高浓度难降解有机废水处理厌氧生物反应器的制作技术

高浓度难降解有机废水处理厌氧生物反应器的制作技术
高浓度难降解有机废水处理厌氧生物反应器的制作技术

本技术涉及一种高浓度难降解有机废水处理厌氧生物反应器,反应容器由下至上依次分为布水段、反应段和分离段,布水段包括第一倒锥短筒,第一倒锥短筒内设有泡罩布水器,泡罩布水器与进水管连通,反应段包括倒锥长筒,增温保温系统对应反应段设置,增温保温系统由外向内包括保温层、增温储油层和增温盘管,分离段包括圆短筒和第二倒锥短筒,第二倒锥短筒和圆短筒内设有出水出气系统,出水出气系统包括锥形分离集气罩、环形溢流堰和回流管,锥形分离集气罩设置于增温盘管的上方,环形溢流堰的上方设有出水管、下方设有回流管,回流管下端与进水管连通。本技术具有良好保温增温能力,传质条件好,持留污泥能力强,稳定性强,清空方便,处理效能高。

权利要求书

1.一种高浓度难降解有机废水处理厌氧生物反应器,包括反应容器和增温保温系统,所述反应容器整体呈圆柱状,其特征在于:所述反应容器由下至上依次分为布水段(Ⅰ)、反应段(Ⅱ)和分离段(Ⅲ),所述布水段(Ⅰ)包括设于反应容器下部的第一倒锥短筒(3),所述第一倒锥短筒(3)内设有泡罩布水器(24),所述泡罩布水器(24)与设于第一倒锥短筒(3)底部的进水管(1)连通,所述反应段(Ⅱ)包括下端与第一倒锥短筒(3)连通的倒锥长筒(9),所述增温保温系统对应反应段(Ⅱ)设置,增温保温系统沿反应容器由外向内的方向包括保温层(6)、增温储油层(8)和设置于倒锥长筒(9)内上部的增温盘管(10),所述增温储油层(8)中安装有电阻加热棒(7),所述分离段(Ⅲ)包括上下连通的圆短筒(15)和第二倒锥短筒(12),所述第二倒锥短筒(12)与倒锥长筒(9)的上端连通,所述第二倒锥短筒(12)和圆短筒(15)内设有出水出气系统,所述出水出气系统包括锥形分离集气罩(14)、环形溢流堰(17)和回流管(22),所述锥形分离集气罩(14)对应设置于增温盘管(10)的上方,所述分离集气罩(14)通过导气筒(21)与外界连通,所述环形溢流堰(17)沿圆短筒(15)内壁设置,所述环形溢流堰(17)的上方设有出水管(16)、下方设有回流管(22),所述回流管(22)下端与进水管(1)连通。

2.根据权利要求1所述的一种高浓度难降解有机废水处理厌氧生物反应器,其特征在于:所述增温盘管(10)顶端设置于倒锥长筒(9)中线距顶端2/5处,增温盘管(10)呈倒锥形紧密缠绕、下端盘口大小与倒锥长筒(9)对应位置的内径相匹配,所述增温盘管(10)的下入口(11)和上出口(13)与反应容器的外部连通。

3.根据权利要求1所述的一种高浓度难降解有机废水处理厌氧生物反应器,其特征在于:所述增温储油层(8)下端沿对称设置两根电阻加热棒(7),所述电阻加热棒(7)通过下部的安装于反应容器底部的智能温控开关(5)进行加热控制,所述智能温控开关(5)能够通过电脑进行远程控制。

4.根据权利要求1所述的一种高浓度难降解有机废水处理厌氧生物反应器,其特征在于:所述进水管(1)设有进水流量阀(26),所述回流管(22)与进水管(1)进水流量阀(26)以上的管体直接连通,所述回流管(22)下端安装有回流流量阀(25)。

5.根据权利要求1所述的一种高浓度难降解有机废水处理厌氧生物反应器,其特征在于:所述反应容器的顶板上通过套管接入pH计(18)和温度计(19),顶板边缘两侧对称地设有可向外打开的盖板(20)。

6.根据权利要求1所述的一种高浓度难降解有机废水处理厌氧生物反应器,其特征在于:所述第一倒锥短筒(3)母线与水平面夹角(α)为40°~50°,所述倒锥长筒(9)母线与水平面夹角(β)为75°~85°,所述第二倒锥短筒(12)母线与水平面的夹角(γ)为55°~65°。

7.根据权利要求1所述的一种高浓度难降解有机废水处理厌氧生物反应器,其特征在于:所述反应容器的高径比为5.0~6.5:1.0,所述布水段(I)、反应段(II)、分离段(III)的高度比为1.0:3.0~5.0:1.5,所述第二倒锥短筒(12)与短圆筒(15)的高度比为1.0:1.5,所述第一倒锥短筒(3)的顶端与倒锥长筒(9)的底端连通,所述倒锥长筒(9)的顶端与第二倒锥短筒(12)外侧壁的母线中点处连接,所述第二倒锥短筒(12)的顶端与圆短筒(15)的底端连通。

8.根据权利要求1所述的一种高浓度难降解有机废水处理厌氧生物反应器,其特征在于:所述保温层(6)内部填充发泡保温胶,保温层(6)的厚度为5cm~15cm。

9.根据权利要求1所述的一种高浓度难降解有机废水处理厌氧生物反应器,其特征在于:所述反应容器底部安装有三根活动支脚(4),所述活动支脚(4)底部通过活动螺丝(2)进行安装固定。

10.根据权利要求1所述的一种高浓度难降解有机废水处理厌氧生物反应器,其特征在于:所述倒锥长筒(9)下部设有人孔(23)。

技术说明书

一种高浓度难降解有机废水处理厌氧生物反应器

技术领域

本技术属于有机废水处理的技术领域,特别是涉及一种高浓度难降解有机废水处理厌氧生物反应器。

背景技术

随着我国工业化进程的不断推进,随之而来的工业废水排放量也与日俱增,根据《2015年中国环境统计年鉴》报道,2014年工业废水排放量高达205.35亿吨,化学需氧量总排放量高达311.4万吨。其中主要来自印染、造纸等行业的高浓度难降解有机废水一直是废水治理领域的难题,这类废水COD浓度常常可达数万乃至数十万mg/L,可使水体缺氧,对生态环境危害巨大,也给人们的日常生活健康带来诸多隐患。相较于成本高昂的高级氧化、混凝沉淀等物化法和负荷低、剩余污泥多的好氧生物处理,具有容积负荷高、高径比大、占地面积小、剩余污泥少和运行费用低等优点的厌氧生物反应器技术被越来越多的应用于高浓度有机废水的处理。

厌氧反应器技术发展迅速,自上世纪70年代Lettinga等技术了升流式厌氧污泥床(UASB)为代表的第二代厌氧生物反应器以来,以内循环(IC)厌氧反应器和厌氧颗粒膨胀污泥床(EGSB)为代表的第三代厌氧生物反应器迅速涌现,并都被广泛应用于工程实践。厌氧反应器技术主要是利用反应器内部颗粒污泥(厌氧微生物)的特性,在保持一定的温度(中温消化35℃,高温消化53℃)、不含氧气的条件下,经过水解发酵阶段、产氢产乙酸阶段和产甲烷阶段三个阶段,最终将有机物污染物最终转化为可再生能源沼气的技术。其中反应器运行温度、颗粒污泥量持留量和反应器内部水力条件是影响厌氧生物反应器运行最重要的三个因素,也是厌氧生物反应器设计优化的主要方向。

技术内容

本技术所要解决的技术问题是提供一种高浓度难降解有机废水处理厌氧生物反应器,具有良好保温增温能力,传质条件好,持留污泥能力强,稳定性强,清空方便,废水处理效能高。

本技术解决其技术问题所采用的技术方案是提供一种高浓度难降解有机废水处理厌氧生物反应器,包括反应容器和增温保温系统,所述反应容器整体呈圆柱状,所述反应容器由下至上依次分为布水段、反应段和分离段,所述布水段包括设于反应容器下部的第一倒锥短筒,所

述第一倒锥短筒内设有泡罩布水器,所述泡罩布水器与设于第一倒锥短筒底部的进水管连通,所述反应段包括下端与第一倒锥短筒连通的倒锥长筒,所述增温保温系统对应反应段设置,增温保温系统沿反应容器由外向内的方向包括保温层、增温储油层和设置于倒锥长筒内上部的增温盘管,所述增温储油层中安装有电阻加热棒,所述分离段包括上下连通的圆短筒和第二倒锥短筒,所述第二倒锥短筒与倒锥长筒的上端连通,所述第二倒锥短筒和圆短筒内设有出水出气系统,所述出水出气系统包括锥形分离集气罩、环形溢流堰和回流管,所述锥形分离集气罩对应设置于增温盘管的上方,所述分离集气罩通过导气筒与外界连通,所述环形溢流堰沿圆短筒内壁设置,所述环形溢流堰的上方设有出水管、下方设有回流管,所述回流管下端与进水管连通。

作为本技术一种优选的实施方式,所述增温盘管顶端设置于倒锥长筒中线距顶端2/5处,增温盘管呈倒锥形紧密缠绕、下端盘口大小与倒锥长筒对应位置的内径相匹配,所述增温盘管的下入口和上出口与反应容器的外部连通。

作为本技术另一种优选的实施方式,所述增温储油层下端沿对称设置两根电阻加热棒,所述电阻加热棒通过下部的安装于反应容器底部的智能温控开关进行加热控制,所述智能温控开关能够通过电脑进行远程控制。

作为本技术另一种优选的实施方式,所述进水管设有进水流量阀,所述回流管与进水管进水流量阀以上的管体直接连通,所述回流管下端安装有回流流量阀。

作为本技术另一种优选的实施方式,所述反应容器的顶板上通过套管接入pH计和温度计,顶板边缘两侧对称地设有可向外打开的盖板。

作为本技术另一种优选的实施方式,所述第一倒锥短筒母线与水平面夹角为40°~50°,所述倒锥长筒母线与水平面夹角为75°~85°,所述第二倒锥短筒母线与水平面的夹角为55°~65°。

作为本技术另一种优选的实施方式,所述反应容器的高径比为5.0~6.5:1.0,所述布水段、反应段、分离段的高度比为1.0:3.0~5.0:1.5,所述第二倒锥短筒与短圆筒的高度比为1.0:1.5,所述第一倒锥短筒的顶端与倒锥长筒的底端连通,所述倒锥长筒的顶端与第二倒锥

短筒外侧壁的母线中点处连接,所述第二倒锥短筒的顶端与圆短筒的底端连通。

作为本技术另一种优选的实施方式,所述保温层内部填充发泡保温胶,保温层的厚度为5cm ~15cm。

作为本技术另一种优选的实施方式,所述反应容器底部安装有三根活动支脚,所述活动支脚底部通过活动螺丝进行安装固定。

作为本技术另一种优选的实施方式,所述倒锥长筒下部设有人孔。

有益效果

本技术利用了厌氧生物处理三段论的理论与反应器结构特点结合(下端多进行水解发酵阶段和产氢产乙酸阶段,温度30℃左右,上端主要进行产甲烷阶段,温度35℃左右),集成了水力学、微生物学、生物反应器工程技术,解决了传统厌氧反应器应对不同气候条件增温保温性能不佳、不同场地条件稳定性不足等问题,具有适应性强、良好保温增温能力、传质条件好、持留污泥能力强、抑制酸化、清空维护方便、占地面积小并可高效能地对高浓度难降解有机废水进行处理的特点。

由于采用了上述技术方案,本技术与其他现有技术相比:

第一,本技术进水管与回流管相连,同时具有进料、回流与清空三重功能。管内进水与回流液混合,具有稀释进水的作用,使得反应器具有较强的耐浓度冲击能力,由于具有倒锥型结构,进水管兼有清空口功能,便于无死角清空里料,减轻清空反应容器时的工作量。同时,由于这种结构的设置,可缩小布水区体积,故可增大反应容器内有效反应容积;

第二,本技术布水采用泡罩布水器,进水由泡罩挡住经泡罩边缘进水,增加液体进入反应器范围,能保证均匀布水,大幅度提高抗水力冲击能力,可承受高达1:10的回流比,耗材少,泡罩结构也可挡住布水区上方固液混合物,不易产生堵塞;

第三,本技术反应段主体为倒锥结构,直径从下至上由小到大,进水撞击在泡罩上由边缘折

流出水,在反应段形成涡旋流场,流场内具有强剪切力,充分混合进水与污泥,强化湍流效果,降低传质阻力。经涡旋流场搅动的颗粒污泥更易扬至反应容器中上端,使得反应容器内部整体保持污泥浓度较高的平推流流态,大大提高去除效率;

第四,本技术在反应段上部设置增温盘管,与分离段的分离集气罩组合形成两层分离结构,保证反应器三相分离效果,充分持留颗粒污泥;

第五,本技术增温盘管的设置充分迎合厌氧发酵三段论理论,反应器下端主要进行水解发酵阶段和产氢产乙酸阶段,上端主要进行产氢产乙酸和产甲烷阶段,其中产甲烷菌对温度敏感,其最高效工作的温度为35℃左右(中温消化)和53℃左右(高温消化),在产甲烷阶段利用增温盘管独立针对性增温,可保证产甲烷阶段的高效进行,充分提高反应器效能,避免反应容器内部产生酸化现象;

第六,本技术增温盘管独立于保温增温层单独设置,在温度较高的夏季(>25℃)或南方地区,增温盘管可独立运行进行增温保温工作,可在保证处理效率的前提下节省运行成本,节约能源;

第七,本技术电阻加热棒采用智能温控开关进行控制,可通过电脑远程控制电阻加热棒的开启关闭,并可控制恒定温度值,保证了反应器在高效运行时的稳定性;

第八,本技术增温保温系统的保温层采用发泡保温胶无死角进行填充,填充材料不仅保温性能好,而且耐高温,对木材、铁、不锈钢、PVC等材料具有极强粘接力,不仅可以充分保证反应器的保温能力,而且可以将反应容器外壳与反应容器内部长筒紧密结合,加强反应容器结构的稳定性;

第九,本技术的外形呈圆筒状,内部连接紧密,结构紧凑,力学强度好,且反应容器高径比大,占地面积小,节省基建投资。三个支脚的设置只需保证三个支脚处于同一水平面即可,进一步降低对基建地面的需求,环境适应能力强。设置外部可读pH计及温度计,随时监测反应容器内部情况,运行管理方便。反应段设置人孔,分离段顶端设置可开合的盖板,最大程度方便检修;

本技术适用于高浓度难降解有机废水的处理,并可针对不同类型废水添加不同螺旋挡板内构件。经对比运行试验,添加螺旋挡板内构件的本技术反应器可耐受COD浓度20000mg/L以上的废水,回流比可达1:10,COD去除率可达80%以上,容积负荷可达48.00kgCOD/(m3·d)。

附图说明

图1为本技术的结构示意图。

具体实施方式

下面结合具体实施例,进一步阐述本技术。应理解,这些实施例仅用于说明本技术而不用于限制本技术的范围。此外应理解,在阅读了本技术讲授的内容之后,本领域技术人员可以对本技术作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

如图1所示的一种高浓度难降解有机废水处理厌氧生物反应器,包括活动支脚4、反应容器和增温保温系统。

反应容器整体呈圆柱状,底部安装有三根活动支脚4,活动支脚4底部通过活动螺丝2进行安装固定。反应容器的高径比为5.0:1.0,反应容器由下至上依次分为布水段Ⅰ、反应段Ⅰ和分离段Ⅲ,布水段I、反应段II、分离段III的高度比为1.0:3.0:1.5。

布水段Ⅰ包括设于反应容器下部的第一倒锥短筒3,第一倒锥短筒3母线与水平面的夹角α为40°。第一倒锥短筒3内设有泡罩布水器24,泡罩布水器24与设于第一倒锥短筒3底部的进水管1连通。进水管1设有进水流量阀26,进水管1进水流量阀26以上的管体与回流管22直接连通,回流管22的下端安装有回流流量阀25。

反应段Ⅱ包括下端与第一倒锥短筒3顶端连通的倒锥长筒9,第一倒锥短筒3顶端直径d1与倒锥长筒9的底端直径d1相同,倒锥长筒9母线与水平面的夹角β为75°,倒锥长筒9下部设有人孔23。增温保温系统对应反应段Ⅱ设置,增温保温系统沿反应容器由外向内的方向包括保温层6、增温储油层8和设置于倒锥长筒9内上部的增温盘管10。保温层6内部填充发泡保温胶,保温层6的厚度为10cm。增温储油层8中填充硅油作为导热油,该导热油具有较低的比热

容,利于快速升温,具有优良的热稳定性,使用寿命长,具有优良的剪切稳定性,帮助减震稳定,还具有无毒、粘度变化小、起泡性低、抗泡性强、绝缘性能好等特点,可保证了反应器保温系统的高效安全稳定运行。增温储油层8下端沿对称设置两根电阻加热棒7,电阻加热棒7通过下部的安装于反应容器底部的智能温控开关5进行加热控制,智能温控开关5能够通过电脑进行远程控制。增温盘管10顶端设置于倒锥长筒9中线距顶端2/5处,增温盘管10呈倒锥形紧密缠绕、下端盘口大小与倒锥长筒9对应位置的内径相匹配,增温盘管10的下入口11和上出口13与反应容器的外部连通。

分离段Ⅲ包括第二倒锥短筒12和圆短筒15,第二倒锥短筒12母线与水平面的夹角γ为55°,倒锥长筒9的顶端直径d2与第二倒锥短筒12母线中点处直径d2相同,第二倒锥短筒12外侧壁母线中点处与倒锥长筒9的上端连通,圆短筒15的底端与第二倒锥短筒12的上端连通,第二倒锥短筒12与短圆筒15的高度比为1.0:1.5。第二倒锥短筒12和圆短筒15内设有出水出气系统,出水出气系统包括锥形分离集气罩14、环形溢流堰17和回流管22。锥形分离集气罩14对应设置于增温盘管10的上方,分离集气罩14通过导气筒21与外界连通,环形溢流堰17沿圆短筒15内壁设置,环形溢流堰17的上方设有出水管16、下方设有回流管22,回流管22下端与进水管1连通。反应容器的顶板上通过套管接入pH计18和温度计19,顶板边缘两侧对称地设有可向外打开的盖板20。

该高浓度难降解有机废水处理厌氧生物反应器的主体采用钢材制作,工作过程如下:

反应段II内填充约占有效容积30%~50%的颗粒污泥。若环境温度进水温度较低,则开启智能温控开关5给电阻加热棒7供电,将温度设定至35℃左右,从增温盘管10下口11通入35℃热水或热油,若环境温度进水温度较高>25℃,则关闭智能温控开关5,单独使用增温盘管10增温。

高浓度有机废水由进水管1同回流管22回流液混合均匀后通过泡罩布水器25均匀折流布水至反应段II内,反应段II内倒锥长筒9下端形成湍流,进水与污泥充分接触,获得良好传质效果。这一阶段水中大部分可降解有机物通过水解发酵阶段和产氢产乙酸阶段转化为较简单有机酸和氢气、二氧化碳等,转化产物进入倒锥长筒9上端,由于增温盘管10的加热作用使得倒锥长筒9上端温度可稳定在35℃左右,转化产物在这一区域快速进行产甲烷化阶段,避免酸化的同时进一步将有机酸转化为沼气。绝大部分气体包括沼气、氢气被分离集气罩14收

集,气体通过导气筒21导出反应容器外,绝大部分颗粒污泥在增温盘管10和分离集气罩14的作用下回落至反应段II,处理后的出水经环形溢流堰17与出水管16排出,部分出水经回流管22回流至布水段I。时刻观察pH计18及温度计19读数,估计反应器内部状况,预留应对措施。

经对比运行试验,添加螺旋挡板内构件的该反应器可耐受COD浓度20000mg/L以上的废水,回流比可达1:10,COD去除率可达80%以上,容积负荷可达48.00kgCOD/(m3·d)。

高浓度有机废水处理技术

高浓度有机废水处理技术 朱艳霞 摘要:对国内外目前高浓度有机废水的主要处理技术进行综述, 主要包括物化、化学、生物处理技术并分析了各种方法和工 艺的优缺点及其研究现状。重点对生物处理技术中MBR、A-B工艺、UASB、SBR工艺进行重点研究、归纳总结其优缺点,并提 出应用几种处理技术连用的方法来处理高浓度有机废水,用综合治理的理念既要大力发展处理技术, 还要从源头防治, 以减 轻污染。 关键字:有机废水;高浓度;处理技术;前景 1 水资源状况 当前,水资源是世界各国普遍面临急需解决的问题之一。据联合国世界资源研究所研究报道,世界水资在质和量的方面都面临着比其它资源和比以往都更为严峻的局面。据统计全球2006年全球工业用水量为2.07万亿立方米,而这一现象世界各地状况极不相同,需求量与有限的可以用水资源极不适应,并且全世界每年排向自然水体的工业和生活废水为4200亿立方米,造成35%以上的淡水资源受到污染,因而治理水体污染将尤为重要。在一定意义上说世界各地经济发展的快慢将依据可利用水资源的状况而确定。 我国的水资源也面临严重的污染问题。大量工业废水不达标外排,绝大部分生活污水不经处理直接排放,广大农村地区不合理使用化肥、农药等农用化学物质,对地表水影响日趋严重。全国大部分城市和地区的淡水资源己受到水质恶化和水生态系统被破坏的威胁。由于全国80%左右的污水未经任何处理直接排入水域,造成全国1/3以上的河段受到污染,90%以上的城市水域污染严重,近50%的重点城镇水源地不符合饮用水标准。我国城市水资源质量也较差,大部分城市和地区地下水位连续下降,形成了不同规模的地下水降落漏斗,形势相当严峻。造成水资源受到严重污染的根本原因是大量生产生活废水未经处理或虽经处理但未达标。这些未得充分利用的废水即污染环境,又浪费资源,迫切需要进行资源化利用。水中的各种污染物中,有机污染物,尤其是高浓度的有机污染物,不仅在水中存在时间长、迁移范围广,而且危害大、处理难度大,一直是环保领域的一个重要研究课题。 2 高浓度有机废水 2.1 高浓度有机废水来源 高浓度有机废水一般是指由造纸、皮革及食品等行业排出的COD 在2 000 mg/ L 以上的废水。这些废 水中含有大量的碳水化合物、脂肪、蛋白质、纤维素等有机物,如果直接排放,会造成严重污染。高浓度有 机废水按其性质来源可分为三大类: [1] (1) 易于生物降解的高浓度有机废水; (2) 有机物可以降解,但含有害物质的废水; (3) 难生物降解的和有害的高浓度有机废水。

高浓度难降解有机废水处理技术综述_赵月龙

第25卷第4期2006年 8月 四 川 环 境 SICHUAN ENVIRON MEN T Vol 125,No 14Augus t 2006 #综 述# 收稿日期:2005-09-19 基金项目:山西省自然科学基金资助项目(项目号:202548) 作者简介:赵月龙(1976-),男,山西太原人,现为哈尔滨工业大学 环境工程专业博士研究生。 高浓度难降解有机废水处理技术综述 赵月龙1 ,祁佩时1 ,杨云龙 2 (11哈尔滨工业大学市政环境工程学院,哈尔滨 150090;21太原理工大学环境与市政工程学院,太原 030024) 摘要:高浓度难降解有机废水的处理,是国内外污水处理界公认的难题。本文分析了这一类废水难于生物处理的主要 原因,并在此基础上对近年来国内外处理焦化废水、制药废水等高浓度难降解废水的技术和研究作了介绍与评价。关 键 词:有机废水;高浓度难降解;焦化废水;制药废水;生物技术 中图分类号:X70311 文献标识码:A 文章编号:1001-3644(2006)04-0098-06 Treatment Technologies of Non -degradable Organic Wastewater Z HAO Yue -long 1,QI Pe-i shi 1,YANG Yun -long 2 (11School of Municipal &En vironmental Engineering,H a r bin Institute o f Technology ,Harbin 150090,China;21School o f En vironmental &Municipal En gineering,Taiyuan University of Technology ,Taiyuan 030024,China) Abstract:T he treatment of hi gh -s trength and non -degradable organic wastewater is a difficul t problem in wastewater treatment.This paper analyzed the main reasons that made the wastewater be difficult to be treated by biological technology 1The recent researches and technologies of the treatment of high -strength and non -degradable organic wastewater,such as coking wastewater,pharmaceutical wastewater,etc.,were then introduced and evaluated according to the analysis 1 Keywords:Organic wastewater ;high -strength and non -degradability;coki ng wastewater;pharmaceu tical wastewater;biological technology 1 引 言 高浓度难降解有机废水的处理,是目前国内外污水处理界公认的难题。对于这类废水,目前国内外研究较多的有焦化废水、制药废水(包括中药废水)、石化/油类废水、纺织/印染废水、化工废水、 油漆废水等行业性废水。所谓/高浓度0,是指这类废水的有机物浓度(以COD 计)较高,一般均在2000mg/L 以上,有的甚至高达每升几万至十几万毫克;所谓/难降解0是指这类废水的可生化性较低(B OD 5/COD 值一般均在013以下甚至更低),难以生物降解。所以,业内普遍将C OD 浓度大于2000mg/L 、BOD 5/C OD 值低于013的有机废水统一称为高浓度难降解有机废水。 /高浓度0、/难降解0两大特性的叠加,使得此类废水在处理中,单独使用生物法或物化法等/常规0方法失去可能。从而,研究生物法和物化法等其它方法的组合,力图使处理成本降到最低而且处理方法具有在国内工业企业的有效推广价值,是当前解决此类废水污染的关键性问题。 2 高浓度难降解有机废水难生物处理的原因分析 高浓度难降解有机废水难于生物处理的原因,本质上是由其特性决定的。一般,此类废水在水质、水量等方面具有以下几方面的共同特性:211 废水所含有机物浓度高 几种典型的高浓度有机废水,如焦化废水、制药废水、纺织/印染废水、石油/化工废水等,其主要生产工段的出水C OD 浓度一般均在3000~5000mg/L 以上,有的工段出水甚至超过10000mg/L,即

厌氧生物处理技术、

废水的厌氧生物处理技术 厌氧生物处理技术是利用厌氧微生物的代谢特性分解有机污染物,在不需要提供外界能源的条件下,以被还原有机物作为受氢体,同时产生有能源价值的甲烷气体的水处理技术。 1厌氧生物处理的基本原理 1.1两阶段理论 在20世纪30-60年代,人们普遍认为厌氧消化过程可以简单地分为两个阶段,即两阶段理论。第一阶段称为发酵阶段或产酸阶段或酸性发酵阶段,废水中的有机物在发酵细菌的作用下,发生水解和酸化反应,而被降解为以脂肪酸、醇 类、CO 2和H 2 等为主的产物。第二阶段则被称为产甲烷阶段或碱性发酵阶段,所 发生的反应时是产甲烷菌利用前一阶段的产物脂肪酸、醇类、CO 2和H 2 等为基质, 并最终将其转为CH 4和CO 2 。 1.2三阶段理论 三阶段理论认为,整个厌氧消化过程可以分为三个阶段,即水解、发酵阶段,产氢产乙酸阶段和产甲烷阶段。有机物首先通过发酵细菌的作用生成乙醇、丙酸、 丁酸和乳酸等,接着通过产氢产乙酸菌的降解作用而被转化为CH 4和CO 2 。产氢 产乙酸菌和产甲烷菌之间存在着互营共生的关系。该理论将厌氧发酵微生物分为发酵细菌群、产氢产乙酸菌群和产甲烷菌群。 1.3四阶段理论 几乎与三阶段理论的提出同时,Zeikus提出了四菌群学说即四类群理论。与三阶段理论相比,该理论增加了同型(耗氢)产乙酸菌群(Homoacetogenic Bacteria),该菌群的代谢特点是能将H 2/CO 2 合成为乙酸。但是研究结果表明,这 一部分乙酸的量较少,一般可以忽略不计。 目前为止,三阶段理论和四类群理论是对厌氧生物处理过程较全面和较准确的描述。 2 厌氧生物处理的优缺点 厌氧生物处理技术与好氧生物处理技术比较,有如下优缺点。

高盐度难降解有机废水处理技术的研究与应用进展

高盐度难降解有机废水处理技术的研究与应用进展 ——膜蒸馏技术应用于高盐度工业有机废水处理领域综述 摘要 本文综述了膜蒸馏技术在高盐度难降解有机废水处理领域的应用现状。传统水处理方法处理高盐度工业有机废水难度大、效果不佳,是水处理工业中的难题之一。膜蒸馏是一种新型的膜分离技术,具有耐腐蚀性强、抗污染性好、分离效率高、操作温度低、可利用低温热源等特点。 关键词:膜蒸馏;高盐度有机废水;膜污染 Abstract The application status quo of membrane distillation process, a new separation technology, in treatment of concentrated salt organic wastewater are summarized. It is very difficult to use traditional water treatment method to deal with concentrated salt organic wastewater and often has poor effect. It becomes one of the water treatment industry problems. Membrane distillation (MD) is a new type of membrane separation technology which has the features of strong corrostion resistance, anti-pollution, better separation efficiency, low operating temperature and can make ues of low temperature heat source. Keywords : membrane distillation; concentrated salt organic wastewater; membrane fouling 1 前言 水污染是我国面临的主要环境问题,工业废水占总污水量的70%左右。而其中高有机浓度、高盐度的工业废水,处理难度较高,对环境水体的污染程度大,是国内外环保领域的难题之一。采用传统水处理方法处理高有机物浓度、高盐度的工业废水如混凝、沉淀过滤、活性炭吸附、生物反应器、臭氧氧化和土地渗滤等,投资大、能耗高、效果差。

涉及8大行业的高浓度难降解废水关键处理技术及典型工艺流程

涉及8大行业的高浓度难降解废水 关键处理技术及典型工艺流程 制药行业废水 1、特点 制药废水具有成分差异大,组分复杂,污染物量多,COD 高,BOD5和CODcr 比值低且波动大,可生化性很差,难降解物质多,毒性强,间歇排放,水量水质及污染物的种类波动大等特点。 3、处理技术 ①预处理:混凝法、气浮法、微电解、Fenton试剂、催化氧化等; ②厌氧工艺:UASB、两相厌氧消化、EGSB等; ③好氧工艺:生物接触氧化法、CASS、SBR、活性污泥法等;

4、典型工艺流程 气浮法处理制药废水膜分离法处理制药废水

组合工艺处理制药废水 造纸行业废水 1、特点 造纸废水危害很大,其中黑水是危害最大的,它所含的污染物占到了造纸工业污染排放总量的90%以上,由于黑水碱性大、颜色深、臭味重、泡沫多,并大量消耗水中溶解氧,严重地污染水源,给环境和人类健康带来危害。 而中段水对环境污染最严重的是漂白过程中产生的含氯废水,例如氯化漂白废水,次氯酸盐漂白废水等。此外,漂白废液中含有毒性极强的致癌物质二恶英,也对生态环境和人体健康造成了严重威胁。 2、组成 制浆造纸废水主要分为:黑液、中段废水、白水三种。 黑液:用含NaOH或NaOH+硫酸钠碱性药剂蒸煮植物纤维,溶出木质素,排放的蒸煮液即为“黑液”(碱煮为黑液,酸煮为红液,绝大部分采用碱煮)。黑液含木质素、聚戊糖和总碱,是高浓度难降解废水。 中段废水:碱煮制成的浆料在洗涤、筛选、漂白过程中产生的废水,吨浆COD负荷在310kg 左右。BOD/COD在0.20~0.35之间,可生化性较差。污染物主要以木质素、纤维素、有机酸等可溶性COD为主,污染最严重的是漂白产生的含氯废水。 白水:水量大,主要含有细小纤维、填料、涂料和溶解的木材成分,以不溶COD为主,可生化性差,加入的防腐剂有毒性。 3、处理技术 黑液、中段废水:碱回收、酸析法、LB-1碱析法、膜分离法、絮凝沉淀、生物膜法、厌氧生物处理、网筛微滤、气浮、高级氧化。 白水:过滤、气浮、沉淀、筛分。 4、典型工艺流程

难降解有机废水处理方案的设计

任务1:难降解有机废水处理方案的设计 ?信息检索 ?难降解有机废水特性分析 高浓度难降解苯类废水的来源以及概况 ?高浓度难降解有机废水主要是、、、、等生产过程中产生的废水,废水、、,因此必须采用预处理技术和方法,方能有效处理。 ?难降解有机物是指,(也包括某些有机物的代谢产物),这类污染物易在生物体内富集,也容易成为水体的潜在污染源。这些物质的共同特点是,,。 高浓度难降解有机废水难生物处理的原因分析 ?废水所含有机物浓度高。几种典型的高浓度有机废水,如焦化废水、制药废水、纺织/印染废水、石油/化工废水等,其主要生产工段的出水COD浓度一般均在mg/ L以上,有的工段出水甚至超过mg/L,即使是各工段的混合水,一般也均在mg/L以上。 ?有机物中的生物难降解物种类多比例高。这类有机废水中,往往含有较高浓度的生物难降解物,甚至是,且种类较多。 ?除有机物外,废水含盐浓度较高。此类废水往往有较高的含盐量,致使废水处理的难度加大。如典型的抗生素废水,其硫酸盐含量一般均在mg/L以上,有的甚至高达 mg/L。 ?各生产工段排水的水质、水量随时间的波动性大。以焦化废水为例,一座中等规模的焦化厂,其水量在一天内可由约m3/h变化到m3/h,废水的COD浓度也可由约1000 mg/L变化到3000mg/L以上,甚至更高;而制药废水除水量随生产工序的变化而剧烈变化外, COD浓度更是可由每升几百毫克变化到几万毫克。 ?方案设计 工艺流程:

工艺说明:

任务2:难降解有机废水处理运行管理?某污水处理厂难降解有机废水处理工艺流程认知 绘制工艺流程图。 构筑物认知 ?在实物图片中 1);2); 3);4); 5);6); 7);8); 9);10); 11);12); 13);14); 15);16); 17);18)

难降解有机废水的处理方法分析

难降解有机废水的处理方法分析 发表时间:2018-11-20T15:07:18.610Z 来源:《防护工程》2018年第20期作者:陈雪玲 [导读] 难降解有机废水是工业生产中常见的废水类型,该废水若处理效果不好就会对生态环境造成破化 广西东亚扶南精糖有限公司 530012 摘要:难降解有机废水是工业生产中常见的废水类型,该废水若处理效果不好就会对生态环境造成破化,因此,结合实际以难降解有机废水为研究对象,在分析有机废水的特征与危害基础上,论述几种常见的处理方法,希望分析后能够给相关工作人员提供借鉴。 关键词:难降解;有机废水;处理;方法 0前言 工业社会的快速发展之下,产生了大量的高浓度难降解的有机废水,给环境造成了巨大的污染问题。因为该部分的废水污染浓度比较高,并且降解难以进行,选择使用常规的废水处理方法已经难以达到净化的要求。在全面深入的了解高浓度有机废水的特性以及所造成的巨大危害基础上,采取合理的处理技术,从而可以消除对于环境所造成的的影响,改善人们的生活质量。 1 高浓度难降解有机废水特性、危害 经过多方面的比较分析,可以发现该废水具备如下特性:有机物含量非常好,通常情况下,COD都会在2000mg/L以上;降解更加的困难,废水的可生化性比较低,BOD5/COD的比值通常情况下都会小于0.3,甚至还会更低;组成成分更加的复杂,并且含有大量的硫化物、重金属以及其他的有害物质;色度高且异味大,一旦排放超标,就会造成周边环境的严重损坏;酸碱性非常强。这种废水对于所在环境的影响主要就是造成该地区水质的变化,造成水体缺氧甚至厌氧,大量的水生物死亡,同时会造成周边环境的恶化;毒性非常强,这主要是因为喝多废水中毒含有过量的有机物所造成的,在日积月累中造成的水体和土壤中逐渐的沉淀和聚集,最后通过水体进入到人体中,造成人们的生命健康受到极大的影响。 2化学法处理技术 2.1电化学氧化法 这种方法在具体处理的过程中通常使用直接电化学氧化与间接电化学氧化的方式来进行的。前者主要就是通过将其设置在电极表面所存在的氧化还原反应来进行的分解。电化学的处理方法可以有效的分析含氯化合物的有效性,同时可以通过pbO2聚吡咯复合电极将废水中的氯离子滤除掉;而后者主要是通过电化学反应的方法中所形成的氧化剂或还原剂来进行污染的分解处理。经过实践效果可以发现,使用电解生成次氯酸盐氧化剂可以将废水中无法分解的氨氮化合物进行降解。 2.2湿式氧化法 该方法通常可以将其分为湿式空气氧化和湿式空气催化氧化两种。前者就是将废水污染物直接设计在温度为125~320℃、压力为 0.5~20 MPa的条件下与空气发生反应,此时可以将其所含有的有机物去除掉超过99.9%。用来处理含酚废水,在温度为150~180℃、压力为0.3~1.5 MPa的环境中,可以将废水中的COD去除超过90%,酚类分子可以实现全部清除;后者则是通过使用催化剂来降低温度与压力,从而可以加速分解。对该技术进行了进一步的研发,并且将我国的焦化、造纸以及生物制药领域中所存在的高浓度有机废水进行有效的处理,取得了非常好的效果,可以去除CODcr,NH3-N等物质高达99%以上。 2.3超临界水氧化技术 该技术也可以简称为SCWO技术,主要是在湿式氧化处理技术的技术上发展而来的。主要是在环境温度超过647.5K、压力超过 22.05MPa的基础上来进行的有机物溶解,主要是针对的一些不溶于水的有机物以及其他的气体,比如氧气等。在该技术应用的过程中,可以将废水中超过99.99%的有机物直接分解成为二氧化碳与水,有机物内的氮、硫、磷等元素直接转化成为无机酸、氯转化成为氯离子,硫和磷分别转化为硫酸盐和磷酸盐。通过自制超临界处理装置对苯酚进行养化处理,结果在873.2 K和35 MPa的环境中,停留时长为170s,其可以将该物质去除超过99.8%。 2.4光化学氧化技术 光氧化分为光激发氧化和光催化氧化。前者在进行处理的过程中主要是通过使用臭氧、过氧化氢以及氧与空气为主要的氧化剂,在这些物质的作用之下直接与光化学联合起作用,从而可以形成了具备更强氧化能力的自由基,所以该技术的应用具备更强的处理效果;后者主要是在水溶液中适当的加入一些催化剂,然后在经过紫外线的照射作用,可以直接将内部需要降解的物质转变成为自由基。目前多使用二氧化钛和CdS等物质作为催化剂。武正簧[5]等人员通过使用二氧化钛薄膜来进行实验,以分解甲基橙与亚甲基兰,通过最终的结果分析,发现分解效果非常的明显,且不存在有毒害的物质。 3 生物处理技术 随着科学技术的发展,生物处理技术也取得了较大的进步,给当前的有机物分解领域带来了新的发展机遇,未来必然会发挥更大的作用。 3.1生物膜法 膜生物反应器主要由膜组件和生物反应器两部分组成。数目庞大的微生物群可以更好的实现有机污染物的分解,在反应的过程中,通过氧化分解作用而产生更加有利于微生物生长和繁殖,并且可以快速的进行有机物的讲解。膜组件在具体应用的过程中,应该实施机械筛分、截留等处理方法,从而将废水与污泥实现固液的分离处理,然后将其中所存在的大分子位置直接输送到反应器内,通过大分子的直接输送能够在一定的程度上解决有机废水引起的了在能够问题,这样可以避免造成微生物过量的流失问题的存在。 3.2高效菌种技术 为了可以满足当前社会中的大量工业废水处理需求,在废水中加入了具备特殊分解能力的菌种来进行废水处理,这种方法逐渐被推广和应用。通过实验研究可以发现,长期污染的环境之下会导致土壤、河水以及海水中含有大量的有机废物,通过筛分作用来将有机物进行分解。相关研究学者在研究中主要是从1,4-二氧环己烷污染的污泥内直接分离出一株能够与碳源和能源放线菌CB1190,其可以更好的分解

高浓度难降解有机废水厌氧生化处理技术

高浓度难降解有机废水厌氧生化处理技术 【摘要】随着社会经济的快速发展、人们生活水平的不断提高,面临的环境污染问题也日臻严重。在环境工作者的不懈努力下,常见的污水得到了有效的处理,但是高浓度难降解废水,特别是持久性有机物的处理具有很大的困难,需要不断地探索和研究。 【关键词】高浓度;有机废水;处理 1.厌氧消化机理 厌氧消化[1]是指在无分子氧参与的条件下,通过多种微生物的协同作用,把有机物最终分解为甲烷(CH4)和CO2等产物的过程。在厌氧消化过程中,碳水化合物的复杂形式纤维素和淀粉在各类酶的作用下,逐步水解为葡萄糖,而后经EMP途径,首先转化为丙酮酸,然后丙酮酸作为受氢体,产生各种酸、醇和酮等;蛋白质则逐步水解为氨基酸,氨基酸可通过Strickland反应或加氢还原等途径脱氨,分解成氨和另一种不含氨的有机物;而脂肪首先被分解为脂肪酸、甘油和磷酸,然后脂肪酸在产氢产乙酸菌的作用下遵循β氧化机理分解,同时前两者分解的中间产物也被产氢产乙酸菌群利用而生成乙酸、氢和CO2。产甲烷菌群有两类,一类是利用乙酸生成甲烷,另一类则是由氢CO2形成甲烷,在反应器正常情况下,两者分别占甲烷生成总量的70%和30%。在产生甲烷过程的同时,还存在一个同型产乙酸的过程,即少数产乙酸菌能使用氢作为电子供体CO2等还原为乙酸,这可能是利用乙酸生成甲烷的量更大的原因之一。近年来,人们在研究厌氧处理工艺时又提出通过工艺条件控制,把整个厌氧消化过程分成两步,即水解和酸化过程、产乙酸和甲烷过程分别在不同反应器中完成,以尽量提高整体系统的效率。 2.高浓度难降解有机污染物的危害 2.1 急性中毒 这类废水排入水体后,立刻会对人、动物及微生物造成明显的致毒作用,如由于农药厂、化工排放的废水含有毒性物质造成整个水域人畜中毒、鱼类及其水生动物死亡。 2.2 慢性中毒 难降解有机污染物能使人产生慢性中毒,指生物体与浓度较低的某些毒性污染物长期接触,使体内此类有机物的浓度蓄积到某一阀值,才能显示出其毒性。其毒性有以下几方面的作用:干扰机体的代谢功能,影响机体免疫功能,对细胞组织结构的损伤作用,对机体酶体系的干扰,抑制机体对氧的吸收、运输和利用,以及直接的物理性刺激和化学性损伤作用。 2.3 潜在毒性 某些人工合成的有机物不具有明显的毒性,但可能导致长远的遗传影响。它们能对各种人体细胞产生不可逆的“突变”作用,对生物体细胞产生不可逆的改变,诱发致癌、致畸、致突变效应,对人类产生严重的危害。 2.4 危害生态环境 难降解有机污染物对生态环境的影响也是多种多样的,其主要特征就是有机污染物在环境中长期滞留、不易自然降解。以难降解的多氯联苯类有机物为例,多氯联苯类化合物常被用作增塑剂、润滑剂。由于它易溶于有机溶剂及脂肪内,一般难以被微生物所降解,因此它们被发现广泛地残留在水、土壤和大气环境中,

厌氧生物处理

3、厌氧反应概述: 利用微生物生命过程中的代谢活动,将有机物分解为简单无机物,从而去除水中有机物污染的过程,称为废水的生物处理。根据代谢过程对氧的需求,微生物又分为好氧、厌氧和介于两者间的兼性微生物。厌氧生物处理就是利用厌氧微生物的代谢过程,在无需提供氧的情况下,把有机物转化为无机物和少量的细胞物质,这些无机物包括大量的生物气(即沼气)和水。 厌氧是一种低成本废水处理技术,把废水治理和能源相结合,特别适合发展中国家使用。 4、厌气处理技术的优势和不足: 优势: 4.1可作为环境保护、能源回收和生态良性循环结合系统的技术,具有良好的社会、经济、环境效益。 4.2耗能少,运行费低,对中等以上(1500mg/L)浓度废水费用仅为好氧工艺1/3. 4.3回收能源,理论上讲1kgCOD可产生纯甲烷0.35m3,燃值(3.93×10-1J/m3),高于天然气(3.93×10-1J/m3)。以日排10t COD工厂为例,按COD去除80%,甲烷为理论值80%计算,日产沼气2240m3,相当于2500m3天然气或3.85t煤,可发电5400Kwh. 4.4设备负荷高、占地少。 4.5剩余污泥少,仅相当于好氧工艺1/6~1/10. 4.6对N、P等营养物需求低,好氧工艺要求C:N=100:5:1,厌氧工艺为C:N=(350-500):5:1。 4.7可直接处理高浓有机废水,不需稀释。 4.8厌氧菌可在中止供水和营养条件下,保留生物活性和沉泥性一年,适合间断和季节性运行。 4.9系统灵活,设备简单,易于制作管理,规模可大可小。 厌氧不足: 1、出水污染浓度高于好氧,一般不能达标; 2、对有毒性物质敏感; 3、初次启动缓慢,最少需8-12周以上方能转入正常水平。 5、反应机理:

高浓度难降解有机废水处理研究进展

Advances in Environmental Protection 环境保护前沿, 2016, 6(6), 130-136 Published Online December 2016 in Hans. https://www.360docs.net/doc/3f9986846.html,/journal/aep https://www.360docs.net/doc/3f9986846.html,/10.12677/aep.2016.66017 文章引用: 程子洪, 李小端, 王华阳, 钟振成, 张微尘, 李国涛, 霍卫东, 李永龙, 熊日华. 高浓度难降解有机废水处 Research Progress of High Concentration Organic Wastewater Treatment Zihong Cheng 1,2, Xiaoduan Li 1,2, Huayang Wang 3, Zhencheng Zhong 1,2, Weichen Zhang 1,2, Guotao Li 1,2, Weidong Huo 1,2, Yonglong Li 1, Rihua Xiong 1,2 1 National Institute of Low-Carbon Energy, Beijing 2State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, Beijing 3Shenhua Funeng Generation Electric Co., Ltd., Quanzhou Fujian Received: Nov. 27th , 2016; accepted: Dec. 12th , 2016; published: Dec. 15th , 2016 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/3f9986846.html,/licenses/by/4.0/ Abstract The effective treatment of high concentration and low biodegradability wastewater turned to be urgent issues in domestic and foreign environmental technology. In this article, series of technol-ogies for no degradable organic wastewater treatment were summarized; the developments of different technologies were analyzed and compared. Finally, the development tendency of low biodegradability organic wastewater treatment in the future was proposed. Keywords Organic Wastewater, Low Biodegradability, High Concentration, Tendency 高浓度难降解有机废水处理研究进展 程子洪1,2,李小端1,2,王华阳3,钟振成1,2,张微尘1,2,李国涛1,2,霍卫东1,2,李永龙1,熊日华1,2 1 北京低碳清洁能源研究所,北京 2神华集团煤炭开采水资源保护与利用国家重点实验室,北京 3神华福能发电有限责任公司,福建 泉州 Open Access

第三章厌氧生物处理

第三章 厌氧生物处理 3.1 基本概念 3.1.1厌氧生物处理的基本原理 一、厌氧生物处理的基本生物过程及其特征 ——又称厌氧消化、厌氧发酵; ——实际上,是指在厌氧条件下由多种(厌氧或兼性)微生物的共同作用下,使有机物分解并产生CH 4和CO 2的过程。 1、厌氧生物处理工艺的发展简史: ①上述的厌氧过程广泛地存在于自然界中; ②人类第一次利用厌氧消化处理废弃物,是始于1881年——Louis Mouras 的“自动净化器”; ③随后人类开始较大规模地应用厌氧消化过程来处理城市污水(如化粪池、双层沉淀池等)和剩余污 泥(如各种厌氧消化池等); ——长的HRT 、低的处理效率、浓臭的气味等; ④50、 60年代,特别是70年代中后期,随着能源危机的加剧,人们对利用厌氧消化过程处理有机废 水的研究得以强化,出现了一批被称为现代高速厌氧消化反应器的处理工艺,厌氧消化工艺开始大规模地应用于废水处理; ——HRT 大大缩短,有机负荷大大提高,处理效率也大大提高; ——厌氧接触法、厌氧滤池(AF )、上流式厌氧污泥床(UASB )反应器、厌氧流化床(AFB )、AAFEB 、 厌氧生物转盘(ARBC )和挡板式厌氧反应器等; ——HRT 与SRT 分离,SRT 相对很长,HRT 则可以较短,反应器内生物量很高。 ⑤最近(90年代以后),随着UASB 反应器的广泛应用,在其基础上又发展起来了EGSB 和IC 反应器; ——EGSB 反应器可以在较低温度下处理低浓度的有机废水; ——IC 反应器则主要应用于处理高浓度有机废水,可以达到更高的有机负荷。 2、厌氧消化过程的基本生物过程 ①两阶段理论: ——30~60 第一阶段:发酵阶段,又称产酸阶段或酸性发酵阶段; ——水解和酸化,产物主要是脂肪酸、醇类、CO 2和H 2等; ——主要参与微生物统称为发酵细菌或产酸细菌; ——其特点有:1)生长快,2)适应性(温度、pH 等)强。 第二阶段:产甲烷阶段,又称碱性发酵阶段; ——产甲烷菌利用前一阶段的产物,并将其转化为CH 4和CO 2; ——主要参与微生物统称为产甲烷菌; 图1厌氧反应的两阶段理论图示 内源呼 吸产物 水解胞外酶 胞内酶产甲烷菌 胞内酶产酸菌 不溶性有机物 可溶性有机物 细菌细 胞 脂肪酸、醇类、 H 2、CO 2 其它产物 细菌细胞 CO 2、CH 4

难降解有机废水处理

难降解有机废水处理 1解析难降解有机废水的特性与危害 从整体的水质特性来看,难降解的有机废水一般有会这些特性表现:首先含有的有机物浓度较高,一般COD的含量超过每升2000毫克以上,甚至是十几万毫克也有可能;而且非常的难以被降解,可进行生化降解的可能性也比较低,其BOD5或者COD数值一般都不到0.3,甚至有些还更加的小,从而使得整体更加不容易被降解掉; 而且,其水质本身含有成分比较驳杂,其中包含了类似硫化物、重金属以及氮化物、有毒物物质等;另外,从颜色上来看,难降解有机废水本身浓度比较高颜色比较鲜艳,而且会伴有异味情况,对于周边的环境也有比较大的影响,而且还有强酸强碱等特性。 同时,在危害方面来说,难降解的有机废水一般会导致整体的水体出现缺氧或者厌氧的情况,从而直接导致水生物的思维,并且因此急需致使水质与水环境的恶化;而且难降解有机废水一般会有比较强的致毒性危害,并且与水里的有机物一起循环到土壤环境里,从而进入人体,危害健康。 2简述常见的难降解有机废水 2.1印染废水 印染废水一般是由于印刷厂或者服装纺织厂所排放出来的,一般是针对棉、麻、化学纤维等产品进行加工而产生的废水。这类废水一般水量比较大,而且里面所含的有机物浓度也会更高,同样的PH值相对比较高,里面含有很多的染料、浆料、油剂、纤维杂质等。本身属于比较高浓度的难降解有机废水类别之一。 同时也是属于当前问题最为严重的工业废水问题之一。而且之前有专家针对这类废水做了研究,从这类废水里面分离出多种有机物质,并以此针对性的进行印染废水的处理,反而效果比较好。 2.2造纸废水 造纸废水相对来说仅仅只是针对于造纸印刷一类,但是也包含了生物强化技术应用之下的制浆造纸废水类型。这类废水一般不仅仅会造成一般的环境危害,更重要的是能够对周边环境的木质素或其他的要素造成降解,而自己本身则不易被降解。在碱性环境的培养条件下,我们发现它们有50%左右的几率对木质素造成降解作用。 3难降解废水难生物处理的原因分析 3.1有机物浓度高 首先,这些废水里面含有多种高浓度的有机物,而且这些高浓度的有机物无法快速被降解,最后再经过多次的有机物混合,使得这类的废水更加难以被降解。 3.2种类多比例高 其次,这些废水里面含有的有机物以及生物难以降解的物品种类及其繁多,而且浓度较多,所占据的比例也很高,特别是很多废水更是含有生物毒物,使得这类废水更加的难以被降解。 3.3废水含盐浓度高 第三,就是这些废水里面本身含盐量也比较高,使得生物等多种废水处理难度加大,而且更加快了这些废水有机物的沉淀等。 3.4水质、水量波动性大 第四,就是这些废水在其水质以及排放时间、排放量上面其实也不是一成不变的,而且这些问题最终也会给废水的处理产生极大的难度。 4难降解有机废水生化前处理研究 4.1生物法 生物法是目前应用最广泛的一种有机废水处理方法,主要包括活性污泥、生物膜法、好氧-厌氧法等。主要是利用微生物的新陈代谢,通过微生物的凝聚、吸附、氧化分解等作用来降解污水中的有机物,具有应用范围广、处理量大、成本低等优点。但当废水含有有毒物质或

厌氧生物处理技术、

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 废水的厌氧生物处理技术 厌氧生物处理技术是利用厌氧微生物的代谢特性分解有机污染物,在不需要提供外界能源的条件下,以被还原有机物作为受氢体,同时产生有能源价值的甲烷气体的水处理技术。 1厌氧生物处理的基本原理 1.1两阶段理论 在20世纪30-60年代,人们普遍认为厌氧消化过程可以简单地分为两个阶段,即两阶段理论。第一阶段称为发酵阶段或产酸阶段或酸性发酵阶段,废水中的有机物在发酵细菌的作用下,发生水解和酸化反应,而被降解为以脂肪酸、醇类、CO2和H2等为主的产物。第二阶段则被称为产甲烷阶段或碱性发酵阶段,所发生的反应时是产甲烷菌利用前一阶段的产物脂肪酸、醇类、CO2和H2等为基质,并最终将其转为CH4和CO2。 1.2三阶段理论 三阶段理论认为,整个厌氧消化过程可以分为三个阶段,即水解、发酵阶段,产氢产乙酸阶段和产甲烷阶段。有机物首先通过发酵细菌的作用生成乙醇、丙酸、丁酸和乳酸等,接着通过产氢产乙酸菌的降解作用而被转化为CH4和CO2。产氢产乙酸菌和产甲烷菌之间存在着互营共生的关系。该理论将厌氧发酵微生物分为发酵细菌群、产氢产乙酸菌群和产甲烷菌群。 1.3四阶段理论 几乎与三阶段理论的提出同时,Zeikus提出了四菌群学说即四类群理论。与三阶段理论相比,该理论增加了同型(耗氢)产乙酸菌群(Homoacetogenic Bacteria),该菌群的代谢特点是能将H2/CO2合成为乙酸。但是研究结果表明,这一部分乙酸的量较少,一般可以忽略不计。 目前为止,三阶段理论和四类群理论是对厌氧生物处理过程较全面和较准确的描述。 2 厌氧生物处理的优缺点

厌氧生物处理、调试运行指导手册

厌氧生物处理、调试、运行指导手册 1、目的:本手册用于厌氧生物降解工艺单元的运行管理。 2、内容及对象:手册包括有以下7个内容:即: 厌氧生物反应概述;厌氧技术优势和不足;反应机理;厌氧反应器类型;厌氧反应器工艺控制条件;启动方式;运行管理;问题及解决措施; 手册适用于厌氧反应器操作人员、污水站技工、化验人员和管理人员,亦可供相关人员参考。 3、厌氧反应概述: 利用微生物生命过程中的代谢活动,将有机物分解为简单无机物,从而去除水中有机物污染的过程,称为废水的生物处理。根据代谢过程对氧的需求,微生物又分为好氧、厌氧和介于两者间的兼性微生物。厌氧生物处理就是利用厌氧微生物的代谢过程,在无需提供氧的情况下,把有机物转化为无机物和少量的细胞物质,这些无机物包括大量的生物气(即沼气)和水。 厌氧是一种低成本废水处理技术,把废水治理和能源相结合,特别适合发展中国家使用。 4、厌气处理技术的优势和不足: 优势: 4.1可作为环境保护、能源回收和生态良性循环结合系统的技术,具有良好的社会、经济、环境效益。 4.2耗能少,运行费低,对中等以上(1500mg/L)浓度废水费用仅为好氧工艺1/3. 4.3回收能源,理论上讲1kgCOD可产生纯甲烷0.35m3,燃值(3.93×10-1J/m3),高于天然气(3.93×10-1J/m3)。以日排10t COD工厂为例,按COD去除80%,甲烷为理论值80%计算,日产沼气2240m3,相当于2500m3天然气或 3.85t煤,可发电5400Kwh. 4.4设备负荷高、占地少。 4.5剩余污泥少,仅相当于好氧工艺1/6~1/10. 4.6对N、P等营养物需求低,好氧工艺要求C:N:P=100:5:1,厌氧工艺为C:N:P=(350-500):5:1。 4.7可直接处理高浓有机废水,不需稀释。

第十章 厌氧生物处理法

第十章厌氧生物处理法 本章重点:厌氧过程动力学 20世纪70年代以来,由于城市的扩大和工业的迅速发展,有机废.如仍用需氧法处理则需要消耗大量的能量。随着全球性能源问题的日益突出,在废水处理领域内,人们便逐渐对厌氧生物处理工艺产生了新的认识和估价。 厌氧生物处理法的主要优点有:能耗低;可回收生物能源(沼气);每去除单位质量底物产生的微生物(污泥)量少;而且由于处理过程不需要氧,所以不受传氧能力的限制,因而具有较高的有机物负荷的潜力。其缺点是处理后出水的COD、BOD值较高,水力停留时间较长并产生恶臭等。 §10.1 厌氧生物处理法的基本原理和流程 1.基本原理 可将有机物在厌氧条件下的降解过程分成三个反应阶段。 第一阶段是,废水中的溶性大分子有机物和不溶性有机物水解为溶性小分子有机物。 反应的第二阶段为产酸和脱氢阶段。水解形成的溶性小分子有机物被产酸细菌作为碳源和能源,最终产生短链的挥发酸,如乙酸等。 在废水的厌氧生物处理过程中,有机物的真正稳定发生在反应的第三阶段,即产甲烷阶段。产甲烷的反应由严格的专一性厌氧细菌来完成,这类细菌将产酸阶段产生的短链挥发酸(主要是乙酸)氧化成甲烷和二氧化碳。

图 10-1 厌氧处理的连续反应过程 2.甲烷的产生与形成途径 产甲烷阶段,又称碱性发酵阶段,这一阶段产甲烷菌利用前一阶段的产物,并将其转化为CH 4和CO 2,可能反应如下: 4H 2+CO 2 CH 4+2H 2O (10-1) 4H 2+CH 3COOH 2CH 4+2H 2O (10-2) CH 3COOH CH 4+CO 2 (10-3) 因为氧化氢形成甲烷的细菌可从二氧化碳中获得碳源,所以这些细菌带有自养性,其生长速率很慢,虽然它们与分解乙酸的细菌在厌氧反应器中有共生关系,但其数量较少,在厌氧反应过程中,生成的甲院大部分来自乙酸的分解。主要参与微生物统称为产甲烷菌; 其特点有:1)生长慢;2)对环境条件(温度、pH 、抑制物等)非常敏感。 3.基本流程

厌氧生物处理技术、教学内容

厌氧生物处理技术、

废水的厌氧生物处理技术 厌氧生物处理技术是利用厌氧微生物的代谢特性分解有机污染物,在不需要提供外界能源的条件下,以被还原有机物作为受氢体,同时产生有能源价值的甲烷气体的水处理技术。 1厌氧生物处理的基本原理 1.1两阶段理论 在20世纪30-60年代,人们普遍认为厌氧消化过程可以简单地分为两个阶段,即两阶段理论。第一阶段称为发酵阶段或产酸阶段或酸性发酵阶段,废水中的有机物在发酵细菌的作用下,发生水解和酸化反应,而被降解为以脂肪酸、醇类、CO2和H2等为主的产物。第二阶段则被称为产甲烷阶段或碱性发酵阶段,所发生的反应时是产甲烷菌利用前一阶段的产物脂肪酸、醇类、CO2和H2等为基质,并最终将其转为CH4和CO2。 1.2三阶段理论 三阶段理论认为,整个厌氧消化过程可以分为三个阶段,即水解、发酵阶段,产氢产乙酸阶段和产甲烷阶段。有机物首先通过发酵细菌的作用生成乙醇、丙酸、丁酸和乳酸等,接着通过产氢产乙酸菌的降解作用而被转化为CH4和CO2。产氢产乙酸菌和产甲烷菌之间存在着互营共生的关系。该理论将厌氧发酵微生物分为发酵细菌群、产氢产乙酸菌群和产甲烷菌群。 1.3四阶段理论 几乎与三阶段理论的提出同时,Zeikus提出了四菌群学说即四类群理论。与三阶段理论相比,该理论增加了同型(耗氢)产乙酸菌群(Homoacetogenic

Bacteria),该菌群的代谢特点是能将H2/CO2合成为乙酸。但是研究结果表明,这一部分乙酸的量较少,一般可以忽略不计。 目前为止,三阶段理论和四类群理论是对厌氧生物处理过程较全面和较准确的描述。 2 厌氧生物处理的优缺点 厌氧生物处理技术与好氧生物处理技术比较,有如下优缺点。 (1)厌氧法的主要优点:①应用范围较广:适用于处理污泥及有机废水;可处理好氧法难降解的有机物,也可处理含有毒有害物质较高的有机废水。②运行成本与能耗较低:厌氧处理的污泥产率低;厌氧法所需营养成分较少,一般可不必投加营养分;厌氧法不需要供氧设备,因而能耗较少。③负荷高,相对来说厌氧法的反应容积较较好氧法为小。 (2)厌氧法的主要缺点:①处理程度往往达不到排放标准,常需好氧法或其他处理法补充,才能达到排放标准;②厌氧生物处理技术,不能除磷;③厌氧生物处理的启动与处理时间较好氧法长。④厌氧生物处理技术,在处理高、低浓度的有机废水时,生产运行经验及理论研究,尚欠成熟。 3厌氧生物处理工艺 3.1厌氧接触工艺 厌氧接触工艺是在一个厌氧的完全混合反应器基础上增加了污泥分离和回流装置。从完全混合式反应器中排出的混合液首先在沉淀池中进行固液分离,可以采用沉淀池或气浮处理装置进行处置。污水从沉淀池上部排出,沉淀下的污泥回流至消化池,这样做既可保证污泥不流失,又可提高消化池内的污泥浓度,从而在一定程度上提高设备的有机负荷率和处理效率。

相关文档
最新文档