭环系统的极点可以移动到指定的位置,从而使系统的动态性能得到改善。这种方法称为极点配置法。 例6-12 有一控制系统如图6-38,其中,要求设计一个控制器,使系统稳定。 图6-38 解:(1)校正前,闭环系统的极点: > 0 因而控制系统不稳定。 (2)在控制对象前串联一个一阶惯性环节,c>0,则闭环系统极点: 显然,当,时,系统可以稳定。但此对参数c 的选择依赖于 a 、b 。因而,可 选择控制器,c 、d ,则有特征方程: 当,时,系统稳定。 本例由于原开环系统不稳定,因而不能通过简单的零极点相消方式进行控制器的设计,其原因在于控制器的参数在具体实现中无法那么准确,从而可能导致校正后的系统仍不稳定。 例6-13 已知一单位反馈控制系统的开环传递函数:

要求设计一串联校正装置Gc(s) ,使校正后系统的静态速度误差系统,闭环主导极点在 处。 解:首先,通过校正前系统的根轨迹可以发现,如图6-39所示,其主导极点为: 。 图6-39 为使主导极点向左偏移,宜采用超前校正装置。 (2)令超前校正装置,可采用待定系数法确定相关参数: 又

其中、、、为待定系数。 进一步可得: 即 将代入式子可以得到:,,,。进一步可得超前校正装置的传递函数: 校正后系统的根轨迹如图6-39所示。 该校正装置与例6-7中由超前装置获取的校正装置结果基本相同,说明结果是正确的。 在matlab中,亦有相应的命令可进行极点配置,主要有三个算法可实现极点配置算法:Bass-Gura算法、Ackermann 算法和鲁棒极点配置算法。这些算法均以状态空间进行表征,通过设定期望极点位置,获取状态反馈矩阵K。下面通过示例介绍其中的一种算法。 例6-14 考虑给定的系统,其状态方程模型如下:

关于零点和极点的讨论

【转】关于零点和极点的讨论 2011-08-13 19:46 转载自wycswycs 最终编辑hyleon023 一、传递函数中的零点和极点的物理意义: 零点:当系统输入幅度不为零且输入频率使系统输出为零时,此输入频率值即为零点。极点:当系统输入幅度不为零且输入频率使系统输出为无穷大(系统稳定破坏,发生振荡)时,此频率值即为极点。举例:有时你家音响或电视机壳发出一阵阵尖厉嘶嘶声,此时聪明的你定会知道机壳螺丝松了,拧紧螺丝噪声问题就解决了。其实,你所做的就是极点补偿,拧紧螺丝——你大大降低了系统极点频率。当然此处系统是指机械振动系统不是电路系统,但原理一样。抛砖引玉尔,希望更多答案。(这一段有待讨论) 二、每一个极点之处,增益衰减-3db, 并移相-45度。极点之后每十倍频,增益下降20db.零点与极点相反;每一个零点之处,增益增加3db,并移相45度。零点之后,每十倍频,增益增加20db。波特图如下: 以下是极点图,零点图与极点图相反。极点零点一般用于环路的稳定性分析。 附上一个零点图

1、由于在CMOS里面一般栅端到地的电容较大,所以一般人们就去取这个极点,也就是说输入信号频率使得节点到地的阻抗无穷大(也就是所谓的1/RC)R为到地电阻,C为到地电容(并联产生极点)零点在CMOS中往往是由于信号通路上的电容产生的,即使得信号到地的阻抗为0,在密勒补偿中,不只是将主极点向里推,将次极点向外推(增大了电容),同时还产生了一个零点(与第三极点频率接近),只不过人们一般只关心前者。 2、经验上来讲,放大器电路中高阻抗的节点都要注意,即使这点上电容很小,都会产生一个很大的极点。零点一般就不那么直观了,通常如果两路out of phase的信号相交就会产生零点,但这不能解释所有的零点。 3、个人觉得零点、极点只是电路分析中抽象出来的辅助方法,可以通过零极点分析电路动作特征,然而既然有抽象肯定有它的物理表现,极点从波特图上看两个作用:延时和降低增益,在反馈系统中作用就是降低反馈信号幅度以及反馈回去的时间,所以如果某个节点存在对地电容,必然会对电容充电,同时电容和前级输出电阻还存在分压,所以这个电容会产生极点!而要保持稳定,则要看在激励情况下反馈信号会不会持续增加?而这就需要分析信号在通过电路的过程中的衰减或增加和加快或者减慢,零极点这就表征了电路的这种特性,所以可能某个节点会产生极点,也可能整个系统不同信号通路相互作用产生零极点。 俺也谈谈我的看法: 1。零/极点的产生与反馈与否似乎没有直接联系。一个电路的小信号模型中存在某一个节点,这个节点有两条通路与其

倒立摆状态空间极点配置控制实验实验报告

《现代控制理论》实验报告 状态空间极点配置控制实验 一、实验原理 经典控制理论的研究对象主要是单输入单输出的系统,控制器设计时一般需要有关被控对象的较精确模型,现代控制理论主要是依据现代数学工具,将经典控制理论的概念扩展到多输入多输出系统。极点配置法通过设计状态反馈控制器将多变量系统的闭环系统极点配置在期望的位置上,从而使系统满足瞬态和稳态性能指标。 1.状态空间分析 对于控制系统X = AX + Bu 选择控制信号为:u = ?KX 式中:X 为状态向量( n 维)u 控制向量(纯量) A n × n维常数矩阵 B n ×1维常数矩阵 求解上式,得到 x(t) = (A ? BK)x(t) 方程的解为: x(t) = e( A?BK )t x(0) 状态反馈闭环控制原理图如下所示: 从图中可以看出,如果系统状态完全可控,K 选择适当,对于任意的初始状态,当t趋于无穷时,都可以使x(t)趋于0。 2.极点配置的设计步骤 1) 检验系统的可控性条件。 2) 从矩阵 A 的特征多项式 来确定 a1, a2,……,an的值。 3) 确定使状态方程变为可控标准型的变换矩阵 T:T = MW 其中 M 为可控性矩阵, 4) 利用所期望的特征值,写出期望的多项式 5) 需要的状态反馈增益矩阵 K 由以下方程确定: 二、实验内容 针对直线型一级倒立摆系统应用极点配置法设计控制器,进行极点配置并用Matlab进行仿真实验。 三、实验步骤及结果 1.根据直线一级倒立摆的状态空间模型,以小车加速度作为输 入的系统状态方程为: 可以取1 l 。则得到系统的状态方程为: 于是有:

直线一级倒立摆的极点配置转化为: 对于如上所述的系统,设计控制器,要求系统具有较短的调整时间(约 3 秒)和合适的阻尼(阻尼比? = 0.5)。 2.采用四种不同的方法计算反馈矩阵 K。 方法一:按极点配置步骤进行计算。 1) 检验系统可控性,由系统可控性分析可以得到,系统的状态完全可控性矩阵的秩等于系统的状态维数(4),系统的输出完全可控性矩阵的秩等于系统输出向量y 的维数(2),所以系统可控。 倒立摆极点配置原理图 2) 计算特征值 根据要求,并留有一定的裕量(设调整时间为 2 秒),我们选取期望的闭环极点s =μi (i = 1,2,3,4) ,其中: 其中,μ 3,μ 4 使一对具有的主导闭环极点,μ 1 ,μ 2 位于 主导闭环极点的左边,因此其影响较小,因此期望的特征方程为: 因此可以得到: 由系统的特征方程: 因此有 系统的反馈增益矩阵为: 3) 确定使状态方程变为可控标准型的变换矩阵 T:T = MW 式中: M = 0 1.0000 0 0 1.0000 0 0 0 0 0.7500 0 5.5125 0.7500 0 5.5125 0 W = 0 -7.3500 -0.0000 1.0000 -7.3500 -0.0000 1.0000 0 -0.0000 1.0000 0 0 1.0000 0 0 0 于是可以得到: T = -7.3500 -0.0000 1.0000 0 0 -7.3500 -0.0000 1.0000 0 -0.0000 0.7500 0 -0.0000 0 -0.0000 0.7500 T’= -7.3500 0 0 -0.0000 -0.0000 -7.3500 -0.0000 0 1.0000 -0.0000 0.7500 -0.0000 0 1.0000 0 0.7500

零极点对系统的性能影响分析

零极点对系统性能的影响分析 1任务步骤 1.分析原开环传递函数G0(s)的性能,绘制系统的阶跃响应曲线得到系 统的暂态性能(包括上升时间,超调时间,超调量,调节时间); 2.在G0(s)上增加零点,使开环传递函数为G1(s),绘制系统的根轨迹, 分析系统的稳定性; 3.取不同的开环传递函数G1(s)零点的值,绘制系统的阶跃响应曲线得 到系统的暂态性能(包括上升时间,超调时间,超调量,调节时间); 4.综合数据,分析零点对系统性能的影响 5.在G0(s)上增加极点,使开环传递函数为G2(s),绘制系统的根轨迹, 分析系统的稳定性; 6.取不同的开环传递函数G2(s)极点的值,绘制系统的阶跃响应曲线得 到系统的暂态性能(包括上升时间,超调时间,超调量,调节时间); 7.综合数据,分析极点对系统性能的影响。 8.增加一对离原点近的偶极子和一对距离原点远的偶极子来验证偶极子 对消的规律。

2原开环传递函数G0(s)的性能分析 2.1 G0(s)的根轨迹 取原开环传递函数为: Matlab指令: num=[1]; den=[1,0.8,0.15]; rlocus(num,den); 得到图形: 图1 原函数G0(s)的根轨迹 根据原函数的根轨迹可得:系统的两个极点分别是-0.5和-0.3,分离点为-0.4,零点在无限远处,系统是稳定的。 2.2 G0(s)的阶跃响应 Matlab指令: G=zpk([],[-0.3,-0.5],[1]) sys=feedback(G,1) step(sys) 得到图形:

图2 原函数的阶跃响应曲线 由阶跃响应曲线分析系统暂态性能: 曲线最大峰值为1.12,稳态值为0.87, 上升时间tr=1.97s 超调时间tp=3.15s 调节时间ts=9.95s ,2=? 超调量% p σ=28.3%

现代控制理论课程设计(大作业)

现代控制理论课 程设计报告 题目打印机皮带驱动系统能控能观和稳定性分析 项目成员史旭东童振梁沈晓楠 专业班级自动化112 指导教师何小其 分院信息分院 完成日期 2014-5-28

目录 1. 课程设计目的 (3) 2.课程设计题目描述和要求 (3) 3.课程设计报告内容 (4) 3.1 原理图 (4) 3.2 系统参数取值情况 (4) 3.3 打印机皮带驱动系统的状态空间方程 (5) 4. 系统分析 (7) 4.1 能控性分析 (7) 4.2 能观性分析 (8) 4.3 稳定性分析 (8) 5. 总结 (10)

项目组成员具体分工 打印机皮带驱动系统能控能观和稳定性 分析 课程设计的内容如下: 1.课程设计目的 综合运用自控现代理论分析皮带驱动系统的能控性、能观性以及稳定性,融会贯通并扩展有关方面的知识。加强大家对专业理论知识的理解和实际运用。培养学生熟练运用有关的仿真软件及分析,解决实际问题的能力,学会使用标准、手册、查阅有关技术资料。加强了大家的自学能力,为大家以后做毕业设计做很好的铺垫。 2.课程设计题目描述和要求 (1)环节项目名称:能控能观判据及稳定性判据 (2)环节目的: ①利用MATLAB分析线性定常系统的可控性和客观性。 ②利用MATLAB进行线性定常系统的李雅普诺夫稳定性判据。 (3)环节形式:课后上机仿真 (4)环节考核方式: 根据提交的仿真结果及分析报告确定成绩。 (5)环节内容、方法: ①给定系统状态空间方程,对系统进行可控性、可观性分析。 ②已知系统状态空间方程,判断其稳定性,并绘制出时间响应曲线验

证上述判断。 3.课程设计报告内容 3.1 原理图 在计算机外围设备中,常用的低价位喷墨式或针式打印机都配有皮带驱动器。它用于驱动打印头沿打印页面横向移动。图1给出了一个装有直流电机的皮带驱动式打印机的例子。其光传感器用来测定打印头的位置,皮带张力的变化用于调节皮带的实际弹性状态。 图1 打印机皮带驱动系统 3.2 系统参数取值情况 表1打印装置的参数

零极点分布对系统频率响应的影响

备注:(1)、按照要求独立完成实验内容。 (2)、实验结束后,把电子版实验报告按 要求格式改名(例:09 号_张三 _实验七.doc)后,实验室统一刻 盘留档。 实验三零极点分布对系统频 率响应的影响 一、实验目的 1. 掌握系统差分方程得到系统函数的方法; 2. 掌握系统单位脉冲响应获取系统函数的方法; 3. 掌握用系统函数零级点分布的几何方法分析研究系统的频率响应 二、实验原理 在MA TLAB 中,可以用函数[z,p,K]=tf2zp ( num ,den)求得有理分式形式的系统转移函数的零、极点,用函数zplane( z,p)绘出 零、极点分布图;也可以用函数 zplane( num,den)直接绘出有理分式形式的系统转移函数的零、极点分布图。 另外,在MA TLAB 中,可以用函数[r,p,k]=residuez(num,den)完成部分分式展开计算;可以用函数sos=zp2sos( z,p,K )完成三、实验内容(包括代码与产生的图形) 1. 假设系统用下面差分方程描述: y(n)=x(n)+ay(n-1) 假设a=0.7, 0.8, 0.9 ,分别在三种情况下分析系统的频率特性,并打印幅度特性曲线。 B=1; A=[1,-0.7]; subplot(3,3,1);zplane(B,A); xlabel(' 实部Re'); ylabel(' 虚部Im'); title('y(n)=x(n)+0.7y(n-1) 传输函数零、极点分布'); grid on [H,w]=freqz(B,A,'whole'); subplot(3,3,4); 将高阶系统分解为 2 阶系统的串联。plot(w/pi,abs(H),'linewidth',2);

基于极点配置的控制器设计与仿真

计算机控制理论与设计作业 题目:基于极点配置方法的直流调速系统的控制器设计

摘要 本文目的是用极点配置方法对连续的被控对象设计控制器。基本思路是对连续系统进行数学建模,将连续模型进行离散化,针对离散的被控对象,用极点配置的方法分别在用状态方程和传递函数两种描述方法下设计前馈和反馈控制器,并用MATLAB仿真。文中具体以直流调速系统作为研究对象,对直流调速系统的组成和结构进行了分析,把各个部分进行数学建模,求出其传递函数,组成系统结构框图,利用自控原理的知识对结构图化简,求出被控对象的传递函数和状态方程,进一步得将其离散化。第一种是通过极点配置设计方法的原理,用状态方程设计被控对象的控制律,因为直流调速系统存在噪声,实际状态不可测,故选择了全阶的观测器,又因为采样时间小于计算延时,所以选择了预报观测器。利用所学知识对此闭环系统设计前馈和反馈控制器[1]。第二种利用传统的离散传递函数,从代数多项式的角度进行复合控制器的设计,在保证系统稳定的情况下,分析系统的可实现性,稳定性,静态指标,动态指标,抗干扰等方面性能研究前馈反馈相结合控制器设计。重点是保证被控对象的不稳定的零极点不能被抵消。最后利用MATLAB的Simulink进行仿真,观察系统的输出的y和u和收敛性,并加入扰动看其抗干扰性能,得出结论。 经研究分析,对于直流调速系统,基于极点配置设计的前馈反馈相结合的控制器,具有良好的稳定性能和抗干扰性能。运行结果符合实际情况。 关键词:极点配置;状态方程;直流调速系统;代数多项式;Matlab;

1绪论 1.1论文的背景及意义 在工业生产和日常生活中,自动控制系统分为确定性系统和不确定性系统两类,确定性系统是指系统的结构和参数是确定的,确定的输入下,输出也确定的一类系统。确定性系统相对于不确定性系统而言的。在确定的系统中所用的变量都可用确切的函数关系来描述,系统的运动特性可以完全确定。以确定性系统为研究对象的控制理论称为确定性控制理论。本文以直流调速系统为研究对象,利用极点配置的设计方法,包括利用状态空间模型和传递函数模型分别描述线性系统,采用闭环极点为指标的控制器设计的理论和方法,设计出前馈和反馈控制器,组建闭环控制系统,用Matlab进行仿真可以逼真地还原出实际系统。 1.2 论文的主要内容 本文直流电机的调速系统的模型作为研究对象,利用线性系统极点配置的设计方法,设计前馈反馈控制器。论文研究的主要内容: (1)阅读学习国内外期刊文献,研究了极点配置的基本原理和Matlab的实现方法。 (2)系统的说明直流电机的系统结构和工作原理并分析,建立直流调速系统的数学模型,将其进行离散化,并讨论其传递函数与状态方程之间的关系。 (3)分析极点配置控制器的设计原理,利用状态方程设计控制器。 (4)将被控对象的传递函数离散化,利用传递函数模型设计控制器。 (4)在MATLAB中建立闭环直流调速系统的模型,根据闭环极点配置的设计步骤编写程序,用Simulink搭建仿真系统,对闭环直流调速系统的输出进行仿真分析。 (5)对仿真结果分析。将仿真结果与实际直流调速系统的阶跃响应的各项参数相比较,得出结论。

极点配置直接自校正控制最小相位确定性系统Word文档

%极点配置直接自校正控制(最小相位确定性系统) 设被控对象为开环不稳定最小相位系统: ()2(1) 1.1(2)(3)0.5(4)y k y k y k u k u k --+-=-+- 期望传递函数分母多项式为: 112()1 1.32050.4966m A z z z ---=-+ 取遗忘因子=1,期望输出y r (k )为幅值为10的方波信号。 clear all;close all; a=[1 -2 1.1];b=[1 0.5];d=3; %对象参数 Am=[1 -1.3 0.5]; %期望闭环特征多项式 na=length(a)-1;nb=length(b)-1; nam=length(Am)-1; nf=nb+d-1;ng=na-1; %确定多项式A0 na0=2*na-nam-nb-1; %观测器最低阶次 A0=1; for i=1:na0 A0=conv(A0,[1 0.3-i*0.1]); %生成观测器 end AA=conv(A0,Am);naa=na0+nam;

nfg=max(naa,max(nf,ng)); %用于ufk, yuf更新 nr=na0; %R的阶次 L=400; uk=zeros(d+nb,1); ufk=zeros(d+nfg,1); %滤波输入的初值 yk=zeros(max(na,d),1); yfk=zeros(d+nfg,1); yrk=zeros(max(na,d),1); yr=10*[ones(L/4,1);-ones(L/4,1);ones(L/4,1);-ones(L/4+d,1)] ; %RELS初值设定 thetae_1=0.001*ones(nf+ng+2,1); P=10^6*eye(nf+ng+2); lambda=1; %遗忘因子 for k=1:L time(k)=k; y(k)=-a(2:na+1)*yk(1:na)+b*uk(d:d+nb); ufk(d)=-AA(2:naa+1)*ufk(d+1:d+naa)+uk(d); %滤波输入输出

零极点分布对系统频率响应的影响

备注:(1)、按照要求独立完成实验内容。 (2)、实验结束后,把电子版实验报告 按要求格式改名(例:09号_张 三_实验七.doc)后,实验室统一 刻盘留档。 实验三零极点分布对系统频 率响应的影响 一、实验目的 1.掌握系统差分方程得到系统函数的方法; 2.掌握系统单位脉冲响应获取系统函数的方法; 3.掌握用系统函数零级点分布的几何方法分析研究系统的频率响应 二、实验原理 在MA TLAB中,可以用函数[z,p,K]=tf2zp (num,den)求得有理分式形式的系统转移函数的零、极点,用函数zplane(z,p)绘出零、极点分布图;也可以用函数zplane(num,den)直接绘出有理分式形式的系统转移函数的零、极点分布图。 另外,在MA TLAB中,可以用函数 [r,p,k]=residuez(num,den)完成部分分式展开计算;可以用函数sos=zp2sos(z,p,K)完成将高阶系统分解为2阶系统的串联。三、实验内容(包括代码与产生的图形) 1. 假设系统用下面差分方程描述: y(n)=x(n)+ay(n-1) 假设a=0.7, 0.8, 0.9 ,分别在三种情况下分析系统的频率特性,并打印幅度特性曲线。 B=1; A=[1,-0.7]; subplot(3,3,1);zplane(B,A); xlabel('实部Re'); ylabel('虚部Im'); title('y(n)=x(n)+0.7y(n-1)传输函数零、极点分布'); grid on [H,w]=freqz(B,A,'whole'); subplot(3,3,4); plot(w/pi,abs(H),'linewidth',2);

自校正控制系统分析

自校正控制系统分析 摘要:本文介绍了自校正控制系统的基本结构,主要介绍了基于PID 结构的间接自校正控制系统的控制算法,并通过实例仿真结果,表明了自校正PID 控制不仅需要调整的参数少,而且还能够根据对象特性的变化在线修改这些参数,增强了控制器的自适应能力。 关键字:自校正控制系统;PID 控制;自适应能力 1 引言 自校正控制系统主要由参数估计器、控制器设计、控制器和被控对象4部分组成,如图1所示。该系统内环由被控对象和可调控制器组成,外环则由过程模型参数估计器和控制器参数计算器所组成,其任务是辨识过程参数再按选定的设计方法综合出控制器参数,用以修改内环的控制器。这类系统的特点是必须对过程或者被控对象进行在线辨识估计器,然后用对象参数估计值和事先规定的性能指标在线综合出调节器的控制参数,并根据此控制参数产生的控制作用对被控对象进行控制经过多次地辨识和综合调节参数可以使系统的性能指标趋于最优。 图1 自适应控制系统结构图 自适应控制算法对于复杂系统能够达到较好的控制精度跟踪速度以及稳定性,其实时性好,算法简单,易于实现。然而,在PID 控制中,一个至关重要的问题就是PID 参数的整定。典型的PID 参数整定方法是在获取被控对象数学模型的基础上,根据某一整定规则来确定参数。PID 参数整定的优劣,不但会影响到控制质量,而且会影响到控制系统的稳定性和鲁棒性。本文介绍了基于PID 结构的间接自校正控制。 2 基于PID 结构的间接自校正控制 自校正PID 控制算法的设计思想是: 以极点配置控制律为控制器基本形式,引入递推算法估计对象参数,并将估计结果按极点配置法进行控制器参数的设计。下面介绍自校正PID 控制器。 被控对象为 )()()()()(11k e k u z B z k y z A d +=--- (1) 式中,u(k),y(k)表示系统的输入和输出,e(k)为外部扰动,d ≥为纯延迟,且221111)(---++=z a z a z A ,21101)(---+???++=z b z b b z B b n 。 对系统(1)采用PID 控制,此时,对应的PID 控制器可表示为 )()()()()()(1111k y z R k y z R t u z F r ----= (2) ?=--)()(1 11z F z F (3) 过 程过程模型参数估计器 可调控制器 输出控制量输入 过程参数 控制器 参 数 控制器参数 计算器

matlab实验四 系统的零极点分析

实验四连续时间系统复频域分析和离散时间系统z域分析 一.实验目的: 1.掌握连续信号拉氏变换和拉氏反变换的基本实现方法。 2.熟悉laplace函数求拉普拉斯变换,ilaplace函数求拉氏反变换 的使用。 3.掌握用ztrans函数,iztrans函数求离散时间信号z变换和逆z 变换的基本实现方法。 4.掌握用freqs函数,freqz函数由连续时间系统和离散时间系统 系统函数求频率响应。 5.掌握zplane零极点绘图函数的使用并了解使用零极点图判断系 统稳定性的原理。 二、实验原理: 1.拉氏变换和逆变换 原函数()() ?象函数 f t F s 记作:[()]() =→拉氏变换 L f t F s 1[()]() -=→拉氏反变换 L F s f t 涉及函数:laplace,ilapace. 例如:

syms t;laplace(cos(2*t)) 结果为:ans =s/(s^2+4) syms s;ilaplace(1./(s+1)) 结果为:ans = exp(-t) 2. 系统传递函数H(s)或H(z)。 12121212...()()()...m m m n n n b s b s b B s H s A s a s a s a ----+++==+++ 112112...()()()...m m m n n n b z b z b B z H z A z a z a z a --+--++++==+++ 其中,B 为分子多项式系数,A 为分母多项式系数。 涉及函数:freqz,freqs. 3. 系统零极点分布与稳定性的判定。 对于连续时间系统,系统极点位于s 域左半平面,系统稳定。 对于离散时间系统,系统极点位于z 域单位圆内部,系统稳定。 涉及函数:zplane. 三、 实验内容 1. 验证性实验 a) 系统零极点的求解和作图

零点、极点和偶极子对系统性能的影响

零点、极点和偶极子对系统性能的影响 我们知道在系统之中,适当的加入零点,极点还有偶极子,可以在某些方面提升系统的性能。但是加入某项时候,到底是如何提升的呢?为此,我们用matlab 软件来帮助我们分析,以方便我们进行比较。为了方便我们的比较,我们还将零点,极点还有偶极子对系统性能的影响分开来进行一个一个的讨论。这样我们可以更加直观的感受到他们的影响。(在分析的时候选择稳定的原始系统) 在分析的时候我们选择的原系统的闭环传递函数为: 通过matlab 编程和绘图我们可以得到()s G 的单位阶跃响应曲线如下图:

现在我们开始分析加入零点,极点和偶极子对系统性能的影响! 一、零点 为了在方程之中添加一个零点,我们将系统的闭环传递函数变为: 我们可以通过matlab 编程,绘出 () 1s G 和()s G 的响应曲线,通过分析相应的 响应曲线,我们就可以得出相应的结论! matlab 的编程为: n=4; d=[4,1,4]; t1=0:0.1:15; y1=step(n,d,t1); n1=[3,4]; y2=step(n1,d,t1); plot(t1,y1,'-r',t1,y2,'-g'),grid xlabel('t'),ylabel('c(t)'); title('单位阶跃响应')

两者的响应曲线为: 通过对两条响应曲线的分析我们不难得出以下的结论: (1)系统的稳定性没变,还是稳定系统; (2)系统的上升时间r t 减小; (3)系统的超调时间p t 减小; (4)系统的超调量 % p 变长; (5)系统的调节时间 s t 变长;

综合性实验 极点配置全状态反馈控制指导书

综合性实验极点配置全状态反馈控制 一、实验目的 1.学习并掌握用极点配置方法设计全状态反馈控制系统的方法。 2.用电路模拟与软件仿真方法研究参数对系统性能的影响。 二、实验内容 1.设计典型二阶系统的极点配置全状态反馈控制系统,并进行电路模拟与软件仿真研究。 2.设计典型三阶系统的极点配置全状态反馈控制系统,并进行电路模拟与软件仿真研究。 三、实验前准备工作 1 推导图1的数学模型(状态空间表达式),分析系统的能控性。 2 若系统期望的性能指标为:超调量,峰值时间,求出期望的极点值。根据以上性能指标要求设计出状态反馈控制器。 3 推导图2的数学模型(传递函数),求出其单位阶跃响应的动态性能指标(超调量、调节时间、静态速度误差系数)。 4 推导图4的数学模型(状态空间表达式),分析系统的能控性。 5考虑系统稳定性等要求,选择理想极点为:S1=-9,S2 =-2+j2,S3=-2-j2, 根据以上性能指标要求思考如何设计状态反馈控制器。 6 推导图7的数学模型(传递函数)。 四、实验步骤 1.典型二阶系统 (1)对一已知二阶系统(见图1)用极点配置方法设计全状态反馈系数。 (2)见图2和图3,利用实验箱上的电路单元U9、U11、U12和U8,按设计参数设计并连接成系统模拟电路,测取阶跃响应,并与软件仿真结果比较。 (3)改变系统模拟电路接线,使系统恢复到图1所示情况,测取阶跃响应,并与软件仿真结果比较。 (4)对实验结果进行比较、分析,并完成实验报告。 2.典型三阶系统 (1)对一已知三阶系统(见图4)用极点配置方法设计全状态反馈系数。 (2)见图5和图7,利用实验箱上的电路单元U9、U11、U12、U15和

自控原理实验(平台课)

实验一 控制系统的初步认识 过程控制CS4000系统介绍 过程控制是针对工业生产过程中液位、流量、温度、压力等参数的控制。 一、 CS4000系统组成 1、 双管路流量系统 系统包括两个独立的水路动力系统,一路由 水泵、电动调节阀、电磁流量计组成(主管路), 由电动调节阀调节流量,电磁流量计检测流量; 另一路由变频器、水泵、涡轮流量计组成(副管路),由变频器调节流量,涡轮流量计检测流量。如右图: 双管路流量系统可以完成多种方式下的流量控制实验:a.单回路流量控制实验b.流量比值控制实验 2、 四容水箱液位系统 系统提供一组有机玻璃四容水箱,每个水箱装有 液位变送器;通过阀门切换,任何两组动力的水流可以到达任何一个水箱。因此系统可以完成多种方式下的液位、流量及其组合实验。如右图: 3、 热水箱-纯滞后水箱温度系统 系统提供了一个加热水箱和一个温度纯滞后水箱,加热水箱及纯滞后水箱不同时间常数位置装有Pt100热电阻检测温度,由可控硅控制电加热管提供可调热源,系统可以完成多种温度实验 二、 执行机构 1、可控硅移相调压装置 通过4-20mA 电流控制信号控制单相220V 交流电源在0-220V 之间实现连续变化,从而调节电加热管的功率。 2、调节阀 电动调节阀 电动调节阀通过改变管路的流通面积来改变控制通过的流量,由电动执行机构和调节阀两部分组成。调节阀部分主要由阀杆、阀体、阀芯、及阀座等部件组成。当阀芯在阀体内上

下移动时,可改变阀芯阀座间的流通面积。 电动执行机构一般采用随动系统的方案组成,如上图所示。从调节器来的信号通过伺服放大器驱动电动机,经减速器带动调节阀,同时经位置发生器将阀杆行程反馈给伺服放大器,组成位置随动系统。依靠位置负反馈,保证输入信号准确地转换为阀杆的行程。 为了简单,电动执行器中常使用两位式放大器和交流鼠笼式电机组成交流继电器式随动系统。执行器中的电机常处于频繁的启动制动过程中,在调节器输出过载或其他原因使阀卡住时,电机还可能长期处于堵转状态。为了保证电机在这种情况下不至因过热而烧毁,电动执行器都使用专门的异步电机,以增大转子电阻的办法,减小启动电流,增加启动力矩,使电机在长期堵转时温升也不超出允许范围。这样做虽使电机效率降低,但大大提高了执行器的工作可靠性。 三、检测机构 1、扩散硅式压力传感器 2、涡轮流量计 3、电磁流量计 4、Pt100热电阻温度传感器 四、控制系统 1、智能调节仪控制系统 智能调节仪型号为上海万迅仪表有限公司AI818A,系统中有两块AI818A,以便可以实现串级等复杂控制。AI818A与电脑通过串口通讯。上位机软件采用MCGS。AI818A 与MCGS的使用参照相关手册。 2、DDC计算机直接控制系统 采用集智达R-8000系列RemoDAQ- R-8017模拟量输入模块, RemoDAQ-R-8024模拟量输出模块。与电脑串口通讯。上位机DDC实验软件是厂家面向过程控制实验特点,结合本过程控制实验对象,开发的一套DDC实验软件。运行电脑桌面的“中控教仪过程控制实验软件”图标即可打开实验软件。实验内容参照相应的实验指导书。 3、PLC可编程控制器控制系统 采用西门子s7-300PLC,电脑上安装了一块CP5621西门子通讯卡(PCI-E插槽),通讯线将卡接口连到PLC的cpu的MPI端口,实现通讯。PLC中运行的程序采用西门子STEP7设计并下载到PLC中、上位机程序采用西门子Wincc设计,存放在电脑C盘基础性/总线型目录的PLC子目录下,运行电脑桌面的WINCC图标可打开该实验软件,再参照相应的实验指导书完成实验。 4、C3000过程控制器 C3000 是国产的一种采用32 位微处理器和5.6 英寸TFT彩色液晶显示屏的可编程多回路控制器。C3000 过程控制器主要有控制、记录、分析等功能。可通过串口、以太网和CF卡实现与上位机的数据交换。本装置中采用串口与上位机通讯。C3000内部有3个程序控制模块、4 个单回路PID控制模块、6 个ON/OFF 控制模块,可实现串级、分程、三冲量、比值控制及用户定制等多种复杂的控制方案。

实验Z变换离散系统零极点分布和频率分析

实验三 Z 变换、离散系统零极点分布和频率分析 一、 实验目的 ● 学会运用MATLAB 求离散时间信号的z 变换和z 反变换; ● 学会运用MATLAB 分析离散时间系统的系统函数的零极点; ● 学会运用MATLAB 分析系统函数的零极点分布与其时域特性的关系; ● 学会运用MATLAB 进行离散时间系统的频率特性分析。 二、 实验仪器:电脑一台,MATLAB6.5或更高级版本软件一套。 三、 实验原理及实例分析 (一)离散时间信号的Z 变换 1.利用MATLAB 实现z 域的部分分式展开式 MATLAB 的信号处理工具箱提供了一个对F(Z)进行部分分式展开的函数residuez(),其调用形式为: [r,p,k]=residuez(num,den) 式中,num 和den 分别为F(Z)的分子多项式和分母多项式的系数向量,r 为部分分式的系数向量,p 为极点向量,k 为多项式的系数向量。 【实例3-1】 利用MATLAB 计算3 21431818 ) (-----+z z z z F 的部分分式展开式。 解:利用MATLAB 计算部分分式展开式程序为 % 部分分式展开式的实现程序 num=[18]; den=[18 3 -4 -1]; [r,p,k]=residuez(num,den) 2.Z 变换和Z 反变换 MATLAB 的符号数学工具箱提供了计算Z 变换的函数ztrans()和Z 反变换的函数iztrans (),其调用形式为 )()(F iztrans f f ztrans F ==

上面两式中,右端的f 和F 分别为时域表示式和z 域表示式的符号表示,可应用函数sym 来实现,其调用格式为 ()A sym S = 式中,A 为待分析的表示式的字符串,S 为符号化的数字或变量。 【实例3-2】求(1)指数序列()n u a n 的Z 变换;(2)()() 2 a z az z F -= 的Z 反变换。 解 (1)Z 变换的MATLAB 程序 % Z 变换的程序实现 f=sym('a^n'); F=ztrans(f) 程序运行结果为: z/a/(z/a-1) 可以用simplify( )化简得到 : -z/(-z+a) (2)Z 反变换的MATLAB 程序 % Z 反变换实现程序 F=sym('a*z/(z-a)^2'); f=iztrans(F) 程序运行结果为 f = a^n*n (二)系统函数的零极点分析 1. 系统函数的零极点分布 离散时间系统的系统函数定义为系统零状态响应的z 变换与激励的z 变换之比,即 ) () ()(z X z Y z H = (3-1) 如果系统函数)(z H 的有理函数表示式为:

自控原理实验

实验八典型非线性环节的静态特性 一、实验目的 1. 了解典型非线性环节输出—输入的静态特性及其相关的特征参数; 2. 掌握典型非线性环节用模拟电路实现的方法。 二、实验内容 1. 继电器型非线性环节静特性的电路模拟; 2. 饱和型非线性环节静特性的电路模拟; 3. 具有死区特性非线性环节静特性的电路模拟; 4. 具有间隙特性非线性环节静特性的电路模拟。 三、实验原理 控制系统中的非线性环节有很多种,最常见的有饱和特性、死区特性、继电器特性和间隙特性。基于这些特性对系统的影响是各不相同的,因而了解它们输出-输入的静态特性将有助于对非线性系统的分析研究。 1. 继电型非线性环节 图7-1为继电器型非线性特性的模拟电路和静态特性。 图8-1 继电器型非线性环节模拟电路及其静态特性 继电器特性参数M是由双向稳压管的稳压值(4.9~6V)和后级运放的放大倍数(R X/R1)决定的,调节可变电位器R X的阻值,就能很方便的改变M值的大小。输入u i信号用正弦信号或周期性的斜坡信号(频率一般均小于10Hz)作为测试信号。实验时,用示波器的X-Y显示模式进行观测。 2. 饱和型非线性环节 图7-2为饱和型非线性环节的模拟电路及其静态特性。 图8-2 饱和型非线性环节模拟电路及其静态特性 图中饱和型非线性特性的饱和值M等于稳压管的稳压值(4.9~6V)与后一级放大倍数的乘积。线性部分斜率k等于两级运放增益之积。在实验时若改变前一级运放中电位器的阻值

可改变k 值的大小,而改变后一级运放中电位器的阻值则可同时改变M 和k 值的大小。 实验时,可以用周期性的斜坡或正弦信号作为测试信号,注意信号频率的选择应足够低(一般小于10Hz )。实验时,用示波器的X-Y 显示模式进行观测。 3. 具有死区特性的非线性环节 图7-3为死区特性非线性环节的模拟电路及其静态特性。 图8-3 死区特性非线性环节的模拟电路及其静态特性 图中后一运放为反相器。由图中输入端的限幅电路可知,当二极管D 1(或D 2)导通时的临界电压U io 为 E 1E R R u 2 1io α α -±=±=(在临界状态时: E R R R u R R R 2 11 0i 212+±=+) (7-1) 其中,2 11 R R R +=α。当0i i u u >时,二极管D 1(或D 2)导通,此时电路的输出电压 为 ))(1()(2 12 io i io i o u u u u R R R u --±=-+± =α 令)1(α-=k ,则上式变为 )(io i o u u k u -±= (7-2) 反之,当0i i u u ≤时,二极管D 1(或D 2)均不导通,电路的输出电压o u 为零。显然,该非 线性电路的特征参数为k 和io u 。只要调节α,就能实现改变k 和io u 的大小。 实验时,可以用周期性的斜坡或正弦信号作为测试信号,注意信号频率的选择应足够低(一般小于10Hz )。实验时,用示波器的X-Y 显示模式进行观测。 4. 具有间隙特性的非线性环节 间隙特性非线性环节的模拟电路图及静态特性如图7-4所示。 由图7-4可知,当E u i α α -< 1时,二极管D 1和D 2均不导通,电容C 1上没有电压,即U C (C 1两端的电压)=0,u 0=0;当E u i α α->1时,二极管D 2导通,u i 向C 1充电,其电压为 ))(1(io i o u u u --±=α 令)1(α-=k ,则上式变为 )(io i o u u k u -±=

控制系统的极点配置设计法

控制系统的极点配置设计法 一、极点配置原理 1.性能指标要求 2.极点选择区域 主导极点: n s t ζω 4 = ;当Δ=0.02时,。 n s t ζω 3 = 当Δ=0.05时,

3.其它极点配置原则 系统传递函数极点在s 平面上的分布如图(a )所示。极点s 3距虚轴距离不小于共轭复数极点s 1、s 2距虚轴距离的5倍,即n s s ξω5Re 5Re 13=≥(此处ξ,n ω对应于极点s 1、s 2) ;同时,极点s 1、s 2的附近不存在系统的零点。由以上条件可算出与极点s 3所对应的过渡过程分量的调整时间为 135 1 451s n s t t =?≤ ξω 式中1s t 是极点s 1、s 2所对应过渡过程的调整时间。 图(b )表示图(a )所示的单位阶跃响应函数的分量。由图可知,由共轭复数极点s 1、s 2确定的分量在该系统的单位阶跃响应函数中起主导作用,即主导极点。因为它衰减得最慢。其它远离虚轴的极点s 3、s 4、s 5 所对应的单位阶跃响应衰减较快,它们仅在极短时间内产生一定的影响。因此,对系统过渡过程进行近似分析时。可以忽略这些分量对系统过渡过程的影响。 n x o (t) (a ) (b ) 系统极点的位置与阶跃响应的关系

二、极点配置实例 磁悬浮轴承控制系统设计 1.1磁悬浮轴承系统工作原理 图1是一个主动控制的磁悬浮轴承系统原理图。主要由被悬浮转子、传感器、控制器和执行器(包括电磁铁和功率放大器)四大部分组成。设电磁铁绕组上的电流为I0,它对转子产生的吸力F和转子的重力mg相平衡,转子处于悬浮的平衡位置,这个位置称为参考位置。 (a)(b) 图1 磁悬浮轴承系统的工作原理 Fig.1 The magnetic suspension bearing system principle drawing 假设在参考位置上,转子受到一个向下的扰动,转子就会偏离其参考位置向下运动,此时传感器检测出转子偏离其参考位置的位移,控制器将这一位移信号变换成控制信号,功率放大器又将该控制信号变换成控制电流I0+i,控制电流由I0增加到I0+i,因此,电磁铁的吸力变大了,从而驱动转子返回到原来的平衡位置。反之,当转子受到一个向上的扰动并向上运动,此时控制器使得功率放大器的输出电流由I0,减小到I0-i,电磁铁的吸力变小了,转子也能返回到原来的平衡位置。因此,不论转子受到向上或向下的扰动,都能回到平衡状态。这就是主动磁轴承系统的工作原理。即传感器检测出转子偏移参考点的位移,作为控制器的微处理器将检测到的位移信号变换成控制信号,然后功率放大器将这一控制信号转换成控制电流,控制电流在执行磁铁中产生磁力从而使转子维持其悬浮位置不变。悬浮系统的刚

相关文档
最新文档