02进气系统教案

02进气系统教案
02进气系统教案

A 组织教学学生考勤填写日志

B 课前提问

C 导入新课

第二节进气系统

(一)进气系统的组成与型式

进气系统是测量和控制汽油燃烧时所需要的空气量的。其组成是由测量空气流量的方式决定的,根据测量空气流量的方式不同,进气系统有质量流量式的进气系统(用于L型EFI 系统)、速度密度式的进气系统(用于D型EFI系统)和节流速度式的进气系统三种。

(二)进气系统主要零部件的结构

1、空气滤清器

电控汽油喷射发动机的空气滤清器与一般发动机的空气滤清器相同,注意安装方向。

2、空气流量计

目前汽车上所用的空气流量计主要有叶片式空气流量计、卡门涡旋式空气流量计、热线式空气流量计和热膜式空气流量计等四种。

(1)叶片式空气流量计

图1-6所示是叶片式空气流量计的结构,图1-7所示是叶片式空气流量计的空气通道,图1-8所示是叶片式空气流量计的电位计部分结构。

叶片式空气流量计由测量板(叶片)、缓冲板、阻尼室、旁通气道、怠速调整螺钉、回位弹簧等组成,此外内部还设有电动汽油开关及进气温度传感器等。

当吸入空气推开测量板的力与弹簧变形后的回位力相平衡时,测量板即停止转动。用电位计检测出测量板的转动角度,即可得知空气流量。

叶片式空气流量计电位器的内部电路如图1-10所示,电位计检测空气量有电压比与电压值两种方式。在VB端子上加有蓄电池电压而形成电压VC,那么,检测出来的是VB-E2与VC-VS的电压比。如表1-1中的图所示。电压值的检测方法为:吸入空气量∝随电位计动作变化的电压值。

当在VC点加上一定的电压(+5V)时,电位计滑动触头的动作随吸入空气量变化,VS-E2间的电压变化直接作为吸入空气量信息,把滑动触头电压值送入电控单元并进行A/D变换,即可以数字信号输出检测结果。滑动触头电压与吸入空气量成正比,呈线性关系。

表1-1为以电压比与电压值两种检测方式的对比表。

由于电路设计上的不同,叶片式空气流量计的电压输出形式有两种,一种是电压值Us 随进气量的增加而升高;另一种则是电压值Us随进气量的增加而降低,如图1-11所示。

(2)卡门旋涡式空气流量计

卡门旋涡式空气流量计与叶片式空气流量计相比,具有体积小、重量轻、进气道结构简单、进气阻力小等优点。

卡门旋涡式空气流量计的结构按照旋涡数的检测方式不同,可以分为反光镜检测方式卡门旋涡式空气流量计和超声波检出方式卡门旋涡式空气流量计两种。

由于卡门旋涡式空气流量计,没有可动部件,反应灵敏,测量精度高,所以现在被广泛采用。卡门旋涡式空气流量计与叶片式空气流量计直接测得的均是空气的体积流量,因此在空气流量计内均装有进气温度传感器,以便对随气温而变化的空气密度进行修正,从而正确计算出进气的质量流量。

(3)热线式空气流量计

热线式空气流量计有三种形式:一种是把热线和进气温度传感器都放在进气主通路的取样管内,称为主流测量式,另一种是把热线缠在绕线管上和进气温度传感器都放在旁通气路内,称为旁通测量式,这两种热线式空气流量计为了将热线温度与进气温度的温差维持恒定,都设有控制回路,如果热线因吸入的空气而变冷,则控制回路可以增加供给热线的电流,以使热线与进气的温度差恢复到原来恒定的状态。第三种是发热体不是热线而是热膜,即在热线位置放上热膜,发热金属膜固定在薄的树脂膜上,这种结构可使发热体不直接承受空气流动所产生的作用力,以延长使用寿命。

热线式空气流量计长期使用后,会在热线上积累杂质,为了消除使用中电热线上附着的胶质积炭对测量精度的影响,为此在流量计上采用烧净措施解决这个问题。每当发动机熄火时(或起动时),ECU自动接通空气流量计壳体内的电子电路,加热热线,使其温度在1s内升高1000℃。由于烧净温度必须非常精确,因此在发动机熄火4s后,该电路才被接通。

由于热线式空气流量计测量的是进气质量流量,它已把空气密度、海拔高度等影响考虑在内,因此可以得到非常精确的空气流量信号。

D 课程总结

E 布置作业

A 组织教学学生考勤填写日志

B 复习提问

C 导入新课

3 进气歧管压力传感器

图1-15所示为真空膜盒式进气歧管压力传感器的结构图,该传感器由真空膜盒(两个)、随着膜盒膨胀和收缩可左右移动的铁心、与铁心连动的差动变压器,以及在大气压力差作用下,可在膜盒工作区间进行功率档与经济档转换的膜片构成,传感器被膜片分为左右两个气室。

该传感器的主要元件是一片很薄的硅片,外围较厚,中间最薄,硅片上下两面各有一层二氧化硅膜。在膜层中,沿硅片四边,有四个应变电阻。在硅片四角、各有一个金属块,通过导线和电阻相连。在硅片底面粘接了一块硼硅酸玻璃片,使硅膜片中部形成一个真空窗以感传感压力,如图1-17a所示。传感器通常用一根橡胶管和需要测量其中压力的部位相联。

硅片中的四个电阻连接成惠斯登电桥形式,如图1-17b所示,由稳定电源供电,电桥应在硅片无变形时调到平衡状态。当空气压力增加时,硅膜片弯由,引起电阻值的变化,其中R1和R4的电阻增加,而R2、R3的电阻则等量减少。这使电桥失去平衡而在AB端形成电位差,从而输出正比于压力的电压信号。

4、节气门体

(1)多点式(MPI)节气门体

节气门体位于空气流量计和发动机之间的进气管上,与驾驶员的加速踏板联动,是使进气通道变化,从而控制发动机运转工况的装置,图1-18所示为节气门体的外观和结构原理图。节气门体包括控制进气量的节气门通道和怠速运行的空气旁通道,节气门位置传感器也装在节气门轴上,用来检测节气门开度。有的节气门体上装有石蜡式空气阀或节气门回位缓冲器。为避免冬季空气中的水分在节气门体上结冰,有的还将发动机冷却水流经该总成,如图1-18a所示。

节气门的开度大小由发动机输出功率来决定,在发动机输出功率最大时,要求节气门具有不会使发动机输出功率下降的通道面积,节气门通路面积和输出功率的关系,如图1-19所示。

节气门开度随加速踏板踏下量的变化特性,与传动系统有关,应由发动机的输出功率和车辆匹配的最佳特性来决定。检测节气门开度的节气门位置传感器,安装在节气门轴的一端。节气门位置传感器的输出信号用于各种控制。

(2)单点式(SPI)节气门体

SPI式节气门体较MPI式节气门体结构复杂,主要是在SPI式节气门体内还装有集中供油用的主喷油器、压力调节器和节气门位置传感器。主喷油器只有一个,它装在节气门壳体的上部,所喷出的燃油要供给发动机各缸使用,图1-20所示是SPI式节气门体结构图。

5、空气阀

发动机冷车起动时,温度低,摩擦阻力大,暖机时间长。空气阀的作用是在发动机低温起动时,可通过空气阀为发动机提供额外的空气(此部分空气也由空气流量计计量),保持发动机怠速稳定运转,使发动机起动后迅速暖车,从而缩短暖车时间。空气阀一打开,发动机吸入的空气量就能被空气流量计测出,把该信号传给ECU,从而使喷油器的喷油量也增加,做到在低温下顺利起动发动机。发动机完成暖机运转之后,流经空气阀的空气即被切断,发动机吸入的空气改由节气门体的旁通通路供给,使发动机在通常的怠速工况下稳定运转,由空气阀构成的空气通道如图1-21所示。

空气阀按其结构和动作方式可分为两种:一种是利用加热线圈引起的变位原理,使阀工作的双金属片调节式;另一种是利用发动机冷却水热量引起的石蜡胀缩原理,使阀工作的石蜡型。

(1)双金属片式空气阀

双金属片式空气阀的结构及工作如图1-22所示,它由双金属元件、加热线圈和空气闸阀等组成,旁通空气管路截面积的大小由双金属片控制回转控制阀门来决定。当温度低或无电流通过加热线圈时,阀门总是打开的,在发动机冷起动时,旁通空气道全开,管路截面积最大。发动机起动后,空气通过节气门的旁通气道经空气阀进入进气总管。此时虽然节气门是关闭的,但进气量较大,怠速转速较高。在发动机起动的同时,加热线圈上就有电流流过,随着发动机温度的升高和加热线圈加热时间的增长,双金属片逐渐弯曲变形,带动回转控制阀门旋转,逐渐关闭旁通气道,从而降低发动机的怠速转速。暖机后,双金属片不仅受电加热,还受发动机的热量加热,使阀门保持关闭,发动机处于正常怠速工作,当热机再起动时,阀门保持关闭,以免发动机快怠速运行。所以该空气阀应安装在能代表并感受发动机温度的部位,不但能保证在发动机暖机时双金属片同时受加热线圈和发动机热量的加热,而且能在热机起动时,机体的热量仍能使阀门关闭,避免发动机怠速转速过高。

D 课程总结

E 布置作业

A 组织教学学生考勤填写日志

B 复习提问

C 导入新课

(2)石蜡调节式空气阀

石蜡调节式空气阀,根据发动机冷却水温度,控制空气通路面积。控制力来自恒温石蜡的热胀冷缩,而热胀冷缩的值随周围温度而变化。采用这种形式的空气阀,导入发动机冷却水是必要的,为了简化结构,大多采用与节气门体加热共用的冷却水管路一体化结构,图

1-24a所示是这种一体化结构的总体构成。

当发动机处于低温状态时,冷却水温度低,石蜡体积收缩,阀门在外弹簧作用下打开,如图1-24b所示,空气流经阀门从旁通气道进入进气管。

发动机暖车后,冷却水温度升高,石蜡体积膨胀变大,推动空气阀克服内弹簧向左移动,将空气阀关闭,截断空气通道,如图1-24c所示。由于内弹簧比外弹簧硬,所以阀门是逐渐关闭的,从而使发动机转速也平稳过渡到正常怠速状态。当冷却水温度高于80℃时,阀门是紧闭的,这可使热机再起动时,避免发动机快怠速运行。

5、怠速控制阀(ISCV)

怠速控制阀不仅集中了节气门和由怠速调整螺钉控制的旁通通道的功能,而且还能在ECU控制下,根据发动机实际工况来改变怠速时流入发动机的空气量。控制怠速空气量的执行机构,可大致分为两种,一种是控制节气门全关闭位置的节气门直动式;另一种是控制节气门旁通路中空气量的旁通空气式,图1-25为这两种执行机构的组成原理图。大多数的空气流量控制机构选用旁通空气式,而旁通空气式驱动阀门的型式又有步进电动机型、旋转滑阀式、占空比控制真空开关阀和开关控制型真空开关阀等。

(1)步进电动机型怠速控制装置

此控制方式是通过控制步进电动机正反转来带动旁通空气阀的运动。阀的运动可以使旁通孔的流通面积发生变化,用来控制旁通空气流量,由此达到控制怠速转速的止的。控制机构简图如图1-26a所示,阀心固定在阀轴上,阀轴的另一端有螺纹,旋入步进电动机的转子中。当步进电动机通电时,转子旋转,通过丝杆来带动阀一起转动。由图中可以看出,阀心与阀座之间的流通面积靠阀的前进与后退来调整。流通面积越大,流入进气歧管中的空气越多,怠速转速也就越高,反之,转速减小。所以,只需控制步进电动机的旋转方向及旋转量就能控制怠速转速。步进电动机的特点是它本身有几组励磁线圈,用改变励磁线圈的通电顺序,来改变电机的旋转方向。线圈每通一次电,转子就转过一定量(一般为几度到十几度)。

因此,可以很精确地调整流通面积,可以把怠速转速控制在很精确的范围内,图1-26b所示为步进电动机控制电路。

(2)旋转滑阀式怠速控制装置

同步进电动机相类似,怠速转速的调整也是通过调整旁通空气阀孔的流通面积进行调整的,阀孔的结构如图1-27a所示,从图中可见,旋转滑阀依靠不同的转动角度来控制阀孔流通面积;从而控制流入进气总管的空气量。阀与阀轴固定在一体,阀轴可带动阀转动来控制转动来控制阀孔的面积,使流入进气总管的空气量变化。阀轴上还固定着一个圆柱形磁铁,此磁铁放在一个磁场强度及方向可变的磁场中,磁场强度变化,可使圆柱形磁铁旋转,带动阀旋转。磁场是靠通电的螺线管形成的。如图1-27b所示,线圈W1与线圈W2分别由ECU

控制通断。当I1=I2时,W1、W2产生的磁场强度相同,作用在永久磁铁上的力相等,使磁铁及阀轴处于平衡状态。当I1增加、I2减小时,阀轴逆时针旋转,反之顺序针旋转。

(3)占空比控制真空开关阀

该装置的工作原理图如图1-29所示,空气流通面积是用阀与阀座之间的间隙进行调整的。空气控制阀上半部分为真空室,下半部分通大气,当真空室的真空度大,ACV中间膜片带动调节气阀向上移,使空气的真空度调节有两调节源,一个来自节气门下方进气总管中,真空程度很大;另一个来自节气门上方,其压力接近大气压,真空度很低,在它与真空室的通路之间加一个由ECU控制的真空开关阀(VSV)。当VSV阀打开时,真空室内真空度下降,使调节气阀ACV下降,流通面积增加,反之,流通面积减小,即空气控制阀膜片室的真空度由真空开关阀的开启时间予以控制。ECU根据检测到的空档开关、水温、空调器开关、起动机,分电器和车速等信号,决定脉冲信号的占空比,从而控制真空开关阀的占空比,进而控制ACV的阀门开度,达到控制空气流量、调整怠速的目的,这种型式的怠速控制阀仍需要有空气阀。

(4)开关控制型真空开关阀

这种控制阀与占空比控制型真空开关阀相类似,只是控制信号是开关信号,因而控制更简单,该控制阀仍需空气阀。

D 课程总结

E 布置作业

排气系统设计开发指南

1.1 主题 本指南制订了与汽车发动机相匹配的消声排气系统的开发流程及设计指南; 1.2 适用范围 本指南适用于汽车消声排气系统的设计开发

2. 参考标准和相关文件 QC/T 631—1999 汽车排气消声器技术条件 QC/T 630—1999 汽车排气消声器性能试验方法 QC/T 58—1993 汽车加速行驶车外噪声测量方法 QC/T 10125—1997 人造气氛腐蚀试验盐雾试验 3.定义 3.1 排气消声器 排气消声器是具有吸声衬里或特殊形式的气流管道,可有效的降低气流噪声的装置。 3.2 插入损失 消声器的插入损失为装消声器前后,通过排气口辐射的声功率级之差。 3.3 排气背压 按QC/T524设置排气背压测量点,当分别带消声器和带空管时,测点处的相对压力值之差。 3.4 功率损失比 消声器的功率损失比是指发动机在标定的工况下,使用消声器前后的功率差值和没有使用消声器时功率的百分比。 4.开发流程及设计指南 4.1 接受产品开发任务并做好开发前的准备工作 开发之初,需要了解如下信息,作为设计输入: 1、发动机的排量、额定功率、额定扭矩等相关参数; 2、整车底盘走向,空间布局; 3、发动机对排气背压、功率损失比的要求; 4、噪声标准的制定; (1)、插入损失大于35dB; (2)、整车车外加速噪声小于74 dB; 4.2 方案设计 1、消声器的容量设计计算 消声器的容量关系到发动机的功率和扭矩,因此容量的设计将决定整车的动力性。一般地,消声器的容量有如下的计算公式: Vm=k×P Vm=消声器的容量(L) K=0.14 P=输出功率(Ps) 2、消声器的位置确定

丰田汽车常见故障

论汽车电控发动机常见故障排除与维修 摘要:对汽车电控发动机故障原因的分析和寻找需要较高的技术水平,尤其是油、气路故障,因为油、气路故障是电喷发动机故障自诊断系统所难以诊断的,同时,在电控发动机故障中也是故障率相对较高的。将针对电喷发动机各种油路、气路故障展开讨论,提出相关故障排除及相应维修建议。 关键词:汽车电控发动机;故障;排除;维修 0 前言 电控汽油喷射发动机是装有电脑、传感器、执行元件的智能控制发动机。它可以精确控制空燃比,使燃烧充分,显著减少排气污染。同时,由于发动机工作稳定性得到加强,从而降低了噪音。其传感器采集瞬息变化的空气进气量、发动机负荷、水温、进气温度等信号输入电脑,由电脑计算出适时的、恰当的汽油量和最佳点火提前角,并输出控制信号给喷油阀和点火器,使得发动机在各工况下得到最佳性能。 1 汽车电控发动机常见故障及排除方法 当汽车电控发动机工作不正常,而自诊断系统却没有故障码输出时,尤其需要依靠操作人员的检查、判断,以确定故障的性质和产生故障的部位。笔者现将汽车电控发动机常见故障总结为以下: 1.1 发动机不能发动 (1)故障现象:打开点火开关,将点火开关拨到起动位置,发动机发动不着。 (2)故障产生的可能原因: a.起动系统故障使发动机不能转动或转动太慢:①蓄电池存电不足、电极桩柱夹松动或电极桩柱氧化严重;②电路总保险丝断;③点火开关故障;④起动机故障;⑤起动线路断路或线路连接器接触不良。 b.点火系统故障:①点火线圈工作不良,造成高压火花弱或没有高压火花;②点火器故障;③点火时间不正确。 c.燃油喷射系统故障:①油箱内没有燃油;②燃油泵不工作或泵油压力过低;③燃油管泄漏变形;④断路继电器断开;⑤燃油压力调节器工作不良;⑥燃油滤清器过脏。 d.进气系统故障:①怠速控制阀或其控制线路故障;②怠速控制发阀空气管破裂或接头漏气;③空气流量计故障。 e.ecu故障。 (3)诊断排除方法和步骤。 ①打起动档,起动机和发动机均不能转动,应按起动系故障进行检查。首先,检查蓄电池存电情况和极柱连接和接触情况;如果蓄电池正常时,检查起动线路、保险丝及点火开关; ②踏下油门到中等开度位置,再打起动机。如果此时,发动机能够发动,则说明故障为怠速控制阀及其线路故障或者是进气管漏气,如果踏下油门到中等开度位置时,仍然发动不着,应进行下一步骤的检查;③进行外观检查。检查进气管路有无漏气之处;检查各软管及其连接处是否完好;检查曲轴箱通风装置软管有无漏气或破裂;④检查高压火花。如果高压火花不正常,应检查高压线、点火线圈、分电器和电子点火器;⑤检查点火顺序是否正确;⑥检查供油系统的供油情况。在确认油箱有泪的情况下,检查燃油管中的供油压力;⑦检查点火正时及各缸的点火顺序;⑧检查装在空气流量计上的燃油泵开关的工作情况;⑨检查各缸火花塞的工作情况;⑩检查点火正时。如点火正时不正确,应进一步检查点火正时的控制系统;

进气系统设计计算报告

密级: 编号: 进气系统设计计算报告 项目名称:力帆新型三厢轿车设计开发 项目编号: ETF_TJKJ090_LFCAR 编制:日期: 校对:日期: 审核:日期: 批准:日期: 上海同济同捷科技股份有限公司 目录 1 进气系统概述 (2) 系统总体设计原则 (2) 系统的工作原理及组成 (2) 2 进气系统结构的确定及设计计算 (2) 进气系统设计流程 (2) 进气系统流量的确定 (3) 拟选定空气滤清器的允许阻力计算及设计原则 (4) 滤清效率要求 (7) 空滤器滤芯面积确定及滤纸选用 (8) 进气系统结构的确定 (9) 进气系统管路阻力估算 (10)

3 结论 (12) 4 参考资料及文献 (12) 1进气系统概述 1.1 系统总体设计原则 在国内外同挡次同类型轿车的进气系统结构深入比较分析的基础上进行设计和选型,系统设计满足发动机获得高的充量系数,尽可能低地降低发动机的功率损失.此外为了适当降低发动机的进气噪声,在管路中布置谐振腔. 1.2 系统的基本组成 进气系统一般由空气滤清器入口管,空气滤清器,空气滤清器出口连接管,节气门体,怠速控制阀阀体等组成. 2系统结构的确定及设计计算 2.1 进气系统流量的确定 LF7160选用的发动机为宝马型电喷发动机,发动机对进气系统流量的要求取决于发动机本身的因素,即发动机的排量和发动机的工况要求,不同的工况有不同的流量要求.在进气系统流量满足的情况下,发动机实际充入的空气取决于自身的因素,首先,初步确定发动机最大功率工况点进气流量。 式中: V——发动机排量3m; n——最大功率点转速min /r; η——充量系数; 1 η——汽缸数效率; 2 τ——冲程数,四冲程取2,二冲程取1 上式中发动机参数

进气系统设计计算

进气口位置: 进气系统的设计须满足以下条件: ●避免机舱内热空气吸入 ●避免雨滴和雾气直接吸入 ●避免排气灰尘吸入 ●从空滤器至涡轮增压器入口之间的进气管必须由耐蚀材料制成 ●进气系统使用的分离式接头(如罩与空滤器外壳的接头)必须位于空滤器上部 ●进气系统必须能够进行定期维护,且进行维护时不需要打开空滤器和涡轮增压器之间进气系统的任何部件 ●尽可能低的系统阻力,以保证最大限度的利用柴油机功率 ●进气系统部件之间的接头和其它接合处,比如与空压机的接头,必须保持有效密封,避免灰尘或其它污染物进入过滤空气中。 进气口尺寸应设计得足够大,且没有锐弯和面积改变,为减小阻力,还应有平滑的转换导管来与进气管相连。发动机舱应充分通风,来发散出这些热量。为保护热敏元件,发动机连续运转时机舱内的最高温度不允许超过(推荐) 空滤器的选择及布置: 一、根据发动机厂家推荐在2200rpm是所需空气流量为1500m3/h,结合以下计算: 1发动机性能参数: 发动机型号:L340 额定功率Ne(kW):2505 额定转速n(r/min):2200: 排量Vh(L):8.9(C系统8.3) 空滤器流量VG(m3/h)的确定 ⑴增压后发动机所需的空气流量V(m3/h)的确定 V=Vh×n/2×60/1000=8.9×2200/2×60/1000=587.4(m3/h) ⑵发动机所需理想状态空气量Vo(m3/h)的确定(汽车设计理论) V o=ε×(ToT)0.75×V×ηvo×ψs 式中:V o-发动机所需理想状态空气量(m3/h) 大气环境温度(k)取313(273+40);T-增压中冷后气体温度(k)取333(273+60)(要求不高于环境温度的20);ηvo-充气效率取0.87(推荐);ψs-扫气效率取1.05 ε-增压比2.18 V o=2.18×(313333)0.75×587.4×0.87×1.05=1116.67(m3/h) ⑶空压机流量Vk(m3/h)的确定(推荐为320L/min) bVk=Vkh×nk×601000 式中:Vkh-空压机公称排量(L);nk-空压机的转速(r/min); Vk=0.229×1400×601000=19.2(m3/h) ⑷空滤器流量VG的确定(空滤器流量上述设计的储备流量) VG=1.066×(V o+Vk)=1.066×(1116.67+19.2)=1212(m3/h) L考虑到以后布置功率加大380马力发动机 结合两者得出按照发动机厂家的推荐空滤器流量≥1500 m3/h5 二、流通面积的确定 在确定了空滤器容积大小的同时,还应校核一下系统中所允许的气流流速。进气系统内的气流流速不宜超过30m/s,因为过高的气流流速会产生很大的流阻和进气噪声,对发动机会造成过大的功率损失。依据这一原则,在结构设计前先要确定空滤器进口、出口及连接管等部位允许的最小流通面积。 最小流通面积Smin=V o/(3.6×Vmax)×10-3(m2)

汽车发动机进气系统的故障与维修毕业论文

汽车发动机进气系统的故障与维修毕业论文 第一章发动机电喷系统概述 1.1电喷系统综述 1.1.1电喷系统的新概念 电喷系统的实质就是一种新型的汽油供给系统。化油器利用空气流动时在节气门上方的喉管处产生负压,将浮子室的汽油连续吸出,经过雾化后输送给发动机,汽油喷施系统则是通过采用大量的传感器受各种工况,根据直接或间接检测的进气信号,经过计算机判断和处理,计算出燃烧时所需的汽油量,然后将加一定压力的汽油经喷油器喷出,供发动机使用。 1.1.2 电喷系统的优缺点 电控发动机系统取消了化油器供油系统中的喉管,喷油位置在节气门的下方或缸,有计算机控制喷油器的精准喷射量。与化油器式发动机比,电喷系统有以下优点: 1)提高了发动机的充气系数,从而提高了发动机的输出功率和扭矩。这是因为电喷系统当中没有了喉管,减少了进气压力损失;汽油喷射是在进气歧管附近,只有通过进气歧管,这样可以增加进气歧管的直径,增加进气歧管的惯性作用,提高进气效率。 2)根据发动机负荷的变化,精准控制混合气的空燃比,适应各种工况,使燃烧更充分,降低油耗,减少排气污染,而且响应速度快。 3)可均匀分配到各缸燃油,减少了爆震现象,提高了发动机工作的稳定性,同时也降低了废气排放和噪声污染。

4)提高了汽车的使用性能。在寒冷的冬季,化油器主喷油管易结冰上冻,而电喷系统没有结冰上冻现象,所以提高了冷启动性能。另外电喷系统提供的是高压供油,喷出的气雾滴较小,能与空气同时进入燃烧室混合,因而响应速度快,加速性能好。 电喷系统与传统系统相比可以使油耗降低5%-15%,废气排放量减少20%左右发动机功率提高5%-10%。电控系统无论从燃油经济性发动机动力性,还是排气和噪声等方面都具有传统系统无法比拟的优越性。电喷发动机系统的缺点就是在于价格偏高,维修要求高。 1.1.3 电喷系统的组成和工作原理 按其部件功用来看,电喷系统的组成主要有:空气供给系统(气路)、燃油供给系统(油路)和电子控制系统(电路)三大部分。 1.2空气供给系统 作用:为发动机提供清洁的空气并控制发动机的正常工作时的进气量。 组成:由空气滤清器、空气流量计、进气压力传感器、节气门体、怠速空气调整体、谐振腔、动力腔、进气歧管等。 工作原理:发动机工作时,空气经空气滤清器后,通过空气流量计(L 型)节气门体进入近期总管,在通过进气歧管分配给各缸。节气门体中设置有节气门,从而控制进入发动机的空气量,进而控制发动机的输出功率。在节气门的外部或部设有与主进气道并联的旁通带速进气通道,并由怠速控制阀控制怠速时进气量。 L型——流经怠速控制阀的空气首先经过空气流量计测量。 D型——进气歧管压力传感器测量的是进气歧管的绝对压力,流经怠速控制阀的空气也在此检测围之。怠速控制阀由ECU直接控制。 1.3 燃油供给系统 作用:向汽缸提供燃烧所需的燃油。 组成:汽油泵、汽油滤清器、压力调节器、喷油器等。

进气系统设计开发指南--排气室

进气系统设计指南

进气系统由于整车布置需要,整体布置在机舱内右侧,由于现有车型进气系统都是布置在车体左侧,因此,相对现有车型,进气系统设计变动较大。 1. 进气系统的构成和布置 1.1空滤器总成的布置 空滤器的布置在机舱右侧。 1.1.1 空滤器的型式 空滤器采用塑料壳体,本体和上盖壳体上下分开型式,进气口在本体,向车 体右侧,出气口在上盖,出气口带法兰与空气流量计通过两个螺栓联接,法 兰口粘接有橡胶密封圈保证与流量计接触端面密封。 1.1.2滤芯的结构型式 滤芯采用折叠的无纺布通过注塑框架固定平板式结构,橡胶密封圈保证与空 滤器壳体密封面密封。 1.1.3空滤器总成的安装方式 空滤器总成采用三点固定方式,两点利用现有的孔位,固定金属安装支架, 另一点借用动力转向罐支架。 1.2 进气导管的构成和布置 进气导管由进气隔热板进气导管与谐振器导管口构成 1.2.1 进气导管的结构 进气导管由进气隔热板和进气导管构成,隔热板一方面起隔热作用,同时起 固定进气管的作用。进气口从右侧翼子板引导进气,另一歧管连接谐振器管 口。 1.2.2 进气导管布置位置 进气导管通过进气导管的隔热板卡装在引擎盖右侧内支撑板的长方孔内。

进气导管进气口大气侧,管口内径为:80mm 1.2.4 进气导管安装方式 进气导管通过进气导管的隔热板卡装在引擎盖右侧内支撑板的长方孔内,另一端卡装在空滤器本体。 1.3 谐振器的结构和布置 谐振器的型式采用亥姆霍兹(Helmholtz)共振腔, 1.3.1 谐振器的布置位置 谐振器布置在翼子板右侧内, 1.3.2 谐振器的基本尺寸 谐振器管口内径为:40mm,连接管的长度为:35mm 1.3.3 谐振器的安装方式 谐振器通过两个金属支架,固定在引擎盖右侧,利用现有侧孔位,通过螺母固定。 1.4 进气胶管的结构和布置 进气胶管根据与空滤器联接的流量计的位置和发动机进气口位置设计布置1.4.1 进气胶管的结构 进气胶管中部设计三个波纹,胶管外侧面布置纵横交叉加强筋,加强筋间距22~28mm,容易吸塌的部位,加强筋的高度为5mm,其他部位加强筋高度为4mm。 1.4.2 进气胶管布置位置 进气胶管根据流量计和发动机进气口位置确定,保证与护风圈(间隙30mm 以上)、引擎盖间隙(30mm以上),同时考虑检查机油量时,插拔机油尺干涉检查。

浅谈汽车进气系统的设计布置

龙源期刊网 https://www.360docs.net/doc/3f9062043.html, 浅谈汽车进气系统的设计布置 作者:刘洁 来源:《科技视界》2015年第26期 【摘要】本文分别论述了空气滤清器、进气管路、汽车原始进气口的安装与布置并要求 对空气滤清器的一个选型。发动机之所以早期出现烟大、油耗高、无力、磨损等故障都是与汽车进气系统的安装不是很合理,还有其设计布置有很大的关系,然而为了使其进气系统设计布置和安装的更加合理,在新车型开发的时候,汽车生产企业和发动机生产企业应该联合开发,并且装配完成后要进行联合评审确认,最后两两联合开始对汽车的进气系统进行改进。 【关键词】进气系统;设计布置;汽车 主要组件有增压器、原始进气道、中冷却器、空气滤清器、连接管路等。然后把空气或者是混合气开始导入到发动机的气缸零部件集合体里,我们称之为发动机进气系统。该系统的主要功能是为发动机提供干燥、充足并且清洁的空气。如果说发动机是汽车的心脏的话,那么进气系统就是发动机的筋脉。然而进气系统的布置和安装将会直接缩短发动机的寿命还会大大影响到发动机的一些功能的发挥,还有其工作的稳定性,以及环保性和可靠性。根据统计表明,发动机之所以出现早期磨损、油耗高、烟大、没有力等故障,绝大部分的原因是因为和进气系统设计布置的安装十分不合理造成的,其所占比例在90%以上。通常原始的进气道与连接管路截面积越大,管壁越圆润,因此弯曲也越少以及中冷却器的冷却能力越强,空气滤清器额定流量越大,因此整个进气系统的性能就越好,发动机性能也就越来越棒。 1 进气系统的原理简介以及噪音 1.1 原理简介 进气系统由空气、空气流量计、怠速调整螺丝钉、节气门、急速控制阀、热控制阀、还有发动机一起组成。进气系统则要求其进气的阻力尽可能要小,并且能够保证发动机的功率损耗减小;要想满足发动机其额定的充气量要求,就必须得具有最高原始的滤清效率和其全寿命滤清效率,并且要在规定的阻力之内要具备良好的储尘能力,还有一点就是其空滤器的密封性一定要好。 1.2 系统的噪音 空滤器和谐振腔的容积之和就是消声容器,而进气系统和消声容积有相当大的关系,其容积越大就越好。对于谐振腔来说面积越大,其容积就越大,一般来说可以用在消声的频率越低,其消声的频带也将越宽。然而对于空滤器来说,它的容积越大,其消声量也将越大。这个可以调节的频带也将越宽。然而,在一定的消声容积情况下,最为关键的就是需要合理的匹配不同的消声单元。

-B15发动机进气系统设计及分析

课程论文 题 目:B15发动机进气系统设计及性能分析 学生姓名: 学 院:能源与动力工程学院 班 级:交通运输09-3 指导教师:高志鹰 副教授 2012年12月28日 学校代码: 10128 学 号: 2

内蒙古工业大学课程设计(论文)任务书 课程名称:汽车电子控制技术学院:能源与动力工程学院班级:交通运输 学生姓名: ___ 学号:200 指导教师:高志鹰 一、题目 B15发动机进气系统设计及性能分析 二、目的与意义 根据《汽车电子控制技术》课程学习的知识,系统分析B15发动机进气系统设计及性能同时结构组成及基本的工作原理,掌握汽车电子控制系统的基本结构与原理三、要求(包括原始数据、技术参数、设计要求、图纸量、工作量要求等) 根据参考文献,系统学习并分析B15发动机进气系统结构组成及基本的工作原理;按照《内蒙古工业大学课程设计说明书(论文)书写规范》撰写课程论文。 四、工作内容、进度安排 12月21日—12月22日:根据任务书要求,查阅、学习相关参考文献; 12月22日—12月23日:提交论文提纲; 12月23日—12月25日:根据指导教师修改后的论文提纲撰写论文初稿; 12月25日—12月26日:根据指导教师对论文的修改意见修改论文; 12月26日—12月28日:提交论文,答辩 五、主要参考文献 [1]胡军义. 柴油机废气再循环(EGR)电控系统控制策略的研究[D].合肥工业大学,2008. [2] 古国栋.柴油发动机废气再循环系统(EGR)热交换器仿真模拟与结构设计[D].华中科技大 学,2007. 审核意见 同意。 系(教研室)主任(签字) 指导教师下达时间 2009年 12月 18日 指导教师签字:_______________

进气系统设计计算说明书

DK4进气系统设计计算书 DK4进气系统由于整车布置需要,整体布置在机舱内右侧,由于现有车型进气系统都是布置在车体左侧,因此,相对现有车型,进气系统设计变动较大。 1. 进气系统的构成和布置 1.1空滤器总成的布置 空滤器的布置在原车型的机舱右侧(原装电瓶处)。 1.1.1 空滤器的型式 空滤器采用塑料壳体,本体和上盖壳体上下分开型式,进气口在本体,向车 体右侧,出气口在上盖,出气口带法兰与空气流量计通过两个螺栓联接,法 兰口粘接有橡胶密封圈保证与流量计接触端面密封。 1.1.2滤芯的结构型式 滤芯采用折叠的无纺布通过注塑框架固定平板式结构,橡胶密封圈保证与空 滤器壳体密封面密封。 1.1.3空滤器总成的安装方式 空滤器总成采用三点固定方式,两点利用现有的孔位,固定金属安装支架, 另一点借用动力转向罐支架。 1.2 进气导管的构成和布置 进气导管由进气隔热板进气导管与谐振器导管口构成 1.2.1 进气导管的结构 进气导管由进气隔热板和进气导管构成,隔热板一方面起隔热作用,同时起 固定进气管的作用。进气口从右侧翼子板引导进气,另一歧管连接谐振器管 口。 1.2.2 进气导管布置位置

进气导管通过进气导管的隔热板卡装在引擎盖右侧内支撑板的长方孔内。 1.2.3 进气导管的基本尺寸 进气导管进气口大气侧,管口内径为:80mm 1.2.4 进气导管安装方式 进气导管通过进气导管的隔热板卡装在引擎盖右侧内支撑板的长方孔内,另一端卡装在空滤器本体。 1.3 谐振器的结构和布置 谐振器的型式采用亥姆霍兹(Helmholtz)共振腔, 1.3.1 谐振器的布置位置 谐振器布置在翼子板右侧内, 1.3.2 谐振器的基本尺寸 谐振器管口内径为:40mm,连接管的长度为:35mm 1.3.3 谐振器的安装方式 谐振器通过两个金属支架,固定在引擎盖右侧,利用现有侧孔位,通过螺母固定。 1.4 进气胶管的结构和布置 进气胶管根据与空滤器联接的流量计的位置和发动机进气口位置设计布置1.4.1 进气胶管的结构 进气胶管中部设计三个波纹,胶管外侧面布置纵横交叉加强筋,加强筋间距22~28mm,容易吸塌的部位,加强筋的高度为5mm,其他部位加强筋高度为4mm。 1.4.2 进气胶管布置位置 进气胶管根据流量计和发动机进气口位置确定,保证与护风圈(间隙30mm

发动机电控系统的故障诊断与维修

发动机电控系统的故障诊断与维修 【摘要】由于现代汽车微机控制装置是一很复杂的机电一体化综合控制系统,在进行维修和维修前,首先应系统全面的掌握整个系统的结构、原理和电气线路。各种电子控制系统的使用及其不断的完善,使得汽车检测维修技术要求越来越高。本文结合汽车维修的实例,对汽车发动机电控燃油喷射系统的在维修过程中常见故障的检测与诊断方法进行分析与探讨。 【关键词】汽车;发动机电控系统;故障排除;检测技术和维修方法。 众所周知,自1897年第一台汽车发动机问世以来,在近一个世纪的发展过程中,汽车发动机技术水平出现过三次质的飞跃:第一次是在本世纪二十年代用机械式喷油系统代替了蓄压式喷油系统:第二次为五十年代采用增压技术;第三次则是八十年代出现的汽车发动机电子控制技术。电控技术自从七十年代首先应用在汽油机上开始就一直存在着如何保障电控系统的可靠性与安全性的问题。传统的机械式控制汽车发动机系统具有很高的可靠性,当汽车发动机采用电控系统,使用电控单元(ECU)、传感器和执行器时,仍应具备同样高的可靠性与安全性。虽然系统的可靠性可以通过提高元件的可靠性和进行系统可靠性的设计来改善,但是,无论如何提高可靠性设计,故障的发生是不可避免的,这时,系统电控单元就成为系统可靠性的最后一道防线。当电控系统出现故障时,维修工作变得相当困难,靠传统维修方法如询诊、视诊、听诊、嗅诊及试验等来解决电控系统的故障是相当困难的。配合电控系统的专用电控系统的研究及应用成为电控系统产品化的必然要求。因此,电控单元的研究是汽车发动机系统可靠性的保障,是汽车发动机电控技术的一个重要组成部分;电控系统作为汽车发动机电控系统的专用维修仪器,是电控系统与用户进行沟通的界面,是便于用户使用电控系统的可靠保障。 一、发动机电控系统的组成与工作原理 (一)发动机电控系统的组成 发动机电子控制应用十分普遍。汽油机电子控制系统的核心问题是燃油定量

进气系统设计计算报告

密级: 编号: 进气系统设计计算报告 项目名称:力帆新型三厢轿车设计开发 项目编号: ETF_TJKJ090_LFCAR 编制:日期: 校对:日期: 审核:日期: 批准:日期:

上海同济同捷科技股份有限公司 目录 1 进气系统概述 (2) 1.1 系统总体设计原则 (2) 1.2 系统的工作原理及组成 (2) 2 进气系统结构的确定及设计计算 (2) 2.1 进气系统设计流程 (2) 2.2 进气系统流量的确定 (3) 2.3 拟选定空气滤清器的允许阻力计算及设计原则 (4) 2.4 滤清效率要求 (7) 2.5 空滤器滤芯面积确定及滤纸选用 (8) 2.6 进气系统结构的确定 (9) 2.7 进气系统管路阻力估算 (10) 3 结论 (12) 4 参考资料及文献 (12)

1进气系统概述 1.1 系统总体设计原则 在国内外同挡次同类型轿车的进气系统结构深入比较分析的基础上进行设计和选型,系统设计满足发动机获得高的充量系数,尽可能低地降低发动机的功率损失.此外为了适当降低发动机的进气噪声,在管路中布置谐振腔. 1.2系统的基本组成 进气系统一般由空气滤清器入口管,空气滤清器,空气滤清器出口连接管,节气门体,怠速控制阀阀体等组成. 2系统结构的确定及设计计算

2.1 进气系统流量的确定 LF7160选用的发动机为宝马Tritec1.6L 型电喷发动机,发动机对进气系统流量的要求取决于发动机本身的因素,即发动机的排量和发动机的工况要求,不同的工况有不同的流量要求.在进气系统流量满足的情况下,发动机实际充入的空气取决于自身的因素,首先,初步确定发动机最大功率工况点进气流量。 τηη/21Vn Q = min)/(3m 式中: V —— 发动机排量3m ; n ——最大功率点转速min /r ; 1η——充量系数; 2η——汽缸数效率; τ——冲程数,四冲程取2,二冲程取1 上式中Tritec1.6L 发动机参数 V =3101598-X 3m n =6000min /r 1η=0.95 2=τ 2η=1(四缸取1) 将参数代入得: Q =min /514.43m 即每小时的系统流量h Q 为: =h Q 270m 3/h

排气系统设计

奇瑞汽车有限公司设计指南 编制: 审核: 批准: 发动机工程研究一院

目录 一、主题与适用范围 1、主题 2、适用范围 二、排气消声系统的总成说明及功用 三、设计应用 1、设计规则和输入 2、设计参数的设定 2.1 尺寸及重量 2.2 排气背压 2.3 功率损失比 2.4 净化效率 2.5 加速行驶车外噪声 2.6 插入损失以及传递函数 2.6.1 插入损失 2.6.2 传递函数 2.7 尾管噪声 2.8 定置噪声 2.9 振动 3、系统及零部件的设计 3.1 系统布置 3.1.1 布置原则 3.1.2 间隙要求 3.1.3 吊钩位置的选取

3.1.4 氧传感器孔的布置 3.2 消声器的容积确定 3.3 排气管径的选取 3.4 消声器 3.4.1 消声器的截面形状 3.4.2 消声器内部结构 3.5 净化装置 3.6 补偿器 3.6.1 波纹管 3.6.2 球形连接 3.7 橡胶吊环 3.8 隔热部件 3.9 材料选择 3.9.1 排气管、消声器内组件 3.9.2 消声器外壳体 四、排气消声系统的设计开发流程 五、修订说明 六、参考文献列表

一、主题与适用范围 1、主题: 本指南规定了与汽车发动机相匹配的排气消声系统的系统匹配,零部件设计以及开发的流程等。 2、适用范围: 本指南适用于奇瑞所有装汽油或柴油发动机的M1类车的排气消声系统设计二、排气消声系统的总成说明及功用 排气系统包括排气歧管、排气管、排气净化装置、排气消声装置、隔热部件、弹性吊块等。一般地,排气系统具有以下一些功用: (1)、引导发动机排气,使各缸废气顺畅的排出; (2)、由于排气门的开闭与活塞往复运动的影响,排气气流呈脉动形式,排气门打开时存 在一定的压力,具有一定的能量,气体排出时会产生强烈的排气噪声,气体和声波在管道中摩擦也会产生噪声,因此在排气系统装有排气消声器来降低排气噪声; (3)、降低排气污染物CO,HC,NO X等的含量,达到排气净化的作用; 注:在本指南中,我们将只介绍排气管和排气消声装置的详细设计,对排气歧管和排气净化装置的详细设计见其他设计指南。 典型的排气消声系统如图1所示: 图1 三、设计应用

车辆排气系统设计规范

车辆排气系统设计规范

车辆排气系统设计规范 1、目的 随着环保法规对车辆排放的要求越来越高,排气系统在车辆的系统组成和系统设计中,越来越占有重要的地位。为使排气系统满足各阶段国家及地方法规的要求,提高对排气系统的设计和制造质量水平,需对车辆的排气系统的设计提出较规范的要求,以便在设计和制造过程中,参照执行。 2、设计规范 2.1 排气系统及消声器的设计输入 2.1.1 车辆产品的排气系统的配置和走向,依所配车辆的总体结构布置的需要来设计。而消声器的性能开发则需要依所配发动机及其对排气系统的具体要求。在初步设计选型时,应将发动机的有关性能参数及其上的关键件的基准要素等(如曲轴箱后端面与曲轴主轴线的交点坐标、动力线偏移量及倾角等),作为设计条件输入设计,作为消声器选型及性能开发的依据之一。并根据国家、地方及企业有关法规和标准的要求,对系统和消声器的性能设计目标提出要求,见附录1。 2.1.2 排气系统及其消声器在进行初步选型设计时,必须对系统进行结构方案分析和匹配计算分析,并提供选型设计分析报告,见附录2。 2.2 设计原则 2.2.1 排气系统及其消声器的设计,应使排气阻力尽可能的小,以使其对发动机的功率损失尽可能小。 2.2.2 排气系统及其消声器要有较好的音质和较低的音强,即应有较大的插入损失。 2.2.3 排气系统及其消声器要有较好的外观和内在质量及较长的使用寿命。 2.3 排气系统的设计要求和布置 2.3.1 排气管内径的确定在结构布置允许的情况下,排气管内径应尽可能大些,以降低管道内得气流速度,减少气流阻力产生的功率损失和再生噪声。一般应≥发动机排气歧管出口内径。或根据发动机排量等参数,按公式(1) 计算初步确定排气管内径。 D=2 √Q/(πV) (1) 式中:Q—发动机排量;V—气流速度,一般取50~60 m/s 。 2.3.2 排气管的布置和转弯,应使排气尽可能顺畅。管的中心转弯半径一般应≥(1.5~2)D,其折弯成型角应大于90o,以大于120o为宜。整个系统的管道转弯数应尽可能少,一

检测进气管真空度地方法判断发动机地故障

检测进气管真空度的方法判断发动机的故障 发动机正常温度下,怠速时真空压力应为57-71Kpa。 1、利用进气真空参数变化诊断发动机故障的原理 影响汽油机发动机使用性能的三要素是密封性、点火性及空燃比,其中进气系统密封性的影响尤其关键,不能忽视真空度在诊断维修中的应用。真空度代表了发动机的综合性能,只要发动机带有故障,其真空度必然会引起变化。因为真空度是由密封性、节气门位置和发动机转速等综合因素决定的。 节气门有故障会直接反映到真空度上。其他任何系统有故障都会造成发动机转速变化,那么在一定节气门的情况下真空度也会发生变化,这就是真空度判断的原理,因而,利用进气真空度表检测发动机进气管真空度,可发现发动机部许多的问题,简便易行。 对于汽油发动机而言在运转过程中由于进气行程的作用,在进气歧管中就会产生真空度。真空度是由各缸在交替进行进气行程时造成的。如果该数值较高且真空表指针表现也较稳定,反映到发动机的工作中则是平稳、有力、加速性良好。由于现代汽车发动机在结构上存在着很大差异,所以进气歧管真空度的大小及其稳定性就和发动机的结构及性能(进气系统密封性、发动机转速、汽缸的数量等)、点火系统的工作性能、可燃混合气的品质(空燃比的大小)有着密切的联系,并与它们的变化成正比关系。另外,进气歧管真空度还受到节气门开度的影响,并与其成反比。根据这个原理,利用真空表对进气歧管真空度进行检测并分析故障成因就成了一种可行的方法。 2、利用进气真空参数变化诊断发动机故障的方法

现代汽车发动机上一般布置有多根胶管,主要目的是利用发动机工作时进气歧管产生的真空作为多种辅助设备的动力源或有关传感器的信号源。发动机进气歧管真空度的高低及其稳定性与发动机工作的气缸数、转速、密封性能、点火性能、混合气空燃比和节气门开度等有关。 用真空表对进气歧管真空度进行检测的方法是:把真空表接于节气门的后方,启动发动机,在正常的状态下进行怠速运转,即可从真空表中获取其真空数值。如果随意改变节气门的开度(急加速或急减速)就会获取真空度的变化值,根据这些数值的变化,就可分析和判断发动机存在的故障。 3、真空度测量在故障诊断中的应用 发动机工作正常时进气歧管真空度的大小及变化都有固定的围和规律,反之如真空度大小与正常值相偏离,则发动机必然存在某种故障。造成真空度读数异常的常见原因有一个或多个火花塞缺火、空气软管破损或软管接头松脱、气门密封不良、气缸盖势或进气歧管垫等漏气、活塞环漏气严重、废气再循环阀(EGR)不能关闭、曲轴箱强制通风阀(PCV)被卡住而全开等。不同的原因所对应的真空表读数不同,因此掌握常见工况下真空表的正确读数及一些因故障而造成的异常情况,对故障诊断有益。 3.1 怠速工况下,发动机进气歧管真空表的读数应稳定在57.kPa~74kPa之间,如怠速测试时真空表读数不正常,则需进行如下测试: a) 检查基本点火正时; b)检查气门正时; c)检查气缸压缩压力;

发动机进气管真空度

进气管真空度与发动机控制的联系发动机进气管真空度(又称负压)是进气管内气压与大气压力差的绝对值,是汽 车发动机各气缸交替进气时对进气管形成的负压值总和,—般用△Px表示。发动机进气管真空度的大小及其稳定性与工作气缸数量、发动机转速和空燃比的大小成正比,与节气门的开度成反比,也随着进气系统密封性、点火性能的变差而减小。 进气管真空度是发动机的一个综合性技术指标,被称为发动机性能的“晴雨表”。若进气管的真空度符合标准,不仅表明气缸的密封性能良好,而且表明点火性能、配气相位及空燃比(A/F)也基本符合要求。因此,通过检测进气歧管的真空度可以不解体诊断发动机的多种故障。 进气管真空度的基本检测方法 ①起动发动机并运转到正常工作温度; ②然后将变速杆置入空档,让发动机怠速运转; ③再找到节气门后方专门设置的进气系统真空度检测孔,在该处连接真空表(如果没有这种检测孔,可以拆开进气歧管上的一根真空管,用三通接头连接真空表),就可以进行检测。 备注:检测时若真空表摆动,可以让发动机稍加速运转一会儿,直至表针稳定下来,也可以采用发动机综合性能分析仪测量进气管负压的波形变化。 当发动机以怠速运转时,轿车发动机进气管真空度的数值一般为64kP a~71 kPa。如果进气管的真空度太小,说明进气系统存在漏气现象。 (1)导致发动机运转无力。若怠速时进气管的真空度很低,说明有空气从旁路进入了进气管,由于这部分空气没有经过空气流量传感器的计量或未经节气门控制,空气流量传感器的测量值必然低于实际进气量,而电控单元(ECU)是根据空气流量传感

器等信号决定基本喷油量的,这样就导致喷油量偏少,由于“油少气多”,即混合气过稀,因此发动机运转无力。 ⑴一辆上海大众POLO劲取轿车,出现加速无力,排气管烧红(尤其是氧传感器的安装根部),尾气呛人的故障。经过仔细检查,发现空气滤清器右下角的三通阀阀体与节气门体下侧进气腔处的真空软管脱落,造成节气门后部漏气,引起进气管真空度下降,进气歧管绝对压力传感器的信号电压变大,ECU便指令喷油器增大喷油量,从而导致燃烧不完全,废气中含有大量的未燃混合气,由于三效催化转化器的作用,这些未燃混合气在转化成CO2和H20的过程中释放大量的热量,造成排气温度过高,最终引起排气管烧红的故障。将脱落的真空软管插好,故障排除。 (2)造成发动机起动困难。一辆02款瑞风HFC6470A车,装备韩国原装C4JS2.4L发动机和手动变速器,已经行驶16万km,起动机运转有力,但是发动机就是无法起动着机。检查燃油压力,正常。检查火花塞跳火情况,火花强烈。拆下发动机的正时罩盖,正时记号无误。用二极管试灯检查喷油器线束,能够正常闪烁。最后发现进气歧管上部稳压箱末端的一个圆形闷盖已经脱落,由于空气量过多,造成混合气太稀。将该闷盖固定牢靠,上述故障不再出现。 (3)导致怠速不稳。若进气管漏气,进气量与节气门的开度将不遵循原来的函数关系,空气流量传感器无法测出真实的进气量,造成ECU对进气量的控制不准确,导致发动机怠速不稳定。 (4)增加尾气中污染物的排放。进气管真空度降低,意味着发动机的负荷和燃烧室温度增加,从而提高每循环废气的最高温度,因而导致尾气中的NO X含量增加。 2、进气管真空度失常对汽车自动控制系统的影响 由于进气管真空度的大小意味着发动机转速及负荷的大小,进气管真空度的变化意味着发动机的转速及负荷发生了变化,因此在电控汽车上,发动机进气管的负压

进气系统设计要点

12技术纵横轻型汽车技术2019(6) 进气系统设计要点 刘后明周伟国 (南京依维柯汽车有限公司) 摘要:本文介绍了汽车进气系统的作用、组成,列举了不同空气滤清器的特点,并通过一些设计计算方法的介绍,描述了进气系统的开发过程和设计要点。 关键词:进气系统设计要点空气滤清器 1引言 汽车发动机大多为内燃机,内燃机将燃料的 化学能通过燃烧转化为机械能来驱动汽车行驶, 工作时需消耗大量空气,进气系统就承担着给发 动机提供所需空气的任务。 空气中含有的灰尘是发动机部件非正常磨损 的主要原因,而大多数灰尘是通过进气系统进入 发动机的,进气系统中的空气滤清器就是尽可能 的过滤掉灰尘和水气。 进气系统设计的好坏直接影响发动机的性能 和可靠性,从而影响整车的性能和可靠性。 2进气系统设计要点 2.1进气系统的作用 进气系统的功能是为发动机提供清洁、干燥、温度适当、充足的空气,最大限度地发挥发动机的性能和降低灰尘对发动机造成的磨损。 2.2进气系统的组成 进气系统主要部件为空气滤清器和连接管路等,其设计质量直接影响着发动机的性能和可靠性。图1为某越野商务车的进气系统结构示意图。 2.3进气系统设计 评价进气系统的好坏主要是看进气量和进气 图1进气系统结构示意图 1-空气滤清器;10-空滤支架;20-谐振腔;50-空滤至增压器连接管;65-压力指示器;100-卡箍. 阻力能否达到发动机的要求。进气系统设计的任务主要是空气滤清器选型与开发、连接管路与进气口的设计。我们以某配置F1C柴油机的商用车的进气系统的开发为例来介绍其设计过程。 2.3.1空气滤清器选型、设计 2.3.1.1空气滤清器的功能 空气滤清器的主要功能是过滤发动机进气中

发动机进气系统选型设计手册

轻卡发动机进气系统的设计 一、进气系统概述 1,发动机进气系统: 1)进气系统的功用 发动机进气系统关系到发动机动力性、经济性、进气噪声、柴油机的烟度等性能。 ●为发动机提供足量的空气,以保证发动机功率的正常发挥;(进气阻力增加6Kpa,功率下降3%左右)。 ●有足够的滤清效率及过滤精度,滤除空气中的硬质灰尘颗粒,降低灰尘对发动机的磨损; ●对进气产生一定的抑制作用,降低进气噪音。 2)进气系统布置要求 空气滤清器作为发动机进气系统的一部分,在系统布置时,必须从整个进气系统考虑以下几点: 1)空气滤清器进口处的温度,不应过高,不应超出环境温度的15℃(较高要求为不超过8℃),进气温度过高会降低发动机充气系数。 2)进气口应避免吸入雨雪及发动机排出的废气。 3)进气口应避开机舱的负压区,集灰区,甩泥区。卡车空滤进口应尽量升高,放在驾驶室顶部,以降低吸入空气的含尘浓度,空气灰尘浓度与地面距离高度三次方成反比。 4)空气滤清器至发动机进气口之间的管子应减少接口数量,接口卡箍沿管壁360o密封。 5)空气滤清器装在车辆上,容易让人接近,便于保养,外壳上在醒目的位置贴上明确的保养说明。 2,空气滤清器 在发动机进气系统中,空气滤清器(以下简称空滤器)是其中最主要的部件。空滤器的作用主要是保护发动机,使它不被空气中的灰尘磨损,以提高发动机的经济性和动力性,并可延长汽车的大修里程。统计显示,机动车和工程机械发动机的早期磨损,70%与空气滤清器有关,空气滤清器的滤清效率对发动机的磨损和寿命起着决定性的作用。 1)空滤器的分类: 根据使用条件,空气滤清器主要有以下类型: (1)干式(2)湿式(3)油浴式(4)离心式(5)组合式

0进气系统设计及优化

万方数据

万方数据

万方数据

万方数据

LJ276M电喷汽油机进气系统设计及优化 作者:侯献军, 巩学军, 方丹, 于佳, Hou Xianjun, Gong Xuejun, Fang Dan, Yu Jia 作者单位:武汉理工大学汽车工程学院,武汉,430070 刊名: 武汉理工大学学报(交通科学与工程版) 英文刊名:JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY(TRANSPORTATION SCIENCE & ENGINEERING)年,卷(期):2009,33(4) 引用次数:0次 参考文献(9条) 1.王建昕.帅石金.许元默EQ491电喷发动机进排气系统的匹配优化计算 1999(6) 2.许元默GT-POWER的开发及其在发动机进排气系统匹配优化设计中的应用 1999 3.Azoury P H Engineering applications of unsteady fluid flow 1992 4.Stone C R Review of induction system design and a comparison between prediction and results from a single cylinder diesel engine[SAE Paper 921727] 1992 5.Liu J P.Bingham J F A Study on the intake pressure wave actions and volumetric efficiency-speed characteristics multi-cylinder engines 2000(1) 6.孙万臣谐振废气涡轮增压进气系统的研究 2003 7.蒋德明内燃机燃烧与排放学 2001 8.Morel https://www.360docs.net/doc/3f9062043.html,pointe L A Concurrent simulation and testing concept in engine developent[SAE Paper 940207] 1994 9.赵志文内燃机进排气系统计算机辅助开发与快速原型制造 1994 相似文献(8条) 1.期刊论文韩爱民.蔺鑫峰.孙柏刚.刘萍.汪家兴.HAN Ai-min.LIN Xin-feng.SUN Bai-gang.LIU Ping.WANG Jia- xing基于GT-Power的BN6V87QE汽油机性能优化仿真-北京工业大学学报2007,33(6) 应用GT-Power软件建立了BN6V87QE汽油机整机结构和燃烧仿真计算模型,利用该模型对发动机的原进气歧管部分结构参数、配气相位、空燃比和点火提前角电控参数进行了匹配计算. 实验验证了该仿真计算模型的计算结果与原机有很好的一致性,在此基础上,对BN6V87QE汽油机配气相位、空燃比和点火提前角电控参数进行了优化计算,试验证明发动机的性能得到了改进. 2.学位论文黄加胜混合动力汽车用发动机的仿真与优化设计研究2009 全球性经济危机对汽车工业造成严重的影响,日益突出的能源短缺与环境污染问题,使得汽车行业面临新的挑战。混合动力汽车已经成为当今汽车行业发展的必然选择。采用传统的Otto循环汽油机已经不能满足混合动力汽车的需求了。Atkinson循环发动机以其堪比柴油机的高效率已经成为混合动力汽车用发动机的新方向。 本论文首先应用一维模拟软件GT-POWER建立了混合动力用汽油机工作过程仿真模型,并对其性能进行了仿真计算,计算结果与实验结果吻合较好 ,验证了仿真模型的正确性。并在此基础上,根据Atkinson循环原理指导,进行了压缩比与配气相位的优化,提出了最佳的压缩比与配气相位设计方案。其次研究了发动机的进、排气系统参数对充气效率等性能参数的影响,进气系统参数包括:进气总管长度、容积腔容积、进气歧管长度和直径,排气系统参数包括:排气总管长度与直径、排气歧管长度与直径。同时对这些参数进行了优化设计,并提出了改进意见。 最后,将仿真工作得到的优化设计方案应用于发动机,对原发动机进行改进,并对改进后的发动机进行台架试验,包括速度特性试验、负荷特性试验,同时分析试验结果,并将试验结果与优化设计方案计算结果进行了对比。结果表明,优化设计方案达到预期目标。 3.期刊论文李刚.LI Gang化油器发动机进气歧管电喷化的设计开发-装备制造技术2009(6) 阐述了利用GT-POWER、UG等软件,对化油器发动机进气歧管电喷化的设计及开发过程,实践证明能降低费用,缩短制作时间及产品的开发周期. 4.期刊论文张小燕.詹樟松.ZHANG Xiao-yan.ZHAN Zhang-song发动机可变长度进气歧管系统的优化设计研究-内 燃机2007(1) 以发动机进气歧管长度、直径和不同长度的进气歧管切换的发动机转速等为设计变量,以发动机进气系统的充气效率、低速扭矩及其转速、最大扭矩及其转速和最大功率等为优化目标,应用发动机热力学和性能分析商用软件GT-POWER 进行多目标优化仿真计算,确定优化设计方案;然后制作快速成型样件,通过试验验证计算结果,从而完成发动机可变进气歧管的优化设计. 5.学位论文牟江峰汽油机可变涡流进气管的数值仿真研究2007 汽油机缸内空气运动对混合气形成和燃烧过程具有决定性的影响,也影响着汽油机的动力性、经济性、燃烧噪声和有害气体的排放。进气管可变技术可以使汽油机的进气系统适合较宽的转速范围,使发动机在不同转速下提高充气效率,并且能够保证发动机在高速工况下具有较高的流通性能,在低速工况下缸内气体具有较强的涡流和滚流运动,改善发动机动力性和经济性,降低排放指标。 本文设计的可变涡流进气管,具有结构简单,成本低廉,对原进气管改动小的特点,气道吹风实验表明,这种可变涡流进气管可以在一定范围内改变缸内气体运动的涡流比。本文主要通过数值仿真方法研究了进气管可变技术对汽油机流动特性及其性能的影响。 利用一维发动机工作过程仿真软件GT-POWER,建立了某型号的发动机计算模型,首先分析了汽油机进气管可变长度技术对发动机性能的影响,并总结出一套确定汽油机进气管可变长度控制策略的方案,并主要分析了可变涡流进气管对发动机性能的影响,分析了不同转速下,发动机对应的最佳涡流

相关文档
最新文档