高中数学人教版 必修五 数列经典例题 高考题(附解析答案)

高中数学人教版 必修五 数列经典例题 高考题(附解析答案)
高中数学人教版 必修五 数列经典例题 高考题(附解析答案)

黄冈经典例题高考题(附答案,解析)

等差数列

例1、在等差数列{a n}中:

1、若a1-a4-a8-a12+a15=2,则a3+a13=___________.

2、若a6=5,a3+a8=5,则a10=___________.

3、若a1+a4+a7=39,a2+a5+a8=33,则a3+a6+a9=___________.

例 2、已知数列{a n}的通项,试问该数列{a n}有没有最大项?若有,求最大项和最大项的项数,若没有,说明理由.

例 3、将正奇数1,3,5,7,……排成五列,(如下图表),按图表的格式排下去,2003所在的那列,从左边数起是第几列?第几行?

1 3 5 7

15 13 11 9

17 19 21 23

31 29 27 25

…………

例 4、设f(x)=log 2x-log x4(0

(1)求数列{a n}的通项公式;

(2)判断该数列{a n}的单调性.

1.(2009年安徽卷)已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()

A.-1

B.1

C.3

D.7

2.(2009年湖北卷)古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:

他们研究过图(1)中的1,3,6,10,……,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图(2)中的1,4,9,16,……这样的数为正方形数,下列数中既是三角形数又是正方形数的是()

A.289 B.1024 C.1225 D.1378

3.(江西卷)在数列{a n}中,,则a n=( )

A.2+lnn

B.2+(n-1)lnn

C.2+nlnn

D.1+n+lnn

等差数列前N项和、等比数列

例 1 、在等差数列 {a n}中,

(1)已知a15=33,a45=153,求a61;

(2)已知S8=48,S12=168,求S4;

(3)已知a1-a4-a8-a12+a15=2,求S15;

(4)已知S7=42,S n=510,a n-3=45,求n.

例 2 、已知数列 {a n}的前n项和,求数列{|a n|}的前n项和S n′.

例 3 、设数列 {a n}的首项a1=1,前n项之和S n满足关系式:3tS n-(2t+3)S n-1=3t(t>0,n=2,3,4…)

(1)求证:数列{a n}为等比数列;

(2)设数列{a n}的公比为f(t),作数列{b n},使(n=2,3,4,…),求b n.

(3)求和:b1b2-b2b3+b3b4-…+(-1)n+1b n b n+1.

例 4、一个水池有若干出水量相同的水龙头,如果所有水龙头同时放水,那么 24分钟可注满水池,如果开始时,全部放开,以后每隔相等的时间关闭一个水龙头,到最后一个水龙头关闭时,恰好注满水池,而且最后一个水龙

头放水的时间恰好是第一个水龙头放水时间的5倍,问最后关闭的这个水龙头放水多少时间?

例 5 、在 XOY平面上有一个点列P1(a1,b1),P2(a2,b2),…,P n(a n,b n),…,对每个自然数n,点P n位于函数y=2000(0

(2)若对每个自然数n,以b n,b n+1,b n+2为边长能构成一个三角形,求a的取值范围;

(3)设B n=b1·b2·…·b n(n∈N*).若a取(2)中确定的范围内的最小整数,求数列{B n}的最大项的项数.

1.(2009年宁夏、海南卷)等差数列{a n}的前n项和为S n,已知,,则m=()

A.38

B.20

C.10

D.9

2.(2009年全国1卷)设等差数列{a n}的前n项和为S n,若S9=72,则=_________.

3.(2009年福建卷)等比数列中,已知.

(1)求数列的通项公式;

(2)若分别为等差数列的第3项和第5项,试求数列的通项公式及前项和.

等比数列前N项和、数列的应用

例 1 、 {a n} 为等差数列(d≠0) , {a n} 中的部分项组成的数列恰为等比数列,且 k1=1 ,k2=5 , k3=17 ,求 k1+k2+k3+……+k n的值 .

例 2、已知数列 {a n} 满足条件: a1=1 , a2=r(r ﹥ 0) 且 {a n·a n+1} 是公比为 q(q ﹥ 0) 的等比数列,设 b n=a2n -1+a2n(n=1,2, …… ).

(1)求出使不等式 a n a n+1+a n+1a n+2> a n+2 a n+3 (n ∈ N*) 成立的 q 的取值范围;

(2)求 b n;

(3)设,求数列的最大项和最小项的值 .

例 3 、某职工年初向银行贷款 2万元用于购房,银行为了推行住房制度改革,贷款优惠的年利率为10%,按复利计算,若这笔贷款要求分10年等额还清,每年一次,并且从贷款后次年年初开始归还,问每年应还多少元?(精确到1元)

例 4、在一次人才招聘会上,有 A、B两家公司分别开出它们的工资标准:A公司允诺第一年月工资为1500元,以后每年月工资比上一年月工资增加230元;B公司允诺第一年月工资为2000元,以后每年月工资比上一年的月工资的基础上递增5%.设某人年初被A、B两家公司同时录取,试问:

(1)若该人分别在A公司或B公司连续工作n年,则他在第n年的月工资收入分别是多少?

(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不计其他因素),该人应该选择哪家公司,为什么?

(3)在A公司工作比在B公司工作的月工资收入最多可以多多少元?(精确到1元)并说明理由.

1.(2009年全国2卷)设等比数列{a n}的前n项和为S n,若,则=___________.

2.(2009年北京卷)若数列满足:,则___________;前8项的和___________.(用数字作答)

3.(2009年辽宁卷)等比数列{a n}的前n 项和为S n,已知,,成等差数列.

(1)求{a n}的公比q;

(2)若a1-a3=3,求S n.

答案&解析

等差数列

例一分析:

利用等差数列任两项之间的关系:a m=a n+(m-n)d以及“距首末两端等距离两项的和相等”的性质可简化解答过程.

解:,

故 5=10-d,∴ d=5.

故 a10=a6+4d=5+4×5=25.

例二分析:

考察数列{a n}在哪一范围是递增数列,在哪些范围是递减数列,即可找到最大项.

解:由有n≤9.

而 a n>0,∴当n≤9时,有a n+1≥a n.

即 a1a11>a12>…

∴数列{a n}中存在最大项,最大项的项数为9或10,

最大项为.

点评:最大项与最大项的项数是不同概念,一个是项,一个是项号.

例三分析:

考虑到每行占有四个数,利用周期性进行处理,每一个周期占两行用 8个数,只须确定2003是第几个正奇数,问题就得到解决. 解:设2003是第n个正奇数.

则 2003=1+(n-1)·2.

∴ n=1002.

而 1002=8×125+2.

∴ 2003在第251行第3列.

例四分析:

依据条件列出关于a n的方程,解方程并注意f(x)的定义域0

解:(1)

又∵ f(x)定义域为0

(2)

则数列{a n}为递增数列.1. 答案:B

2.答案:C

解析:

根据图形的规律可知第n个三角形数为,第n个正方形数为b n=n2,由此可排除D(1378不是平方数),将A、B、C选项代入到三角形数表达式中检验可知,符合题意的是C选项,故选C.

3.答案:A

等差数列前N项和、等比数列

例1 解析:(1) a45 -a15=30d=153 -33 得 d=4 , a61=a45+16d=217.

(2)方法 1 S4, S8-S4, S12-S8成等差数列,

则 S4+(168 -48) =2(48 -S4)解得 S4= -8

方法 2 成等差数列,则,∴ d=2.

故.

则 S4= -8.

(3)∵

(4) S7=7a4=42 ∴ a4=6

∴ n=20

例二解析:

∴ a n=63 -3n≥0 有 n ≤ 21 误解一

=

误解二

例三解析:(1)∵ n≥2 时

∴ {a n} 为等比数列 .

(2)∵

则 {b n} 为等差数列,而 b1=1.

(3)∵.

∴当 n 为偶数时,

当 n 为奇数时

例四解析:

设有 n 个水龙头,每个水龙头放水时间依次为 x1, x2, x3,…, x n,则数列 {x n} 为等差数列且每个水龙头 1 分钟放水池水,

故最后关闭的水龙头放水时间为 40 分钟 .

例五解析:(1)∵.

(2)∵ 0

要使 b n, b n+1, b n+2为边能构成三角形,

(3)

故{B n} 中最大项的项数为n=20.

1.答案:C

解析:

因为{a n}是等差数列,所以,由,得:2-=0,所以=2,又,即=38,即(2m-1)×2=38,解得m=10,故选C.

2.答案:24

解析:

∵{a n}是等差数列,由,得,

.

3.解析:

(1)设的公比为,

由已知得,解得.

.

(2)由(1)得,,则,.

设的公差为,则有,解得.

从而.

所以数列的前项和.

等比数列前N项和、数列的应用

例一解答:设公比为 q ,

例二解答:(1)由题意得 rq n-1+rq n> rq n+1.

由题设 r ﹥ 0,q ﹥ 0 ,故上式 q2-q-1﹤0 ,

(2)因为,

所以,

b1=1+r≠0 ,所以 {b n} 是首项为 1+r ,公比为 q 的等比数列,

从而 b n=(1+r)q n-1.

(3)由(2)知 b n=(1+r)q n-1,

从上式可知当 n-20.2 > 0 ,即 n ≥ 21(n ∈ N) 时, c n随 n 的增大而减小,故

当 n-20.2<0 ,即 n ≤ 20(n ∈ N) 时, c n也随着 n 的增大而减小,故

综合①、②两式知对任意的自然数 n 有 c20≤ c n≤ c21

故 {c n} 的最大项 c21=2.25 ,最小项 c20=-4.

例三解一:我们把这类问题一般化,即贷款年利率为 a ,贷款额为 M ,每年等额归还 x 元,第 n 年还清,各年应付款及利息分别如下:

第 n 次付款 x 元,这次欠款全还清 .

第 n-1 次付款 x 元后,过一年贷款全部还清,因此所付款连利息之和为 x(1+a) 元;

第 n-2 次付款 x 元后,过二年贷款全部还清,因此所付款连利息之和为 x(1+a)2元;

……

第一次付款 x 元后,一直到最后一次贷款全部还清,所付款连利息之和为 x(1+a)n-1元.

将 a=0.1 , M=20000 , n=10 代入上式得

故每年年初应还 3255 元.

解二:设每年应还 x 元,第 n 次归还 x 元之后还剩欠款为 a n元;

则 a0=20000 , a1=20000(1+10%)-x ,

a n+1=a n(1+10%)-x ,

∴ a n+1-10x=1.1(a n-10x) ,

故数列 { a n-10x} 为等比数列.

∴ a n-10x= (a0-10x)×1.1n,

依题意有 a10=10x+(20000-10x) ×1.110=0 .

故每年平均应还 3255 元.

例四解答:(1)此人在 A 、 B 公司第 n 年的月工资数分别为:

a n=1500+230 × (n-1)(n ∈ N*) ,

b n=2000(1+5%)n-1(n ∈ N*) .

(2)若该人在 A 公司连续工作 10 年,则他的工资收入总量为:

12(a1+a2+…+a10)=304200 (元);

若该人在 B 公司连续工作 10 年,则他的工资收入总量为:

12(b1+b2+…+b10) ≈ 301869 (元).

因此在 A 公司收入的总量高些,因此该人应该选择 A 公司 .

(3)问题等价于求 C n=a n-b n=1270+230n-2000×1.05n-1(n ∈ N*) 的最大值 .

当 n ≥ 2 时, C n-C n-1=230-100×1.05n-2,

当 C n-C n-1> 0 ,即 230-100×1.05n-2> 0 时, 1.05n-2<2.3 ,得 n<19.1,

因此,当 2 ≤ n ≤ 19 时, C n-1<C n;于是当 n ≥ 20 时, C n≤ C n-1.

∴ C19=a19-b19≈ 827 (元) .

即在 A 公司工作比在 B 公司工作的月工资收入最多可以多827 元.

1.答案:3

解析:

设等比数列的公比为q.

当q=1时,.

当q≠1时,由.

2. 答案:16;255

解析:

依题知数列{a n}是首项为1,且公比为2的等比数列,

.

3. 解析:

(1)依题意有.

由于,故.

又,从而.

(2)由已知可得.

故.

从而.

高中数学必修五数列单元综合测试(含答案)

数列单元测试题 命题人:张晓光 一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有 一项是符号题目要求的。) 1.已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 2 2 =1,则数列{a n }的公差是( ) A.1 2 B .1 C .2 D .3 2.设等比数列{a n }的前n 项和为S n ,若8a 2+a 5=0,则下列式子中数值不能确定的是( ) A.a 5a 3 B.S 5 S 3 C.a n +1a n D.S n +1S n 3.设数列{a n }满足a 1=0,a n +a n +1=2,则a 2011的值为( ) A .2 B .1 C .0 D .-2 4.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *)且a 2+a 4+a 6=9,则log 13 (a 5+a 7+a 9)的值是 ( ) A .-5 B .-15 C .5 D.15 5.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a n b n 为正偶数 时,n 的值可以是( ) A .1 B .2 C .5 D .3或11 6.各项都是正数的等比数列{a n }的公比q ≠1,且a 2,1 2a 3,a 1成等差数列,则a 3+a 4a 4+a 5 的值为( ) A.1-52 B.5+12 C.5-12 D.5+12或5-12 7.已知数列{a n }为等差数列,若a 11 a 10 <-1,且它们的前n 项和S n 有最大值,则使得S n >0的最大 值n 为( ) A .11 B .19 C .20 D .21 8.等比数列{a n }中,a 1=512,公比q =-1 2 ,用Πn 表示它的前n 项之积:Πn =a 1·a 2·…·a n , 则Πn 中最大的是( ) A .Π11 B .Π10 C .Π9 D .Π8 9.已知等差数列{a n }的前n 项和为S n ,若a 1=1,S 3=a 5,a m =2011,则m =( ) A .1004 B .1005 C .1006 D .1007 10.已知数列{a n }的通项公式为a n =6n -4,数列{b n }的通项公式为b n =2n ,则在数列{a n }的前 100项中与数列{b n }中相同的项有( ) A .50项 B .34项 C .6项 D .5项 二、填空题(本大题共5个小题,每小题5分,共25分,把正确答案填在题中横线上) 11.已知数列{a n }满足:a n +1=1-1 a n ,a 1 =2,记数列{a n }的前n 项之积为P n ,则P 2011=________. 12.秋末冬初,流感盛行,荆门市某医院近30天每天入院治疗流感的人数依次构成数列{a n }, 已知a 1=1,a 2=2,且a n +2-a n =1+(-1)n (n ∈N *),则该医院30天入院治疗流感的人数共有________人.

(完整版)函数图象变换及经典例题练习

函数图象变换 1、平移变换(左加右减上加下减): y=f(x)h 左移→y=f(x+h); y=f(x)h 右移→y=f(x -h); y=f(x)h 上移→y=f(x)+h; y=f(x)h 下移→y=f(x)-h. 2、对称变换: y=f(x) 轴x →y= -f(x); y=f(x) 轴y →y=f(-x); y=f(x) 原点 →y= -f(-x). y=f(x) a x =→直线y=f(2a -x); y=f(x) x y =→直线y=f -1(x); 3、翻折变换: (1)函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方, 去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; (2)函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左 边部分并保留()y f x =在y 轴右边部分即可得到. 4、伸缩变换: y=f(x)ω?→x y=f(ωx ); y=f(x)ω ?→y y=ωf(x). 经典题型:作已知函数的图像、知式选图或知图选式、图像应用 例1.函数1 11--=x y 的图象是( ) 答案B 例2.如图所示,)(),(),(),(4321x f x f x f x f 是定义在]1,0[上的四个函数,其中满足性质:“对]1,0[中任意的1x 和2x ,)]()([2 1)2(2121x f x f x x f +≤+恒成立”的只有( ) 答案A

例3、利用函数x x f 2)(=的图象,作出下列各函数的图象: (1))1(-x f ;(2)|)(|x f ;(3)1)(-x f ;(4))(x f -;(5).|1)(|-x f 例4已知0>a ,且≠a 1,函数x a y =与)(log x y a -=的图象只能是图中的( ) 答案B 例5函数)(x f y =与函数)(x g y =的图象如右上,则函数)(x f y =·)(x g 的图象是( ) 答案A 例6 已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图象与函数y =|lg x |的图象的交点共有( ). A .10个 B .9个 C .8个 D .1个 解析:画出两个函数图象可看出交点有10个.答案 A

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

高中数学集合典型例题

-- -- 集 合 1.集合概念 元素:互异性、无序性、确定性 2.集合运算 全集U:如U =R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=?或 补集:}{A x U x x A C U ?∈=且 3.集合关系 空集A ?φ 子集B A ?:任意B x A x ∈?∈ B A B B A B A A B A ??=??= 注:数形结合---文氏图(即韦恩图、Ve nn 图)、数轴 典型例题 1. 集合(){}0,=+=y x y x A ,(){}2,=-=y x y x B ,则=B A 2. 已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于 3. 设(){}R b b x b x x A ∈=++++=,0122,求A 中所有元素之和. 4. 已知集合{}24,3,22++=a a A ,{}a a a B --+=2,24,7,02,且{}7,3=B A ,求a 的值. 5. 已知(){}011=+-=x m x A ,{}0322=--=x x x B ,若B A ?,则m 的值为 6. 已知{}121-≤≤+=m x m x A ,{}52≤≤-=x x B ,若B A ?,求实数m 的取值范围. 7. 设全集{}32,3,22-+=a a S ,{}2,12-=a A ,{}5=A C S ,求a 的值. 8. 若{}Z n n x x A ∈==,2,{}Z n n x x B ∈-==,22,试问B A ,是否相等. 9. 已知(){}a x y y x M +==,,(){}2,22=+=y x y x N ,求使得φ=N M 成立的实数a 的取值范围. 10. 设集合{}R x x x x A ∈=+=,042,(){}R x R a a x a x x B ∈∈=-+++=,,011222,若A B ?,求实数a 的取值范围. 11. 设R U =,集合{}R x a ax x x A ∈=+-+=,03442,(){}R x a x a x x B ∈=+--=,0122,{}R x a ax x x C ∈=-+=,0222,若C B A ,,中至少一个不是空集,求实数a 的取值范围. 12. 设集合(){}01,2=--=x y y x A ,(){} 05224,2=+-+=y x x y x B ,(){==y y x C ,}b kx +,是否存在N b k ∈,,使得()φ=C B A ?若存在,请求出b k ,的值;若不存在,请说明理由.

新人教版高中数学必修五数列通项

新人教版高中数学必修五《求数列的通项》 【知识要点】 1、通项公式:数列的通项公式是数列的一个重要内容之一,它把数列各项的性质集于一身.常用的求通项的方法有观察法、公式法、叠加法、叠乘法、前n 项和作差法、辅助数列法 2、常见方法和基本结构形式: (1)、观察法:根据给定数列的几项观察规律,直接猜测结论; (2)、叠加法:数列的基本形式为))((*1N n n f a a n n ∈=-+的解析式,而)()2()1(n f f f +++ 的和可求出. (3)、叠乘法:数列的基本形式为))((*1N n n f a a n n ∈=+的解析关系,而)()2()1(n f f f ??? 的积可求出. (4)、前n 项和作差法:利用???≥-==-)2()1(11n S S n S a n n n , ,,能合则合. (5)、待定系数法:数列有形如)1(1≠+=+k b ka a n n 的关系,可用待定系数法求得}{t a n +为等比数列, 再求得n a . 【典例精析】 例1、根据数列的前4项,写出它的一个通项公式: (1)-1,3,-5,7 (2)2,6,12,20 (3)17 81,1027,59,23 例2、已知}{n a 的首项11 =a ,)(2*1N n n a a n n ∈+=+,,求}{n a 的通项公式. 例3、已知}{n a 中,n n a n n a 21+= +,且21=a ,求数列}{n a 的通项公式. 例4、已知下列各数列}{n a 的前n 项和n S 的公式为)(23S 2*∈-N n n n n =,求}{n a 的通项公式。 例5、已知数}{n a 的递推关系为231 +=+n n a a ,且11=a ,求通项n a . 例6、设数列}{n a 满足21=a ,)N (3 *1∈+=+n a a a n n n ,求n a 【巩固提高】 一、填空题:

综合题:高一数学函数经典习题及答案

函 数 练 习 题 一、 求函数的定义域 1、求下列函数的定义域: ⑴33y x =+- ⑵y = ⑶01(21)111 y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311 x y x -=+ (5)x ≥ ⑸ y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ y =⑽ 4y = ⑾y x =

6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 223y x x =++ ⑵y ⑶ 261y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236 x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 )5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。 A 、⑴、⑵ B 、 ⑵、⑶ C 、 ⑷ D 、 ⑶、⑸ 10、若函数()f x = 3442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( ) A 、(-∞,+∞) B 、(0,43] C 、(43,+∞) D 、[0, 4 3) 11、若函数()f x =的定义域为R ,则实数m 的取值范围是( ) (A)04m << (B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤ 12、对于11a -≤≤,不等式2(2)10x a x a +-+->恒成立的x 的取值范围是( ) (A) 02x << (B) 0x <或2x > (C) 1x <或3x > (D) 11x -<< 13、函数()f x = ) A 、[2,2]- B 、(2,2)- C 、(,2)(2,)-∞-+∞ D 、{2,2}- 14、函数1()(0)f x x x x =+≠是( ) A 、奇函数,且在(0,1)上是增函数 B 、奇函数,且在(0,1)上是减函数 C 、偶函数,且在(0,1)上是增函数 D 、偶函数,且在(0,1)上是减函数

高一数学平面向量知识点及典型例题解析

高一数学 第八章 平面向量 第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念 ①向量:既有大小又有方向的量。几何表示法AB u u u r ,a ;坐标表示法),(y x j y i x a 。 向量的模(长度),记作|AB u u u r |.即向量的大小,记作|a |。向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,规定0r 平行于任何向量。(与0的区别) ③单位向量| a |=1。④平行向量(共线向量)方向相同或相反的非零向量,记作a ∥b ⑤相等向量记为b a 。大小相等,方向相同 ),(),(2211y x y x 2121y y x x 2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a ,b ,在平面内任 取一点A ,作AB u u u r a ,BC u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC u u u r u u u r u u u r 特殊情况: a b a b a+b b a a+b (1) 平行四边形法则三角形法则C B D C B A A 向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”。②向量减法: 同一个图中画出 a b a b r r r r 、 要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点.(3)实数与向量的积 3.两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a 。 二.【典例解 析】 题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确 (1)零向量没有方向 (2)b a 则, (3)单位向量都相等 (4) 向量就是有向线段

高一数学集合练习题及答案-经典

升腾教育高一数学 满分150分 姓名 一、选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=- 的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2 |20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 8、设集合A=} { 12x x <<,B=} { x x a <,若A ?B ,则a 的取值范围是 ( ) A } { 2a a ≥ B } { 1a a ≤ C } { 1a a ≥ D } { 2a a ≤ 9、 满足条件M U }{1=}{ 1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4

二、填空题 11、若}4,3,2,2{-=A ,},|{2 A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2 +x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U={ } 2 2,3,23a a +-,A={}2,b ,C U A={} 5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________. 三、解答题 17、已知集合A={x| x 2 +2x-8=0}, B={x| x 2 -5x+6=0}, C={x| x 2 -mx+m 2 -19=0}, 若B ∩C ≠Φ,A∩C=Φ,求m 的值 18、已知二次函数f (x )=2 x ax b ++,A=}{ }{ ()222x f x x ==,试求 f ()x 的解析式 19、已知集合{}1,1A =-,B=} { 2 20x x ax b -+=,若B ≠?,且A B A ?= 求实数 a , b 的值。

高中数学函数经典复习题含答案

《函 数》复习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01(21)111y x x = +-+ -2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数 1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥ ⑸ y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ y =⑽ 4y = ⑾y x =6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+ ,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 223y x x =++ ⑵y ⑶ 261y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236 x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 )5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。 A 、⑴、⑵ B 、 ⑵、⑶ C 、 ⑷ D 、 ⑶、⑸ 10、若函数()f x = 3442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( ) A 、(-∞,+∞) B 、(0,43] C 、(43,+∞) D 、[0, 4 3) 11、若函数()f x =的定义域为R ,则实数m 的取值范围是( ) (A)04m << (B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤ 12、对于11a -≤≤,不等式2(2)10x a x a +-+->恒成立的x 的取值范围是( ) (A) 02x << (B) 0x <或2x > (C) 1x <或3x > (D) 11x -<< 13、函数()f x = ) A 、[2,2]- B 、(2,2)- C 、(,2)(2,)-∞-+∞U D 、{2,2}- 14、函数1()(0)f x x x x =+≠是( ) A 、奇函数,且在(0,1)上是增函数 B 、奇函数,且在(0,1)上是减函数 C 、偶函数,且在(0,1)上是增函数 D 、偶函数,且在(0,1)上是减函数

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

高中数学必修五第二章《数列》知识点归纳

数列知识点总结 一、等差数列与等比数列 等差数列 等比数列 定义 1+n a -n a =d n n a a 1 +=q(q ≠0) 通项公式 n a =1a +(n-1)d n a =1a 1-n q (q ≠0) 递推公式 n a =1-n a +d, n a =m a +(n-m)d n a =1-n a q n a =m a m n q - 中项 A=2b a + 推广:A=2a k n k n a +-+(n,k ∈N + ;n>k>0) ab G =2。推广:G=k n k n a a +-±(n,k ∈N + ;n>k>0) 。任意两数a 、c 不一定有等比中项,除非有ac >0,则等比中 项一定有两个 前n 项和 n S =2 n (1a +n a ) n S =n 1a + 2 ) 1(n -n d n S = q q a n --11() 1 n S =q q a a n --11 性质 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为 a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则 21 21 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) (6)d= n m a n m --a (m ≠n) (7)d>0递增数列d<0递减数列d=0常数数列 (1)若m n p q +=+,则 m n p q a a a a =·· (2)232n n n n n S S S S S --,,……仍 为等比数列,公比为n q 二、求数列通项公式的方法 1、通项公式法:等差数列、等比数列 2、涉及前n项和S n 求通项公式,利用a n 与S n 的基本关系式来求。即 例1、在数列{n a }中,n S 表示其前n项和,且2 n n S =,求通项n a . 例2、在数列{n a }中,n S 表示其前n项和,且n n a 32S -=,求通项n a 3、已知递推公式,求通项公式。 (1)叠加法:递推关系式形如()n f a a n 1n =-+型 ???≥-===-) 2() 1(111n s s n a s a n n n

高中数学_经典函数试题及答案

经典函数测试题及答案 (满分:150分 考试时间:120分钟) 一、选择题:本大题共12小题。每小题5分,共60分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.函数)12(-=x f y 是偶函数,则函数)2(x f y =的对称轴是 ( ) A .0=x B .1-=x C .21= x D .2 1-=x 2.已知1,10-<<x 时,,log )(2x x f =则当0m D .12-<<-m 或13 2 <

高中数学必修一集合经典习题

集合练习题 一、选择题(每小题5分,计5×12=60分) 1.下列集合中,结果是空集的为() (A)(B) (C)(D) 2.设集合,,则() (A)(B) (C)(D) 3.下列表示①②③④中,正确的个数为( ) (A)1 (B)2 (C)3 (D)4 4.满足的集合的个数为() (A)6 (B) 7 (C) 8 (D)9 5.若集合、、,满足,,则与之间的关系为() (A)(B)(C)(D) 6.下列集合中,表示方程组的解集的是() (A)(B)(C)(D) 7.设,,若,则实数的取值范围是() (A)(B)(C)(D) 8.已知全集合,,,那么 是() (A)(B)(C)(D) 9.已知集合,则等于() (A)(B) (C)(D) 10.已知集合,,那么() (A)(B)(C)(D) 11.如图所示,,,是的三个子集,则阴影部分所表示的集合是()

(A)(B) (C)(D) 12.设全集,若,, ,则下列结论正确的是() (A)且(B)且 (C)且(D)且 二、填空题(每小题4分,计4×4=16分) 13.已知集合,,则集合 14.用描述法表示平面内不在第一与第三象限的点的集合为 15.设全集,,,则的值为 16.若集合只有一个元素,则实数的值为三、解答题(共计74分) 17.(本小题满分12分)若,求实数的值。 18.(本小题满分12分)设全集合,, ,求,,, 19.(本小题满分12分)设全集,集合与集合,且,求,

20.(本小题满分12分)已知集合 , ,且 ,求实数 的取值范围。 21.(本小题满分12分)已知集合 , , ,求实数的取值范围 22.(本小题满分14分)已知集合 , ,若 ,求实数的取值范围。 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ?, 求实数a 的取值范围. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A ,求 实数a 的值.

高中数学必修五数列高考典型题

高中数学必修五数列高考典型题 一、一般数列 *1、(08北京)已知数列a对任意的满足,且,那么aaa,, pq,,Na,,6a,,npqpq,210等于( ) A( B( C( D(,21 ,165,33,30 ana2、(10辽宁理)已知数列满足则的最小值为__________. aaan,,,33,2,,,n11nn,n 13、(08江西)在数列中,,,则 ( ) {}aa,2a,aa,,,ln(1)n1nn,1nn 2(1)ln,,nnA( B( C( D( 2ln,n2ln,nn1ln,,nn aSSSS,,aannnmnm,1104、(11江西理) 已知数列{}的前n项和满足:,且 =1(那么= A(1 B(9 C(10 D(55 5、(07福建理)数列{}的前n项和为,若,则等于( ) A 1 B C D 二、等差数列 1、(09山东文)在等差数列中,,则. {a}a,7,a,a,6a,____________n3526 2、(09安徽文)为等差数列,,则等于( ) A. -1 B. 1 C. 3 D.7 a3、(10全国理)如果等差数列中,,那么 aaa,,,12aaa,,,,...,,n345127( )(A)14 (B)21 (C)28 (D)35 ab,,,,baanN,,,(*)nn3nnn,14、(11四川理)数列的首项为,为等差数列且(若b,,2b,12a,3108,,则( )A(0 B(3 C(8 D(11

,S{}aaa,,1,7()nN,nnn145、(11湖南理)设是等差数列,的前项和,且, S9则= ________________ ( 26、(10安徽文)设数列Sn,的前n项和,则的值为( ) {}aann8 (A) 15 (B) 16 (C) 49 (D)64 7、(10辽宁文)设为等差数列的前项和,若,则。 S{}aSS,,324,a,nnn369 a8、(10福建理)3(设等差数列的前n项和为,若,,则当取 Sa,,11aa,,,6S,,nn146n最小值时,n等于( ) A(6 B(7 C(8 D(9 1 A7n,45n9、(07湖北理)已知两个等差数列{a}和{b}的前n项和分别为A和B,且,,nnnnBn,3n an则使得为整数的正整数n的个数是( ) A.2 B.3 C.4 D.5 bn 10、(07辽宁)设等差数列的前项和为,若,,则( ) {}aSS,9S,36aaa,,,nnn36789A(63 B(45 C(36 D(27 是等差数列,,,则该数列前10项和11、(08陕西)已知 {}aaa,,4aa,,28Sn127810等于( ) A(64 B(100 C(110 D(120 212、(09宁夏海南文)等差数列a的前n项和为,已 知,,aaa,,,0SS,38,,nmmm,,n21m,11 则 (A)38 (B)20 (C)10 (D)9 m,( ) 三、等比数列 a1、(10重庆理)(在等比数列中,,则公比q的值为( ) aa,8,,n20102007 A. 2 B. 3 C. 4 D. 8 aq,12、(10北京理)在等比数列中,,公比.若,则m=( ) a,1aaaaaa,,,n1m12345(A)9 (B)10 (C)11 (D)12

高中数学-经典函数试题及答案

(满分:150分 考试时间:120分钟) 一、选择题:本大题共12小题。每小题5分,共60分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.函数)12(-=x f y 是偶函数,则函数)2(x f y =的对称轴是 ( ) A .0=x B .1-=x C .21= x D .2 1-=x 2.已知1,10-<<x 时,,log )(2x x f =则当0m D .12-<<-m 或13 2 <xy a

高一数学集合典型例题、经典例题

《集合》常考题型 题型一、集合元素的意义+互异性 例.设集合 {0} 例.已知A ={2,4,a 3-2a 2-a +7},B ={1,a +3,a 2-2a +2,a 3+a 2+3a +7},且A ∩B ={2,5},则A ∪B =____________________________ 解:∵A∩B={2,5},∴5∈A. ∴a 3-2a 2-a +7=5解得a =±1或a =2. ①若a =-1,则B ={1,2,5,4},则A∩B={2,4,5},与已知矛盾,舍去. ②若a =1,则B ={1,4,1,12}不成立,舍去. ③若a =2,则B ={1,5,2,25}符合题意.则A ∪B ={1,2,4,5,25}. 题型二、空集的特殊性 例.已知集合{}{}25,121A x x B x m x m =-<≤=-+≤≤-,且BA , 则实数m 的取值范围为_____________ 例.已知集合{}R x x ax x A ∈=++=,012,{} 0≥=x x B ,且φ=B A I , 求实数a 的取值范围。 解:①当0a =时,{|10,}{1}A x x x R =+=∈=-,此时{|0}A x x ≥=ΦI ; ②当0a ≠时,{|0}A x x ≥=ΦQ I ,A ∴=Φ或关于x 的方程2 10ax x ++=的根均为负数. (1)当A =Φ时,关于x 的方程210ax x ++=无实数根, 140a ?=-<,所以14a > . (2)当关于x 的方程210ax x ++=的根均为负数时, 12121401010a x x a x x a ???=-≥??+=-?? 140a a ?≤?????>?104a <≤. 综上所述,实数a 的取值范围为{0}a a ≥. 题型三、集和的运算 例.设集合S ={x |x >5或x <-1},T ={x |a

(word完整版)高中函数典型例题.doc

§ 1.2.1 函数的概念 ¤知识要点: 1. 设 A 、B 是非空的数集,如果按某个确定的对应关系 f ,使对于集合 A 中的任意一个数 x ,在集合 B 中都有唯一确定的数 y 和它对应,那么就称 f :A →B 为从集合 A 到集合 B 的一个函数,记作 y = f (x) , x A .其中, x 叫自变量, x 的取值范 围 A 叫作定义域,与 x 的值对应的 y 值叫函数值,函数值的集合 { f ( x) | x A} 叫值域 . 2. 设 a 、b 是两个实数,且 a

相关文档
最新文档