水肥一体化节水节肥技术

水肥一体化节水节肥技术

一、技术内涵及适宜范围

水肥一体化技术是将灌溉与施肥融为一体的农业新技术。这项技术是以微灌施肥系统为载体,结合地膜覆盖技术,根据作物的需水需肥规律和土壤水分、养分状况,将可溶性固体肥料或液体肥料配兑而成的肥液与灌溉水一起,适时、适量、准确地输送到作物根部土壤供作物吸收。该技术具有水肥同步、集中供给、一次投资、多年受益的特点。主要适用于设施农业栽培、果园和棉花等大田经济作物,以及经济效益较好的其他作物。

二、操作要点

⒈微灌施肥系统的选择微灌施肥系统由水源、首部系统、干管、支管、滴灌带等几部分组成。水源可选择河流、水库、机井、池塘等;首部系统包括水泵、过滤器等水质净化设备、施肥装置、控制和量测设备、保护装置等。施肥装置一般选择文丘里施肥器或压差式施肥罐。在实际应用中可根据水源、地形、种植面积、作物种类,选择不同的滴灌施肥系统。目前常用的以露地膜下滴灌施肥技术模式和日光温室水肥一体化技术模式居多。

⒉制定微灌施肥方案

灌溉制度的确定

根据种植作物的需水量和作物生育期的降水量确定灌水定额。一般情况下,露地微灌施肥的灌溉定额应比大水漫灌减少50%,保护地滴灌施肥的灌水定额应比大棚畦灌减少30% ̄40%。灌溉定额确定后,可依据作物的需水规律、降水情

况及土壤墒情确定灌水时期、次数和每次的灌水量。

施肥制度的确定

根据种植作物的需肥规律、地块的肥力水平及目标产量确定总施肥量、氮磷钾比例及底、追肥的比例。作底肥的肥料在整地前施入,追肥则按照不同作物生长期的需肥特性,确定其次数和数量。微灌施肥的用肥量为常规施肥的70%~80%。

肥料的选择

微灌施肥系统底肥的施用品种与传统施肥相同。微灌追肥的肥料品种必须是符合国家标准或行业标准的可溶性肥料,要求纯度较高,杂质较少,溶于水后不会产生沉淀。追肥补充微量元素肥料,一般不能与磷素同时使用,以免形成不溶性磷酸盐沉淀,堵塞滴头或喷头。

三、实施效果

实践表明,实施水肥一体化技术,具有“三节”、“两省”、“两增”的功效,即节水、节肥、节药,省工、省地,增产、增收。一般亩节水80 ̄120立方米,节肥(纯养分)8 ̄15千克,节药3 ̄8千克;省工6 ̄8个,省地3% ̄5%;棉花亩增产8% ̄10%,苹果、葡萄等果园一般增产15% ̄24%,日光温室蔬菜亩增产5% ̄8%;大田经济作物一般亩增收150 ̄200元,果园一般亩增收800 ̄1000元,日光温室蔬菜亩增收1200 ̄1500元。通过实施水肥一体化技术,还能减少农田环境污染,改善农产品质量,提高农产品竞争力,对发展无公害、绿色农业和可持续农业具有十分重要的意义。

水肥一体化节水节肥技术推广园地

50

水肥一体化技术

水肥一体化技术 水肥一体化技术是将灌溉与施肥融为一体的农业新技术。水肥一体化是借助压力灌溉系统,将可溶性固体肥料或液体肥料配兑而成的肥液与灌溉水一起,均匀、准确地输送到作物根部土壤。采用灌溉施肥技术,可按照作物生长需求,进行全生育期需求设计,把水分和养分定量、定时,按比例直接提供给作物。压力灌溉有喷灌和微灌等形式,目前常用形式是微灌与施肥的结合,且以滴灌、微喷与施肥的结合居多。微灌施肥系统由水源、首部枢纽、输配水管道、灌水器四部分组成。水源有:河流、水库、机井、池塘等;首部枢纽包括电机、水泵、过滤器、施肥器、控制和量测设备、保护装置;输配水管道包括主、干、支、毛管道及管道控制阀门;灌水器包括滴头或喷头、滴灌带。 一、适宜范围 该项技术适宜于有井、水库、蓄水池等固定水源,且水质好、符合微灌要求,并已建设或有条件建设微灌设施的区域推广应用。主要适用于设施农业栽培、果园栽培和棉花等大田经济作物栽培,以及经济效益较好的其他作物。 二、技术要点 1.微灌施肥系统的选择 根据水源、地形、种植面积、作物种类,选择不同的微灌施肥系统。保护地栽培、露地瓜菜种植、大田经济作物栽培一般选择滴灌施肥系统,施肥装置保护地一般选择文丘里施肥器、压差式施肥罐或注肥泵。果园一般选择微喷施肥系统,施肥装置一般选择注肥泵,有条件的地方可以选择自动灌溉施肥系统。 2.制定微灌施肥方案 (1)微灌制度的确定 根据种植作物的需水量和作物生育期的降水量确定灌水定额。露地微灌施肥的灌溉定额应比大水漫灌减少50%,保护地滴灌施肥的灌水定额应比大棚畦灌减少30%-40%。灌溉定额确定后,依据作物的需水规律、降水情况及土壤墒情确定灌水时期、次数和每次的灌水量。以褐土区重壤土设施栽培番茄为例,微灌制度见表1。 表1 设施栽培番茄微灌灌溉制度 (2)施肥制度的确定 微灌施肥技术和传统施肥技术存在显著的差别。合理的微灌施肥制度,应首先根据种植作物的需肥规律、地块的肥力水平及目标产量确定总施肥量、氮磷钾比例及底、追肥的比例。作底肥的肥料在整地前施入,追肥则按照不同作物生长期的需肥特性,确定其次数和数量。实施微灌施肥技术可使肥料利用率提高40%-50%,故微灌施肥的用肥量为常规施肥的50%-60%。仍以设施栽培番茄为例,目标产量为10000公斤/亩,每生产1000公斤番茄吸收 N:3.18公斤、P 2O 5 :0.74公斤、K 2 O:4.83公斤,养分总需求量是N:31.8公斤、P 2 O 5 :7.4 公斤、K 2 O:48.3公斤;设施栽培条件下当季氮肥利用率57%-65%,磷肥为35%-42%,钾肥为 70%-80%;实现上述产量应亩施N:53.12公斤、P 2O 5 :18.5公斤,K 2 O:60.38公斤,合计132

水肥一体化技术应用的现状及发展前景

水肥一体化技术应用的现状及发展前景 【摘要】近来随着我国经济的加速发展,农业的进程也逐渐加快,对农业方面的要求也越来越高。农业生产从种植到收获,以及对土地的状况都要进行极为高效有益的评估,所以本文重点介绍了水肥一体化在国内外的发展现状,多角度的分析其优点,同时也找出了其中的局限性,积极展望了该技术的应用前景。 【关键词】水肥一体化;应用现状;发展前景 在我国,水肥一体化技术又称微灌施肥技术,其主要的机制是借助压力系统,或者借助地形自然落差,充分结合微灌和施肥技术,以水为载体,灌溉同时施肥,结果达到水和肥一体化利用,水和肥的管理更高效,当然,也可以根据不同作物的特点,如植物的需肥特点,对土壤环境的要求,以及养分含量的具体状况进行设计。可以满足作物的生育期需水和需肥规律,使水和肥料以最优质的结合在土壤中被作物吸收和利用。 1、水肥一体化技术国内外发展及应用现状 1.1国外应用与发展状况 水肥一体化的进程在以色列表现的较为经典。20世纪中期,伴随着国家的塑料工业的发展开始发展滴灌开始使用水肥一体化的技术。如今的以色列,该技术广泛应用于各个方面,果园,温室,大田以及绿化等,使用的面积以及占灌溉面积的一半以上,位居世界之首。在世界范围上的水肥一体化技术,大都广泛应用在干旱缺水和经济发达的地区和国家[1]。 1.2我国应用与发展状况 我国最早应用的水肥一体化技术是引进于墨西哥,1974年引进的滴灌设备试点的面积达到了5.3hm,从此以后该滴灌技术开始得到了进一步的研究。十年后的1998年,我国就自主研制出了第1代滴灌设备。自此以后,随着我国引进的先进生产工艺技术,规模化的灌溉生产也在我国逐步的形成。水肥一体化的技术在应用上逐渐从试验和示范田推广到到大面积的应用。到了20世纪后期,水肥一体化的技术愈来愈得到高度的重视,我国组织专业的人员开展该技术的技术培训,并拨款进行研讨。2000年水肥一体化的技术培训和指导得到进一步的发展,中央农业部的全国农业技术推广中心参与国际合作,连续5年在我国举办水肥一体化技术培训班,该次培训的指导专家是国内外的一级专业人员,将理论技术和实际操作结合在一起,加大了微灌施肥的面积[2]。当前。水肥一体化技术已经由过去的局部试验、示范发展,成为现在的大面积推广应用,辐射范围从华北地区扩大到西北旱区、东北寒温带和华南亚热带地区。覆盖设施栽培、无土栽培、果树栽培,以及蔬菜、花卉、苗木、大田经济作物等多种栽培模式和作物,特别是西北地区膜下滴灌施肥技术处于世界领先水平。为了响应国家“菜篮子工程”以及省农业厅“百万亩设施蔬菜工程”规划。加快发展设施蔬菜产业,丰富城

第一章 水肥一体化技术基本原理

第一章水肥一体化技术简介 一、水肥一体化技术的基本概念 作物生产的目标是用更低的生产成本去获得更高的产量、更好的品质和更高的经济效益。从作物的生长要素来看,其基本生长要素包括光照、温度、空气、水分和养分。在自然生长条件下,前三个因素是人为难以调控的,而水分和养分因素则可人为调控。因此,要实现作物的最大生产潜力,合理调节水肥的平衡供应非常重要。 在水肥的供给过程中,最有效的供应方式就是如何实现水肥的同步供给,充分发挥两者的相互作用,在给作物提供水分的同时最大限度地发挥肥料的作用,实现水肥的同步供应,即水肥一体化技术。那么,什么是水肥一体化技术呢?狭义讲,就是把肥料溶解在灌溉水中,由灌溉管道带到田间每一株作物,以满足作物生长发育的需要。如通过喷灌及滴灌管道施肥。 图1-1 雷州半岛的香蕉园通过滴灌施用硫酸钾镁肥

图1-2 山地砂糖桔果园通过滴灌系统施用氯化钾 图1-3 内蒙古马铃薯种植区通过滴灌系统施肥的场面 广义讲,就是水肥同时供应以满足作物生长发育需要,根系在吸收水分的同时吸收养分。除通过灌溉管道施肥外,如淋水肥、冲施肥等都属于水肥一体化的简单形式。

图1-4 广东冬种马铃薯地区拖管淋水肥的场景 图1-5 菜农挑担淋水肥的场景

图1-6 海南西瓜种植户通过膜下水带施液体肥的场景 水肥一体化技术是现代种植业生产的一项综合水肥管理措施,具有显著的节水、节肥、省工、优质、高效、环保等优点。水肥一体化技术在国外有一特定词描述,叫“FERTIGATION”,即“FERTILIZATION(施肥)”和“IRRIGATION(灌溉)”各拿半个字组合而成,意为灌溉和施肥结合的一种技术。国内根据英文字意翻译成“水肥一体化”、“灌溉施肥”、“加肥灌溉”、“水肥耦合”、“随水施肥”、“管道施肥”、“肥水灌溉”、“肥水同灌”等多种叫法。“水肥一体化”这个称谓目前被广泛接受,而“管道施肥”笔者认为更加形象贴切,肥料自身不会从管道流动,必须要溶解于水才能随管道流动。这很容易区别于传统的施肥。针对于具体的灌溉形式,又可称为“滴灌施肥”、“喷灌施肥”、“微喷灌施肥”等。 灌溉的理论基础是植物的蒸腾失水及土面蒸发失水,必须要源源不断补充土壤水分作物才能正常生长。而水肥一体化的理论基础是什么呢?这要从植物是如何吸收养分说起。植物有两张“嘴巴”,根系是它的大嘴巴,叶片是小嘴巴。大量的营养元素是通过根系吸收的。叶面喷肥只能起补充作用。施到土壤的肥料怎样才能到达植物的嘴边呢?通常有三个过程。一个叫扩散过程。肥料溶解后进入土壤溶液,靠近根表的养分被吸收,浓度降低,远离根表的土壤溶液浓度相对较高,结果产生扩散,养分向低浓度的根表移动,最后被根系吸收。第二个过程叫质流。植物在有阳光的情况下叶片气孔张开,进行蒸腾作用(这是植物的生理现象),导致水分损失。根系必须源源不断地吸收水分供叶片蒸腾耗水。靠近根系的水分被吸收了,远处的水就会流向根表,溶解于水中的养分也跟着到达根表,从而被根系吸收。第三个过程叫截获,即养分正好就在根系表面而被吸收。扩散和质流是最重要的养分迁移到根表的过程。这两个过程都离不开水做媒介。因此,肥料一定要溶解才能被吸收,不溶

智能农业之水肥一体化智能灌溉系统

智能农业灌溉系统组成要素及功能特点 一、智能农业水肥一体化应用技术: 智能农业灌溉系统可以帮助生产者很方便的实现自动的水肥一体化管理。系统由上位机软件系统、区域控制柜、分路控制器、变送器、数据采集终端组成。通过与供水系统有机结合,实现智能化控制。可实现智能化监测、控制灌溉中的供水时间、施肥浓度以及供水量。变送器(土壤水分变送器、流量变送器等)将实时监测的灌溉状况,当灌区土壤湿度达到预先设定的下限值时,电磁阀可以自动开启,当监测的土壤含水量及液位达到预设的灌水定额后,可以自动关闭电磁阀系统。可根据时间段调度整个灌区电磁阀的轮流工作,并手动控制灌溉和采集墒情。整个系统可协调工作实施轮灌,充分提高灌溉用水效率,实现节水、节电,减少劳动强度,降低人力投入成本。 用户通过操作触摸屏进行管控,控制器会按照用户设定的配方、灌溉过程参数自动控制灌溉量、吸肥量、肥液浓度、酸碱度等水肥过程中的重要参数,实现对灌溉、施肥的定时、定量控制,节水节肥、省力省时、提高产量,专用于连栋温室、日光温室、温室大棚和大田种植灌溉作业。 托普云农智能农业水肥一体化技术以自动化精确灌溉、施肥,节省用工和提高效益为核心,在现代农业生产中应用显示出明显的优势。本文就该技术作相关阐述。

二、智能农业水肥一体化系统组成以及适用范围: 托普云农智能农业水肥一体化微滴灌系统主要是由阀门、水表、水泵、自动反冲洗过滤系统、智肥化施肥机、pH/EC控制器、施肥罐、安全阀、电磁阀、田间管道系统等组成。该系统适合在已建成设施农业基地或符合建设微灌设施要求的地方应用,要有固定水源且水质良好,如水库、蓄水池、地下水、河渠水等。比较适合用于经济价值较高的蔬菜和果树等作物上。 三、智能农业水肥一体化微灌、施肥制度制定: 1、微灌制度拟定 智能农业水肥一体化灌溉系统根据作物全生育期需水量与降水量的差值确定灌溉定额、灌水次数、灌水间隔时间、每次灌水延续时间和灌水定额等。还需考虑土壤墒情、温度、设施条件和农业技术措施等。大棚膜下滴灌用水量会比畦灌减少30%~40%,比大水漫灌减少50%以上。 2、施肥制度拟定 智能农业水肥一体化灌溉系统根据作物全生育期需肥总量与土壤中养分含量的差值来确定实际施肥量、每次施肥量、施肥次数、施肥时期和肥料品种,同时作物的需肥特性、肥料利用率、目标产量、施肥方式也是决定施肥制度拟定的因素。微灌施肥通常可比习惯施肥减少30%~50%的肥料用量。 3、微灌和施肥制度拟合 按照作物拟定的微灌制度将肥料同微灌的灌水时间和次数进行合理分配,主要原则就是肥随水走、分阶段拟合。注入肥液浓度一般为0.1%。操作上还要注意,要先走水15min左右,再注入配好的肥料溶液,微灌施肥结束后需用不含肥的水清洗清灌管道15~30min,防止堵塞出水口。此步聚智能农业水肥一体化滴灌系统系统可以自动进行,无需人工控制。 4、肥料选择 智能微灌系统的滴灌管出水口很小,非常容易被各种微小的杂质堵塞,影响到微灌施肥的效果。为此肥料的选择注意以下几个方面:首先必须是全溶性的肥料,溶于水后无沉淀;二是肥料的相溶性要好,搭配使用不会相互作用生成沉淀物;三是施磷肥时尽量通过基肥施入土壤;四是用微量元素时,应选用螯合态微肥,否则与大量元素肥混合使用时易产生沉淀物。在市场上常用的溶解性好的普通肥料有尿素、硝酸铵、硫酸铵、硝酸钙、硝酸钾、磷酸、磷酸二青钾、磷酸一铵(工业级)、氯化钾等,或选用微灌专用固体肥料。

水肥一体化的相关知识

(一)水肥一体化 1、什么是水肥一体化 水肥一体化技术是将灌溉与施肥融为一体的农业新技术。水肥一体化是借助压力系统(或地形自然落差),将可溶性(固体或液体)肥料,按土壤养分含量和作物种类的需肥规律和特点,配兑成的肥液与灌溉水一起,通过可控管道系统供水、供肥,使水肥相融后,通过管道和滴头形成滴灌、均匀、定时、定量,浸润作物根系发育生长区域,使主要根系土壤始终保持疏松和适宜的含水量,同时根据不同的作物的需肥特点,土壤环境和养分含量状况;作物不同生长期需水,需肥规律情况进行不同生育期的需求设计,把水分、养分定时定量,按比例直接提供给作物。 2、水肥一体化使用范围 主要适用于设施农业栽培、果园栽培和棉花等大田经济作物栽培,以及经济效益较好的其他作物。 3、水肥一体化的优缺点 优点:省肥节水、省工省力、降低湿度、减轻病害、增产高效 a、水肥均衡:传统的浇水和追肥方式,作物饿几天再撑几天,不能均匀地“吃喝”。而采用滴灌,可以根据作物需水需肥规律随时供给,保证作物“吃得舒服,喝得痛快”! b、省工省时:传统的沟灌、施肥费工费时,非常麻烦。而使用滴灌,只需打开阀门,合上电闸,几乎不用工。 c、节水省肥:滴灌水肥一体化,直接把作物所需要的肥料随水均匀的输送到植株的根部,作物“细酌慢饮”,大幅度地提高了肥料的利用率,可减少30~50%的肥料用量,水量也只有沟灌的30%-40%。 d、减轻病害:大棚内作物很多病害是土传病害,随流水传播。如辣椒疫病、番茄枯萎病等,采用滴灌可以直接有效的控制土传病害的发生。滴灌能降低棚内的湿度,减轻病害的发生。 e、控温调湿:冬季使用滴灌能控制浇水量,降低湿度,提高地温。传统沟灌会造成土壤板结、通透性差,作物根系处于缺氧状态,造成沤根现象,而使用滴灌则避免了因浇水过大而引起的作物沤根、黄叶等问题。 f、增加产量,改善品质,提高经济效益:滴灌的工程投资(包括管路、施肥池、动力设备等)约为1000元/亩,可以使用5年左右,每年节省的肥料和农药至少为700元,增产幅度可达30%以上。

农田水肥一体化自动滴灌系统

农田水肥一体化自动滴灌系统 一、模块化 农田滴灌自动系统主要由以下几个部分组成: 1、水源:水源井或渠水 2、过滤:砂滤、沉淀或精密过滤 3、计量:对浇灌用水量进行计量 4、轮灌控制:手动或自动进行轮灌控制 5、施肥:人工施肥或自动计量跟踪施肥 6、自动控制系统:自动控制系统时整个系统的控制中心,有 可编程控制器、触摸屏,计算机组成。 我们所做的整个系统力求用现代的自动化技术来替代人工的繁重劳动操作,做到科学化、自动化滴灌和精准化施肥。 我们的农田水肥一体化自动化滴灌系统将以上几个部分整合,做成以下几个模块,可在实际中组合和控制: 1)水源和过滤模块,根据不同的水源做不同的配置,用可编程控制器对水源泵进行自动控制,确保对滴灌带不发 生堵塞的现象,根据用户要求可实现恒压供水,保证供 水压力平稳。 2)轮灌控制模块,使用计算机软件或可编程控制器,对农田滴灌阀进行自动轮灌控制,操作人员只需将轮灌间隔 时间输入,系统则自动根据要求进行轮灌,轮灌完毕发 出信号,提醒操作人员。整个轮灌过程无需人员干预。

3)自动施肥模块,自动施肥系统是一套科学的精准施肥控制,系统测量供水系统的流量,根据供水流量自动按照 加药比例进行加药,加药比例可根据每次不同的药剂进 行设定。加药量始终跟随供水量的大小自动变化,无需 人员干预。 4)自动控制系统模块,将上述几个模块用通讯的方式级联,有可编程控制器或计算机统一控制,并可将控制信号通 过GPRS等方式远传到后台服务器,通过手机APP进行 远端查看或应急控制,实现智能化管理。 二、智能化 系统的智能化体现在: 1)前端控制系统智能化、自动化,操作人员只需将系统检查,启动后,设置好所需要的滴灌参数后,系统则自动 运行,做到了现场无人值守,系统出现故障,则自动发 出警示信号给操作人员; 2)后台智能化管理,前端控制器信号可通过GPRS或3G上网卡与后台服务器通讯,用户可使用手机APP平台随时 观察农田浇地的情况和相关的数据信息,并可做应急处 理; 3)通过APP管理平台,用户可随时了解科学种田以及农田管理的基本知识,并可实现用户之间的信息互动 三、一体化

详解水肥一体化四大要点

详解水肥一体化四大要点 水肥一体化能否落地生根,既取决于农民的意愿和接受程度,同时作为一个集成度较高的技术活,其也需要兼顾水源、肥料、农机配套、设备日常维护四大板块的整合。 水源 灌溉水源是指可以用于灌溉的水体,一般分为地表水和地下水两种,主要包括井水、泉水、水库、渠道、江河、湖泊、池塘等,但水质必须符合灌溉水质的要求。 首部建设——遇到“砂水井”怎么办 滴灌首部受水源条件影响最大的是过滤器。过滤器类型主要包括砂介质过滤器、离心过滤器、筛网过滤器和叠片式过滤器等。 地下水源主要包括深水井和浅水井。深水井井深超过20米,水质较好,含砂量较少,一般通过“离心+筛网”或“离心+叠片”二级过滤后即可直接进入灌溉管道。如含砂量较多一般不选用叠片式过滤器,普遍选用“离心+筛网”二级过滤器组合。浅水井井深在20米以内的,水质受地域影响较大,含砂量相对较多,需安装“离心+筛网”二级过滤器组合。如含砂量较大的“砂水井”一般在水源处修建沉淀池,然后通过水泵加压再进行“离心+筛网”二级过滤器组合,或水源经过“离心+筛网”二级过滤器组合后只过滤掉颗粒较大的粗砂,粒径较小的细砂直接进入毛管,灌水完成后打开毛管堵头对管道进行冲洗。 地表水源与地下水源相比不仅含砂量大,同时有机物等杂质含量也较多,因此需在首部修建沉淀池,首部过滤器系统可选用“砂石+筛网”二级过滤组合。 施肥器——哪种价廉物美受农民欢迎 目前市场上的施肥器主要包括压差式施肥罐、注肥泵以及文丘里施肥器等,施肥器的选择主要受轮灌区面积的影响。压差式施肥罐虽然制造简单、价格低廉,但溶液浓度变化大、无法控制、罐体容积有限,添加化肥次数频繁且较麻烦,因此没有得到农民的广泛认可。因此,建议在大田作物应用注肥泵,控制面积200亩左右,一方面操作方便,另一方面可以轻松掌控施肥时间和施肥量。在温室大棚及小面积栽培作物上应用文丘里施肥器,控制面积3亩以内,造价较低且便于安装操作。 输配水管网——管材选择如何因地制宜+ 滴灌输配水管网是由干管、支管、辅管、毛管及各种连接件和控制、调节器按设计要求组合安装而成。干管的选择主要受地形影响,在地势平坦地区,输水干管承压要求大于工作压力即可。山坡地、梯田等有垂直落差的地块,应考虑垂直落差对管道造成的压力,估算方法为每100米垂直落差对管道造成的压力为1兆帕(10个压),输水干管的承压能力应大于工作压力和垂直落差产生的压力之和。对于过滤器以后的管道最好全部采用塑料管,以防

水肥一体化技术应用存在的问题及对策

龙源期刊网 https://www.360docs.net/doc/4011381214.html, 水肥一体化技术应用存在的问题及对策 作者:孙彦国 来源:《乡村科技》2017年第29期 [摘要] 在我国南方地区,水肥一体化技术在农业生产中得到了广泛的应用,全面提高了 农作物的产量,也达到了节水灌溉的目的。但是,在这项技术的应用过程中存在一些问题有待解决。基于此,本文对水肥一体化技术在农业生产中应用存在的问题进行深入分析,并结合实际提出有效的改善对策,以期全面提升水肥一体化技术的整体应用水平。 [关键词] 水肥一体化技术;农业生产;节水灌溉 [中图分类号] S275;S147.2 [文献标识码] A [文章编号] 1674-7909(2017)29-69-1 1 水肥一体化技术应用中的不足 1.1 推广宣传力度不够 在对水肥一体化技术进行宣传的过程中,因宣传力度不足,导致广大农户没有真正地认识到这项技术的优势。同时,宣传力度也较为单一,在一定程度上导致农户对于水肥一体化技术的了解及应用缺乏全面性。虽然水肥一体化技术是我国农业部门重点推广的技术,但在实际的宣传过程中宣传力度远远不够,并与相关部门如水利、科技等部门缺乏一定的沟通,导致相关社会人士的参与度较低,因而宣传效果不理想。 1.2 试点工作的开展不够完善 对于水肥一体化技术的应用来说,要想全面推广开来,对于相关的试验工作必须要加大重视力度,通过技术示范来使农户全面了解水肥一体化技术的实际应用效果。但是,在实际的试点示范中,还没有发现比较专业的水肥一体化技术的示范基地,同时也缺乏相关的配套设施设备,这就导致试验效果非常不理想,进而导致农户不能全面了解水肥一体化技术的实际应用效果,因此会阻碍水肥一体化技术的推广与应用。 1.3 水肥资源未得到有效利用 水肥一体化技术应用的主要目的就是节省现阶段我国的水肥资源,以达到全方位满足我国农业灌溉发展的需要。但是,目前在水肥一体化技术的应用过程中,由于节水灌溉方法不够科学合理,导致许多地区的农业用水量仍较大,进而影响了农业总体经济效益的提升。因此,在推广应用水肥一体化技术时,必须重新建立一些基础设施,以提高技术应用效果。 1.4 相关设备研发和市场运行机制不完善

浅析智能水肥一体化灌溉系统

浅析智能水肥一体化灌溉系统 一,概述 我国水资源总量不足,时空分布不均,干旱缺水严重制约着农业发展。大力发展节水农业,实施化肥使用量零增长行动,推广普及水肥一体化等农田节水技术,全面提升农田水分生产效率和化肥利用率,是保障国家粮食安全、发展现代节水型农业、转变农业发展方式、促进农业可持续发展的必由之路。 水肥一体化的核心是实现灌溉和施肥同步进行,不需要人工操作便可以自动进行灌溉。想要发挥最大作用离不开科学的规划设计。从实际情况看,水肥一体化实施要在进行充分调研的基础上,弄清农田环境情况,根据农田附近水源、地形、作物情况进行规划,节约安装成本。而石家庄圣启科技研发的水肥一体化智能灌溉系统,就满足了当下的市场需求。 二,系统组成

水肥一体化智能灌溉系统可以帮助生产者很方便的实现自动的水肥一体化管理。系统由上位机软件系统、区域控制柜、分路控制器、变送器、数据采集终端组成。 通过与供水系统有机结合,实现智能化控制。可实现智能化监测、控制灌溉中的供水时间、施肥浓度以及供水量。变送器(土壤水分变送器、流量变送器等)将实时监测的灌溉状况,当灌区土壤湿度达到预先设定的下限值时,电磁阀可以自动开启,当监测的土壤含水量及液位达到预设的灌水定额后,可以自动关闭电磁阀系统。可根据时间段调度整个灌区电磁阀的轮流工作,并手动控制灌溉和采集墒情。整个系统可协调工作实施轮灌,充分提高灌溉用水效率,实现节水、节电,减少劳动强度,降低人力投入成本。 三,系统功能: 1.用水量控制管理

实现两级用水计量,通过出口流量监测作为本区域内用水总量计量,通过每个支管压力传感采集数据实时计算各支管的轮灌水量,与阀门自动控制功能结合,实现每一个阀门控制单元的用水量统计。同时水泵引入流量控制,当超过用水总量将通过远程控制,限制区域用水。 2.运行状态实时监控 通过水位和视频监控能够实时监测滴灌系统水源状况,及时发布缺水预警;通过水泵电流和电压监测、出水口压力和流量监测、管网分干管流量和压力监测,能够及时发现滴灌系统爆管、漏水、低压运行等不合理灌溉事件,及时通知系统维护人员,保障滴灌系统高效运行。 3.阀门自动控制功能 通过对农田土壤墒情信息、小气候信息和作物长势信息的实时监测,采用无线或有线技术,实现阀门的遥控启闭和定时轮灌启闭。根据采集到的信息,结合当地作物的需水和灌溉轮灌情况制定自动开启水泵、阀门,实现无人职守自动灌溉,分片控制,预防人为误操作。 4.运维管理功能 包括系统维护、状态监测和系统运行的现场管理;实现区域用水量计量管理、旱情和灌溉预报专家决策、信息发布等功能的远程决策管理;以及对用水、耗电、灌水量、维护、材料消耗等进行统计和成本核算,对灌溉设施设备生成定期维护计划,记录维护情况,实现灌溉工程的精细化维护运行管理。节水灌溉自动化控制系统能够充分发

国内外水肥一体化技术发展现状与趋势

第56卷 第6期Vol. 56 No. 6 2018年6月 June 2018农业装备与车辆工程 AGRICULTURAL EQUIPMENT & VEHICLE ENGINEERING doi:10.3969/j.issn.1673-3142.2018.06.004 国内外水肥一体化技术发展现状与趋势 李寒松1,贾振超1, 张锋2,赵峰1,贺晓东1,慈文亮1,李青1,李震3 (1. 250100 山东省 济南市 山东省农业机械科学研究院;2. 250200 山东省 济南市章丘区农业机械管理局; 3. 250100 山东省 济南市 山东农业工程学院) [摘要] 水肥一体化技术是解决我国当前灌溉水肥利用率低、消耗大、污染严重等问题的有效手段,是一 种新型的农业高新实用技术。文章介绍了水肥一体化技术的国内外现状和相关应用装备,分析了现今国内 技术发展的主要问题,并总结了解决途径和发展方向。 [关键词] 水肥一体化技术;现状;趋势 [中图分类号] S365 [文献标识码] A [文章编号] 1673-3142(2018)06-0013-04 Current Development Status and Trend of Fertigation Technology at Home and Abroad Li Hansong1, Jia Zhenchao1, Zhang Feng2, Zhao Feng1, He Xiaodong1, Ci Wenliang1, Li Qing1, Li Zhen3 (1. Shandong Academy of Agricultural Machinery Sciences,Jinan City,Shandong Province 250100, China 2. Zhangqiu District Agricultural Machinery Authority, Jinan City,Shandong Province 250200, China 3. Shandong Agriculture and Engineering University, Jinan City, Shandong Province 250100, China) [Abstract] Fertigation technology is an effective means to solve the current problems of low utilization of irrigation water and fertilizer, large consumption and serious pollution. It is a new type of agricultural high-tech practical technology. This paper introduces the current situation of fertigation technology and related application equipment, analyzes the main problems of domestic technology development, and summarizes the solutions and development direction. [Key words] fertigation technology; current status; trend 0 引言 我国是一个严重缺水的国家,水资源总量仅为世界的6%,我国耕地面积占世界的9%,每年生产占世界26%的农产品,属于水资源严重紧缺的国家。每年灌溉用水缺口300亿 m3以上,同时我国的灌溉水利用系数平均仅为0.3~0.4,仅为发达国家的1/2左右。我国化肥使用量却是世界之最,化肥年用量超 6 000万t,占世界总量的1/3,然而化肥利用率仅为30%,比发达国家低20%。目前这种水肥高消耗、低效率的生产方式已经造成了土壤性状恶化、资源浪费、环境污染、生态破坏等一系列问题,严重制约了我国农业的可持续发展[1]。针对当前问题,水肥一体化技术的进一步发展和推广势在必行。水肥一体化技术将灌溉和施肥融为一体,根据植物所需养分含量和土壤墒情,将可溶性固体肥料或液态肥与灌溉水融合,借助灌溉压力系统控制灌溉强度和灌溉深度,将根据作物要求和土壤养分需求所确定的水肥溶液准确直接输送到作物根系发育生长区域,使作物土壤始终保持作物所需的水分和养分,避免水肥的深层渗漏和超量棵间蒸发,从而达到节水、节肥的目的,改变田间气候,是一种新型的农业高新实用技术。相比一般的水肥施用方法,水的利用率可提高40%~60%,肥料利用率可提高30%~50%,在节水、节肥方面优势明显,是现代化农业发展的必然趋势[2]。为了提升我国水肥一体化的发展水平,本文总结了国内外现状和当前应用装备情况,分析现有问题,并提出问题的解决途径和未来发展趋势。 1 国内外发展现状 1.1 国外发展现状 国外发展水肥一体化技术起步较早,自20世纪30年代就开始研究运用喷灌技术,用于庭院花卉和草坪的灌溉。到20世纪三四十年代,随着金 基金项目:山东省农机装备研发创新计划项目(2017YH004)收稿日期: 2017-08-16 修回日期: 2017-08-25

新型喷灌机水肥一体化技术应用

关键词:喷灌机、卷盘式喷灌机、绞盘式喷灌机、卷盘喷灌机、喷灌设备、长尾词:厂家、价格、哪家好、多少钱、哪家先进、、、等等 企业介绍: 河北农哈哈机械集团有限公司是集农业全程机械化产品研发、生产、销售、服务于一体的行业龙头企业,拥有进出口权,“农哈哈”商标是中国第一个驰名商标。历经37年的发展,产品覆盖耕作、播种、植保、灌溉、收获、粮食烘干六大类农机产品;厂区占地面积300多亩,员工1000余人,产值近3亿元。 2013年,农哈哈公司开始涉足农业节水灌溉领域,并开创了中国智能卷盘式喷灌机的时代,引领国内卷盘喷灌技术的发展潮流;2015年,农哈哈公司从欧洲引进国际先进的喷灌技术,后经研发和创新,成功推出适合中国农业的新型卷盘平移式淋灌机,是国内唯一一家全套引进国外先进喷灌技术并实现国产化的灌溉产品,为中国卷盘式喷灌机贴上了节能、高效、节水的标签。 2017年,农哈哈公司成功开发了智能化固液态施肥机,与新型卷盘平移式淋灌机配套使用,实现水肥一体化作业。目前,在国内是唯一能够在卷盘式喷灌机上应用智能化固液态水肥一体化技术的产品。 新型卷盘平移式淋灌机核心技术: 节能:驱动装置采用扼流(直冲)式水涡轮,水能动力转换率70%以上,相比传统侧冲式水涡轮动力转换提高了约1.5倍,入机水压只需0.25Mpa就可正常喷洒作业。 减速装置采用6档变速齿轮箱,提升传动扭矩,降低驱动力需求;回收速度可调范围4-105米/小时,满足不同作物浇水量需要。 高效:喷洒装置采用40米幅宽30个8毫米口径喷头的淋灌架,出水量50立方米/小时,作业效率2.5-4公顷/昼夜。 节水:淋灌架喷洒装置离地距离约1.5-1.8米之间,低压喷洒,水滴无雾化,水份蒸发小于5%。 应用广泛: 1:抗风性能强:淋灌架喷头离地距离较低约1.5米,且水滴无雾化,在5-6级风天气情况下可正常喷洒作业,特别适合北方地区春季多风天气浇水作业。(配1张风中作业场景图片)

重庆滴灌水肥一体化技术方案.doc

葡萄基地智能水肥一体化 系统建设项目 技 术 方 案 本方案适合于葡萄、草莓、蔬菜等窄株距、小行距的作物。 2017年7月

葡萄水肥一体化系统设计方案 一、设计目标 1、构建一个智能型、经济型的葡萄滴灌施肥系统。该系统可通过田间电磁阀控制滴灌带灌溉,从而达到建设高标准示范基地的目的。 2、设计一个灌溉施肥系统,实现水肥一体化系统;在大大节约人工的同时,提高施肥效率,葡萄长势均匀,品质优,商品率高。 二、基本资料 1、地形 本灌溉区地势落差较大,地形为梯田式倾斜小块,灌溉区内最高点与最低点落差最大可达50m。灌溉区内种植由猕猴桃、香提、枇杷三种作物。猕猴桃GPS 面积4.8公顷,即73亩;其他作物种植GPS面积58亩,由于灌溉区采用同一种灌溉方式来进行灌溉。猕猴桃的种植行距约为其他作物的一半,按约2米的行距铺设滴灌带,即综合灌溉面积约合130亩。 2、水源 水源取自灌区自建水池。蓄水池可由降雨或提灌站引水补给,来水有保障。 3、灌区范围 整个灌区为不规则长楔形图形,葡萄基地种植面积总和约130亩。 4、电源 根据当地情况,灌区需380/220V灌溉电力线(电源电缆线由供方提供)。 4、灌溉类型 该项目为室外山地葡萄灌溉,要求满足园区作物生长所需水分、肥料的同时,兼顾调节园区温湿度、降低病虫害。葡萄采用滴灌带+施肥(根部肥)方式进行灌溉。 三、设计依据 (一)设计依据 1、《节水灌溉工程技术规范》(GB T50363-2006); 2、《喷灌与微灌工程技术管理规程》(SL236-1999); 3、《微灌工程技术规范》(SL103-95);

4.、《灌溉与排水工程设计规范》(GB50288-99) 5、《农田灌溉水质标准》GB5084-92。 (二)滴灌工程技术参数选择 根据以上规范、标准及国内外灌溉技术发展积累多年的经验,技术参数设定: 1、节灌土壤湿润比:P=60%; 2、节灌水利用系数: =0.95; 3、设计灌水均匀度:Eu≥90%; 4、设计湿润深度:Z=0.3m; 5、设计日耗水强度:Ea=5mm/day。 四、灌水器选型及布置方式 1、滴灌带布置及滴灌带选型 项目区葡萄种植制度为中等株行距,株距1.5m×行距2m;园区采取每行葡萄铺设一条滴灌带的毛管布置方式;滴灌带全部采用压力补偿式滴灌带,平地最长铺设距离可达120m,确保项目区溉施肥均匀,葡萄长势均匀,果子商品率高。 2.、滴灌带参数说明 滴头类型工作压力滴头流量湿润直径其他说明 Driplex滴灌带 1.0bar 1.0L/h0.5-0.6m 滴头间距0.3m,美国托罗TORO进口 3、滴灌带系统特点: ①灌溉均匀度超过85%; ②压力补偿能力,即使滴灌带长距离铺设其首尾两 端出水仍然高度均匀; ③结构简单,便于维护; ④灌溉水滴细,防止土壤板节及水流损失,创造良好的生产条件 五、灌水量计算 (一)滴灌供水量 葡萄为窄行距种植,株距1.5m×行距2m,葡萄根据品种不同根系深度约为60-100cm,为中、深根系作物,每两行葡萄布置一条滴灌带,经计算整个灌溉区有27000米滴灌带,滴头间距0.3米,每个滴头流量为1L/小时,则全灌溉区

水肥一体化技术的应用现状与发展前景

水肥一体化技术的应用现状与发展前景 摘要介绍水肥一体化国内外发展现状,分析其优点及特点,指出其存在的局限性,并对该技术的应用前景进行展望。 关键词水肥一体化;应用现状;优点;发展前景 水肥一体化技术在我国又称为微灌施肥技术,是借助压力系统(或地形自然落差),将微灌和施肥结合,利用微灌系统中的水为载体,在灌溉的同时进行施肥,实现水和肥一体化利用和管理,并根据不同作物的需肥特点、土壤环境和养分含量状况,作物不同生育期需水、需肥规律情况进行需求设计,使水和肥料在土壤中以优化的组合状态供应给作物吸收利用。 1水肥一体化技术国内外发展及应用现状 1.1国外应用与发展状况 20世纪60年代初随着塑料工业的发展,以色列开始发展滴灌。60年代末开始应用水肥一体化技术。目前,以色列在果园、温室、大田、绿化等方面已全面应用此项技术,应用面积占灌溉面积的67.9%,居世界之首。从世界范围看,水肥一体化技术广泛应用于干旱缺水以及经济发达的国家。 1.2我国应用与发展状况 1974年,我国从墨西哥引进滴灌设备,试点总面积5.3 hm2,自此开始滴灌技术的研究工作。1980年,我国自主研制生产了第1代滴灌设备[1]。自1981年后,在引进国外先进生产工艺的基础上,规模化生产在我国逐步形成,在应用上由试验、示范到大面积推广。20世纪90年代中期,我国开始大量开展技术培训和研讨,水肥一体化理论及应用受到重视。2000年开始,农业部全国农业技术推广中心与国际钾肥研究所(IPI)合作,连续5年在我国不同地区举办水肥一体化技术培训班,由国内外专家介绍水肥一体化理论技术和实际操作,促使微灌施肥的面积逐步扩大。当前,水肥一体化技术已经由过去的局部试验、示范发展,成为现在的大面积推广应用,辐射范围从华北地区扩大到西北旱区、东北寒温带和华南亚热带地区,覆盖设施栽培、无土栽培、果树栽培,以及蔬菜、花卉、苗木、大田经济作物等多种栽培模式和作物,特别是西北地区膜下滴灌施肥技术处于世界领先水平。 为了响应国家“菜篮子工程”以及省农业厅“百万亩设施蔬菜工程”规划,加快发展设施蔬菜产业,丰富城乡居民“菜篮子”工程,保障市场供应,促进农民增产增收。近年来,汉中市注重农业生产中开展“水肥”双节技术,在城固、勉县等地进行了设施蔬菜水肥一体化技术宣传、推广,取得了较好的成效。 2水肥一体化技术的优点

智能水肥一体化系统向精准灌溉施肥迈进 水肥一体化设备方案

智能水肥一体化系统向精准灌溉施肥迈进水肥一体化设备方案 目前,随着农业部对于水肥一体化应用范围以及重视程度不断加大,水肥一体化进程得到了有效推进。随着水溶性产品推陈出新,各种滴管设备也在不断跟进。与此同时,种植户科学施肥理念有所提升,但上海市蔬菜生产中土肥水管理过程仍存在诸多问题:一是土壤次生盐渍化严重,设施蔬菜10万亩,其中20%的设施菜地土壤质量退化,已成为上海设施农业可持续发展的制约瓶颈之一。二是蔬菜复种指数高,菜农缺乏节水节肥观念,年化肥用量高,肥料利用率低,仅为8.7%-24.4%。三是蔬菜水肥一体化技术示范面积规模小,难以形成规模化管理。 建立土壤墒情评价体系探索蔬菜精准灌溉技术 托普云农智能水肥一体化系统一直以测土试验等技术基础工作为核心开展了大量土壤分析工作,开展蔬菜全生育期养分吸收规律研究,其中包括黄瓜、卷心菜、花菜等,明确蔬菜全生育期内养分吸收利用特征,采集蔬菜样品600个;开展主要蔬菜作物肥效试验80组,研究不同单质肥料施用量与产量的关系、肥料当季利用率、产值、产投比、净效益等。在此基础上,研发大田蔬菜专用配方肥料10个,为建立主要蔬菜土壤养分丰缺指标体系和构建科学施肥体系打下扎实的基础。探索土壤墒情监测在蔬菜精准灌溉技术上的应用。 据悉,目前喷灌、移动喷灌车、地膜覆盖滴灌等几种水肥一体化技术模式在绿叶菜、大田露地类、茄果瓜类作物上处于日趋成熟的发展过程。优质水溶性肥

料+先进滴灌设备才能达成预期肥效。与时俱进的滴管设备能够实现按比例施肥、计量精确;随时监控肥料的比例,在感应田间施肥量的同时,进行自动施肥。 蔬菜水肥一体化践行科学施肥理念 传统的田间蔬菜管理方式既费时又费力,为了能够更好地节约用水、节约化肥,省工、省力,水肥一体化技术发展正当时。水肥一体化是按照蔬菜生长过程中对水分和肥料吸收规律和需求量来设计的,在一定时期定量的水分和肥料按比例直接提供给作物,将灌溉与施肥融为一体,借助灌溉系统将肥料准确地输送到作物根部土壤,既可以减少肥料的成本,还可以减少肥料对地下水及土壤环境污染,减少农药残留污染,有效改善田间生态环境。 近些年,水肥一体化技术的主要围绕以下几个方面进行:一是番茄、黄瓜土壤养分评估与推荐施肥技术。已经在7个核心示范基地对番茄、黄瓜进行土壤测试和田间辅助试验,建立菜地主要蔬菜作物养分丰缺指标体系,通过对示范基地菜地土壤养分的检测与分析,对菜地土壤养分进行科学评估,根据“缺啥补啥”原则,为蔬菜生产提供推荐施肥技术方案,推进该技术的示范应用。 二是目标产量引导蔬菜平衡施肥技术,通过对番茄、黄瓜进行相应的肥料梯度与运筹试验,特别是了解氮素营养需求规律和氮素营养关键需求时期,以及灌溉管理措施来优化追肥次数,根据蔬菜目标产量、土壤养分供应和肥料当季利用率,提供蔬菜有机无机配比、氮磷钾三要素平衡以及补充中微量元素,合理使用水溶性肥料,为菜农提供蔬菜平衡施肥技术。 三是田间快速测试仪引导精确灌溉技术,建立上海郊区主要土壤类型田间持

水肥一体化的技术要点

水肥一体化的技术要点 水肥一体化是借助压力灌溉系统,将可溶性固体或液体肥料溶解在灌溉水中,按作物 的水肥需求规律,通过可控管道系统直接输送到作物根部附近的土壤供给作物吸收。 其特点是能够精确地控制灌水量和施肥量,显著提高水肥利用率。水肥一体化常用形 式有微喷、滴灌、渗灌、小管出流等,在我省小麦、玉米上以微喷灌为主。因其具有 节水、节肥、节地、增产、增效等优势,是一项应用前景广阔的现代农业新技术。 一、水肥一体化工程构成 水肥一体化系统由水源、首部系统、输水管道和微灌带四部分组成。水源包括地 表水和地下水。首部系统主要包括潜水泵、加压泵、逆止阀、过滤器、压力表、水表、排气阀、施肥器、施肥罐或施肥池。输水管道包括干管与支管两级管道。干管可采用 地上软管或地埋硬管两种形式。地上软管多采用PE软管,地埋硬管多采用PVC管材,埋深0.8米,输水支管采用φ63的PE软管,微喷带常采用N65五孔或七孔微喷带。 微喷带铺设长度40~60米,间距1.8米或2.4米,输水支管的最大铺设长度50~70米。 二、水肥一体化肥料选择 1.肥料要求常温下能够具有以下特点:高度可溶性、养分含量高、杂质含量低、 溶解速度快,避免产生沉淀,酸碱度为中性至微酸性。 2.常用肥料有尿素、硫酸钾、溶解度高的复合肥、硝酸钾、硝酸铵等。 三、水肥一体化操作步骤 1.检查 首先检查微喷带的阀门状态,需要灌溉的地块开启,其他地块阀门全部关闭。应 根据机井的出水量和压力情况估算1个灌溉单元的微喷带条数。例如潜水泵出水量为 45立方米/小时,微喷带的喷水量10立方米/100米/小时,总微喷带应开启长度为 450米,单条微喷带长度50米,应开启9条,为防止压力过大造成爆带或接头憋开,实际应先开启10~11条。 2.启动 先开启潜水泵,待水充满微喷带并喷起后,再开启管道加压泵。根据实际压力状态调 整喷灌带开启条数以达到最佳喷水状态,以水雾单侧辐射微喷带间距的1/2左右为合 理状态,喷辐交叉不宜过多。 3.施肥方法

水肥一体化滴灌建设内容

建设内容: 在我县*****果场建立150亩的水肥一体化滴灌技术示范园,建立安装一套固定式的滴灌设备,建设区水设备,建造储水池和配肥池一座,配置水泵、化肥施加器、过滤器、节水设施及设备等,购置滴灌专用管道,把管道铺设到每各行果树,滴头安装在每一株果树的树盘内,根据柑橘各个生长季节对肥水的需要,应用滴灌设备进行自动化施肥和灌溉,起到节约用水、提高肥料利用率,降低劳动强度、改善土壤环境、提高柑橘的产量和质量作用。投资估算, 1.取水设备一套,投入1.5万; 2.建造储水池一座100立方米,每立方米造价300元,开支 3.0万元; 3.建造配肥池一座20立方米,每立方米造价300元,开支0.6万元; 4.建立水泵房一间50平方米,每平方米造价400元,开支2.0元; 5.节水设施及设备购置安装8万元; 6.每亩配置干管、支管、毛管、滴头开支1000元,150亩共开支15万元; 7.项目管理和技术培训宣传费4万元。以上1----7项合计开支34.1万元。 建设目标: 通过建立地灌设施,采用水肥一体化技术,使项目区果园能根据生长和挂果的需要,通过滴灌系统及时向果树根部输送水分和养分,满足柑橘各个时期对水分、和养分的需要,提高果树的座果率,节约用水,减少灌溉和施肥用工的开支,改善了示范园的生态环境,提高肥料的利用率,减少裂果、落果,提高单果重,确保柑橘在恶略的气候环境下,也能达到丰产稳产的目的。同时通过示范点建设成功,积累果园实行水肥一体化技术经验,为进一步推广应用树立示范样板。效益;1.每亩每年减少施肥、灌溉用工10工,每工50元,节约开支500元;2.每亩每年节约用水50吨,每吨1.3元,减少开支65元;3.果园进入挂果期后,每亩增产200公斤,每公斤销售3.0元,增收600元。果园水肥一体化设备建立后,可使用10年以上,每年每亩可增收节支1165元,150亩项目区每年增收节支17.475万元,10年增收节支174.75万元。 建设项目有利条件 1.**县地处广西的东南部,气候温暖,光照充足,雨量充沛,土地肥沃,土层深厚,被列入《广西柑橘产业发展规划》柑橘类生态最适应地区,品质最优气候带柚类优势区和柑橘优势区。独特的气候条件和优越的地理环境是我县生产的以柑橘为代表的优质柑橘具有果实大小均匀、果皮色泽鲜艳、果核细小,风味浓甜多汁的特点,深受关大消费者的好评,产品远销国内各大城市。2010年全县水果种植面积54万亩,总产量5万多吨,总产值2亿元。我县在发展柑橘生产中,经常会遇到秋旱严重的问题,秋季又是柑橘果实发育和秋稍生长期,需水量最大,秋旱造成柑橘果实大小不一,品质下降、秋稍抽生不良的现象,增加果园施肥灌溉成本,增产不增收,各级政府、技术部门和广大果农希望引进水肥一体化技术来提高柑橘果实品质、降低生产成本。各级政府和群众推广水肥一体化技术的积极性高。 2.项目实施的果场业主是我县柑橘专业镇的种植示范大户,当地农村致富的带头人,思想解放、热爱科学,能全力配合项目的实施工作,该果园在当地有很大的影响力,在果园建立水肥一体化滴灌项目,对于全县果园水肥一体化技术的推广具有积极的示范作用。 3.项目实施的果园的**镇**村位于**二级公路旁,离县城25公里,离***市区35公里,果园方便的交通为项目实施过程的材料运输、设备安装、现场指导提供便利。

相关文档
最新文档