元素地球化学

元素地球化学
元素地球化学

元素地球化学

第一章:导论

◆地球化学的三个主要分支:①元素地球化学②同位素地球化学③实验地球化学

◆元素地球化学:是地球化学最主要的分支学科,它通过逐一阐明个别元素的地球化学和宇宙化学特征及其与其它元素的组合关系来研究自然界化学演化规律的学科,是地球化学的传统研究内容和主干学科。它力求完整地了解元素的地球化学旋回及其演化历史和原因,揭示元素含量变化对自然过程的指示意义

◆元素地球化学主要研究内容和任务:

(1)每个或每组化学元素的地球化学性质;

(2)元素或元素群在自然界的分布、分配情况;

(3)元素相互置换、结合、分离的规律和机制;

(4)元素的存在形式、组合特点、迁移条件;

(5)每个元素的地球化学旋回及其演化历史和原因

(6)应用于地球资源、环境和材料的研究、预测、开发和保护。

◆元素地球化学的研究方法:

(1)地质研究方法;

(2)高灵敏度、高精度、快速和经济的测定和分析手段:ICP-MAS、ICP-AES、X荧光、电子探针等等;

(3)各种地球化学模拟实验研究;

(4)一些物理化学、热力学等理论的应用;

(5)计算机技术在处理大量数据方面的广泛应用。

◆戈尔德施密特的元素地球化学分类:

亲铁元素Siderophile:富集于陨石金属相和铁陨石中的化学元素。它们与氧和硫的结合能力均弱,并易溶于熔融铁中;在地球中相对于地壳和地幔,明显在地核内聚集。其离子最外层电子数在8~18之间。典型的秦铁元素有镍、钴、金、铂族元素。

亲石元素lithophile:在陨石硅酸盐相中富集的化学元素;在地球中它们明显富集在地壳内,有较大的氧化自由能。在自然界中都以氧化物,含氧盐,特别是硅酸盐的形式出现。如硅、铝、钾、钠、钙、镁、铷、锶、铀、稀土元素等。其离子最外层电子数为2或8。

亲铜元素chalcophile:在陨石硫化物相和陨硫铁(FeS)中富集的化学元素;在自然界中,它们往往易与S2-结合成硫化物和复杂硫化物。如硫、铜、锌、铅、镉、砷、银、硒、碲、锑等。其离子最外层有18个电子。

亲硫元素sulphophile:指不易与氧、氟和氯结合,而易于形成硫化物、硒化物、碲化物、砷化物等矿物的元素。该术语现一般理解为与“亲铜元素”同义,并包括一些亲铁元素。

亲气元素atmophile:组成地球大气圈的主要元素,惰性气体元素,以及主要呈易挥发化合物存在的元素。如氢、氮、碳、氧、及惰性气体元素等。

亲生物元素biophile:集中在有生命的动植物内的元素。C, H , O, N, P, S, Cl, I, (B), (Ca, Mg, K, Na), (V, Mn, Fe, Cu)

◆有关其他元素分类的常用术语:

常量元素:组成物质主要结构和成分的元素,它们常占天然物质总组成的99%以上,并决定了物质的定名和大类划分。

微量元素(trace element, microelement):物质中除了那些构成主要结构格架所必须的元素之外,所有以低浓度存在的化学元素。其浓度一般低于0.1%,在大多数情况下明显低于0.1%而仅达到ppm乃至ppb数量级。

次要元素(minor element):在文献中单独出现时时与微量元素同义;当两者同时出现时,一般指含量为1~5的化学元素。

稀有元素(rare element):在低壳中分布量较低,但易于在自然界高度富集形成较常见的矿物和独立工业矿床的的化学元素。如REE、Nb、Ta、Be、Li、(W)等。

分散元素(dispersed element):在地壳中元素丰度低,并且其离子半径和电荷等化学性质与地壳中的高丰度元素(硅、铝、钙、铁、钾、钠等)相似的一类微量元素。因上述性质,它们在自然界中大多以类质同像置换形式分散存

在于高丰度元素的矿物中,从而很少形成自己的独立矿物和单独富集成为矿床。典型分散元素为锗、镓、钪、锶、镉、铷、铯等。

附属元素(accessory element):地球化学性质与造岩元素有较大的差别,主要在火成岩中呈副矿物及其类质同像形式存在的化学元素。如Y、REE、Zr、Hf、Nb、Ta、U、Th等。

高场强元素或离子(High field strength cations,HFS):场强指离子每单位表面的静电荷强度,常以离子电荷与离子半径的比值,即离子势表示。指那些形成小的高电荷离子的元素,包括REE、Sc、Y、Th、U、Pb、Zr、Hf、Ti、Nb、Ta等,其离子势>2。

低场强元素或离子(Low field strength cations):形成大半径小电荷的离子的元素,离子势<2,它们又称为大离子亲石元素—LILE(large ion litho-phile elements),包括 Cs、Rb、K、Ba、Sr、Eu和Pb(二价)。

相容元素(compatible element):趋于在固相中富集的微量元素。尽管其浓度低,不能形成独立矿物相,但因离子半径、电荷、晶体场等结晶化学性质与构成结晶矿物的主要元素相近,而易于呈类质同像置换形式进入有关矿物相。相容元素的固相/液相分配系数显著大于1。

不相容元素(incompatible element):趋向于在液相中富集的微量元素。由于其浓度低,不能形成独立矿物相,并且因离子半径、电荷、晶体场等性质与构成结晶矿物的主元素相差很大,而使其不能进入矿物相。它们的固相/液相分配系数近于零。大多数LILE属不相容元素。

两个浓度概念:

元素丰度:通过对某自然组成单元的大量样品测试统计而求得的化学元素相对于该单元总量的平均含量。其单位大多以重量百分数(%)、百万分数(ppm)、或十亿分数(ppb)表示。

克拉克值(Clarke-value):化学元素在地壳中的相对平均含量,即地壳的元素丰度。因克拉克和华盛顿(Henry Stephens Washington, 1867—1934)于1924年首次计算发表了50种元素的地壳元素丰度,故名。

第2章元素的地球化学分布特征(空间分布)

◆陨石的类型及其陨落道地球上的百分率(falls)

石陨石: 球粒陨石 (84%) —碳质球粒陨石, 顽火辉石球粒陨石

无球粒陨石 (8%)

石铁陨石 (1%): 橄揽陨铁, 中铁陨石

铁陨石 (7%)

非小行星陨石(极少)—月球陨石,火星陨石

未分异的陨石:球粒陨石:碳质无球粒陨石、普通无球粒陨石、顽火辉石球粒陨石

分异了的陨石:无球粒陨石,铁陨石

凝聚温度:元素从太阳系中凝聚出50%时的温度

◆根据化学元素的凝聚温度对元素进行分类:

难熔元素:(Ca、Al、Ti、Zr、REE、Ir、Os、等),占组成所有凝聚物质质量的大约5%。

镁硅酸盐:镁橄榄石Mg2SiO4,顽火辉石MgSiO3,和金属FeNi。占凝聚物质的主要质量(1300-1400K)。

中等挥发性元素:(Na、K、Cu、Zn等),在镁硅酸盐和铁镍到硫(FeS)凝聚温度之间凝聚。

FeS(670K)

高度挥发性元素:銦、镉、铅等,凝聚温度低于FeS。

元素的宇宙化学分类

◆地球的圈层结构:

大气圈——围绕固体地球的气体层;

生物圈——生物能生存的环境和范围;

水圈——地球上的水体主要占据的范围;

地壳——以莫霍面(VP由6.8~7.2突变为8.0~8.2 km/s)为界。大陆:30~50km, 大洋:10~20km;

岩石圈——地球硅酸盐刚性外壳,地壳+上地幔顶部(50~150km,VP低速层之上);

软流圈——50~250 km , 厚100~150km, 低速层;

地幔——20~2900km,莫霍面~古登堡面;

地核——2900~ 6371km。

1、大气圈

电离层:80~350km(~1000km:外电离层);

平流层:~30km(30~60同温层);

对流层:8~20km。

从地表到60km高空的大气成分是近于均匀的,主要由N2、O2和Ar组成。随着离开地面距离增加,大气圈变得稀薄了,但仍然以氮和氧为主。

次要组分中臭氧和二氧化碳很重要。臭氧主要集中在平流层内,它吸收紫外线辐射;二氧化碳对地球的碳循环很重要,是主要的温室气体之一,对气候有重要影响。

在80km高度以下的大气中

微量(痕量)成分:< 1 ppmv,主要有H2、O3、Xe、N2O(氧化亚氮)、NO(一氧化氮)、NO2(二氧化氮)、NH3(氨气)、SO2、CO,以及气溶胶等。此外还有一些人为污染成分,其浓度多为10-12(ppt)量级,如PFCs(全氟碳化物)、SF6(六氟化硫)等

在大气化学研究中,也根据需要把大气成分按其在大气中的寿命分为:

1.基本不变的成分(准定常成分):其寿命大于1000 年,如N2、O2和几种惰性气体成分;

2.可变成分:其寿命为即到几十年,如CO2、CH4、 H2、N2O、O3和部分气溶胶等;

3.变化很快的成分:其寿命小于1年,如水气、CO、NO、NO2、HN3、SO2、H2S、气溶胶等。

2、水圈

水圈的总质量为1.4×1018吨,海洋仅占地球总质量的0.02%。如果地球是由C1球粒陨石和顽火辉石球粒陨石的混合物组成的,则应含有大约2%的H2O。

水圈可分为地表水圈和地下水圈。地下水圈中只有上部很小一薄层为冷水,下层为热水根据地热增温率和水的临界温度推算,地下水圈的下界在稳定的古老结晶岩地区约为35公里;在有沉积岩盖层的古老结晶岩地区约20~25公里;而在近代沉降地区和年轻造山带则为15公里左右。

◇在高压下,过渡带中的β-橄榄石和γ-橄榄石可含有2~3%的H2O ,熔融铁能溶解高达4%的H。水在一些标称

的无水矿物,如橄榄石、辉石、石榴子石及其高压相变体中,存在于晶体的点缺陷中。富MgSiO3钙钛矿和镁方铁

矿含H2O约0.2wt%,富CaSiO3钙钛矿约含0.4wt%的H2O。镁硅酸盐钙钛矿和镁方铁矿的红外显微光谱都显示出OH的吸收带。下地幔中储存的H2O总量大致相当于的海洋的五倍

◆海水的常量元素含量

3、生物圈

地球上生命的最早出现可追溯到38亿年前。地球生命物质的总量估计大约为6.25×1018克,脱水后干重约为2.5×1018克,其总量与地壳质量2.3×1024克相比微不足道。因此,在将地球和地壳作为一个总的地球化学系统进行研究时,生物地球化学作用常被忽略。但在研究地球表面局部过程和特定元素的表生地球化学行为时,它则是必须被考虑的重要因素。尤其在有关碳、氮、硫、磷、铁等与生态环境有关的元素地球化学循环中起关键作用。生物活动造成的物质分异对地球表面过程和元素分布有重要而深刻的影响。最明显的例子是地球大气中O2和CO2浓度的变化——晚古生代大型维管植物的昌盛导致光合作用急剧增强,从而在约300 百万年前,即石炭纪末,使大气氧含量增高到近40%,达到地质历史中的最高水平,是目前大气氧含量的一倍。当时的大气二氧化碳含量也相应地明显降低。这与地史上石炭纪~二叠纪成煤高峰期是一致的。

◆地壳中元素分布的一般规律:

1. 与地球和太阳系相比,最丰富的十种元素是

地壳:O-Si-Al-Fe-Ca-Na-K-Mg-Ti-H

地球:Fe-O-Mg-Si-Ni-S-Ca-Al-Co-Na

太阳系:H-He-O-Ne-N-C-Si-Mg-Fe-S

2. 不均匀性:前13种元素占地壳总重量的99.7%;其余只占0.3%。

3. 分布量随原子序数增大而降低。例外:Li, Be, B; 232Th、238U、235U;贵金属, Se, Te等。

4. 偶数规则:偶数原子序数元素丰度高于相邻奇数元素,但有例外(4Be, 12Mg, 4Si, 24Cr, 32Ge, 34Se, 42Mo,52Te, 74W)。

5. 四倍规则:4q型(如16 O 等)占87%;4q+3型(如27 Al 等)占13%;4q+2型(如238 U 等)和4q+1型(如9 Be )只占千分之几。

6. 差六规则:在丰度对数曲线上出现峰值的元素,其原子序数之差为6或6的倍数。

7. 原子核内质子和中子的奇偶性:偶-偶:60%;偶-奇和奇-偶:35%;奇-奇:5%。

8. 壳层规则(幻数):2, 8, 14, 20, 28, 50, 82, 126。

9. 放射性蜕变:U238,U235,K40、Rb87减少;Pb206、Pb207、Pb208,Ar40,Sr87增多。

◆ A-水迁移系数:元素的水迁移系数Kx等于化学元素x在水的矿质残渣中的含量与流经该水系的岩石中的含量之比,即:Kx =mx100 / anx

式中mx是元素x在水中的含量(mg/L),nx是元素x在岩石中的含量(%),a是水的矿质残渣 (mg/L)。Kx值越大,元素的迁移能力越强。

◆ C-化学风化指数 (CIA) (Chemical Index of Alteration)

用来定量风化作用的强度:

CIA = [Al2O3/( Al2O3 + CaO* + Na2O + K2O)]×100

式中CaO*为硅酸盐矿物中的CaO含量(即不包括碳酸盐和磷灰石中的含量)。由于长石成分占了上部地壳的50 %以上(石英占了另外的20%),所以实际上是对风化期间长石蚀变为黏土矿物的程度的度量。

B- 化学分异:主要受元素在水溶液中的化学和胶体性质控制,这两种性质均与元素在水中的络合作用有关。

离蚀源区由近至远及沉淀时间从早到晚沉淀顺序大致为:高价(+3, +4)金属离子——过渡族二价金属离子——似金属元素——第二主族离子(碱土金属, Be例外)——第一主族离子(碱金属)和卤素

◆矿物沉淀顺序大致为:氢氧化物和氧化物(Al、Fe、Mn、蛋白石)——磷酸盐(磷酸钙)——硅酸盐(海绿石、磷绿泥石)——碳酸盐(菱铁矿、菱锰矿、方解石、白云石)——硫酸盐及卤化物(土状莹石、天青石、石膏、硬石膏、钠盐、钾盐、镁盐,即干燥气候下的泻湖、盐湖)。

◆大多数微量元素在泥质岩石中具有最高的丰度:

除了在含大量铁、锰氧化物、氢氧化物,有机质,硫化物和暗色岩屑的情况下,微量元素的含量一般按页岩→粉砂岩→砂岩→碳酸盐和蒸发岩的次序相继降低。只有少数元素例外,如Mn, Ca和Sr在碳酸盐中含量最高,碱金属元素和卤族元素在蒸发岩中含量较高,Si在砂岩中含量最高等。一般纯碳酸盐中的微量元素,除锶之外,含量最低。蒸发岩中除上述元素之外,一般成矿元素含量也不高。

◆表生地球化学障

在元素表生迁移过程中,由于局部物理化学条件产生明显变化而导致元素分异沉淀,并形成富集的部位或地段。

地球化学障(geochemical barrier)的概念可扩大到和元素迁移—沉淀转化有关的所有地球化学过程,尤其是水—岩反应过程。

地球化学障的规模控制元素富集的空间分布范围;而其强度和稳定性,即物理化学变化的梯度和持续时间,则决定了元素富集的程度。

在大多数情况下,地球化学障只形成元素的地球化学异常;在有充足物质来源的情况下,大范围和高强度的表生地球化学障是矿床形成的位置。

地球化学障经常造成沉积岩中某些元素含量共同增高的现象,我们称之为沉积岩的元素组合。

根据元素组合的分异成因,地球化学障可分为机械障和物理化学障。

机械障:机械障的形成与机械分异作用有关,发生在水或空气运动速度明显降低的地段,并且受决定矿物稳定性的元素晶体化学性质控制。Au, Zr, Hf, Ti, Sn, Nb, Ta, Pt等元素易形成重矿物的元素组合及其冲积矿床。砂矿的形成是机械障的典型产物。

物理化学障:物理化学障的形成与各种化学、生物和吸附分异作用有关,发生在沉积盆地物理化学状况,特别是酸碱度、氧化还原条件急剧改变的地段。

蒸发障以盐类组合为特征,元素组合取决于元素的溶解度性质,代表性元素有K、Li、Na、K、Rb、Cs、Cl、Br、N 等,发生在地下水和地表水强烈蒸发的地段,沉淀出各种盐类,是气候干旱的标志。

生物障的发育取决于元素的生物富集能力和被吸附程度以及形成有机络合物的能力,以及土壤腐殖层和硫细菌及铁

第七章 生物地球化学循环(一)

第7章生物地球化学循环第1节土壤的组成 第2节土壤的性质 第3节物质循环与土壤形成 第4节土壤分类与土壤类型 第4节生态系统的组成与结构 第6节生态系统的能量流动 第7节生态系统的物质循环 第8节地球上的生态系统

引子:生物地球化学循环概述 一、何谓生物地球化学循环? 1.概念:生命有机体及其产物与周围环境之间反复 不断进行的物质和能量的交换过程。 2.过程:物能的吸收-同化-排放-分解-归还-流失 3.性质:非封闭的循环(进入土壤、岩层、海底) 4.主体:生物和土壤 5.循环的介质:水和大气 二、人类对生物地球化学循环的影响 1.大气、水体、土壤的污染 2.污染物质的迁移、转化和集散 3.对人类健康的威胁

第1节土壤的组成 引言:土壤与土壤肥力 1. 土壤:在陆地表层和浅水域底部、由有机和无机物质组成、具有肥力、能生长植物的疏松层。 2.土壤的本质是肥力,指土壤中水、热、气、肥(养分)周期性动态达到稳、匀、足、适地满足植物需求的能力。 3. 土壤是一种类生物体 代谢和调节功能比生物弱(如温度) 不具有生长、发育和繁殖的功能 不具有功能各异的器官

一、土壤的无机组成 1. 原生矿物:在物理风化过程中产生的未改变化学成分和结晶构造的造岩矿物。 土壤中各种化学元素的最初来源; 土壤矿物质的粗质部分; 经化学风化分解后,才能释放并供给植物生长所需养分。 2. 次生矿物:岩石在化学风化过程中新生成的土壤矿物,如粘土矿物。 土壤矿物质中最细小的部分; 具有吸附保存呈离子态养分的能力,使土壤具有一定的保肥性。

二、土壤的有机组成 1.原始组织:包括高等植物未分解的根、茎、叶;动物分解原始植物组织,向土壤提供的排泄物和死亡之后的尸体等。 土壤有机部分的最初来源 2.腐殖质:有机组织经由微生物合成的新化合物,或者由原始植物组织变化而成的、比较稳定的分解产物,呈黑色或棕色,性质上为胶体状(颗粒直径<1μm)。 具有极强的吸持水分和养分离子的能力,少量的腐殖质就能显著提高土壤的生产力。

施密特元素分类

元素地球化学分类 yuansu diqiu huaxue fenlei 元素地球化学分类 geochemical classification of the elements 在元素周期表的基础上,结合元素的自然组合及各种地球化学特征,对化学元素进一步的分类。它反映了化学元素在自然界的分布规律及其相互间的共生组合特征与其原子结构的密切关系。元素的地球化学分类较多,被广泛采用的是V.M.戈尔德施密特及A.H.扎瓦里茨基的分类。 戈尔德施密特的分类是以其地球起源和内部构造的假说为基础的,他根据化学元素的性质与其在各地圈内的分配之间的关系,将元素分为4个地球化学组,如图1戈尔德施密特元素地球化学分类图所示。①亲石元素,离子最外层具有2个或8个电子,呈惰性气体型稳定结构,与O、F、CL亲合力强,多组成氧化物或含氧盐,特别是硅酸盐,形成大部分造岩矿物,并主要集中在岩石圈;②亲铜元素,离子最外层具有 18个电子的铜型结构,与S、Se、Te亲和力强,多形成硫化物和复杂硫化物;③亲铁元素,离子最外层具有8~18个电子的过渡型结构,与O及S的亲和力均较弱,主要集中在地球深部的铁镍核中;④亲气元素,为惰性气体,呈原子或分子状态集中在地球的大气圈中。此外,戈尔德施密特还划分出亲生物元素,这些元素多富集在生物圈中。 扎瓦里茨基的分类能够从原子结构这一最本质的原因去理解元素在自然界的分布与组合规律。按这种分类,化学元素被分成 12族(图2扎瓦里茨基元素地球化学分类图):①氢族;②造岩元素族(Li、Be、Na、Mg、Al、Si、K、Ca、Rb、Sr、Cs和Ba);③惰性气体族 (He、Ne、Ar、Kr、Xe、Rn);④挥发分元素族(B、C、N、O、F、P、S、Cl);⑤铁族(Ti、V、Cr、Mn、F e、Co、Ni);⑥稀土稀有元素族 (Sc、Y、Zr、Nb、TR、Hf、Ta等);⑦放射性元素族(Fr、Ra、Ac、Th、Pa、U等);⑧钨钼族 (Mo、Tc、W、Re);⑨铂族(Ru、Rh、Pd、Os、Ir、Pt);⑩硫化矿床成矿元素族 (Cu、Zn、Ge、Ag、Cd、In、Sn、Au、H g、Tl、Pb等);□半金属元素族(As、Sb、Bi、Se、Te、Po);□重卤素元素族(Br、I、At)。 除了上述这些系统的分类外,还有根据特定的地质作用对元素进行地球化学分类的。如在描述岩浆分异结晶作用或部分熔融过程中,把进入结晶相或残留相的称为相容元素,而进入熔体相的称为不相容元素等。 参考书目南京大学地质学系编:《地球化学》(修订本),科学出版社,北京,1979。赵伦山、张本仁编著:《地球化学》,地质出版社,北京,1988。 (王中刚)

元素地球化学

元素地球化学 第一章:导论 ◆地球化学的三个主要分支:①元素地球化学②同位素地球化学③实验地球化学 ◆元素地球化学:是地球化学最主要的分支学科,它通过逐一阐明个别元素的地球化学和宇宙化学特征及其与其它元素的组合关系来研究自然界化学演化规律的学科,是地球化学的传统研究内容和主干学科。它力求完整地了解元素的地球化学旋回及其演化历史和原因,揭示元素含量变化对自然过程的指示意义 ◆元素地球化学主要研究内容和任务: (1)每个或每组化学元素的地球化学性质; (2)元素或元素群在自然界的分布、分配情况; (3)元素相互置换、结合、分离的规律和机制; (4)元素的存在形式、组合特点、迁移条件; (5)每个元素的地球化学旋回及其演化历史和原因 (6)应用于地球资源、环境和材料的研究、预测、开发和保护。 ◆元素地球化学的研究方法: (1)地质研究方法; (2)高灵敏度、高精度、快速和经济的测定和分析手段:ICP-MAS、ICP-AES、X荧光、电子探针等等; (3)各种地球化学模拟实验研究; (4)一些物理化学、热力学等理论的应用; (5)计算机技术在处理大量数据方面的广泛应用。 ◆戈尔德施密特的元素地球化学分类: 亲铁元素Siderophile:富集于陨石金属相和铁陨石中的化学元素。它们与氧和硫的结合能力均弱,并易溶于熔融铁中;在地球中相对于地壳和地幔,明显在地核内聚集。其离子最外层电子数在8~18之间。典型的秦铁元素有镍、钴、金、铂族元素。 亲石元素lithophile:在陨石硅酸盐相中富集的化学元素;在地球中它们明显富集在地壳内,有较大的氧化自由能。在自然界中都以氧化物,含氧盐,特别是硅酸盐的形式出现。如硅、铝、钾、钠、钙、镁、铷、锶、铀、稀土元素等。其离子最外层电子数为2或8。 亲铜元素chalcophile:在陨石硫化物相和陨硫铁(FeS)中富集的化学元素;在自然界中,它们往往易与S2-结合成硫化物和复杂硫化物。如硫、铜、锌、铅、镉、砷、银、硒、碲、锑等。其离子最外层有18个电子。 亲硫元素sulphophile:指不易与氧、氟和氯结合,而易于形成硫化物、硒化物、碲化物、砷化物等矿物的元素。该术语现一般理解为与“亲铜元素”同义,并包括一些亲铁元素。 亲气元素atmophile:组成地球大气圈的主要元素,惰性气体元素,以及主要呈易挥发化合物存在的元素。如氢、氮、碳、氧、及惰性气体元素等。 亲生物元素biophile:集中在有生命的动植物内的元素。C, H , O, N, P, S, Cl, I, (B), (Ca, Mg, K, Na), (V, Mn, Fe, Cu) ◆有关其他元素分类的常用术语: 常量元素:组成物质主要结构和成分的元素,它们常占天然物质总组成的99%以上,并决定了物质的定名和大类划分。 微量元素(trace element, microelement):物质中除了那些构成主要结构格架所必须的元素之外,所有以低浓度存在的化学元素。其浓度一般低于0.1%,在大多数情况下明显低于0.1%而仅达到ppm乃至ppb数量级。 次要元素(minor element):在文献中单独出现时时与微量元素同义;当两者同时出现时,一般指含量为1~5的化学元素。 稀有元素(rare element):在低壳中分布量较低,但易于在自然界高度富集形成较常见的矿物和独立工业矿床的的化学元素。如REE、Nb、Ta、Be、Li、(W)等。 分散元素(dispersed element):在地壳中元素丰度低,并且其离子半径和电荷等化学性质与地壳中的高丰度元素(硅、铝、钙、铁、钾、钠等)相似的一类微量元素。因上述性质,它们在自然界中大多以类质同像置换形式分散存

生物地球化学性疾病单选题第一套

生物地球化学性疾病单选题第一套 一、单项选择题 1.地方性甲状腺肿的好发年龄是() A.0~10岁 B.15~20岁 C.25~35岁 D.40~50岁 E.55~65岁 2.碘是人体必需微量元素,在无外来含碘的食物下,水碘含量可用于衡量当地居民摄碘量,当饮水碘含量低于多少时,可有碘缺乏病的流行() A.<1μg/L B.<5μg/L C.10μg/L D.20μg/L E.50μg/L 3.当碘摄入量低于多少时可发生碘缺乏病的流行() A.5μg/d B.20μg/d C.40μg/d D.75μg/d E.150μg/d 4.下列关于砷"三致"作用的描述,不正确的是() A.目前尚未见砷对人的致畸胎作用的流行病学调查报道 B.短期体外筛检实验从不同水平、不同角度证明了砷具有较强的致突变作用 C.砷致人类癌症的内在理论基础是体细胞突变学说 D.动物实验结果显示砷具有致癌作用 E.WHO已将砷定为确认致癌物 5.在下列症状中哪一条不是慢性地方性硒中毒的特异性表现()A.毛发脱落 B.指甲脱落 C.皮肤湿疹 D.脚趾干性坏疽

E.运动障碍 6.下列哪种作物中含硒量较高() A.小麦 B.玉米 C.水稻 D.大蒜 E.黄豆 7.地方性氟中毒发病明显增加一般在()A.6岁以后 B.16岁以后 C.26岁以后 D.36岁以后 E.46岁以后 8.下列哪种症状不是慢性砷中毒的特异性表现()A.皮肤色素代谢异常 B.掌跖部皮肤角化 C.末梢神经炎 D.乌脚病 E.麻痹性震颤 9.在下列因素中哪一条不是克山病的致病原因()A.环境硒水平过低 B.柯萨奇病毒感染 C.营养素失衡 D.环境硒水平过高 E.真菌污染粮食 10.3价砷在机体内蓄积量较高的组织是()A.肝脏 B.毛发、皮肤 C.肺、脾 D.肠、胃 E.肾脏 11.不易受镰刀菌污染的粮食是() A.小麦 B.玉米

生物地球化学答案分析解析

1-2 Origins 1. How is the nitrogen cycle coupled (or linked) to the carbon cycle? In other words, how is the carbon cycle important in driving some components of the nitrogen cycle?氮循环跟碳循环的联系(1-8图) 总体来说碳循环为氮循环提供物质(分子骨架)和能量。植物吸收矿质态氮合成自身物质,在这个过程中需要碳为其提供分子骨架以及氮吸收同化过程中需要碳为其提供能量。另外在土壤中有机氮的矿化、硝化和反硝化过程中微生物都需要碳为其提供能量。因此碳氮循环式紧密联系在一起的 2. What is the average oxidation state of carbon in soil organic matter?土壤有机碳平均氧化态值1.11 3. Where does the energy (or electrons) that drive the process of denitrification come from?反硝化过程所需能量或电子来源1-12二价铁,硫,硫化氢 4. Where does the energy that drives the process of N-fixation by rhizobia bacteria on legume plants come from?豆科植物根瘤菌固氮能量来源(1-15表)光能利用菌能量来源光照,无机营养菌来源无机营养,异养菌来源有机碳 5. Which form of nitrogen contains more energy for metabolic processes, NH4+ orNO3-? How did you make your decision?哪种形式的氮包含代谢更多的能量NH4+ or NO3-?为什么?NH4+ 1.10 因为NH4+是一种电子供体,NO3一般作为一种电子受体,还原性化合物(富含电子的电子供体)比氧化性物质含有较高的能量。另外一方面,NO3在被植物利用的过程中需要首先转换成NH4+在用于有机质的合成,这一过程也需要一部分能量。 6. Rank the following electron acceptors in terms of the energy available to organisms when they are used in the oxidation of soil organic matter. 土壤有机碳氧化态生物可用能量电子受体排序(#1 = most energy; #6 = least energy)_2_ NO3 __6_CO2 _1_ O2 _4 Fe3+ _3_Mn4+ _5_ SO41-14

生物地球化学作业

举例说明碳循环与气候反馈的过程和机理。 1.碳循环 碳循环:是指碳元素在自然界的循环状态。碳循环是地球系统物质和能量循环的核心,是地圈-生物圈-大气圈相互作用的纽带。 1.1 全球碳库分布与碳储量 《联合国气候变化框架公约》(UNFCCC)将温室气体“源”定义为向大气中释放温室气体的过程或活动, 温室气体“汇”为从大气中清除温室气体、气溶胶或温室气体前体物的过程、活动或机制。全球碳循环的源与汇是以大气圈为参照系, 以从大气中输出或向大气中输入碳为标准来确定。全球碳源与碳汇分布极为普遍, 由陆地到海洋、由耕地到森林、由自然界到人类社会等都存在碳源与汇。 地球上最大的两个碳库是岩石圈和化石燃料,含碳量约占地球上碳总量的99.9%。这两个库中的碳活动缓慢,实际上起着贮存库的作用。地球上还有三个碳库——大气圈库、水圈库和生物库。这三个库中的碳在生物和无机环境之间迅速交换,容量小而活跃,实际上起着交换库的作用。 碳在岩石圈中主要以碳酸盐的形式存在;在大气圈中以二氧化碳和一氧化碳的形式存在;在水圈中以多种形式存在;在生物库中,则存在着几百种被生物合成的有机物。在大气中,二氧化碳是含碳的主要气体,也是碳参与物质循环的主要形式。在生物库中,森林是碳的主要吸收者,它固定的碳相当于其他植被类型的两倍。森林又是生物库中碳的主要贮存者,贮存量大约为4.82×1011吨,相当于目前大气含碳量的2/3。 1.1.1 岩石圈中的碳 地壳岩石中平均含有0 .27 %的碳, 约有6 .55 ×1011 GtC , 其中73 %是以碳酸盐岩(海相碳酸盐岩、沉积碎屑岩中碳酸盐胶结物以及泥质岩中碳酸盐矿物)和幔源碳的形式存在, 其余部分以石油、天然气、煤等各种有机碳形式存在。在各种内外营力作用过程中(如脱碳气、氧化、热裂解、微生物降解等), 碳以水溶气相、油溶气相、连续气相、连续液相等各种形式迁移或转化, 最终以CO2 等气体形式通过地下水、油(气)田、地热区、活动断裂带和火山活动不断地释放出来, 或者储存在沉积地层中成为CO2 气田。 尽管地质碳库是最大的碳库, 但其中储存的绝大多数的碳不参与全球的碳循环。除了人类大规模的矿产和燃料开采, 使岩石圈储存的碳得以释放, 并 直接影响全球碳循环平衡外, 岩石圈的碳的活动一般只对地球的局部产生影响(如火山喷发引发区域的CO2 浓度升高)或者只会在较大的时间尺度内(千年以上)发生作用。 1.1.2 岩溶作用过程中的碳循环 岩溶碳循环是全球碳循环的重要一环, 全球陆地碳酸盐岩体碳库容量估计近1 ×108GtC , 分布面积为2 .2 ×107 km2 。碳酸盐的产生与地质历史时期的大气、气候、水热和生物环境条件密切相关, 它是过去全球碳循环方向和强度变化过程中被固化的部分。岩溶作用是岩溶水系统内可溶岩、水、空气、生物界面之间的地球化学场上能量、物质交换的表现及结果, 在岩溶作用过程中存在CO2 -H2O -碳酸盐岩三相动态平衡过程。碳酸盐岩的溶蚀过程是从大气中吸收碳的过程, 凝结钙华的过程是碳的排放过程。当大气中CO2 浓度降低时, 岩溶系统中将出现钙华凝结沉降, 并向大气中排放CO2 , 反之则吸收CO2 。在目前全球CO2 浓度普遍过高的状况下, 岩溶系统对碳的调节作用主要以吸收碳为主。 1.1.3 陆地生态系统中的碳

生物地球化学循环

第7章 生物地球化学循环 思考题 1.土壤与岩石和生物有什么不同? 2.什么是土壤肥力?影响土壤肥力的因素有哪些? 3.土壤的基本组分有哪些?什么样的组分有利于提高土壤的生产力? 4.土壤自然剖面包括哪些基本层次?各层有什么特点? 5.简述土壤质地和土壤结构的差别与联系,以及它们对土壤肥力的影响。 6.说明土壤孔隙度的概念和计算方法,以及它与土壤质地的关系。 7.土壤温度状况受哪些因素影响?它的日变化和季节变化具有什么特点? 8.什么叫土壤胶体?它如何实现土壤的供肥和保肥功能? 9.解释土壤阳离子交换量和土壤盐基饱和度的含义。 10.什么叫活性酸度和潜在酸度?试述土壤缓冲作用的原理。 11.试述土壤酸碱度对土壤养分有效性的影响。 12.什么是土壤氧化还原反应?土壤中主要的氧化剂和还原剂有哪些?试述土壤氧化还原状况对土壤其他性质的影响。 13.简述土壤养分系统的基本组分及其对土壤养分状况的影响。 14.试述成土因素学说的主要内容。 15.试述土壤形成的一般过程和主要成土过程。 16.试述世界十大土壤类型(土纲)的主要特征及土地利用方向与问题。 17.什么是生态系统?它的组成成分有哪些?

18.什么是植物群落的季相和演替?演替有哪几种类型? 19.简述光、温、水对植物生长发育的影响。 20.简述水热条件和海拔高度与植被分布之间关系的一般模式。 21.举例说明生态系统的营养结构、食物链和食物网的构成。 22.解释光合作用和呼吸作用的概念。从热力学角度看,光合作用的生成物对于生态系统有何重要意义? 23.解释初级生产量、生物量和次级生产量的概念。分析全球各类生态系统的净初级生产量和生物量特征。 24.结合实例说明生态系统能量传递与转化的基本特征,以及“十分之一定律”的含义。 25.什么是生物地球化学循环?简述生物地球化学循环的图解模型。 26.解释储存库、周转率和周转时间的概念。 27.简述氧循环的过程,并说明氧循环与碳循环之间的关系。 28.简述碳循环的主要自然过程和人类活动对碳循环的影响及其控制途径。 29.简述氮循环的主要作用过程,并说明人类活动对氮循环的影响。 30.简述磷循环的过程及其非闭合的性质,并说明人类活动对磷循环的影响。 31.什么叫大地女神假说?它在解释地球表层环境形成与变化方面的主要观点有哪些? 32.什么叫生物多样性?举例说明生物多样性丧失的主要原因和保护生物多样性的重要意义。 33.简述陆地生态系统主要类型的地理分布和基本特征,以及人类活动对它们的影响。

地球化学知识点整理

地球化学 绪论 1、地球化学的定义: 地球化学是研究地球(包括部分天体)的化学组成、化学作用和化学演化的科学2、地球化学的基本问题:【填空】 (1)质:地球系统中元素的组成 (2)量:元素的共生组合和赋存形式 (3)动:元素的迁移和循环 (4)史:地球的历史和演化 3、地球化学研究思路:【简答】 在地质作用过程中,在宏观地质体变化和形成的同时,亦伴有大量肉眼难以辨别的化学组成变化的微观踪迹,它们包含着重要的定性和定量的地质作用信息,应用现代化学分析测试手段,剖析这些微观踪迹,从而揭示宏观地质作用的奥秘。即“见微而知著”。 第一章地球和太阳系的化学组成 第一节地球的结构和组成 1、地球的圈层结构、主要界面名称: (1)地震波(P波和S波)在地球内部传播速度的变化,反映出地球内部物质的密度和弹性是不均一的。这种不均一性在地球的一定深度表现为突变性质。由此得出,地球内部具有壳层结构的概念,即认为地球由表及里分为地壳、地幔和地核三个部分。界面分别为:莫霍面和古登堡面。 (2)上地壳和下地壳分界面为康拉德面。上地壳又叫做硅铝层,下地壳又叫做硅镁层。大陆地壳由上、下地壳,而大洋地壳只有下地壳。【填空】 2、固体地球各圈层的化学成分特点:(分布顺序) 地壳:O、Si、Al、Fe、Ca 地幔:O、Mg、Si、Fe、Ca 地核:Fe-Ni 地球:Fe、O、Mg、Si、Ni

第二节元素和核素的地壳丰度 1、基本概念:【名词解释】 (1)地球化学体系:我们把所要研究的对象看作是一个地球化学体系,有一定的空间,处于特定的物理-化学状态,并且有一定时间的连续 (2)丰度:研究体系中被研究元素的相对含量 (3)克拉克值:地壳中元素的平均含量 (4)质量克拉克值:以质量计算表示的克拉克值 (5)原子克拉克值:以原子数之比表示的元素相对含量。它是指某元素在某地质体全部元素的原子总数中所占原子个数的百分数。 (6)浓度克拉克值:某一元素在地质体中的平均含量与克拉克值的比值 2、克拉克值的变化规律: (1)递减:元素的克拉克值大体上随原子序数的增大而减小。但Li、B、Be以及惰性气体的含量并不符合上述规律,其丰度值很低。 (2)偶数规则(奥多-哈金斯法则):周期表中原子序数为偶数的元素总分布量大于奇数元素的总分布量,相邻元素之间偶数序数的元素分布量大于奇数元素分布量。 (3)四倍规则(了解): 元素的质量数A除以4,可分为四类:4q+3、4q+2、4q+1、4q 3、“元素克拉克值”研究意义:【简答】 (1)是地球化学研究重要的基础数据 (2)确定地壳中各种地球化学作用过程的总背景 (3)是衡量元素集中、分散及其程度的标尺 (4)是影响元素地球化学行为的重要因素 4、区域元素丰度的研究的意义:【简答】 (1)它是决定区域地壳(岩石圈)体系的物源、物理化学特征的重要基础数据(2)为研究各类地质、地球化学作用、分析区域构造演化历史及区域成矿规律提供重要的基础资料 (3)为研究区域生态环境,为工业、农业、畜牧业、医疗保健等事业提供重要信息

地球化学分类基础

地球化学分类的基础是什么,除了本课程中介绍的分类方案,还有什么分类方案? 按照地球形成的一种模型,地球是由成分近似于一般球粒陨石的微行星聚集作用演化而来。这些球粒陨石具有三种不同的相,即金属相、硫化物和硅酸盐相。化学元素在地球中的分布主要根据元素对三种相的亲合力关排布的,这种亲合力由原子的电子排布和化学键性控制。陨石中各相的成分主要是由Fe-Mg-Si-O-S这些元素控制。其他元素的分布实质上就是由它们和这些元素的亲合关系所决定。因此,地球化学元素的分类也是以原子的电子排布和化学键性所导致的元素本身的性质差异为基础进行分类的. 本课程中介绍的分类方案戈尔德施密特的这一经典的元素地球化学分类及名称,直到现在仍被地球化学界广为引用。除此之外,维尔纳斯基、费尔斯曼及施奈德洪等也提出过不同的分类方案,都不及戈氏分类的简洁、实用。 首先是: 查瓦里茨基的元素地化学分类反映了元素在成岩、成矿作用中的意义。他把元素分成十二族,但对某些微量元素属性仍不够准确,使用中亦有繁琐之嫌。扎瓦里茨基的分类能够从原子结构这一最本质的原因去理解元素在自然界的分布与组合规律。按这种分类,化学元素被分成12族: 1)氢族; 2)造岩元素族(Li、Be、Na、Mg、Al、Si、K、Ca、Rb、Sr、Cs和Ba); 3)惰性气体族(He、Ne、Ar、Kr、Xe、Rn); 4)挥发分元素族(B、C、N、O、F、P、S、Cl); 5)铁族(Ti、V、Cr、Mn、Fe、Co、Ni); 6)稀土稀有元素族(Sc、Y、Zr、Nb、TR、Hf、Ta等); 7)放射性元素族(Fr、Ra、Ac、Th、Pa、U等); 8)钨钼族(Mo、Tc、W、Re); 9)铂族(Ru、Rh、Pd、Os、Ir、Pt); 10)硫化矿床成矿元素族(Cu、Zn、Ge、Ag、Cd、In、Sn、Au、Hg、Tl、Pb等); 11)半金属元素族(As、Sb、Bi、Se、Te、Po); 12)重卤素元素族(Br、I、At)。 其次是除了上述这些系统的分类外,还有根据特定的地质作用对元素进行地球化学分类的。如在描述岩浆分异结晶作用或部分熔融过程中,把进入结晶相或残留相的称为相容元素,而 进入熔体相的称为不相容元素等。 最后是戚长谋的“元素地球化学分类探讨”中提出的分类表包括亲石元素、亲氧元素、亲硫元素、阴离子及两性元素和氢及惰性气体元素五个类。 (1)亲石元素:就具有与硅酸根或碳酸根结合倾向的元素。因其为造岩矿物的主要成分, 故仍采用“亲石”术语。本类元素包括周期表左侧的碱金属和碱土金属两个化学族。s电子构型。X=0.7—1.5。 本类元素与硅酸根和碳酸根结合的倾向具有选择性。碱金属和碱土金属可分别与不同结构的硅酸根结合形成各类硅酸盐, 而与碳酸根结合的元素则为碱土金属Mg、Ca、Sr 、Ba等。(2)亲氧元素: 具有与氧结合倾向的元素, 包括呈氧化物(如TiO2)或酸根(如SiO44-、CO32-)两种状态。这一定义严格地与戈氏“亲石”的概念相区别。分类表中包括碱土金属右侧的第三、第四、第五副化学族和Cr、W、U、Mn、Fe及Sn等。p及d电子构型, X=1.3—2.2 。

全球生物地球化学循环研究的进展_庄亚辉

第4卷第1~2期1997年3月 地学前缘(中国地质大学,北京) Earth Science Frontiers(China Univ ersity of Geos ciences,Beij ing) Vo l.4No.1~2 Mar. 1997 全球生物地球化学循环研究的进展 庄亚辉⒇ (中国科学院生态环境研究中心,北京2871信箱,100085) 摘 要 简要介绍了全球元素生物地球化学循环研究的新进展。首先说明几十年来生物地球 化学循环研究重点的转变,其次分析了当前研究的特点,这就是多层次地(时空及生态系统)进 行实验和数学模拟并外推至全球,比经典的循环研究要细致得多。经典研究往往只是将定位点 上的结果简单地外推到区域甚至全球。最后有选择地阐述了生物地球化学循环各领域(源、汇、 转化过程、测量方法、模式等)内的发展趋势与热点,其中主要有农业生态系统含碳、氮痕量气体 的源、遗漏的碳汇、碳、氮、硫、磷间的耦合作用、同位素丰度比及指示物的应用和氧化亚氮和甲 烷释放模式。 关键词 生物地球化学循环 释放源 汇 传输及转化过程 痕量气体测定 过程模拟 CLC P593,Q14,P69 全球生物地球化学循环是研究元素的各种化合物在生物圈、水圈、大气圈、岩石土壤圈各储库之间的迁移和转化。除了各种物理、化学、生物过程与通道的研究外,还包括其源、汇、通量、储库及模式研究〔1〕。在50年代以前,经典的元素循环是以自然界的生物地球化学过程为对象的〔2~3〕,二次世界大战结束后,大量的核试验引起人们对人工核素的全球沉降和迁移过程的关注。60~70年代工农业的发展带来了化肥、农药、洗涤剂和重金属的全球性污染。在国际科联环境科学问题委员会(SCOPE/ICSU)的倡导下,开展了全球碳、氮、硫、磷和重金属的生物地球化学循环的研究〔4~6〕。80年代以来,国际地圈生物圈计划(IGBP)以及其它许多的国际全球科研计划针对人类活动引起的系列全球变化,例如温室效应、臭氧层破坏、海平面升高、森林锐减、土地退化等进行研究。这些问题均与元素循环有关,因此给碳、氮、硫、磷生物地球化学循环的研究带来了新的推动力和新的研究内容,使元素循环研究进入一个新的阶段〔7〕。1987年,美国地球物理学会为此专门出版了Global Biogeochemical Cycles学术刊物,刊登此方面的新成就。 由于篇幅限制,本文只讨论碳、氮、硫、磷四个元素的一些新进展,分别介绍生物释放源、汇、转化传输机理、实验方法及模式的前缘内容、热点与趋势。但这并不意味着其它元素不重要。例如,人们已认识到卤素元素生物地球化学的循环对全球变化的影响,氧循环(也就是水循环)的重要性更是毋庸置疑的。 ⒇ 收稿日期:1996-07-08 修改稿收到日期:1996-11-30 作者简介:庄亚辉,男,1930年生,研究员,环境化学博士生导师,国际科联环境问题委员会中国委员会委员,从事氮、硫氧化物的活化与转化以及碳、氮、硫痕量气体释放源的研究。 本研究受美国国家科学基金会1995~1997年项目、国家自然科学基金委员会化学部课题、国家自然科学基金委员会跨学部项目、中国科学院环境科学委员会及资源环境局重大科技项目基金资助。

2018生物地球化学考试复习真题

生物地球化学复习资料 1.判定植物必须营养元素的标准?(同时满足) (1)所有植物缺少便不能完成其生命周期(不可或缺性) (2)作用具有专一性,只有供给该元素才能得到改善(不可替代性) (3)必须直接参与到植物营养(代谢作用) 大量元素:C、H、O、N、P、K、Ca、Mg、S 微量元素:Fe、Mn、Zn、Cu、B、Mo、Cl 2.我国土壤有机质含量变化规律及其原因,并谈谈有机质在土壤肥力和生态环境上的重要作用? (1)我国土壤有机质分布状况大体为由北而南,土壤有机质含量逐渐降低;(2)北方由于气候淡热、干燥,一年较多时间不利于土壤中微生物活动,因而土壤有机质矿质化分解受到阻碍,有机质保留于土壤中;而南方则刚好相反,气候湿热,一年中大多时间有利于土壤中微生物活动,因而土壤中有机质大量被矿质化分解,保留于土壤中的有机质则较少。 (3)在土壤肥力上的作用 ①养分较完全 ②促进养分有效化 ③提高土壤保肥性 ④提高土壤缓冲性 ⑤促进团粒结构的形成,改善土壤物理性质 (4)有机质在生态环境上的作用 ①络合重金属离子,减轻重金属污染 ②减轻农药残毒:腐殖酸可溶解、吸收农药,如DDT易溶于HA; ③全球C平衡的重要C库(含C平均为58%)。 3.腐殖质的作用?(腐殖质:土壤有机质经生物化学作用合成的成分结构复杂且稳定的高分子有机化合物) (1)在土壤有机碳库和环境中的作用(是陆地土壤和海洋最重要的有机碳库) ①降低农药残留危害:土壤对农药吸附的74%取决于HA和FA,尤其是FA。农药被吸附后有效率降低,并加速分解。腐殖酸可溶解、吸收农药,如DDT易溶于HA。 ②与某些重金属形成水溶性络合物,随水排出土体,减少危害和污染;或与某些重金属形成不溶性络合物,限制植物的吸收。 (2)对土壤肥力和植物生长的作用 ①土壤N、P、S和微量元素的储存库 ②增加土壤保肥和供肥能力 ③土壤良好结构形成的物质基础,提高土壤透水性,蓄水性,通气性,并改善土壤耕性 ④提高植物生理活性,促进根系的养分吸收、运输,促进种子发芽,根和茎

湿地铁的生物地球化学循环及其环境效应_姜明

*国家自然科学基金:不同水文地貌条件下湿地土壤铁迁移转化及其环境指征(编号:40501030)和中国科学院湿地生态与环境重点实验室开放基金(编号:WELF -2004-B -006)资助 湿地铁的生物地球化学循环及其环境效应* 姜 明 1,2  吕宪国1 杨 青1 佟守正 1 (1中国科学院东北地理与农业生态研究所,长春 130012) (2中国科学院研究生院,北京 100039) 摘 要 湿地位于水陆过渡地带,干湿交替引起的氧化还原变化是湿地中最为典型、普遍的现象。铁作为湿地中的主要氧化还原物质,它的变化对湿地环境具有重要的指示性作用。本文介绍了湿地中铁的时空分布及其转化规律,指出湿地铁循环的影响因素,分析了湿地铁循环在湿地土壤形成、湿地植物的生理生态、湿地的物质循环、环境指示等方面的效应;最后对湿地铁循环研究中的存在问题及发展方向提出几点建议。 关键词 铁;生物地球化学循环;环境效应;湿地中图分类号 S154.2 文献标识码 A 湿地是水体系统和陆地系统之间相互联系、相互作用而变化的活跃地带,干湿交替是发生在湿地中的一种非常典型、普遍的现象。铁是主要的氧化 还原物质[1],铁的变化对湿地中的氧化还原环境具有重要的指示性意义[2,3]。在湿地氧化还原物质研究中,对于氮、碳、硫等元素研究广泛,而铁锰等金属离子研究较少[4~8]。国际地圈生物圈计划(I GBP )、国际全球环境变化人文因素计划(I HDP )和世界气候研究计划(W CRP )三大计划提出了碳“汇”和碳通量的时空分布及碳循环动力学研究的科学需求,铁循环影响了碳的源汇过程[9~11];国际水文计划(I HP )第六阶段计划(2002年至2007年)也明确提出加强河床和湿地的金属监测及研究的任务,其中湿地铁循环对重金属、营养物等具有重要的吸附解吸作用,从而对湿地环境过程产生影响,因而在这些研究计划中应该重视湿地铁的生物地球化学循环及其对碳、氮和营养元素迁移转化的影响研究 [12~14] 。 1 湿地铁生物地球化学循环及其特征 1.1 湿地铁化合物的划分及其循环过程 根据矿物学结合胶体化学观点,湿地铁化合物可以在形态上划分为游离氧化铁、无定形铁。早在1877年,Bemmelen 用矿质酸和碱液溶解土壤中的氧化铁和其他胶体物质,1922年Tamm 建议应用草酸 铵缓冲液来分离无定形铁,1950年Deb 开始应用连二亚硫酸钠为还原剂测定游离铁,在此基础上建立了现在广为采用的连二亚硫酸钠-柠檬酸钠-重碳 酸钠提取法(DCB 法)[1] 。湿地中的铁化合物还可以按照化学方法分为高价态和低价态,这种价态划分对于湿地研究十分重要。但铁化合物的区分在技术上非常困难,同时在提取过程中防止低价铁的氧化是一个重要的问题。目前更多的采用H 2、N 2以隔绝空气的淋洗法,但由于装置复杂、淋洗速度不快,也有一部分低价铁被氧化,因此低价铁的区分及测定仍需改善。 湿地干湿交替、氧化还原过程的反复进行,引起湿地土壤中氧气含量、有机物质含量以及微生物作用过程发生改变,这些过程引起湿地铁的价态改变,导致了湿地铁的氧化沉积与还原溶解(见图1)。受干湿交替影响,许多湿地植物发展了高孔隙的通气组织[15],因此导致根部氧气得以扩散到土壤溶液中,这个过程加强了湿地中的氧化还原过程,影响了湿地中的铁循环,同时在湿地植物根部形成锈斑,包括芦苇(Phragmites australis )、水稻(Oryza sativa )、互花米草(Spartina alterniflora )等[14,16,17],其中水稻田每年约有500kg hm -2锈斑形成[15]。1.2 湿地铁循环特征 湿地铁循环研究中,人工湿地水稻土方面较早且深入。我国早在20世纪30年代就开始对水稻土 第43卷第3期土 壤 学 报 Vol .43,No .32006年5月 ACT A PED OL O GI CA SI NICA  May ,2006

地球化学(复习资料)

第一章 1.克拉克值:元素在地壳中的丰度,称为克拉克值。元素在宇宙体或地球化学系统中的平均含量称之为丰度。丰度通常用重量百分数(%),PPM(百万分之一)或g/t表示。 2.富集矿物:指所研究元素在其中的含量大大超过它在岩石总体平均含量的那种矿物。 3.载体矿物:指岩石中所研究元素的主要量分布于其中的那种矿物。 4. 浓集系数=工业利用的最低品位/克拉克值。为某元素在矿床中可工业利用的最低品位与其克拉克值之比。 5.球粒陨石:是石陨石的一种。(约占陨石的84%):含有球体,具有球粒构造,球粒一般为橄榄石和斜方辉石。基质由镍铁、陨硫铁、斜长石、橄榄石、辉石组成。划分为: E群——顽火辉石球粒陨石,比较稀少;O群——普通球粒陨石: H亚群—高铁群,橄榄石古铜辉石球粒损石;L亚群—低铁群,橄榄紫苏辉石球粒陨石;LL亚群—低铁低金属亚群;C群——碳质球粒陨石,含有碳的有机化合物和含水硅酸盐,如烷烃、芳烃、烯烃、氨基酸、卤化物、硫代化合物等。为研究生命起源提供重要信息。分Ⅰ型、Ⅱ型和Ⅲ型。Ⅰ型其非挥发性组成代表了太阳系星云的非挥发性元素丰度。 6.浓度克拉克值=某元素在地质体中的平均含量/克拉克值,反映地质体中某元素的浓集程度。 1.陨石在地化研究中的意义:(一)陨石的成分是研究和推测太阳系及地球系统元素成分的重要依据:(1)用来估计地球整体的平均化学成分。○1陨石类比法,即用各种陨石的平均成分或用球粒陨石成分来代表地球的平均化学成分。○2地球模型和陨石类比法来代表地球的平均化学成分,其中地壳占质量的1%,地幔31.4%,地核67.6%,然后用球粒陨石的镍—铁相的平均成分加5.3%的陨硫铁可以代表地核的成分,球粒陨石的硅酸盐相平均成分代表地壳和地幔的成分,用质量加权法计算地球的平均化学成分。(2)I型碳质球粒陨石其挥发性组成代表了太阳系中非挥发性元素的化学成分。 (二)陨石的类型和成分是用来确定地球内部具层圈结构的重要依据:由于陨石可以分为三种不同的陨石—石陨石、石铁陨石和铁陨石,因而科学家设想陨石是来自某种曾经分异成一个富含金属的核和一个硅酸盐外壳的行星体,这种行星经破裂后就成为各种陨石,其中铁陨石来自核部,石铁陨石来自金属核和硅酸盐幔的界面,而石陨石则来自富硅酸盐的幔区。这种设想成为推测地球内部结构和化学成分的重要依据之一。(三)碳质球粒陨石的有机化合物成分是研究地球早期生命系统的化学演化及来源的重要依据和信息,在碳质球粒陨石中已发现有机化合物60多种。有人认为地球早期生命系统的化学演化不一定来源于行星的大气,而有可能来自太阳星云凝聚时已合成的有机质。 2比较太阳系、地球、地壳主要化学元素丰度特征的异同点,说明自然界元素丰度的基本特征和决定自然体系中元素丰度的最基本因素:(1)特征的异同:太阳系:H>He>O>N>C>Si>Mg>S 地球;Fe>O>Mg>Si>Ni>S>Ca>Al>Ca>Na地壳:O>Si>Al>Fe>Ca>Na>K>Mg>Ti>H硅酸盐在地球表层富集,较难熔的镁铁硅酸盐和金属铁下沉。(2)自然界元素丰度的基本特征:○1个元素丰度随原子序数的增大而呈指数下降;在Z>45之后丰度值又相近。○2原子序数为偶数的同位素丰度大于奇数者(中子数、质量数同)——奥多-哈根斯法则;○3四倍原则:如O(A=16),质子数为4的倍数○4Li、P、B丰度很低,为亏损元素(核子结合能低,形成后易分解)○5Fe 和O过量(核子结合能最高,核子稳定)○6原子序数(质子数或中子数)是“幻数”的元素丰度高(氦、氧、钙等:2、8、14、20、2850、82、126)(3)决定自然体系中元素丰度的最基本因素:○1与原子结构有关具有最稳定原子核的元素分布最广,当中子数和质子数比例适当时核最稳定。如在原子序数<20的轻核中,中子∕质子等于一是,核最稳定,由此可以说明O、Mg、Si、Ca的丰度较大的原因;随原子序数增大,核内质子间的斥力大于核力,核子的结合能降低,原子核就趋于不稳定,所以元素同位素的丰度就要降低;偶数元素或同位

硒的生物地球化学.

硒的生物地球化学-综述 摘要:硒的含量和在环境中分布的形态以及全球Se循环的动力学仍然是一个非常关注的课题,主要是因为Se是高水平的必需元素和毒物。虽然已知Se含有氨基酸和蛋白质对于许多生命形式的正常代谢功能至关重要,但由于慢性过量的硒摄入引起的硒毒中毒,已经与神经损伤关联起来。本文回顾了目前对自然环境中硒的生物地球化学的认识。影响自然环境中物种形态的因素是化学,物理和生物过程。在水生系统中已经报道了几种无机形态的Se(-2,0,+4和+6)和有机形态的硒(单甲基 化和二甲基化)。HSeO 3-和SeO 3 2-都将存在于天然水域。在温和的氧化条件下,HSeO 3 - 和SeO 3 2-是主要的形态,而HSe-是出现在pH大于4和强还原条件下的优势形态。根据pH和氧化还原条件的形态变化,在固体表面上的吸附,还原物质在有氧/缺氧条件下的作用以及与天然有机物质的相互作用来讨论硒的生物地球化学。 关键词:硒,形态,非生物减少,吸附,有机物 前言 硒(Se)作为一个元素,自1817年以来就已经被发现,并存在于所有的地球环境区,包括大气层,地圈,水圈和生物圈。硒在化学上类似于硫,在地质环境中与硫沉积物和煤炭有关(Dauphas2013;Wang and Becker2013)。在全球煤炭中硒含量约为1.0-1.6mg Se kg-1,但在世界某些地区,如美国,俄罗斯和中国,硒浓度高达43mg Se kg-1(Lenz and Lens2009)。在陆地系统中,矿物是硒的主要来源,但是由于在一些工业产品的使用,Se也能在诸如陶瓷,玻璃制造和制药等行业中找到。Se的全球循环如图1所示(Winkel et al.2012)。运输过程和自然来源通常决定着全球Se的动态分布。 在大气中,Se的来源包括天然和人为来源的排放(Buchs et al.2013;Chinn and Barrett1999;Wen and Carignan2007)。在全球范围内,天然资源贡献了总排放量的50-65%。大气硒的天然来源包括造成悬浮土壤和粉尘的地壳侵蚀,挥发性有机硒化合物的生物生产,火山和与海水相关的气溶胶颗粒(Nriagu and Pacyna1988; Nriagu1989)。海洋生物硒被认为是主要的天然排放大气源。金属精炼和煤燃烧被认为是人为大气排放的主要来源。在Se沉积在地面之前,大气层Se涉及许多物理

地球化学知识点总结(详细)

第一章 克拉克值:元素在地壳中的丰度,称为克拉克值。元素在宇宙体或地球 化学系统中的平均含量称之为丰度。丰度通常用重量百分数(%), PPM(百万分之一)或g/t表示。 2 .富集矿物:指所研究元素在其中 的含量大大超过它在岩石总体平均含量的那种矿物。 3. 载体矿物:指岩石中所研究元素的主要量分布于其中的那种矿物。 4. 浓集系数 =工业利用的最低品位/克拉克值。为某元素在矿床中可工 业利用的最低品位与其克拉克值之比。 5.球粒陨石:是石陨石的一种。(约占陨石的84%):含有球体,具有 球粒构造,球粒一般为橄榄石和斜方辉石。基质由镍铁、陨硫铁、斜长 石、橄榄石、辉石组成。划分为: E群——顽火辉石球粒陨石,比较稀 少;O群——普通球粒陨石: H亚群—高铁群,橄榄石古铜辉石球粒损 石;L亚群—低铁群,橄榄紫苏辉石球粒陨石; LL亚群—低铁低金属亚群;C群——碳质球粒陨石,含有碳的有机化合 物和含水硅酸盐,如烷烃、芳烃、烯烃、氨基酸、卤化物、硫代化合物 等。为研究生命起源提供重要信息。分Ⅰ型、Ⅱ型和Ⅲ型。 Ⅰ型其非 挥发性组成代表了太阳系星云的非挥发性元素丰度。 6.浓度克拉克值=某元素在地质体中的平均含量/克拉克值,反映地质体 中某元素的浓集程度。 1.陨石在地化研究中的意义: (一)陨石的成分是研究和推测太阳系及地球系统元素成分的重要依 据:(1)用来估计地球整体的平均化学成分。1陨石类比法,即用各种 陨石的平均成分或用球粒陨石成分来代表地球的平均化学成分。2地球 模型和陨石类比法来代表地球的平均化学成分,其中地壳占质量的1%, 地幔31.4%,地核67.6%,然后用球粒陨石的镍—铁相的平均成分加5.3% 的陨硫铁可以代表地核的成分,球粒陨石的硅酸盐相平均成分代表地壳

地球化学之氮循环

8.12地球氮循环 8.12.1介绍 8.12.2 生物地球化学反应 8.12.2.1 初始反应:活性氮的产生 8.12.2.2 大气圈 8.12.2.2.1 无机还原氮 8.12.2.2.2 无机氧化氮 8.12.2.2.3 还原有机氮 8.12.2.2.4 氧化有机氮 8.12.2.3 生物圈 8.12.3 氮库及其交换 8.12.3.1 陆地到大气 8.12.3.2 海洋到大气 8.12.3.3 大气到表面 8.12.3.4 陆地到海洋 8.12.4 产生活性氮 8.12.4.1 介绍 8.12.4.2 闪电——自然 8.12.4.3 陆地生物固氮——自然 8.12.4.4 人类活动 8.12.4.4.1 介绍 8.12.4.4.2 食品生产 8.12.4.4.3 能量产物 8.12.4.5 从1860到2000产生活性氮的速率 8.12.5 全球陆地氮收支 8.12.5.1 介绍 8.12.5.2 产生活性氮 8.12.5.3 活性氮的分布 8.12.5.4 活性氮转化成氮气 8.12.6 全球海洋氮收支 8.12.7 区域氮预算 8.12.8 结果 8.12.8.1 介绍 8.12.8.2 大气圈 8.12.8.3 陆地生态系统 8.12.8.4 水生生态系统 8.12.9 展望 8.12.10 总结 致谢 参考文献

8.12.1 介绍 曾几何时,氮气不存在。今天它却存在。在宇宙形成的这段时间里,氮气被创造出来,地球诞生了,它的大气和海洋也形成了!在对地球氮循环的分析中,我首先概述了与氮有关的重要事件,然后继续进行更为传统的氮循环本身的分析以及人类在其变化中的作用。 宇宙有150亿年。即使在形成之后,仍然存在一段不存在氮的时期。在大爆炸发30万年后,宇宙需要足够的冷却来创造原子;氢和氦首先形成。氮通过核合成过程形成在恒星中。当恒星的质量变得足够大以达到必要的压力和温度时,氦气开始融合成更重的元素,包括氮。 在地球形成之前已经过去了100亿年(45亿年前),这是由于多级过程中预装配材料的积累。假设N2是这些材料中占优势的氮物种,并且假定空间温度为-270℃,当地球形成时N2可能是固体,因为它的沸点(b.p.)和熔点(m.p.)分别为-196℃和-210℃。迈向积累的最后期,温度可能足够高使一些材料显著熔化。由此产生的火山活动所释放的火山气体严重影响地表环境。氮从固体转化为气体并以N2排放。碳和硫可能以CO和H2S排放(Holland,1984)。N2仍然现今最常见的氮火山气体,其排放速率为2TgN yr-1(Jaffee,1992)。 一旦排放,气体或者留在大气中或者沉降到地球表面,从而继续进行生物地球化学循环过程。转移率取决于排放物质的反应性。在反应性的最低极端是惰性气体,氖气和氩气。在新形成的地球脱气期间释放的大部分氖气和氩气仍然存在于大气中,基本上没有转移到水圈或地壳。另一个极端是碳和硫。脱气过程中排放的99%以上的碳和硫不再存在于大气中,而是停留于水圈或地壳中。氮是介于中间的。大约6×106 TgN在大气,水圈和地壳中,2/3在大气中以N2形式存在,其余大部分在地壳中。大气圈是一个主要的的氮气储存器,因为N2分子的三键需要大量的能量来断裂。在早期的大气中,这种能量的唯一来源是太阳辐射和放电。 在这一点上,我们有一个主要是N2并且没有生命的地球。我们如何使主要是N2的地球充满生机?首先,必须将N2转化为活性氮(Nr)(术语活性氮(Nr)包括大气圈和生物圈中所有具有生物活性的,光化学反应性和辐射活性的氮化合物。因此活性氮包括无机还原形式(例如NH3和NH4+),无机氧化形式(如NO x,HNO3,N2O和NO3-)和有机化合物(如尿素,胺和蛋白质)。)。早期的大气减少并限制了NH3。然而,NH3是形成早期有机物质的必要成分。NH3生成的一种可能性是海水通过火山岩循环(Holland,1984)。在这样的过程中,NH3可以释放到大气中,当与CH4,H2,H2O和电能结合在一起时,可以形成包括氨基酸的有机分子(Miller,1953)。实质上,放电和紫外线辐射可以将还原气体的混合物转化为有机分子的混合物,然后它沉积到陆地表面和海洋(Holland,1984)。 总而言之,地球形成于45亿年,水凝聚在40亿年,随后形成有机分子。35亿年简单生物体(原核生物)能够在没有O2的情况下生存并产生NH3。几乎与此同时,能够在光合作用中产生O2的第一个有机体(例如蓝细菌)得以进化。直到15-20亿年,O2才开始在大气中积聚。到目前为止,O2已经被化学反应(例如铁氧化)消耗了。通过5亿年,大气中的O2浓度达到了今天发现的相同值。随着O2浓度的增加,在N2和O2反应放电期间在大气中形成NO的可能性也增加了。 今天我们有一个有N2的大气圈,有能量产生一些NO(N2和O2的反应)。降水可以将活性氮转移到地球表面。放电可以产生含氮有机分子。简单的细胞进化大约35 亿年,并在接下来的几年中,包括人类在内的更复杂的生命形式已经进化。自然形成了氮气并创造了生命。那个“生命”是通过什么途径发现氮的? 为了解决这个问题,我们现在从35亿年跳到2.3×10-6亿年。在1770年代,三位科学家Carl Wilhelm Scheele(瑞典),Daniel Rutherford(苏格兰)和Antoine Lavosier(法国)分别发现氮的存在。他们进行了一些非反应性气体生产的实验。1790年,Jean Antoine Claude

相关文档
最新文档