相关正态随机过程的仿真实验报告

相关正态随机过程的仿真实验报告
相关正态随机过程的仿真实验报告

实验名称:相关正态随机过程的仿真

一、实验目的

以正态随机过程为例,掌握离散时间随机过程的仿真方法,理解正态分布随机过程与均匀分布随机过程之间的相互关系,理解随机过程的相关函数等数值特征;培养计算机编程能力。

二、实验内容

相关正态分布离散随机过程的产生

(1)利用计算机语言的[0,1]区间均匀分布随机数产生函数生成两个相互独立的序列

{U1(n)|n=1,2,…100000},{U2(n)|n=1,2,…100000}

程序代码:

clc;

N=100000;

u1=rand(1,N);

u2=rand(1,N);%----------------在[0,1] 区间用rand函数生成两个相互独立的随机序列

n1=hist(u1,10);%--------------------------hist函数绘制分布直方图

subplot(121);%-----------------------------一行两列中的第一个图

bar(n1);

n2=hist(u2,10);

subplot(122);

bar(n2);

实验结果:

(2)生成均值为m=0,根方差σ=1的白色正态分布序列

{e(n)|n=1,2, (100000)

[][]m n u n u n +=)(2cos )(ln 2-)(e 21πσ

程序代码:

clc;

N=100000;

u1=rand(1,N);

u2=rand(1,N);%---------------在[0,1] 区间用rand 函数生成两个相互独立的随机序列 en=sqrt(-2*log(u1)).*cos(2*pi*u2);%--------定义白色正态分布e(n)

n=hist(en,100);%--------------------------hist 函数绘制分布直方图

bar(n); 实验结果:

(3)假设离散随机过程x(n)服从均值为x m =0、根方差为2x =σ、相关函数为||2)(r k x x k ασ= )6.0(=α

功率谱函数为

∑∞

-∞=----=-=k jw jw x x x e e jwk k r w P )1)(1()1()exp()()(22ααασ 1

211)(---=z z G x αασ 随机过程x(n)的生成方法为

)(1)1()(x 2n e n x n x ασα-+-= (n=1,2,…100000)

给定初始条件x(0)=0

程序代码:

clc;

N=100000;

u1=rand(1,N);

u2=rand(1,N);%---------------在[0,1] 区间用rand 函数生成两个相互独立的随机序列 en=sqrt(-2*log(u1)).*cos(2*pi*u2);%--------定义白色正态分布e(n)

a=0.6;

x(1)=2*sqrt(1-a*a)*en(1);%-----------------初始化

for n=1:100000-1;

x(n+1)=a*x(n)+2*sqrt(1-a*a).*en(n+1);

end%------------------------------------生成随机过程x(n)

hist(x,100);%--------------------------hist 函数绘制分布直方图

实验结果:

(4)采用集合统计的方法计算

∑==1000001'

)(1000001n x n x m ∑==10000012'

)(1000001n x n x σ ∑-=+-=k n x k n x n x k r 1000001'

)()(1000001 )4,3,2,1(=k 验证计算出来的统计参数与理论值是否一致,差异大小

程序代码:

sum=0;

for i=1:100000

sum=sum+x(i);%--------------------表示x(n)的1到100000项的累加和

end

mx=sum/100000%-----------------------------算出mx 的值

sum=0;

for i=1:100000

sum=sum+x(i)*x(i);%--------------------表示x(n)*x(n)的1到100000项的累加和 end

ax=sqrt(sum/100000)%-----------------------算出标准差

for k=1:4

sum=0;%--------------------------------sum 清零

for j=1:100000-k

sum=sum+x(j)*x(j+k);

end

r(k)=sum/(100000-k);%------------------用集合统计的方法算出相关函数

end

r%-----------------------------------------算出r 的值

实验结果:

(5)采用计算机程序计算正态分布的区间积分

00001.0]22)00001.0(exp[221

]22exp[2212000001222

22???-?=?-?=∑?=i i ds s P ππ

根据已生成的序列x(n),在100000个数据中,分别计算(-∞,-2),

[-2,0],(0,2],[2,∞)区间上数据出现的比例P1,P2,P3,P4。比较P1,P2,P3,P4与理想值(0.5-P ), P , P ,(0.5-P )的一致性。 程序代码:

num1=0;num2=0;num3=0;num4=0;

for i=1:100000

if(x(i)<-2)

num1=num1+1;

else if(x(i)>=-2)&(x(i)<=0)

num2=num2+1;

else if(x(i)>0)&(x(i)<=2)

num3=num3+1;

else

num4=num4+1;

end

end

end

end

disp('实验值为')

p1=num1/100000

p2=num2/100000

p3=num3/100000

p4=num4/100000

p2=0;

for i=1:200000

p2=p2+1/(sqrt(2*pi)*2)*exp(-(i*0.00001)*(i*0.00001)/(2*2*2))*0.00001;

end

p3=p2;

p1=(1-2*p2)/2;

p4=p1;

disp('理想值为')

p1,p2,p3,p4

实验结果:

三、实验体会

学会了MATLAB的基本使用,用来进行随机过程的仿真十分

方便,不过对一些系统函数的功能还不熟悉,以及将文字叙述转化为程序代码能力还需要提高,对相关正态分布离散随机过程的产生有了更深的了解。

第三章_随机过程教案

第三章随机过程 本节首先介绍利用matlab现有的库函数根据实际需要直接产生均分分布和高斯分布随机变量的方法,然后重点讲解蒙特卡罗算法。 一、均匀分布的随机数 利用MATLAB库函数rand产生。rand函数产生(0,1)内均匀分布的随机数,使用方法如下: 1)x=rand(m);产生一个m×m的矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。 2)x=rand(m,n);产生一个m×n的矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。 3)x=rand;产生一个随机数。 举例:1、产生一个5×5服从均匀分布的随机矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。 x=rand(5) 2、产生一个5×3服从均匀分布的随机矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。 x=rand(5,3) 二、高斯分布的随机数 randn函数产生均值为0,方差为1的高斯分布的随机数,使用方法如下: 1)x=randn(m);产生一个m×m的矩阵,所含元素都是均值

为0,方差为1的高斯分布的随机数。 2)x=randn(m,n);产生一个m×n的矩阵,所含元素都是均值为0,方差为1的高斯分布的随机数。 3)x=randn;产生一个均值为0,方差为1的高斯分布的随机数。 举例:1、产生一个5×5的矩阵,所含元素都是均值为0,方差为1的高斯分布的随机数。 x=randn(5) 2、产生一个5×3的矩阵,所含元素都是均值为0,方差为1的高斯分布的随机数。 x=randn(5,3) 3、产生一个5×3的矩阵,所含元素都是均值为0,方差为4的高斯分布的随机数。 x=2×randn(5,3) 三、蒙特卡罗仿真 1、蒙特卡罗算法 蒙特卡罗估计是指通过随机实验估计系统参数值的过程。蒙特卡罗算法的基本思想:由概率论可知,随机实验中实验的结果是无法预测的,只能用统计的方法来描述。故需进行大量的随机实验,如果实验次数为N,以 N表示事件A发 A 生的次数。若将A发生的概率近似为相对频率,定义为 N N。 A 这样,在相对频率的意义下,事件A发生的概率可以通过重

随机过程上机实验报告讲解.pdf

2015-2016第一学期随机过程第二次上机实验报告 实验目的:通过随机过程上机实验,熟悉Monte Carlo计算机随机模拟方法,熟悉Matlab的运行环境,了解随机模拟的原理,熟悉随机过程的编码规律即各种随机过程的实现方 法,加深对随机过程的理解。 上机内容: (1)模拟随机游走。 (2)模拟Brown运动的样本轨道。 (3)模拟Markov过程。 实验步骤: (1)给出随机游走的样本轨道模拟结果,并附带模拟程序。 ①一维情形 %一维简单随机游走 %“从0开始,向前跳一步的概率为p,向后跳一步的概率为1-p” n=50; p=0.5; y=[0 cumsum(2.*(rand(1,n-1)<=p)-1)]; % n步。 plot([0:n-1],y); %画出折线图如下。

%一维随机步长的随机游动 %选取任一零均值的分布为步长, 比如,均匀分布。n=50; x=rand(1,n)-1/2; y=[0 (cumsum(x)-1)]; plot([0:n],y);

②二维情形 %在(u, v)坐标平面上画出点(u(k), v(k)), k=1:n, 其中(u(k))和(v(k)) 是一维随机游动。例 %子程序是用四种不同颜色画了同一随机游动的四条轨 道。 n=100000; colorstr=['b' 'r' 'g' 'y']; for k=1:4 z=2.*(rand(2,n)<0.5)-1; x=[zeros(1,2); cumsum(z')]; col=colorstr(k); plot(x(:,1),x(:,2),col);

hold on end grid ③%三维随机游走ranwalk3d p=0.5; n=10000; colorstr=['b' 'r' 'g' 'y']; for k=1:4 z=2.*(rand(3,n)<=p)-1; x=[zeros(1,3); cumsum(z')]; col=colorstr(k); plot3(x(:,1),x(:,2),x(:,3),col);

计算机上机实验内容及实验报告要求(完整版)

报告编号:YT-FS-1915-76 计算机上机实验内容及实验报告要求(完整版) After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas. 互惠互利共同繁荣 Mutual Benefit And Common Prosperity

计算机上机实验内容及实验报告要 求(完整版) 备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。文档可根据实际情况进行修改和使用。 一、《软件技术基础》上机实验内容 1.顺序表的建立、插入、删除。 2.带头结点的单链表的建立(用尾插法)、插入、删除。 二、提交到个人10m硬盘空间的内容及截止时间 1.分别建立二个文件夹,取名为顺序表和单链表。 2.在这二个文件夹中,分别存放上述二个实验的相关文件。每个文件夹中应有三个文件(.c文件、.obj 文件和.exe文件)。 3.截止时间:12月28日(18周周日)晚上关机时为止,届时服务器将关闭。 三、实验报告要求及上交时间(用a4纸打印)

1.格式: 《计算机软件技术基础》上机实验报告 用户名se××××学号姓名学院 ①实验名称: ②实验目的: ③算法描述(可用文字描述,也可用流程图): ④源代码:(.c的文件) ⑤用户屏幕(即程序运行时出现在机器上的画面): 2.对c文件的要求: 程序应具有以下特点:a 可读性:有注释。 b 交互性:有输入提示。 c 结构化程序设计风格:分层缩进、隔行书写。 3.上交时间:12月26日下午1点-6点,工程设计中心三楼教学组。请注意:过时不候哟! 四、实验报告内容 0.顺序表的插入。 1.顺序表的删除。

随机过程作业题及参考答案(第一章)

第一章 随机过程基本概念 P39 1. 设随机过程()0cos X t X t ω=,t -∞<<+∞,其中0ω是正常数,而X 是标准正态变量。试求()X t 的一维概率分布。 解: 1 当0cos 0t ω=,02 t k π ωπ=+ ,即0112t k πω??= + ??? (k z ∈)时, ()0X t ≡,则(){}01P X t ==. 2 当0cos 0t ω≠,02 t k π ωπ≠+ ,即0112t k πω?? ≠ + ??? (k z ∈)时, ()~01X N ,,()0E X ∴=,()1D X =. ()[]()00cos cos 0E X t E X t E X t ωω===????. ()[]()22 000cos cos cos D X t D X t D X t t ωωω===????. ()()20~0cos X t N t ω∴,. 则( )2202cos x t f x t ω- = ;. 2. 利用投掷一枚硬币的试验,定义随机过程为 ()cos 2t X t t π?=??,出现正面,出现反面 假定“出现正面”和“出现反面”的概率各为 12。试确定()X t 的一维分布函数12F x ?? ???;和()1F x ;,以及二维分布函数12112 F x x ?? ?? ? ,;, 。

00 11101222 11

实验三 随机过程通过线性系统

实验名称线性系统对随机过程的响应 一、实验目的 通过本仿真实验了解正态白色噪声随机过程通过线性系统后相关函数以及功率谱的变化;培养计算机编程能力。 二、实验平台 MATLAB R2014a 三、实验要求 (1)运用正态分布随机数产生函数产生均值为m=0,根方差σ=1的白色正态分布 序列{u(n)|n=1,2,…,2000},画出噪声u(n)的波形图。 (2)设离散时间线性系统的差分方程为 x(n)=u(n)-0.36u(n-1)+0.85u(n-2)(n=3,4,…,2000). 画出x(n)的波形图。 (3)随机过程x(n)的理论上的功率谱函数为 在[0,π]范围内对w进行采样,采样间隔0.001π,计算S(i×0.001π) (i=1,2,…,1000);画出波形图。 (4)根据步骤二产生的数据序列x(n)计算相关函数的估计值 与理论值1.1296、-0.666、0.85、0、0、0的差异。 (5)根据相关函数的估计值对随机过程的功率谱密度函数进行估计 在[0,π]范围内对w进行采样,采样间隔0.001π,计算S(i×0.001π) (i=1,2,…,1000);画出波形图,比较其与理论上的功率谱密度函数S(w)的差异。 (6)依照实验1的方法统计数据x(n)在不同区间出现的概率,计算其理论概率, 观察二者是否基本一致。

四、实验代码及结果 A、运用正态分布随机数产生函数产生均值为m=0,根方差σ=1的白色正态分布序列{u(n)|n=1,2,…,2000},画出噪声u(n)的波形图。 代码实现: 波形图: 分析:运用正态分布随机数产生函数产生均值为0,根方差σ=1的白色噪声样本序列。 B、设离散时间线性系统的差分方程为 x(n)=u(n)-0.36u(n-1)+0.85u(n-2)(n=3,4,…,2000). 画出x(n)的波形图。 代码实现:

随机过程matlab程序

基本操作 -5/(4.8+5.32)^2 area=pi*2.5^2 x1=1+1/2+1/3+1/4+1/5+1/6 exp(acos(0.3)) a=[1 2 3;4 5 6;7 8 9] a=[1:3,4:6,7:9] a1=[6: -1:1] a=eye(4) a1=eye(2,3) b=zeros(2,10) c=ones(2,10) c1=8*ones(3,5) d=zeros(3,2,2); r1=rand(2, 3) r2=5-10*rand(2, 3) r4=2*randn(2,3)+3 arr1=[1.1 -2.2 3.3 -4.4 5.5] arr1(3) arr1([1 4]) arr1(1:2:5) arr2=[1 2 3; -2 -3 -4;3 4 5] arr2(1,:) arr2(:,1:2:3) arr3=[1 2 3 4 5 6 7 8] arr3(5:end) arr3(end) 绘图

x=[0:1:10]; y=x.^2-10*x+15; plot(x,y) x=0:pi/20:2*pi y1=sin(x);y2=cos(x); plot(x,y1,'b-'); hold on; plot(x,y2,‘k--’); legend (‘sin x’,‘cos x’); x=0:pi/20:2*pi; y=sin(x); figure(1) plot(x,y, 'r-') grid on 以二元函数图 z = xexp(-x^2-y^2) 为例讲解基本操作,首先需要利用meshgrid 函数生成X-Y平面的网格数据,如下所示: xa = -2:0.2:2; ya = xa; [x,y] = meshgrid(xa,ya); z = x.*exp(-x.^2 - y.^2); mesh(x,y,z); 建立M文件 function fenshu( grade ) if grade > 95.0 disp('The grade is A.'); else if grade > 86.0 disp('The grade is B.'); else

C程序设计上机实验报告((完整版))

C语言程序设计上机实验报告 学院:机械工程学院 班级:机自161213 姓名:刘昊 学号:20162181310 实验时间:2017 年3 月6 号 任课老师:张锐

C语言程序设计上机实验报告 实验一 一、实验名称: C 程序的运行环境和运行C程序的方法 二、实验目的:了解在 程序 C 编译系统上如何编辑、编译、连接和运行一个 C 三、实验内容: (1). (2). (3). 输入并运行一个简单的C程序。 设计程序,对给定的两个数求和。 设计程序,对给定的两个数进行比较,然后输出其中较大的数。 四、源程序代码: 代码1: 运行结果1:

程序分析1: 该程序用来判断所输入的整数是否为一个素数,如果一个数能被除了 1 和它本身整除,还能被其它数整除,那么它就不是一个素数,因此,用for 循环来进行整除过程的简写。 代码2: 运行结果2:

程序分析2: 简单的使用printf() 和scanf() 函数进行简单的数据运算。代码3: 运行结果3:

程序分析3: 使用if 语句进行判断。 五.实验总结 C语言程序设计上机实验报告 实验二 一、实验名称:顺序结构程序设计 二、实验目的:正确使用常用运算符(算术运算符、赋值运算符)的用法, 熟练掌握算术运算符及其表达式,逻辑运算符和逻辑表达式。 三、实验内容: (1). 编写程序,实现小写字母转大写。

(2). 编写程序,实现输入两个不同类型数据后,经过适当的运算(加、减、乘、除)后输出。 (3). 编写程序,计算三角形面积、立方体的体积和表面积、圆的面积和周长。 (4). 编写程序,实现单字符getchar 和putchar 输入输出。 (5). 编写程序,实现十进制、八进制、十六进制不同数制的输出。 四、源程序代码 代码1: 运行结果1: 程序分析1:

相关正态随机过程的仿真实验报告

实验名称:相关正态随机过程的仿真 一、实验目的 以正态随机过程为例,掌握离散时间随机过程的仿真方法,理解正态分布随机过程与均匀分布随机过程之间的相互关系,理解随机过程的相关函数等数值特征;培养计算机编程能力。 二、实验内容 相关正态分布离散随机过程的产生 (1)利用计算机语言的[0,1]区间均匀分布随机数产生函数生成两个相互独立的序列 {U1(n)|n=1,2,…100000},{U2(n)|n=1,2,…100000} 程序代码: clc; N=100000; u1=rand(1,N); u2=rand(1,N);%----------------在[0,1] 区间用rand函数生成两个相互独立的随机序列 n1=hist(u1,10);%--------------------------hist函数绘制分布直方图 subplot(121);%-----------------------------一行两列中的第一个图 bar(n1); n2=hist(u2,10); subplot(122); bar(n2); 实验结果:

(2)生成均值为m=0,根方差σ=1的白色正态分布序列 {e(n)|n=1,2, (100000) [][]m n u n u n +=)(2cos )(ln 2-)(e 21πσ 程序代码: clc; N=100000; u1=rand(1,N); u2=rand(1,N);%---------------在[0,1] 区间用rand 函数生成两个相互独立的随机序列 en=sqrt(-2*log(u1)).*cos(2*pi*u2);%--------定义白色正态分布e(n) n=hist(en,100);%--------------------------hist 函数绘制分布直方图 bar(n); 实验结果: (3)假设离散随机过程x(n)服从均值为x m =0、根方差为2x =σ、相关函数为||2)(r k x x k ασ= )6.0(=α 功率谱函数为

随机过程——马尔可夫过程的应用

随机过程——马尔可夫过程的应用 年级:2013级 专业:通信工程3班 姓名:李毓哲 学号:31

摘要:随机信号分析与处理是研究随机信号的特点及其处理方法的专业基础, 是目标检测、估计、滤波灯信号处理理论的基础,在通信、雷达、自动检测、随机振动、图像处理、气象预报、生物医学、地震信号处理等领域有着广泛的应用,随着信息技术的发展,随机信号分析与处理的理论讲日益广泛与深入。 随机过程是与时间相关的随机变量,在确定的时刻它是随机变量。随机过程的具体取值称作其样本函数,所有样本函数构成的集合称作随机过程的样本函数空间,所有样本函数空间及其统计特性即构成了随机过程。通信工程中存在大量的随机现象和随机问题。如:信源是随机过程;信道不仅对随机过程进行了变换,而且会叠加随机噪声等。 马尔可夫过程是一类非常重要的随机过程。随着现代科学技术的发展,很多在应用中出现的马氏过程模型的研究受到越来越多的重视。在现实世界中,有很多过程都是马尔可夫过程,马尔可夫过程在研究质点的随机运动、自动控制、通信技术、生物工程等领域中有着广泛的应用。我们可以通过对马尔可夫过程的研究来分析马尔可夫信源的特性。 关键词:随机过程,马尔可夫过程,通信工程,应用

目录 一、摘要 二、随机过程 、随机过程的基本概念及定义 、随机过程的数学描述 、基于MATLAB的随机过程分析方法三、马尔可夫过程 马尔可夫过程的概念 马尔可夫过程的数学描述 四、马尔可夫过程的应用 马尔可夫模型在通信系统中的应用 马尔可夫模型在语音处理的应用 马尔可夫模型的其他应用 五、结论 参考文献

二、随机过程 、随机过程的基本概念及定义 自然界变换的过程通常可以分为两大类——确定过程和随机过程。如果每次试验所得到的观测过程都相同,且都是时间t的一个确定函数,具有确定的变换规律,那么这样的过程就是确定过程。反之,如果每次试验所得到观测过程都不相同,是时间t的不同函数,没有为确定的变换规律,这样的过程称为随机过程。 、随机过程的数学描述 设随机试验E的样本空间Ω,T是一个数集(T∈(-∞,∞)),如果对于每一个t ∈T,都有一个定义在样本空间Ω上的随机变量 X(w,t),w∈Ω,则称依赖于t的一族随机变量{X(w,t),t∈T}为随机过程或随机函数,简记为{X(t),t∈T }或X(t),其中t称为参数,T称为参数集。当T={0,1,2,…},T={1,2,…},T={…,-2,-1,0,1,2,…}时,{X(w,t)t∈T}称为随机序列或时间序列。 、基于MATLAB的典型随机过程的仿真 信号处理仿真分析中都需要模拟产生各种随机序列,通常都是先产生白噪声序列,然后经过变换得到相关的随机序列,MATLAB有许多产生各种分布白噪声的函数。

随机实验报告

随机信号实验报告 课程:随机信号 实验题目:随机过程的模拟与特征估计 学院: 学生名称:

实验目的: 1.学会利用MATLAB模拟产生各类随即序列。 2.熟悉和掌握随机信号数字特征估计的基本方法。 实验内容: 1.模拟产生各种随即序列,并画出信号和波形。 (1)白噪声(高斯分布,正弦分布)。 (2)随相正弦波。 (3)白噪声中的多个正弦分布。 (4)二元随机信号。 (5)自然信号:语音,图形(选做)。 2.随机信号数字特征的估计 (1)估计上诉随机信号的均值,方差,自相关函数,功率谱密度,概率密度。 (2)各估计量性能分析(选做) 实验仪器: PC机一台 MATLAB软件 实验原理:

随机变量常用到的数字特征是数字期望值、方差、自相关函数等。相应地,随机过程常用到的数字特征是数字期望值、方差、相关函数等。它们是由随机变量的数字特征推广而来,但是一般不再是确定的数值,而是确定的时间函数。 1.均值:m x(t)=E[X(t)]=;式中,p(x,t)是X(t)的 一维概率密度。m x(t)是随机过程X(t)的所有样本函数在 时刻t的函数值的均值。在matlab中用mea()函数求均值。 2.方差:(t)=D[X(t)]=E[];(t)是t的确定 函数,它描述了随机过程诸样本函数围绕数学期望m x(t) 的分散程度。若X(t)表示噪声电压,则方差(t)则 表示瞬时交流功率的统计平均值。在matlab中用var()函 数求均值。 3.自相关函数:Rx(t1,t2)=E[X(t1)X(t2)];自相关函数就是用来描 述随机过程任意两个不同时刻状态之间相关性的重要数 字特征。在matlab中用xcorr()来求自相关函数。 4.在matlab中可用函数rand、randn、normr、random即可生成 满足各种需要的近似的独立随机序列。 实验步骤: (一)大体实验步骤 (1)利用MATLAB编写程序。 (2)调试程序。

随机过程上机实验报告-华中科技大学--HUST

随机实验报告 班级:通信1301班姓名:郭世康 学号:U201313639 指导教师:卢正新

一、模块功能描述 CMYRand类是整个系统的核心,它产生各种随机数据供后面的类使用。可以产生伪随机序列、均匀分布、正态分布、泊松分布、指数分布等多种随机数据。 CRandomDlg类是数据的采集处理类。它可以将CMYRand产生的随机数据处理分析,再送入CScope等类进行模拟示波器显示。 CScope等类是有关示波器显示的类。 二、模块间的关系 CRandomDlg类在整个程序中是一个不可缺少的环节,它调用CMYRand中的函数来产生符合所需分布的随机序列,再将产生的结果统计分析,送到CScope类中的函数进行模拟示波器显示。CMYRand为整个程序的核心,就是这个类产生所需分布的随机序列。CAboutDlg是模拟示波器界面上的有关按钮选项的类。我们在示波器界面上点击一个按钮,它就会执行这个按钮所对应功能,比如点击正态分布,它就会调用CRandomDlg中的对应函数,在调用CMYRand中的产生正态分布的函数,再将结果送到CScope类中进行显示,最后我们可以在示波器上看到图形。 三、数据结构 在本次随机试验中所填写的代码部分并没有用到有关于结构体等数据结构的东西。 四、功能函数 1、 /* 函数功能,采用线性同余法,根据输入的种子数产生一个伪随机数. 如果种子不变,则将可以重复调用产生一个伪随机序列。 利用CMyRand类中定义的全局变量:S, K, N, Y。 其中K和N为算法参数,S用于保存种子数,Y为产生的随机数 */ unsigned int CMyRand::MyRand(unsigned int seed) { //添加伪随机数产生代码 if(S==seed)

随机过程实验报告全

随机过程实验报告学院专业学号姓名

实验目的 通过随机过程的模拟实验,熟悉随机过程编码规律以 及各种随机过程的实现方法,通过理论与实际相结合的方式,加深对随机过程的理解。 二、实验内容 (1)熟悉Matlab 工作环境,会计算Markov 链的n 步转移概率矩阵和Markov 链的平稳分布。 (2)用Matlab 产生服从各种常用分布的随机数,会调用matlab 自带的一些常用分布的分布律或概率密度。 (3)模拟随机游走。 (4)模拟Brown 运动的样本轨道的模拟。 (5)Markov 过程的模拟。 三、实验原理及实验程序 n 步转移概率矩阵 根据Matlab的矩阵运算原理编程,Pn = P A n o 已知随机游动的转移概率矩阵为: P = 0.5000 0.5000 0 0 0.5000 0.5000 0.5000 0 0.5000

求三步转移概率矩阵p3 及当初始分布为 P{x0 = 1} = p{x0 = 2} = 0, P{x0 = 3} = 1 时经三步转移后处于状态 3 的概率。 代码及结果如下: P = [0.5 0.5 0; 0 0.5 0.5; 0.5 0 0.5] % 一步转移概率矩阵 P3 = P A3 %三步转移概率矩阵 P3_3 = P3(3,3) %三步转移后处于状态的概率 1、两点分布x=0:1; y=binopdf(x,1,0.55); plot(x,y,'r*'); title(' 两点分 布'); 2、二项分布 N=1000;p=0.3;k=0:N; pdf=binopdf(k,N,p); plot(k,pdf,'b*'); title(' 二项分布'); xlabel('k'); ylabel('pdf'); gridon; boxon 3、泊松分布x=0:100; y=poisspdf(x,50); plot(x,y,'g.'); title(' 泊松分布') 4、几何分布 x=0:100; y=geopdf(x,0.2); plot(x,y,'r*'); title(' 几何分布'); xlabel('x'); ylabel('y'); 5、泊松过程仿真 5.1 % simulate 10 times clear; m=10; lamda=1; x=[]; for i=1:m s=exprnd(lamda,'seed',1); x=[x,exprnd(lamda)]; t1=cumsum(x); end [x',t1'] 5.2%输入:

6.窄带随机过程的产生 - 随机信号分析实验报告

计算机与信息工程学院综合性实验报告 一、实验目的 1、基于随机过程的莱斯表达式产生窄带随机过程。 2、掌握窄带随机过程的特性,包括均值(数学期望)、方差、概率密度函数、相关函数及功率谱密度等。 3、掌握窄带随机过程的分析方法。 二、实验仪器或设备 1、一台计算机 2、MATLAB r2013a 三、实验内容及实验原理 基于随机过程的莱斯表达式 00()()cos ()sin y t a t t b t t ωω=- (3.1) 实验过程框图如下:

理想低通滤波器如图所示: 图1 理想低通滤波器 ()20 A H ?ω ?ω≤ ?ω=? ??其它 (3.2) 设白噪声的物理谱0=X G N ω() ,则系统输出的物理谱为 2 2 0=()=20 Y X N A G H G ?ω ?0≤ω≤ ?ωωω???()() 其它 (3.3) 输出的自相关函数为: 01()()cos 2Y Y R G d τωωτωπ∞ = ? /22 1cos 2N A d ωωτωπ?=? (3.4) 2 0sin 242 N A ωτωωτπ ??=? ? 可知输出的自相关函数()Y R τ是一个振荡函数。计算高斯白噪声x(t)、限带白噪声()a t 、 ()b t 及窄带随机过程()y t 的均值,并绘出随机过程各个随机过程的自相关函数,功率谱密 度图形。 四、MATLAB 实验程序 function random(p,R,C) %产生一个p 个点的随机过程 %--------------------------高斯窄带随机过程代码--------------------------% n=1:p; w=linspace(-pi,pi,p); wn=1/2*pi*R*C; [b,a]=butter(1,wn,'low'); %产生低通滤波器 Xt=randn(1,p); %产生p 个点均值为0方差为1的随机数,即高斯白噪声 at=filter(b,a,Xt); %让高斯白噪声通过低通滤波器

随机信号实验报告

随机过程实验报告 通信1206班 U201213696 马建强 一、实验内容 1、了解随机模拟的基本方法,掌握随机数的概念及其产生方法; 2、掌握伪随机数的产生算法以及伪随机数发生器的特点; 3、掌握一般随机数的产生方法; 4、掌握平稳随机过程的数字特征的求解方法。 二、实验步骤 1、利用线性同余法产生在(min,max)上精度为4位小数的平均分布的随机数; 2、编程实现在min 到max 范围内产生服从正态分布的随机数; 3、编程产生服从指数分布的随机数; 4、编程产生服从泊松分布的随机数; 5、计算任意给定分布的随机过程的均值; 6、计算泊松过程的自相关序列。 三、实验代码与结果 1、均匀分布 /* 函数功能,采用线性同余法,根据输入的种子数产生一个伪随机数. 如果种子不变,则将可以重复调用产生一个伪随机序列。 利用CMyRand类中定义的全局变量:S, K, N, Y。 其中K和N为算法参数,S用于保存种子数,Y为产生的随机数 */ unsigned int CMyRand::MyRand(unsigned int seed) { //添加伪随机数产生代码 if(S != seed) { S = seed; Y = (seed * K) % N; } else { Y = (Y * K) % N; if(Y == 0) Y = rand(); }

return Y; } /*函数功能,产生一个在min~max范围内精度为4位小数的平均分布的随机数*/ double CMyRand::AverageRandom(double min,double max) { int minInteger = (int)(min*10000); int maxInteger = (int)(max*10000); int randInteger = MyRand(seed); int diffInteger = maxInteger - minInteger; int resultInteger = randInteger % diffInteger + minInteger; return resultInteger/10000.0; } 图一、均匀分布

Matlab仿真窄带随机过程

随机过程数学建模分析 任何通信系统都有发送机和接收机,为了提高系统的可靠性,即输出信噪比,通常在接收机的输入端接有一个带通滤波器,信道内的噪声构成了一个随机过程,经过该带通滤波器之后,则变成了窄带随机过程,因此,讨论窄带随机过程的规律是重要的。 一、窄带随机过程。 一个实平稳随机过程X(t),若它的功率谱密度具有下述性质: 中心频率为ωc,带宽为△ω=2ω0,当△ω<<ωc时,就可认为满足窄带条件。若随机过程的功率谱满足该条件则称为窄带随机过程。若带通滤波器的传输函数满足该条件则称为窄带滤波器。随机过程通过窄带滤波器传输之后变成窄带随机过程。 图1 为典型窄带随机过程的功率谱密度图。若用一示波器来观测次波形,则可看到,它接近于一个正弦波,但此正弦波的幅度和相位都在缓慢地随机变化,图2所示为窄带随机过程的一个样本函数。 图1 典型窄带随机过程的功率谱密度图 图2 窄带随机过程的一个样本函数 二、窄带随机过程的数学表示 1、用包络和相位的变化表示 由窄带条件可知,窄带过程是功率谱限制在ωc附近的很窄范围内的一个随机过程,从示波器观察(或由理论上可以推知):这个过程中的一个样本函数(一个实现)的波形是一个频率为?c且幅度和相位都做缓慢变化的余弦波。

写成包络函数和随机相位函数的形式: X(t)=A(t)*cos[ωc t+ Φ(t)] 其中:A(t)称作X(t)的包络函数; Φ(t)称作X(t)的随机相位函数。包络随时间做缓慢变化,看起来比较直观,相位的变化,则看不出来。 2、莱斯(Rice)表示式 任何一个实平稳随机过程X(t)都可以表示为: X(t)=A c(t) cosωc t-A S(t) sinωc t 其中同相分量: A c(t)= X(t) cosφt= X(t) cosωc t+sinωc t=LP[X(t) *2cosωc t] 正交分量: A S(t) = X(t)sinφt=cosωc t— X(t) sinωc t= LP[-X(t) *2sinωc t] (LP[A]表示取A的低频部分)。A c(t)和A S(t)都是实随机过程,均值为0,方差等于X(t)的方差。 三、窄带随机过程仿真建模要求 1、用Matlab 编程仿真窄带随机信号:X(t)=(1+ A(t))*cos(ωc t+φ)+n(t)。其中包络A(t)频率为1KHz,幅值为l V。载波频率为:4KHz,幅值为l V,φ是一个固定相位,n(t)为高斯白噪声,采样频率设为16KHz。实际上,这是一个带有载波的双边带调制信号。 2、计算窄带随机信号的均值、均方值、方差、概率密度、频谱及功率谱密度、相关函数,用图示法来表示。 3、窄带系统检测框图如图3所示。 图3 窄带系统检测框图

随机过程实验报告全

随机过程实验报告 学院: 专业: 学号: 姓名:

一、实验目的 通过随机过程的模拟实验,熟悉随机过程编码规律以及各种随机过程的实现方法,通过理论与实际相结合的方式,加深对随机过程的理解。 二、实验内容 (1)熟悉Matlab工作环境,会计算Markov链的n步转移概率矩阵和Markov链的平稳分布。 (2)用Matlab产生服从各种常用分布的随机数,会调用matlab自带的一些常用分布的分布律或概率密度。 (3)模拟随机游走。 (4)模拟Brown运动的样本轨道的模拟。 (5)Markov过程的模拟。 三、实验原理及实验程序 n步转移概率矩阵 根据Matlab的矩阵运算原理编程,Pn = P ^n。 已知随机游动的转移概率矩阵为: P = 0.5000 0.5000 0 0 0.5000 0.5000 0.5000 0 0.5000

求三步转移概率矩阵p3及当初始分布为 P{x0 = 1} = p{x0 = 2} = 0, P{x0 = 3} = 1 时经三步转移后处于状态3的概率。 代码及结果如下: P = [0.5 0.5 0; 0 0.5 0.5; 0.5 0 0.5] %一步转移概率矩阵 P3 = P ^3 %三步转移概率矩阵 P3_3 = P3(3,3) %三步转移后处于状态的概率 1、两点分布 x=0:1; y=binopdf(x,1,0.55); plot(x,y,'r*'); title('两点分布'); 2、二项分布 N=1000;p=0.3;k=0:N; pdf=binopdf(k,N,p); plot(k,pdf,'b*'); title('二项分布'); xlabel('k'); ylabel('pdf'); gridon; boxon 3、泊松分布 x=0:100; y=poisspdf(x,50); plot(x,y,'g.');

实验报告

实验报告 课程名称:高频电子线路 院系:信息工程学院 专业班级:电子信息 学号: 学生姓名: 指导教师: 开课时间:2013至2014学年第二学期 教务处制

一、学生撰写要求 按照实验课程培养方案的要求,每门实验课程中的每一个实验项目完成后,每位参加实验的学生均须在实验教师规定的时间内独立完成一份实验报告,不得抄袭,不得缺交。 学生撰写实验报告时应严格按照本实验报告规定的内容和要求填写。字迹工整,文字简练,数据齐全,图表规范,计算正确,分析充分、具体、定量。 二、教师评阅与装订要求 1.实验报告批改要深入细致,批改过程中要发现和纠正学生实验报告中的问题,给出评语和实验报告成绩,签名并注明批改日期。实验报告批改完成后,应采用适当的形式将学生实验报告中存在的问题及时反馈给学生。 2.实验报告成绩用百分制评定,并给出成绩评定的依据或评分标准(附于实验报告成绩登记表后)。对迟交实验报告的学生要酌情扣分,对缺交和抄袭实验报告的学生应及时批评教育,并对该次实验报告的分数以零分处理。对单独设课的实验课程,如学生抄袭或缺交实验报告达该课程全学期实验报告总次数三分之一以上,不得同意其参加本课程的考核。 3.各实验项目的实验报告成绩登记在实验报告成绩登记表中。本学期实验项目全部完成后,给定实验报告综合成绩。 4.独立设课的实验课程,实验报告综合成绩应按课程教学大纲规定比例(一般为10-15%)计入实验课总评成绩;实验总评成绩原则上应包括考勤、实验报告、考核(操作、理论)等多方面成绩; 5.非独立设课的实验课程,实验报告综合按教学大纲规定计入相关理论课程的总评成绩。 6.实验教师每学期负责对拟存档的学生实验报告按课程、学生收齐并装订,按如下顺序装订成册:实验报告封面、实验报告成绩登记表、实验报告成绩评定依据、实验报告(按教学进度表规定的实验项目顺序排序)。装订时统一靠左侧按“两钉三等分”原则装订。 7.根据课程性质,实验报告可提交电子版,但需要有教师的批改记录,并将电子版汇总后刻录在一张光盘上,并加上封面、实验报告成绩登记表、实验报告成绩评定依据。

随机过程实验3

课程名称:随机过程实验 实验项目名称:正弦信号的相关累积检测仿真专业班级:通信工程1301班 姓名:王少丹 学号:201308030104 指导教师:何松华

1.实验目的 通过正弦信号的相关积累检测仿真实验,了解相关函数在信号检测、信号参数估计等方面的应用,掌握基于集合统计的相关函数估计方法,了解噪声对信号检测及信号参数估计精度的影响;培养计算机编程能力。 2.实验要求 给定参数N=128,N‘=32;ω=0.2π,n0=64,S=1 采用MATLAB或VB语言进行编程 (1) 运用正态分布随机数产生函数产生均值为零、根方差σ=0.2 的噪声样本序列[或可参考实验1的正态分布产生方法] {u(n)|n=1,2,…,128};画出噪声u(n)的波形图 (2) 产生信号{s(n-n0)|n=1,2,…,128},画出信号波形图 (3) 画出含噪信号{x(n)=s(n-n0)+u(n)|n=1,2,…,128}的波形图 (4) 计算无信号情况下[x(n)=u(n)]的{r xsN(m)|m=0,1,…,96};画出 波形图 (5) 计算有信号情况下[x(n)=s(n-n0)+u(n)]的 {r xsN(m)|m=0,1,…,96}, 画出波形图 (6) 比较无信号、有信号两种情况下|r xsN(m)|的最大值,观测有信号情况下|r xsN(m)|的最大值出现的位置;在同样的噪声强度下反复作多次实验,观测最大值位置的是否变化; (7) 逐渐加大噪声强度σ,重复上述过程,观测噪声强度达到什么程度时,有信号与无信号情况下|r xsN(m)|的最大值没有明显区别(即难以检测到信号),有信号情况下最大值的位置出现较大的随机性(即难以测量信号的位置参数);观测噪声强度对信号幅度S的估计值的影响。 3.程序代码 function y(N,N1,w,n0,a,e) sym N,N1,w,n0,a,e;

华科电信随机过程实验报告

随机过程实验报告 院(系):电子信息与通信学院专业班级: 姓名: 学号: 指导教师:

一.实验任务 (1)利用线性同余法产生平均分布的随机数。 (2)利用平均分布的随机数,根据中心极限定理产生正态分布的随机数。 (3)利用平均分布的随机数,根据反函数产生指数分布的随机数。 (4)利用平均分布的随机数,产生泊松分布的随机数。 (5)计算任意分布的随机过程的均值。 (6)计算泊松过程的自相关序列。 二.实验环境 (1)平台:Windows XP/7.0 (2)编程环境:VC6.0 (3)编程语言:C++ 三.实验代码 // MyRand.cpp: implementation of the CMyRand class. // ////////////////////////////////////////////////////////////////////// #include "stdafx.h" #include "random.h" #include "MyRand.h" #include "math.h" #ifdef _DEBUG #undef THIS_FILE static char THIS_FILE[]=__FILE__; #define new DEBUG_NEW #endif ////////////////////////////////////////////////////////////////////// // Construction/Destruction ////////////////////////////////////////////////////////////////////// CMyRand::CMyRand() { } CMyRand::~CMyRand() { }

应用随机过程实验2-泊松过程

应用随机过程实验2 —泊松过程 一.准备知识 1.泊松过程 2.非齐次泊松过程 3. 复合泊松过程 二.作业 1. 设()1X t 和()2X t 分别是参数为1λ和2λ的相互独立的泊松过程, (1)模拟()1X t 和()2X t ,并画图; (2)生成随机过程()()()12Y t =X +X t t ,并画图; (3)计算(){}Y t ,t 0≥ 的平均到达率与+1λ2λ的相对误差。 2. 设到达某商店的顾客组成强度为λ的泊松过程,每个顾客购买商品的概率为p ,且与其他顾客是否购买商品无关,假设每位购买商品的顾客的花费i X 独立同分布,且服从正态分布2X (,)i N μσ:,1,2,3,i =L ,令()Y t 是t 时刻购买商品的顾客数,()Z t 是t 时刻商品的营业额,0t ≥ , (1)试模拟随机过程(){},0Y t t ≥,并画图,计算随机过程(){},0Y t t ≥ 的均值函数与pt λ的相对误差; (2)试模拟随机过程(){},0Z t t ≥,并画图,计算随机过程(){}t ,t 0Z ≥ 的均值函数与pt λμ的相对误差。

3. 某路公共汽车从早晨5时到晚上9时有车发出,乘客流量如下:5时按平均乘客为200人/小时计算;5时至8时乘客平均到达率线性增加,8时到达率为1400人/小时;8时至18时保持平均到达率不变;18时到21时到达率线性下降,到21时为200人/小时,假定乘客数在不重叠的区间内是相互独立的,令()X t 是t 时刻到达公共汽车的总人数, (1)计算早晨5时到晚上9时的乘客到达率,并画图; (2)模拟从早晨5时到晚上9时的乘客到达过程(){}X t ,t 0≥。

相关文档
最新文档