制冷压缩机的基本性能参数计算

制冷压缩机的基本性能参数计算
制冷压缩机的基本性能参数计算

制冷压缩机的基本性能参数计算

一、实际输气量(简称输气量)

在一定工况下, 单位时间内由吸气端输送到排气端的气体质量称为在该工矿下的压缩机质量输气量 ,单位为。若按吸气状态的容积计算,则其

容积输气量为,单位为。于是

二、容积效率?

压缩机的容积效率是实际输气量与理论输气量之比值

(4-2)

它是用以衡量容积型压缩机的气缸工作容积的有效利用程度。

三、制冷量

制冷压缩机是作为制冷机中一重要组成部分而与系统中其它部件,如热交换器,节流装置等配合工作而获得制冷的效果。因此,它的工作能力有必要直观地

用单位时间内所产生的冷量——制冷量来表示,单位为,它是制冷压缩机

的重要性能指标之一。

(4-3)

式中 -制冷剂在给定制冷工况下的单位质量制冷量,单位为;

-制冷剂在给定制冷工况下的单位容积制冷量,单位为。

为了便于比较和选用,有必要根据其不用的使用条件规定统一的工况来表示压缩机的制冷量,表4-1列出了我国有关国家标准所规定的不同形式的单级小型往复式制冷压缩机的名义工况及其工作温度。根据标准规定,吸气工质过热所吸收的热量也应包括在压缩机的制冷量内。

表4-1 小型往复式制冷压缩机的名义工况

四、排热量

排热量是压缩机的制冷量和部分压缩机输入功率的当量热量之和,它是通过系统中的冷凝器排出的。这个参数对于热泵系统中的压缩机来讲是一个十分重要的性能指标;在设计制冷系统的冷凝器时也是必须知道的。

图4-1 实际制冷循环

从图4-1a所示的实际制冷循环或热泵循环图可见,压缩机在一定工况下的

排热量为:

从图4-1b的压缩机的能量平衡关系图上不难发现

上两式中

-压缩机进口处的工质比焓;

-压缩机出口处的工质比焓;

-压缩机的输入功率;

-压缩机向环境的散热量。

表2-2列举了美国制冷协会ARI520-85标准所规定的用于热泵中的压缩机的名义工况。

表2-2 热泵用压缩机的名义工况(美国制冷协会ARI520-85标准)环境温度35度

五、指示功率和指示效率

单位时间内实际循环所消耗的指示功就是压缩机的指示功率Pi,单位为kw,它等于

式中 Wi——每一气缸或工作容积的实际循环指示功,单位为J。

制冷压缩机的指示效率hi是指压缩1kg工质所需的等熵循环理论功与实际循环指示功之比。它是用以评价压缩机气缸或工作容积内部热力过程完成的完善程度。

六轴功率、轴效率和机械效率

由原动机传到压缩机主轴上的功率称为轴功率Pe,单位为kW,它的一部分,即指示功率Pi直接用于完成压缩机的工作循环,另一部分,即摩擦功率Pm,单位为kW,用于克服压缩机中各运动部件的摩擦阻力和驱动附属的设备,如润滑用液压泵等。

七电功率和电效率

输入电动机的功率就是压缩机所消耗的电功率Pel,单位为kW。电效率*是等熵压缩理论功率与电功率之比,它是用以评定利用电动机输入功率的完善程度。

八性能系数

为了最终衡量制冷压缩机的动力经济性,采用性能系数COP(Cofficient of performance),它是在一定工况下制冷压缩机的制冷量与所消耗功率之比。

制冷压缩机

《制冷压缩机》电子教案 第三章螺杆式制冷压缩机 螺杆式制冷压缩机是指用带有螺旋槽的一个或两个转子(螺杆)在气缸内旋转使气体压缩的制冷压缩机。螺杆式制冷压缩机属于工作容积作回转运动的容积型压缩机,按照螺杆转子数量的不同,螺杆式压缩机有双螺杆与单螺杆两种。 第一节螺杆式压缩机的工作过程 一、工作原理及工作过程 1. 组成 螺杆式制冷压缩机主要由转子、机壳(包括中部的气缸体和两端的吸、排气端座等)、轴承、轴封、平衡活塞及输气量调节装置组成。图3-1是典型开启螺杆式压缩机的一对转子、气缸和两端端座的外形图。 1—吸气端座 2—阴转子 3—气缸 4—滑阀 5—排气端座 6—阳转子 2. 工作原理 螺杆式压缩机的工作是依靠啮合运动着的一个阳转子与一个阴转子,并借助于包围这一对转子四周的机壳内壁的空间完成的。 3. 工作过程 图3-2为螺杆式压缩机的工作过程示意图。其中,a、b为一对转子的俯视图,c、d、e、f为一对转子由下而上的仰视图。

二、特点 就压缩气体的原理而言,螺杆式制冷压缩机与往复活塞式制冷压缩机一样,同属于容积式压缩机械,就其运动形式而言,螺杆式制冷压缩机的转子与离心式制冷压缩机的转子一样,作高速旋转运动。所以螺杆式制冷压缩机兼有二者的特点。 1. 优点 (1)转速较高、又有质量轻、体积小,占地面积小等一系列优点。 (2)动力平衡性能好,故基础可以很小。 (3)结构简单紧凑,易损件少,维修简单,使用可靠,有利于实现操作自动化。 (4)对液击不敏感,单级压力比高。 (5)输气量几乎不受排气压力的影响。在较宽的工况范围内,仍可保持较高的效率。

2. 缺点 (1)噪声大。 (2)需要有专用设备和刀具来加工转子。 (3)辅助设备庞大。 第二节结构及基本参数 一、主要零部件的结构 螺杆式制冷压缩机的主要零部件包括机壳、转子、轴承、平衡活塞、轴封及输气量调节装置等。 1. 机壳 螺杆式制冷压缩机的机壳一般为剖分式。它由机体(气缸体)、吸气端座、排气端座及两端端盖组成,如图3-3所示。

压缩机性能实验报告

.. 压缩机性能实验报告 实验小组: 小组成员:0

实验时间: 一、实验目的 1.了解制冷循环系统的组成及压缩机在制冷系统中的重要作用 2. 测定制冷压缩机的性能 3.分析影响制冷压缩机性能的因素 二、实验装置 实验台由封闭式压缩机、冷凝器、蒸发器、储液罐、节流阀、电加热器、冷水泵、热水泵、冷水流量计、热水流量计、排气压力表、吸气压力表、测温显示仪表、测温热电偶等组成小型制冷系统(如下图所示)。 三、实验步骤 1. 将水箱中注满水,接通电源后,开启冷水泵和热水泵,并调整其流量; 2. 打开吸、排气阀、储液罐阀门,启动压缩机,开节流阀,右旋调温旋钮,调整电压使蒸发器进口水温稳定在某一温度值,作为一个实验工况点; 3.当各点温度趋于稳定时,依次按下测温表测温按键,观测各点温度值; 4.将数据进行记录,该工况点实验结束。 5.改变热水箱加热电压,使热水温度上升,稳定后再对温度、电流、电压等数据进行记录,一般可作3个工况点结束; 6.实验完成后,停止电热水箱加热,关闭吸气阀门,等压力继电器动作,压缩机自停,关闭压缩机开关,关闭节流阀,关排气阀,继续让水泵循环5分钟后断电,系统停止工作。 四、实验数据 1. 压缩机制冷量: ' 171112"" 161()i i v Q GC t t i i v -=-- (1) 式中:G — 载冷剂(水)的流量(kg/s); C — 载冷剂(水)的比热(kJ/kg); t1、t2 — 载冷剂(水)的进出蒸发器的温差(℃); i1 — 在压缩机规定吸气温度,吸气压力下制冷剂蒸汽的比焓(kJ/kg); i7 — 在压缩机规定过热温度下,节流阀后液体制剂的比焓(kJ/kg); i1″— 在实验条件下,离开蒸发器制冷剂蒸汽的比焓(kJ/kg); i6″— 在实验条件下,节流阀前液体制冷剂的比焓(kJ/kg); v1 — 压缩机规定吸气温度,吸气压力下制冷剂蒸汽的比容(m 3/kg); v1′— 压缩机实际吸气温度、压力下制冷剂蒸汽的比容(m 3/kg)。 2.压缩机轴功率: i N W η=? (2) 式中:W —压缩机配用电动机输入功率(kW); i η—压缩机电动机效率,一般取0.8~0.9。 3.制冷系数: 0Q N ε= (3) 4.热平衡误差: 011 () Q Q N Q --Λ= (4) 式中: Q1 —冷凝器换热量(kW)

制冷压缩机性能实验指导书

制冷装置与系统 制冷压缩机性能实验指导书 一、实验目的: 1、通过本实验,熟悉和了解制冷压缩机的测试工况和测试方法,增强对制冷压缩机的认识; 2、学习本实验中所涉及的各种参数的测量方法,掌握制冷压缩机性能的热力计算; 3、熟悉对制冷压缩机性能实验系统软件的操作。 二、实验装置: 测定压缩机制冷系统制冷量的实验台,如图1所示,由电量热器、制冷系统、水系统三部分组成。 图1 测定压缩机制冷系统制冷量的实验台

图2 电量热器原理图 电量热器法是间接测量压缩机制冷量的一种装置。它的基本原理是利用电量热器发出的热量来抵消压缩机的制冷量,从而达到平衡。电量热器是一个密闭容器,如图2所示。电量热器的顶部装有蒸发器盘管,底部装有电加热器,浸没于一种容易挥发的第二制冷剂(常用的R11、R12 ,该装置采用R11)中,实验时,接通电加热器,加热第二制冷剂,使之蒸发。第二制冷剂饱和蒸气在顶部蒸发盘管被冷凝,又重新回到底部,而蒸发盘管中的低压液态制冷剂被第二制冷剂蒸气加热而汽化,返回制冷压缩机。实验仪器在实验工况下达到稳定运行时,供给电加热器的电功率正好抵消制冷量,从而使第二制冷剂的压力保持不变。 为了控制第二制冷剂的液面,在电量热器的中间部位装有观察玻璃孔。电量热器上装有压力控制器,它与电加热器的控制电路相连接,防止压缩机停机后加热器继续加热,使量热器内压力升高到危险程度。 三、实验原理 (1)压缩机制冷量 P Q =0×57/7/2 i i i i -- ×/1 1νν (W ) (1) 式中 p — 供给电量热器的功率,W; 2/i — 在规定吸气温度、吸气压力下制冷剂蒸气的焓值,kJ / kg ; /7i —在规定过冷温度下、节流阀前液体制冷剂的焓值, kJ / kg ; 7i —在实验条件下,离开蒸发器的制冷剂蒸气的焓值,kJ / kg ; 5i —在实验条件下,节流阀前液态制冷剂的焓值,kJ / kg ; 1ν —在压缩机实际吸气温度、吸气压力下制冷剂蒸气的比容,m 3/ kg ; /1ν—在压缩机规定吸气温度、吸气压力下制冷剂蒸气的比容,m 3 / kg 。 (2)冷凝器的热负荷计算

压缩机选型设计规范

压缩机选型设计规范 (发布日期:2008-07-21) -- 1适用范围 本规范适用于房间空调器选用定速R22/R407C/R410A制冷剂压缩机时的设计。具体数值如与压缩机厂家提供的规格书有冲突部分,以相应的厂家提供的规格书为准。其它制冷剂压缩机可参考执行。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 7725 房间空气调节器 GB 12021.3 房间空气调节器能源效率限定值及节能评价值 QMG-J11.009 家用产品试验指引 QMG-J21.001 房间空气调节器 QMG-J80.004 零部件耐候性试验和评价方法 QMG-J81.001 包装运输试验评价方法 QMG-J81.004 振动运输试验方法 QMG-J82.001 异常噪声检测、判定方法 QMG-J82.007 房间空气调节器凝露试验判定方法 QMG-J82.014 分体式空调器非标安装评价方法 QMG-J84.001 产品可靠性评定导则 QMG-J84.002 产品可靠性试验室评定方法 QMG-J84.006 整机一般环境长期运行试验规范 QMG-J85.004 家用空调和类似用途产品安全标准 3设计要求 3.1 压缩机选用参考: 3.1.1 对于压机本体能力的挑选要根据冷媒种类、设计要求的能效比、所用系统的大小等综合来决定。 (例如要开发EER为3.4的R22冷媒35机,要选的压机本体能力约为3500W,如是R410A 机型则可按下浮5%来选取) 3.1.2 压缩机必须预留有接地螺丝孔(一般为M4)。 3.1.3 对于T1工况机型:在满足整机能效要求情况下尽量选用转子式压缩机,能效实在满足不了才 用涡旋式压缩机。对于T3工况机型:尽量选用转子式压缩机,客户指定时才用活塞式压缩机。

容积式压缩机

2. 容积式压缩机 (Positive Displacement Compressor ) 主讲内容: 2.1容积式压缩机概述 2.2 热力性能、性能参数计算 2.3 往复活塞式压缩机动力学计算 2.4 往复式压缩机排气量调节 2.5 其他容积式压缩机

2. 容积式压缩机 (Positive Displacement Compressor ) ?2.1容积式压缩机概述 ?容积式流体机械 (Positive displacement fluid machinery ) 靠泵腔容积的变化来吸入与排出介质,来转换能量的为~。 主要有:容积式压缩机;容积泵 分类:(1)按结构分: 卧式 ① 往复式 (reciprocating) 立式 活塞式 单缸 单级 单作用 π式 柱塞式 → 双缸 → 双级 → 双作用→ H 式 隔膜式 多缸 多级 差 动 V 式 L 式 W 式 ② 回转式 螺杆式:单螺杆;双螺杆;三螺杆;四螺杆;五螺杆。 罗茨式: 滑片式: 齿轮式: 涡线式: 液环式: 滚动活塞式: 摇摆转子式: 球型转子式: 半球转子式: (2) 按排气压力分: ① 低压: p< 1 MPa ② 中压: p = 1~10 MPa ③ 高压: p = 10~100 MPa ④ 超高压: p > 100 MPa (3)按容积流量分: ① 微型压缩机: min 3v m 1q < ② 小型压缩机:min ~3 v m 101q = ③中型压缩机: min ~3v m 10010q = ④大型压缩机:min 3v m 100q > ?容积式流体机械的特点

优点:①压力范围宽。有真空;低压;中压;高压;超高压。 高压、超高压必须用容积式。工业中有700MPa, 液体达到:1000MPa(实验室内)。 ②效率高。热效率达80%以上。 ③适应性强,可输送各种介质。 ④品种多样,适应各种工况及用途。 缺点:①结构较复杂,易损件多。 ②排出不连续,产生脉动,往复惯性力。 ③转速低,排量小。 ③介质易受油污染。 结构: 1. 曲轴 2. 连杆 3. 十字头 4. 活塞杆 5. 活塞 6. 气缸 7. 缸头 8. 进气阀 9. 排气阀 10. 机体等 2.1.1往复式压缩机结构与工作原理 结构类型主要部件: 曲轴、连杆、十字头、活塞杆、活塞、气缸、缸头、进排阀等 辅助部件:润滑系统、冷却系统、飞轮、机壳、机座等。 动力端:飞轮、曲轴、连杆、十字头。 功用:传递动力,由旋转运动转化为往复运动。 液力端(工作端):活塞杆、活塞、气缸、缸头、进排气门阀等 功用:对介质作功,由机械能转化为流体能。 机型:卧式;立式;L型;V型;H型等。

压缩机的选型方法

压缩机的选型方法 ①确定热泵的工质,冷凝温度,蒸发温度,容积制热量,制热量,压缩机功率。 表2-30 典型制热温度时的可选工质(部分) GB/T 23137-2008 家用和类似用途热泵热水器 表1 空气源热泵热水器的试验工况

综合考虑制热温度与环境友好的因素,选择R134a为工质。 ②先考虑有无该工质的专用压缩机,如R22,R134a,R717,R744等均有专用压缩机系列。

R134a作为使用最广泛的中低温环保制冷剂,由于R134a良好的综合性能,使其成为一种非常有效和安全的R12的替代品,主要应用于在使用R12制冷剂的多数领域,包括:冰箱,冷柜,饮水机,汽车空调,中央空调,除湿机,冷库,商业制冷,冰水机,冰淇淋机,冷冻冷凝机组等制冷设备中,同时还可应用于气雾推进剂,医用气雾剂,杀虫药抛射剂,聚合物(塑料)物理发泡剂,以及镁合金保护气体等. R134a是目前国际公认的R12最佳的环保替代品.R134a不含氯原子,对臭氧层不起破坏作用,具有良好的安全性能(不易燃,不爆炸,无毒,无刺激性,无腐蚀性):其制冷量与效率与R12非常接近,所以视为优秀的长期替代制冷剂.R134a可广泛用做汽车空调,冰箱,中央空调,商业制冷等行业的制冷剂,并可用于医药,农药,化妆品,清洗行业. 因离心式压缩机与螺杆式压缩机用于150kw以上的制冷量,不适合家用热泵热水器用。又R134a与R12性质相近。为此,选择滚动转子式压缩机进行实验。 ③如有专用压缩机,根据热泵的制热量、功率范围及当地能源情况,确定压缩机的形式。 如制热量较大时可考虑采用离心式压缩机,制热量中等时可采用时考虑螺杆式压缩机,制热量不大时可考虑活塞式、旋转式、涡旋式压缩机。如用电方便时,宜首选封闭式压缩机;用电较紧张时,可考虑采用内燃机或燃气轮机驱动的开启式压缩机。 ④压缩机形式确定后,选择生产该形式压缩机的制造商,查询压缩机的样本资料,根据制 热量确定压缩机型号。 参见 以五星空气院热水器.都市新贵的部分资料为例,

制冷系统性能测试试验台设计毕业论文

制冷系统性能测试试验台设计毕业 论文 目录 摘要.....................................................................................................第一章绪论.............................................................................. (x) 1.1蒸发温度和蒸发压力的运行调整与节能 (x) 1.2冷凝温度和冷凝压力的运行调整与节能 (x) 第二章制冷系统主要部件的设计 (x) 2.1 制冷剂的选用................................................................... (x) 2.2 热力循环计算...................................................................... (x) 2.3 蒸发器的设计计算................................................................ (x) 2.4 冷凝器的设计计算................................................................ (x) 2.5 膨胀阀的选型计算................................................................ (x) 2.6 压缩机的选型计算................................................................ (x) 第三章制冷系统辅助部件的选型…………………………………………… ..x 3.1截止阀的选型......................................................................... (x)

ARI590-1992容积式压缩机冷水机组

ARI590-1992 容积式压缩机冷水机组认 证额定性能由试验验证的认证额定性能是: 1.制冷量,冷吨( Kw ) 2?每冷吨输入功率,(Kw/ton ) [Kw/Kw] 3?水压降(见5.1.8), psi或尺mmH20 (kPa)所有上述数据均指在标准额定工况(见 5.1.1) 下的满负荷和部分负荷两者(见 1 . 1 .6部分负荷性能要求)。 4.综合部分负荷值IPLV,(见 5.1.6) 5.使用部分负荷值APLV,(见5.1.6) 注:本标准替代 ARI 标准 550-90。 1.目的 1.1本标准旨在为离心式和回转螺杆式冷布的额定性能工况;标准的实验要求和公布的额定性能的依据;以及系统中使用的制冷机代号。 1.1.1本标准能够作为包括指定代理商、制造厂安装单位、承包商等工业部门和用户的指导。 1.2 本标准将随着工业技术的进展进行复审和修订。 2.范畴 2.1本标准适用于如 3.2所定义的离心式和回转螺杆式冷水机组。 2.1.1本标准适用于具有连续能量调剂的封闭及开启式离心式和回转螺杆式冷水机组,不管是以电动机蒸气轮机或是其他原动机来驱动。 2.1.2本标准不包括饮料处理所许的卫生规定。 3.定义 3.1本标准采纳 ASHRAE2" 采暖、通风、空调和制冷术语 "中的定义, 但本章下列定义所示情形除外。 3.2离心式和回转螺杆式冷水机组工厂设计和预先组装的由一台或多台压缩机、冷凝器和水冷却器及附带的连接管和附件组成的机组(不是必须整体发运)。 3.2.1开启离心式或回转螺杆式压缩机是机器的轴或其他运动件穿过 机体伸出而由外部的原动力驱动,如此在固定件和运动件之间需有一

西安交通大学 往复式压缩机 期末考试

1.从原理、结构、用途上如何划分压缩机? 答:原理:容积式压缩机和动力式压缩机。 结构: 用途:①动力用压缩机②化工工艺用压缩机③制冷和气体分离用压缩机④气体输送用压缩机 2.为什么要定义级的理论循环?级的理论循环是如何定义的?说明研究分析压 缩机时理论循环的意义? 答:原因:? 如何定义:①无余隙容积②进排气过程无流动阻力损失③进排气过程无气流脉动④进排气过程无热交换⑤无泄漏⑥过程指数为常数 意义:是研究压缩机实际工作过程的基础。 3.级的实际循环与理论循环的差别是什么?为什么会有这些差别? 答:①存在气体膨胀线(存在余隙容积) ②进气过程线低于名义进气压力线,排气过程线高于名义排气压力线,且有非直线(存在进排气压力损失及压力脉动) ③压缩、膨胀过程的过程指数是变化的(由于泄漏、传热等的影响) 4.压缩机实际循环指示图? 答:

5.进气系数的意义是什么?在指示图中如何表示?理想气体的容积系数、压力 系数、温度系数关系式? 答:意义:实际进气量Vs与理论进气量Vh的比值称为进气系数。 在指示图如何表示:将折算到名义进气温度下的实际循环进气量Vs,Vh 在图中已表示。 容积系数:压力系数: 温度系数:其中,是将折算到名义压力P1下的容积。 补:分析影响容积系数的诸因素? 答:①相对余隙容积 ②压力比 ③膨胀系数(热交换起决定作用,m大趋向绝热。高转速来不及换热,趋近绝热;压比高因壁温高,m小;冷却好的,气体与气缸温差小,趋近绝热;气体漏入,m小;气体漏出,m大) ④实际气体 6.分析影响实际循环指示功的诸因素? 答:①进排气压力损失②泄漏和传热影响③进气系数影响 7.为什么要多级压缩?如何确定级数和各级压力比? 答:原因:①提高压缩机经济性 ②降低排气温度 ③提高容积效率 ④降低气体作用力 如何确定级数:①对于大型连续运转压缩机,省功最重要 ②对于微小型压缩机,成本低、价格低最重要 ③保证运转可靠,机器寿命高,各级压比不应过高 ④对温度要求严格的特殊压缩机,级数多少取决于排气温度 限制 如何确定压力比:实际压缩机中存在压力损失、回冷不完善、余隙容积、热 交换、泄漏等,实际压力比并非是等压比分配。按等压比 分配或等功原则分配压力比可以使压缩机总指示功最小。 (注:为使各级排气温度不致过高,应适当增加第一级压比

汽车空调压缩机性能测试台

汽车空调压缩机性能测试台 林穗斌(广州电器科学研究所,广州市 5l0300) l 前言 衡量汽车空调压缩机性能的好坏,检验产品性能是否达到设计要求,汽车空调系统与压缩机的匹配,都必须准确知道压缩机的性能参数,即压缩机的制冷量、输入功率、COP 值和不同转速下其性能参数的变化。为满足产品检测的需要,我们研制出汽车空调压缩机性能测试台。 2 基本结构及工作原理 图l 结构框图 该测试台由动力系统、制冷系统、电气测 控系统、数据采集处理及计算机系统组成。 如图l 所示。2.l 动力系统 该测试台适用于依靠汽车发动机提供动力的非独立式汽车空调压缩机,与其它制冷压缩机不同之处在于它必须依靠外加动力来带动压缩机工作,在测试台中必须具备一套动力装置带动压缩机工作。动力系统由电动机、变频调速器、转矩测试仪组成。电动机提供压缩机所需要的动力,通过离合器带动压缩机工作,变频调速器通过调频来实现对电动机线性调速,从而改变压缩机的旋转速度,以适应检测不同转速下压缩机的性能参数的目的。通过转矩测试仪测量电动机的扭矩和转速,从而求出压缩机的输入功率。 ?2l ?200l 年第l 期 《电机电器技术》# ######################################################?测试技术?

2.2 制冷系统 本测试台采用第二制冷剂电量热器法作为主测,其原理是利用量热器内充注的与被测压缩机制冷系统相隔离的第二制冷剂作为热交换介质,将制冷系统产生的冷量与电加热器产生的热量相互交换,达到平衡时,通过测量加热电量而得出制冷量的一种间接试验方法;同时采用液体质量流量计法作为辅测,其原理是通过测量制冷系统单位时间内所流过的液态制冷剂的质量,计算出它在规定工况条件下转换成气态所必须吸收的热量,即制冷量。计算公式如下: O 0= l 3.6m f (1gl -1fl )V l /V gl O 0———制冷量;W m f ———制冷剂质量流量;kg /11gl — ——规定工况下压缩机吸入的制冷剂气体比焓;kJ /kg 1fl ———规定工况下对应于排气压力的膨胀阀前制冷剂液体比焓;kJ /kg V l ———压缩机吸气口制冷剂气体实际比容;m 3/kg V gl ———规定工况下压缩机吸入的制冷剂气体比容;m 3/kg 单级蒸气压缩式制冷循环的压焓图如图2所示。本测试台的制冷系统图如图3 所示。 图2 制冷循环压焓图 图3制冷系统图 压缩机吸入蒸发器内产生的过热低温低压制冷蒸气(l ’),经被测压缩机压缩成高温高压蒸汽排入冷凝器(l ’-2’ ),被冷却介质等压冷却,放出热量,凝结成液态(2’-3) ,液态制冷剂经过冷器进一步冷却成过冷液体(3-3’ ),高压制冷剂液体流过流量计后,经过? 3l ??测试技术?《电机电器技术》200l 年第l ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!期

压缩机性能测试实验.doc

制冷压缩机性能测试实验 一、实验目的 通过制冷压缩机实际运行测试实验,使学生了解并掌握以下内容: 1、制冷压缩机制冷量的测试方法; 2、蒸发温度、冷凝温度与制冷量的关系; 3、制冷系统主要运行参数及其相互之间的影响; 4、有关测试仪器、仪表的使用方法; 5、测试数据处理及误差分析方法。 二、实验原理 1、制冷压缩机的性能随蒸发温度和冷凝温度的变化而变化,因此需要在国家标准规定的工况下进行制冷压缩机的性能测试。 2、压缩机的性能可由其工作工况的性能系数COP 来衡量: Q COP W = 式中,0Q 为压缩机的制冷量; W 为压缩机输入功率。 3、在一个确定的工况下,蒸发温度、冷凝温度、吸气温度以及过冷度都是已知的。这样,对于单级蒸气压缩式制冷机来说,其循环p-h 图如图3 所示。 图3 图中,1点为压缩机吸气状态;4-5为过冷段。 在特定工况下,压缩机的单位质量制冷量是确定的,即:015q h h =- 。这样只要测得流经压缩机的制冷剂质量流量m G ,就可计算出压缩机的制冷量,即 0015()m m Q G q G h h =?=?- 4、压缩机的输入功率:开启式压缩机为输入压缩机的轴功率,封闭式(包括半封闭式和全封闭式)压缩机为电动机输入功率。 三、实验设备

整个实验装置由制冷系统及换热系统、参数测量采集和控制系统共三部分组成: 1、制冷系统采用全封闭涡旋式制冷压缩机,蒸发器为板式换热器,冷凝器为壳管式换热器,节流装置为电子膨胀阀。 1.1冷却水换热系统由冷却水泵、冷却水塔、调节冷凝器进水温度的恒温器和水流量调节阀门及管路组成; 1.2冷媒水换热系统由冷媒水泵、调节蒸发器进水温度的恒温器、调节水流量的阀门组成; 2、六个绝对压力变送器、十个PT100温度传感器、两个涡轮流量变送器分别对应原理图位置及安捷伦34970型数据采集仪和压缩机性能测试软件; 3、控制系统:通过三块山武SCD36数字调节器分别根据设定值与实测值的差值来调节冷却水、冷媒水的加热量和电子膨胀阀的开度,将机组运行控制在设定工况允许的范围内。 图4 四、实验方法 制冷工况由两个主要参数来决定,即蒸发温度和冷凝温度,制冷压缩机性能测试的国家工况名称 蒸发温度 ℃ 冷凝温度 ℃ 吸气温度 ℃ 标准工况 -15 +30 +15±3 最大压差工况 -30 +50 最大轴功率工况 +10 +50 空调工况(水冷) +5 +35 空调工况(风冷) +5 +55 试验工况的稳定与否,是关系到测试数据是否准确的关键问题,工况稳定的标志是主要的测试参数都不随时间变化。调节时需要特别地耐心、细致。 实际试验中是根据吸气压力来确定蒸发温度,冷凝温度是根据排气压力来确定。如果吸气温度也达到稳定,表明制冷量也达到稳定。本装置是通过: 1、调整冷却水流量和温度来稳定压缩机的排气压力; 2、调整冷媒水流量和温度来稳定压缩机的吸气温度;

压缩机选型计算

压缩机的选型计算 ① -33℃系统(冻结间),取10℃温差,蒸发温度为z t =-33℃。用立式冷凝器,312+=t t ℃、 t t t t ?++= 2 2 11 取(=?t 6℃)冷凝温度为1t =32℃,采用配组双级压缩机,取§=1/3.机械负荷j Q =124845.49w. 解:⑴根据z t =-33℃ 1t =32℃和§=1/3 查图2-1得中间冷却 zj t =-3.5℃ ⑵根据中间冷却温度确定过冷温度g t =(-3.5+4)℃=0.5℃ ⑶根据蒸发温度z t =-33℃和中间冷却温度zj t =-3.5℃,查图2-5得低压级压缩机的输气系数 λ=0.775 ⑷根据蒸发温度z t =-33℃和过冷温度g t =0.5℃,查表2-4得低压级压缩机单位容积制冷量r q =1007kj/3m ⑸计算低压级压缩机的理论输气量: r j d q Q V λ6.3= = 39.5751007 *775.049 .124845*6.3m =/h. ⑹选择低级压缩机。根据计算出的低级压缩机理论输气量,从压缩机产品样本中选两台8AS10和一台4AV10型压缩机作为低压级压缩机,其理论输气量3634m V d =/h ,可以满足要求。 ⑺选择高压级压缩机。根据选定的高、低级压缩机理论输气量之比§=1/3、39.575m V d =/h 得3 d g V V = =(575.9/3)3m /h=191.973m /h 。 从压缩的产品样本中选出两台4AV10型压缩机作为高级压缩机,其理

论输气量36.253m V d =/h 。 实际选配两台8AS10和一台4AV10型压缩机一台作为低压级压缩机,两台4AV10型压缩机一台作为高级压缩机,形成一组配组双级机。 ② -28℃系统(冻结物冷藏间),取10℃温差,蒸发温度为z t =-28℃。用立式冷凝器,312+=t t ℃、 t t t t ?++= 2 2 11 取(=?t 6℃)冷凝温度为1t =32℃,采用配组双级压缩机,取§=1/3.机械负荷j Q = 47347。99w 解:⑴根据z t =-28℃ 1t =32℃和§=1/3 查图2-1得中间冷却 zj t =2.3℃ ⑵根据中间冷却温度确定过冷温度g t =(2.3+4)℃=6.3℃ ⑶根据蒸发温度z t =-28℃和中间冷却温度zj t =2.3℃,查图2-5得低压级压缩机的输气系数 λ=0.78 ⑷根据蒸发温度z t =-28℃和过冷温度g t =6.3℃,查表2-4得低压级压缩机单位容积制冷量r q =1039kj/3m ⑸计算低压级压缩机的理论输气量: r j d q Q V λ6.3= = 332.2101039 *78.099 .47347*6.3m =/h. ⑹选择低级压缩机。根据计算出的低级压缩机理论输气量,从压缩机产品样本中选8AW10压缩机一台作为低压级压缩机,其理论输气量 36.253m V d =/h ,可以满足要求。

制冷压缩机的工作原理结构

制冷压缩机的工作原理及结构 第一节螺杆式制冷压缩机的工作原理 1、螺杆式制冷压缩机的特点 与活塞压缩机的往复容积式不同,螺杆式压缩机是一种回转容积式压缩机。与活塞压缩机相比,螺杆式制冷压缩机有以下优点: a.体积小重量轻,结构简单,零部件少,只相当于活塞压缩机的1/3~1/2; b.转速高,单机制冷量大; c.易损件少,使用维护方便; d.运转平稳,振动小; e.单级压比大,可以在较低蒸发温度下使用; f. g.对湿行程不敏感; h. 制冷量可以在10%~ 100%之间无级调节; i.操作方便,便于实现自动控制; j.体积小,便于实现机组化。 缺点: 转子、机体等部件加工精度要求高,装配要求比较严格;

油路系统及辅助设备比较复杂;因为转速高,所以噪声比较大。2、螺杆式制冷压缩机工作原理 双螺杆(压缩机)是由一对相互啮合、旋向相反的阴、阳转子,阴转子为凹型,阳转子为凸型。随着转子按照一定的传动比旋转,转子基元容积由于阴阳转子相继侵入而发生改变。侵入段(啮合线)向排气端推移,于是封闭在沟槽内的气体容积逐渐缩小,压力逐渐升高,压力升高到一定值(或者说转子旋转到一定位置)时,齿槽(密闭容积)与排气孔相通,高压气体排出压缩机,进入油分离器。吸气、压缩、排气过程见示意图。 3、内压比与螺杆压缩机经济性的关系 螺杆压缩机是没有气阀的容积型回转式压缩机,吸、排气孔的打开和关闭完全为几何结构决定的,即吸气终了的体积和压缩结束时的体积是固定的,即内容积比是固定的。而活塞压缩机的吸、排气阀片的打开是由吸、排气腔的压力决定的。 内容积比:Vi=VS/Vd VS—吸气终了时的容积,Vd—压缩终了时的容积 内压力比:Za = Pd / P0 Pd—压缩终了压力,P0—吸入压力 可见,内压比是由内容积比决定的。所以,压缩终了压力Pd是由吸气压力和内容积比决定的。 外压力比:Zy = Py / P0 Py—排气背压力,或者说冷凝压力

YUY-JD55 压缩机性能测试实训装置

YUY-JD55 压缩机性能测试实训装置 “YUY-JD55制冷压缩机性能测试实训装置”采用蒸汽压缩式制冷循环系统,配备全封闭式制冷压缩机、冷凝器、蒸发器等制冷系统真实部件,并设有智能温度调节仪、流量计、压力表、电压表、电流表等测量仪表。不但能开设制冷压缩机性能参数的测定实训,还能进行制冷循环基本原理的演示实训。适用于职业院校制冷专业相关课程的教学实训。 一、装置特点 1.本实训装置按照国际标准GB/T 5773-2004容积式制冷压缩机性能实训方法建立,以“蒸

发器液体载冷剂循环法”为主要测量,以“水冷冷凝器量热器法”作为辅助测量 2.采用1匹制冷机组,冷凝器和蒸发器均为壳管式水换热器,系统结构紧凑、布局合理,造型美观大方 3.设有电压型漏电保护、电流型漏电保护、过流保护、过载保护、接地保护,可对人身及设备进行有效保护 二、技术性能 1.输入电源:单相三线~220V±10% 50Hz 2.工作环境:温度-10℃~+40℃相对湿度<85%(25℃) 海拔<4000m 3.装置容量:<2.5kVA 4.制冷剂:R22 5.制冷量:1.3kW 6.重量:100kg 7.外形尺寸:120cm×60cm×142cm 三、基本配置及功能 1.控制屏 采用双层亚光密纹喷塑结构,造型新颖。最上层布置制冷系统,可直观展示制冷系统结构;正面设有电源控制及测量仪表功能板。底部装有四个带刹车的万向轮,便于移动和固定。2.交流控制单元 单相三线220V交流电源供电,经漏电流保护器控制总电源,动作电流30mA 3.制冷系统 1匹全封闭压缩机、卧式壳管式冷凝器、视液镜、干燥过滤器、手动节流阀、储液器和干式蒸发器 4.循环水系统 (1)水泵2只 主要技术参数为: 额定功率:95W 额定扬程:6m 额定流量:1.08立方米/小时 (2)水箱2只 采用不锈钢材料制成,分别为冷凝器循环水箱和蒸发器循环水箱 (3)加热器1只(功率1000W)

制冷压缩机性能综合实验指导书

制冷压缩机性能实验 一、实验目的 1、了解压缩机性能测定的原理及方法; 2、了解蒸气压缩式制冷的循环流程及各组成设备; 3、测定蒸气压缩式制冷循环的性能; 4、理解与认识回热循环; 5、比较单级蒸气压缩制冷机在实际循环中有回热与无回热性能上的差异; 6、熟悉实验装置的有关仪器、仪表,掌握其操作方法。 二、实验原理 1、单级蒸气压缩制冷机的理论循环 图1显示了压力-比焓图上单级蒸气压缩制冷机的理论循环。压缩机吸入的是以点1表示的饱和蒸气,1-2表示制冷剂在压缩机中的等熵压缩过程;2-3表示制冷剂在冷凝器中的等压放热过程,在冷却过程22'-中制冷剂与环境介质有温差,放出过热热量,在冷凝过程32'-'中制冷剂与环境介质无温差,放出比潜热,在冷却和冷凝过程中制冷剂的压力保持不变,且等于冷凝温度T K 下的饱和蒸气压力P K ;(33-')是液态再冷却放出的热量;3-4表示节流过程,制冷剂在节流过程中压力和温度都降低,且焓值保持不变,进入两相区;4-1表示制冷剂在蒸发器中的蒸发过程,制冷剂在温度T 0、饱和压力P 0保持不变的情况下蒸发,而被冷却物体或载冷剂的温度得以降低。 图 1 2、有回热的单级蒸气压缩制冷理论循环 为了使膨胀阀前液态制冷剂的温度降得更低(即增加再冷度),以便进一步减少节流损

失,同时又能保证压缩机吸入具有一定过热度的蒸气,可以采用蒸气回热循环。 图3示为来自蒸发器的低温气态制冷剂1,在进入压缩机前先经过一个热交换器——回热器。在回热器中低温蒸气与来自冷凝器的饱和液体3进行热交换,低温蒸气1定压过热到状态1',而温度较高的液体3被定压再冷却到状态3',回热循环1'—2'—3—3'—4'—1—1'中,3—3'为液体的再冷却过程,过热后的蒸气温度称为过热温度,过热温度与蒸发温度之差称为过热度。 根据稳定流动连续定理,流经回热器的液态制冷剂和气态制冷剂的质量流量相等。因此,在对外无热损失情况下,每公斤液态制冷剂放出的热量应等于每公斤气态制冷剂吸收的热量。也就是说,单位质量制冷剂再冷却所增加的制冷能力△q0(面积b'4'4bb')等于单位质量气体制冷剂所吸收的热量△q(面积a11'a'a)。由于有了回热器,虽然单位质量制冷能力有所增加,但是,压缩机的耗功量也增加了△w0(面积11'2'21)。因此,回热式蒸气压缩制冷循环的理论制冷系数有可能提高,也有可能降低,应具体分析。 图3 采用回热器的优点: (1)对于一个给定的制冷量,制冷剂流量减少。 (2)在液体管路上气化的可能性减少(特别是在管路较长的情况下)。 (3)在压缩机的吸气管道上,可减少吸入外界热量。 (4)在压缩机吸气口消除液滴,防止失压缩。 3、单级压缩蒸气制冷机的实际循环与简化后的实际循环 实际循环和理论循环有许多不同之处,除了压缩机中的工作过程以外,主要还有下例一些差别。 (1)热交换器中存在温差,即冷却水温度T低于冷凝温度T K,且T是变化的(进口温度低,出口温度高):载冷剂或冷却对象的温度T0,载冷剂的温度也是变化的(进口温度高,出口温度低)。

ARI590-1992 容积式压缩机冷水机组

ARI590-1992 容积式压缩机冷水机组 认证额定性能 由试验验证的认证额定性能是: 1.制冷量,冷吨(Kw) 2.每冷吨输入功率,(Kw/ton)[Kw/Kw] 3.水压降(见5.1.8),psi或尺mmH2O(kPa)所有上述数据均指在标准额定工况(见5.1.1) 下的满负荷和部分负荷两者(见1.1.6部分负荷性能要求)。 4.综合部分负荷值IPLV,(见 5.1.6) 5.使用部分负荷值APLV,(见5.1.6) 注:本标准替代ARI标准550-90。 1.目的 1.1 本标准旨在为离心式和回转螺杆式冷布的额定性能工况;标准的实验要求和公布的额定性能的依据;以及系统中使用的制冷机代号。 1.1.1本标准能够作为包括指定代理商、制造厂安装单位、承包商等工业部门和用户的指导。 1.2 本标准将随着工业技术的进展进行复审和修订。 2.范畴 2.1 本标准适用于如 3.2所定义的离心式和回转螺杆式冷水机组。 2.1.1本标准适用于具有连续能量调剂的封闭及开启式离心式和 回转螺杆式冷水机组,不管是以电动机蒸气轮机或是其他原动机来驱动。 2.1.2 本标准不包括饮料处理所许的卫生规定。 3.定义 3.1本标准采纳ASHRAE2"采暖、通风、空调和制冷术语"中的定义,但本章下列定义所示情形除外。 3.2离心式和回转螺杆式冷水机组工厂设计和预先组装的由一台或多台压缩机、冷凝器和水冷却器及附带的连接管和附件组成的机组(不是必须整体发运)。 3.2.1 开启离心式或回转螺杆式压缩机是机器的轴或其他运动

件穿过机体伸出而由外部的原动力驱动,如此在固定件和运动件之间需有一个填料盒、轴封或其他相当的构件。 3.2.2 封闭离心式或回转螺杆式压缩机是压缩机和它的原动机及传动装置一起封闭在制冷剂气氛中运转。 3.2.3 抽气回收装置是一种从制冷剂冷凝器中去除不凝性气体和潮气的装置。 3.2.4 泵出系统是一种便于将制冷剂从一个热交换器输送到另一个热交换器或将制冷剂从一个储罐中取出或输入的装置。 3.3性能系数(COP)净制冷量除以输入功率而得出的比值,两者用统一的单位表示。 3.4污垢系数由于在传热表面上积集的污垢而产生的热阻。 3.4.1 现场污垢系数承诺值使用期间预期污垢的规定值,用h.ft2.F/ Btu(m2 .0C/W)表示. 3.5 综合部分负荷值(IPLV) 在标准额定性能工况下(见表1),按5.1.7所述的方法运算出的单一数值部分负荷效率的指标. 表1 额定性能的部分负荷工况(F表示华氏温度,C表示摄氏温度,以下同)

制冷压缩机性能测试实验

制冷压缩机性能测试实验 试验台简介 本试验台采用图1所示系统,通过阀门的转换,可进行制冷压缩机性能测试实验、冷水机组性能实验、水-水换热器性能实验和水泵性能实验。 制冷压缩机性能实验系统由压缩机、冷凝器、蒸发器、电子膨胀阀、恒温器电参数仪等设备组成。压缩机吸气压力、吸气温度、排气压力分别控制在国家标准规定的状态下。吸气温度由恒温器2调节蒸发器冷媒水进口温度T9控制,吸气压力由电子膨胀阀控制,排气压力由恒温器1调节冷凝器冷却水进口温度T7控制。压缩机的实际制冷量由通过蒸发器的冷媒水进出口温度和流量测出,冷凝换热量由通过冷凝器的冷却水进出口温度及流量测得。由此得到压缩机的主辅测质量流量,进而计算出标准工况下的主辅侧制冷量。压缩机的输入功率由电参数仪测得。在制冷系统内部安装多个压力和温度测点,可以方便地确定系统内部的状态。 冷水机组性能实验系统,由压缩机、冷凝器、蒸发器、热力膨胀阀、恒温器等设备组成。实验时,可以设置不同的冷媒水和冷却水温度。冷水机组冷媒水进口温度通过调节恒温器2中的电加热器控制,冷却水进口温度通过调节恒温器1中的电加热器控制,而出口温度则通过阀门调节。冷水机组的输入功率通过电参数仪表测得。冷水机组的制冷量由通过蒸发器的冷媒水进出口温度和流量测出,冷凝换热量由通过冷凝器的冷却水进出口温度及流量测得。同时在系统中加入了相应的温度和压力测点,可以使学生能更加深入地了解冷水机组的工作特性。 水-水换热器性能实验系统,由冷水机组、恒温器、流量计、水泵等设备组成。冷热侧流体分别通过冷水机组和恒温器1获得。换热器冷侧和热侧流体进口温度分别通过恒温器2和恒温器1控制。通过测量换热器两侧流体进出口温度和两侧的流量,可以求出换热量,在已知换热面积的前提下,可以求出换热器的换热系数K。 水泵性能实验系统,由水泵、流量计、电参数仪等设备组成。水泵的流量通过流量计测得,水泵的扬程通过水泵进出口压力变送器测得。在水泵的出口处设立调节阀,通过改变阀门的开度来改变水泵进口处的参数,获得水泵变工况运行特性曲线。

三种压缩机性能特点、优缺点比较

1螺杆式压缩机 螺杆式压缩机又称螺杆压缩机。20世纪50年代,就有喷油螺杆式压缩机应用在制冷装置上,由于其结构简单,易损件少,能在大的压力差或压力比的工况下,排气温度低,对制冷剂中含有大量的润滑油(常称为湿行程)不敏感,有良好的输气量调节性,很快占据了大容量往复式压缩机的使用范围,而且不断地向中等容量范围延伸,广泛地应用在冷冻、冷藏、空调和化工工艺等制冷装置上。 以它为主机的螺杆式热泵从20世纪70年代初便开始用于采暖空调方面,有空气热源型、水热泵型、热回收型、冰蓄冷型等。在工业方面,为了节能,亦采用螺杆式热泵作热回收。 2离心式压缩机 离心式压缩机是一种叶片旋转式压缩机(即透平式压缩机)。在离心式压缩机中,高速旋转的叶轮给予气体的离心力作用,以及在扩压通道中给予气体的扩压作用,使气体压力得到提高。

早期,由于这种压缩机只适于低,中压力、大流量的场合,而不为人们所注意。由于化学工业的发展,各种大型化工厂,炼油厂的建立,离心式压缩机就成为压缩和输送化工生产中各种气体的关键机器,而占有极其重要的地位。随着气体动力学研究的成就使离心压缩机的效率不断提高,又由于高压密封,小流量窄叶轮的加工,多油楔轴承等技术关键的研制成功,解决了离心压缩机向高压力,宽流量范围发展的一系列问题,使离心式压缩机的应用范围大为扩展,以致在很多场合可取代往复压缩机,而大大地扩大了应用范围。 3往复活塞压缩机 是各类压缩机中发展最早的一种,公元前1500年中国发明的木风箱为往复活塞压缩机的雏型。18世纪末,英国制成第一台工业用往复活塞空气压缩机。20世纪30年代开始出现迷宫压缩机,随后又出现各种无油润滑压缩机和隔膜压缩机。50年代出现的对动型结构使大型往复活塞压缩机的尺寸大为减小,并且实现了单机多用。

制冷压缩机的基本性能参数计算

一、实际输气量(简称输气量) 在一定工况下,单位时间内由吸气端输送到排气端的气体质量称为在该工矿下的压缩机质量输气量,单位为。若按吸气状态的容积计算,则其容积输气量为,单位为。于是 二、容积效率? 压缩机的容积效率是实际输气量与理论输气量之比值 (4-2) 它是用以衡量容积型压缩机的气缸工作容积的有效利用程度。 三、制冷量 制冷压缩机是作为制冷机中一重要组成部分而与系统中其它部件,如热交换器,节流装置等配合工作而获得制冷的效果。因此,它的工作能力有必要直观地用单位时间内所产生的冷量一一制冷量来表示,单位为,它是制冷压缩机的重要性能指标之一。 (4-3) 式中-制冷剂在给定制冷工况下的单位质量制冷量,单位为; -制冷剂在给定制冷工况下的单位容积制冷量,单位为。 为了便于比较和选用,有必要根据其不用的使用条件规定统一的工况来表示压缩机的制冷量,表4-1列出了我国有关国家标准所规定的不同形式的单级小型往复式制冷压缩机的名义工况及其工作温度。根据标准规定,吸气工质过热所吸收的热量也应包括在压缩机的制冷量内。 表4-1小型往复式制冷压缩机的名义工况 四、排热量 排热量是压缩机的制冷量和部分压缩机输入功率的当量热量之和,它是通过系统中的冷凝器排出的。这个参数对于热泵系统中的压缩机来讲是一个十分重要的性能指标;在设计制冷系统的冷凝器时也是必须知道的。 图4-1实际制冷循环 从图4-1a所示的实际制冷循环或热泵循环图可见,压缩机在一定工况下的排热量 为: 从图4-1b的压缩机的能量平衡关系图上不难发现 上两式中 -压缩机进口处的工质比焓; -压缩机出口处的工质比焓; -压缩机的输入功率; -压缩机向环境的散热量。 表2-2列举了美国制冷协会ARI520-85标准所规定的用于热泵中的压缩机的名义工况。 表2-2热泵用压缩机的名义工况(美国制冷协会ARI520-85标准)环境温度35度

相关文档
最新文档