纯电动汽车动力性及经济性分析

纯电动汽车动力性及经济性分析
纯电动汽车动力性及经济性分析

(完整版)纯电动汽车动力性计算公式

XXEV 动力性计算 1 初定部分参数如下 2 最高行驶车速的计算 最高车速的计算式如下: mph h km i i r n V g 5.43/70295 .61487 .02400377.0.377.00 max ==??? =?= (2-1) 式中: n —电机转速(rpm ); r —车轮滚动半径(m ); g i —变速器速比;取五档,等于1; 0i —差速器速比。 所以,能达到的理论最高车速为70km/h 。 3 最大爬坡度的计算 满载时,最大爬坡度可由下式计算得到,即 00max 2.8)015.0487 .08.9180009 .0295.612400arcsin( ).....arcsin( =-?????=-=f r g m i i T d g tq ηα

所以满载时最大爬坡度为tan( m ax α)*100%=14.4%>14%,满足规定要求。 4 电机功率的选型 纯电动汽车的功率全部由电机来提供,所以电机功率的选择须满足汽车的最高车速、最大爬坡度等动力性能的要求。 4.1 以最高设计车速确定电机额定功率 当汽车以最高车速m ax V 匀速行驶时,电机所需提供的功率(kw )计算式为: max 2 max ).15.21....(36001 V V A C f g m P d n +=η (2-1) 式中: η—整车动力传动系统效率η(包括主减速器和驱动电机及控制器的工作效率),取0.86; m —汽车满载质量,取18000kg ; g —重力加速度,取9.8m/s 2; f —滚动阻力系数,取0.016; d C —空气阻力系数,取0.6; A —电动汽车的迎风面积,取2.550×3.200=8.16m 2(原车宽*车身高); m ax V —最高车速,取70km/h 。 把以上相应的数据代入式(2-1)后,可求得该车以最高车速行驶时,电机所需提供的功率(kw ),即 kw 1005.8970)15.217016.86.0016.08.918000(86.036001).15 .21....(360012 max 2 max <kw V V A C f g m P D n =???+???=+?=η (3-2) 4.2满足以10km/h 的车速驶过14%坡度所需电机的峰值功率 将14%坡度转化为角度:018)14.0(tan ==-α。 车辆在14%坡度上以10km/h 的车速行驶时所需的电机峰值功率计算式为:

新能源电动汽车行业的发展及对宏观市场前景的分析报告解析

新能源电动汽车行业的发展及对宏观市场 前景的分析报告 随着全球能源和环境问题的不断突显,汽车作为石油消耗和二氧化碳排放的大户,需要进行革命性的变革,发展新能源汽车已经成为世界各国的共识,我国电动汽车虽然没有欧美等国家起步早, 但国家从维护能源安全, 改善大气环境,提高汽车工业竞争力,实现我国汽车工业的跨越式发展的战略高度考虑,电动汽车研究一直是国家计划项目。 一、中国新能源电动汽车发展史 中国“电动汽车重大科技项目”的研发开始于2001年,经过两个五年计划的科技攻关以及奥运、世博、“十城千辆”示范平台的应用拉动,通过提供财政补贴,计划用3年左右的时间,每年发展10个城市,每个城市推出1000辆新能源汽车开展示范运行,涉及这些大中城市的公交、出租、公务、市政、邮政等领域。中国电动汽车从无到有,技术处于持续进步的状态,建立起了具有自主知识产权的电动汽车全产业链技术体系。 当前,在各种新能源汽车的技术路线中,以混合动力、纯电动汽车和燃料电池汽车为代表的电动汽车被普遍认为是未来汽车能源动力系统转型发展的主要方向,已经成为世界汽车强国和主要汽车制造商发展重点。中国已经是世界汽车产业大国,但“大而不强”,未来的汽车工业必须探求新的思路。电动汽车产业有望为中国汽车工业开

拓新的增长点。 经过十年一剑的历程,中国的电动汽车已经开始从研究开发的阶段进入了产业化的阶段,其中国内新能源汽车研发制造且已量产的车企分别有:比亚迪、东风、众泰集团、北汽新能源、奇瑞汽车、上汽荣威;外企及合资汽车制造商分别有:特斯拉、丰田、日产、宝马、雪佛兰等。 未来10年是中国新能源汽车发展的战略机遇期,中国高度重视电动汽车的发展,在2011年3月出台的“十二五”规划纲要中,中国把新能源汽车列为战略性新兴产业之一,提出要重点发展插电式混合动力汽车、纯电动汽车和燃料电池汽车技术,开展插电式混合动力汽车、纯电动汽车研发及大规模商业化示范工程,推进产业化应用。未来中国电动汽车将迎来新一轮的高速发展。 经过2012和2013年的缓慢起步,全球电动汽车销量终于在2014年下半年爆发,6月和9月两个月的销量均突破3万辆,然而,能够带来这些销量是跟国家对能源电动汽车的免税补贴密不可分。2015年1月到4月,我国新能源汽车累计生产3.44万辆;其中,纯电动乘用车生产1.59万辆,插电式混合动力乘用车生产8780辆,纯电动商用车生产6416辆,插电式混合动力商用车生产3330辆。根据国际能源署的预测,到2021年纯电动汽车,混合动力汽车保有量将达到2000万辆,世界电动汽车产业将进入快速发展的阶段。 二、新能源电动汽车分类 1、混合动力汽车(无需外部充电)

新能源汽车项目可行性分析报告详解

新能源电动车项目 可 行 性 分 析 报 告 项目名称:××新能源车项目 项目类别:×× 项目负责人:××× 联系电话:××××× 项目实施单位:××××××××××× 编制日期:2016年10月15日

新能源汽车项目可行性分析报告 第一部分电动汽车成为新能源汽车主要发展 方向 1、进入21世纪,能源问题已成为困扰全球各国经济发展的重大问题,石油这一工业发展黑色血液的逐渐枯竭要求人们不断寻找新的能源,并且逐步改变目前的用能方式及结构。 2、传统汽车在全球保有量的不断增加使人类面临能源短缺、气候变暖、空气和水质量下降等问题。针对这些问题,各国政府部门与跨国汽车企业从不同技术路线出发,加大新能源汽车技术开发力度。 3、从20世纪末发展起来的现代电动汽车在新能源汽车的多种技术中脱颖而出,具有低排放甚至零排放、热辐射低、噪音低且环境友好等特点,是节能、环保和可持续发展的新型交通工具,具有广阔的发展前景。先进的电动汽车包括纯电动(BEV)、混合动力(HEV)与燃料电池汽车(FCEV)等三类。 4、未来的汽车仍将是以电能驱动为主,这是国际汽车界对新能源汽车发展方向的既定共识。具有高效率、无排放,不依赖汽油的纯电动汽车是将来城市用车的主要发展方向,而目前在市场上销售的纯电动汽车,以微型车为主,随着近年来动力电池技术的巨大发展,纯电动汽车技术已进入了快速发展期。虽然混合动力不是未来汽车能源问题的终极解决方案,但作为传统汽车与未来纯电动汽车之间的过渡方案,混合动力汽车是目前较为实用的电动汽车技术。 第二部分新能源汽车立项的背景随着全球能源危机的出现,油价不断上涨,新能源汽车的发展成为近年来汽车工业发展的主要方向之一。政府的大力扶植与推动,产业竞争与合作为我国新能源汽车的发展奠定了一定基础,但是也面临着技术不过硬,配套设施以及相关法律法规不完善等不利因素。在能源与环保的压力下,新能源汽车无疑代表着汽车工业发展的主流方

纯电动汽车动力性计算公式

纯电动汽车动力性计算公式

XXEV 动力性计算 1 初定部分参数如下 整车外廓(mm ) 11995×2550×3200(长×宽×高) 电机额定功率 100kw 满载重量 约18000kg 电机峰值功率 250kw 主减速器速比 6.295:1 电机额定电压 540V 最高车(km/h ) 60 电机最高转速 2400rpm 最大爬坡度 14% 电机最大转矩 2400Nm 2 最高行驶车速的计算 最高车速的计算式如下: mph h km i i r n V g 5.43/70295 .61487 .02400377.0.377.00 max ==??? =?= (2-1) 式中: n —电机转速(rpm ); r —车轮滚动半径(m ); g i —变速器速比;取五档,等于1; 0i —差速器速比。 所以,能达到的理论最高车速为70km/h 。 3 最大爬坡度的计算 满载时,最大爬坡度可由下式计算得到,即 00max 2.8)015.0487 .08.9180009 .0295.612400arcsin( ).....arcsin( =-?????=-=f r g m i i T d g tq ηα

kw 100w 5.8810)15.211016.86.08cos 016.08.9180008sin 8.918000(86.036001).15 .21..cos ...sin ..(36001 20 02 max <k V V A C f g m g m P slope slope D =???+???+???=++=ααη 从以上动力性校核分析可知,所选100kw/540V 交流感应电机的功率符合所设计的动力性参数要求。 5 动力蓄电池组的校核 5.1按功率需求来校核电池的个数 电池数量的选择需满足汽车行驶的功率要求,并且还需保证汽车在电池放电达到一定深度的情况下还能为汽车提供加速或爬坡的功率要求。 磷酸锂铁蓄电池的电压特性可表示为: bat bat bat bat I R U E .0+= (4-1) 式中: bat E —电池的电动势(V ); bat U —电池的工作电压(V ); 0bat R —电池的等效内阻(Ω); bat I —电池的工作电流(A )。 通常,bat E 、0bat R 均是电池工作电流bat I 以及电流电量状态值SOC (State Of Charge )的函数,进行电池计算时,要考虑电池工作最差的工作状态。假设SOC 为其设定的最小允许工作状态值(SOC low ),对应的电池电动势bat E 和电池等效内阻0bat R 来计算电池放电的最大功率,即可得到如下计算表达式: 铅酸电池放电功率: bat bat bat bat bat bat bd I I R E I U P )..(.0-== (4-2) 上式最大值,即铅酸蓄电池在SOC 设定为最小允许工作状态值时所能输出的最大功率为: 2 max 4bat bat bd R E P = (4-3)

纯电动汽车发展态势分析

纯电动汽车发展态势分析 文章围绕纯电动汽车的发展做了SWOT分析,并对纯电动汽车现阶段的发展做了展望。 标签:纯电动汽车;优势;劣势;机会;威胁 前言 随着人们生活水平的提高,汽车工业得到了迅速发展,汽车已经成为必不可少的代步工具。但随之而来的空气污染、不可再生能源的日渐枯竭等问题,使人们迫切需要新能源来替代主流的燃料(包括汽油、柴油等)。目前,市场上的主流新能源汽车有纯电动汽车、插电式混合动力、油电混合动力三种。其中,纯电动汽车完全由二次电池(如铅酸电池、镍镉电池、镍氢电池或锂离子电池等)提供动力的汽车。由于不借助任何汽油燃料的帮助,是一种“零排放”的汽车,被公认为是目前最理想的交通工具。 1 优势S(strengths) 1.1 节能环保 纯电动汽车由电动马达、马达控制器、可充电的蓄电池等组成,马达控制器从蓄电池获取电能,带动电动马达旋转,将转矩传递给驱动轮,从而驱动汽车前进。在这个过程中,电动机取代了传统的内燃机,用蓄电池储能取代传统的汽油油箱,用电能取代了化学能。驾驶者通过控制电子油门踏板,给出了模拟电子信号给控制器或处理器,再由控制器或处理器将模拟信号处理后控制电动机的输出功率、转速及正反转等,所有能量来源于车载蓄电池。由于蓄电池里主要是电解液和水,在汽车运行时不产生排气污染。电动机自身工作平稳,噪声也较内燃机小,减少了噪声污染,几乎是“零污染”,对环境保护非常有利。 1.2 能量转换效率高 在城市道路中,交通拥挤,红绿灯多,车辆频繁启停,行驶速度不高。若是传统汽车,车辆停止和起步会耗损能量。如老驾驶员技术不纯熟,在车速较低时可能使发动机熄火,导致道路堵塞。这时,纯电动汽车优势就凸显出来。它可使汽车停车使电机停转不空转,此时不消耗能量。有些纯电动汽车上装备有再生制动系统,在制动时,电动机可将转动产生的制动力矩通过传动系统传到驱动轮上,实现制动减速;还可将上下坡和制动时的部分惯性能转化成电能,存储于动力电池中,这样就可以实现制动能量的回收,大大提高了电动机能量的利用效率。 1.3 结构简单,维修方便 传统汽车的保养比较繁杂,一级保养、二级保养项目繁多,次数也多。比如

纯电动车市场发展现状(DOC)教案资料

纯电动车市场发展现状分析 一、全球市场规模 中投顾问在《2016-2020年中国电动汽车产业投资分析及前景预测报告》中表示,相较于混合动力汽车,电动汽车(EV和PHEV)受限于动力电池技术和成本,发展速度较慢。2013年特斯拉推出纯电动汽车,推动了电动车的大规模商业化应用,加速了电动汽车上下产业链技术水平提升和成本下降。2014年全球电动汽车销量达到了56万辆,累计保有量达到了138.5万辆,2011-2014年间复合增长率达到了36.3%。 图表2010-2014年全球电动汽车销量 数据来源:IEA 在各国政府的积极推动和主要汽车制造商努力下,基于动力电池技术进步和成本降低,电动汽车的发展进程正在不断加快。2009年,德国在《国家电动汽车发展计划》明确将发展纯电动汽车和插电式混合动力汽车作为主要技术路线。2010年,韩国政府推出了“绿色车辆综合推进路线图”,明确未来新能源汽车的发展以纯电动汽车、插电式混动汽车和燃料电池汽车为主要技术路线。2015年,《中国制造2025》将节能与新能源汽车列为十大重点发展领域,明确继续支持纯电动汽车、插电式电动汽车和燃料电池汽车发展。据国际能源机构预测,到2030年电动汽车将占世界汽车销量的30%。插电式混合电动汽车和纯电动车已成为电动汽车发展的方向。2014年全球电动汽车销量中,纯电动汽车和插电式电动汽车占比分别达到了61%和31%。

图表2014年全球电动汽车分类型销量占比 数据来源:Frost & Sollivan 图表2014年全球电动汽车分地区销量占比 数据来源:Frost & Sollivan 二、市场产销规模 (一)2015年 1、纯电动乘用车销量

纯电动汽车能耗经济性分析

纯电动汽车能耗经济性分析 由于传统汽车的能源和环境问题的日益突出,电动汽车以其清洁和使用可再生能源的优势,使得对于电动汽车的研究、商业化和产业化处于日渐重要的地位。动力驱动系统作为电动汽车的重要系统,它的传动效率对于电动汽车的能耗经济性有着重要的影响。本文基于在对传统汽车改造成的纯电动汽车的基础上分析了其传动系统的效率问题。 1 能耗经济性的评价 车辆能耗经济性评价指标是以一定车速或循环行驶工况为基础,以车辆行驶一定里程的能耗或一定能耗行驶的里程数来评价。以动力电池为能源的纯电动汽车,其评价指标包括续驶里程、单位里程能量消耗、单位能耗行驶里程等。本文以车载蓄电池组为考量,故在考虑能量利用效率时,不再考虑蓄电池组的充电效率。 2 能耗利用率 国内对于纯电动汽车的研究大多是基于传统汽车的改造,将发动机和油箱用蓄电池和电机代替,仍保留了变速器等传统部件。图1为能量经过各主要传动部件的流程图。 电动汽车能源利用率: 式中,E e,为电动汽车上的有效驱动能量;E b为电池组在行驶中所消耗的总能量。 式中,G e,为电动汽车的有效载重量;f s为车轮的滚动阻力系数;V为车辆行驶速度;T为车辆行驶时间。 令E d为电动汽车车轮上的驱动能量,则:

式中,ηe,为电池组能量经由电机和机械传动系统到达驱动轮的能耗效率。 式中,ηc为机械传动效率;ηm为电机传动效率;ηb为电池放电效率。 ηw为电动汽车在一定工况下驱动轮上能量转化为有效驱动能量的效率。 式中,G r为电动汽车总重力;φ为道路阻力系数;k为汽车在非稳定工况下空气阻力损失比等速时空气阻力增加的速度;g为重力加速度;C D为空气阻力系数;A为汽车前迎风面积;δ为电动汽车旋转质量换算系数。 为道路阻力系数,为电动汽车在道路循环中所需的驱动功与克服实际道路阻力所做功的比值。φ=f+i,i为车辆道路行驶坡度。 令ηε=G e/G t为汽车重力利用率,是汽车克服载重量所做的功和汽车的总重量所做的道路阻力功的比。 为电动车驱动力利用率,是汽车克服总重量道路阻力所做的有用功与汽车驱动轮驱动力所做功的比。在汽车等速情况下,K=1,d v/d t=0,ηd可简化为:

电动汽车市场分析报告

新能源汽车行业 概述: ●十二五规划中明确要求,重点发展新兴产业,新能源汽车要着重发展插电式混 合动力汽车、纯电动汽车、燃料电池汽车等安全、节能的汽车。 ●即将出台的《节能与新能源汽车产业发展规划》(2011 年~2020 年),为我国新能源汽车的发展指明了方向。 ●在油价和政策的双重影响,节能和新能源汽车将更受关注。油价上涨在一定程 度上影响到消费者利益的同时,也在发挥着它的积极作用,促使一些消费者改变消费习惯。可以预见的是,随着燃油成本上升和消费者对燃油经济性的关注,再加上“节能产品惠民工程”的惠及面不断扩大,小排量、经济型轿车和新能与汽车的市场前景要乐观一些。 ●新能源汽车必将取代传统内燃机汽车。在石油资源枯竭和环境污染严重的双重 压力下,传统汽车产业已经走到了穷途末路,人类再次站在了交通能源动力系统变革的十字路口,以纯电动汽车为代表的新能源汽车将最终取代传统内燃机汽车。 ●新能源汽车有望成为“再次改变世界的机器”。汽车曾被誉为“改变世界的机 器”,在给我们带来快捷交通方式的同时,也产生了能源安全、环境污染和全球气候变暖等一系列问题。目前节能减排已成为全球汽车产业的首要任务,发展新能源汽车产业已成为我国汽车工业的战略方向。 ●中国发展新能源汽车产业的优势。巨大的市场容量,明确的增长预期;政策的

大力扶持;较好的技术储备;众多企业和科研机构的联合攻关;能源状况、自然资源对发展新能源汽车产业比较有利。预计到2015年中国新能源汽车将达到100万辆左右,年均复合增长率在216%左右。 ●初步建立了“三纵三横”的研发布局和技术体系,技术路线基本明确。混合动 力汽车具有较好的节能减排效果,技术上易实现,是近期产业化重点,但其过渡性特征明显;纯电动汽车是中长期发展方向;燃料电池是未来汽车工业发展战略方向。预计“三纵”各类产品将各领风骚数十年。与此同时,多能源动力总成控制、驱动电机和动力蓄电池”三横”技术得到很大提升。 ●产业政策加快新能源汽车技术进步的步伐。国家对私人购买新能源汽车补贴政 策意义重大,政策效果将远大于政府补贴对公交领域新能源汽车的影响。预计国家近期将出台全面、系统的新能源汽车发展规划,为新能源汽车产业发展增添新动力,同时也将成为新能源汽车类股票表现的催化剂。 ●新能源汽车的产业带动作用强。将带动上游矿产资源开采、电池材料制造和充 电设备需求的大幅增长,此外还将产生电池租赁等新的商业模式。整车领域则看好传统汽车基础扎实、具有一定新能源产业链技术、较强整合匹配能力和产业化能力的公司。 ●驱动电机系统是新能源车三大核心部件之一。电机驱动控制系统是新能源汽车 车辆行使中的主要执行结构,其驱动特性决定了汽车行驶的主要性能指标,它是电动汽车的重要部件。电机驱动系统主要由电动机、功率转换器、控制器、各种检测传感器以及电源等部分构成。 ●动力电池是新能源汽车的绿色心脏。动力电池是电动汽车的动力之源,是能量

纯电动汽车发展前景浅析

摘要:随着石油储量的下降和温室效应的日益严重,传统汽车的发展前景令人堪忧,许多汽 车厂纷纷转型,开始研发汽车。由于受到国家政策、当地环境和研发技术等多方面因素的影响,目前市场上的汽车种类繁多,纯就是其中最常见的一种。本文将以我国纯的发展现状和 特点为基础,对我国纯的发展前景进行分析。 1 纯的发展现状 目前我国的纯产业的发展势头相当强劲,得益于国家政策的支持和校企技术合作的帮助, 纯在销量和技术上都取得了较大的突破。国家政策方面,通过购车补贴以及当地政府的政策 扶助,我国纯的销量飞速增长,自2012年起年销量始终保持在万台以上,占据汽车销售的大半壁江山;校企技术合作方面,一汽、东风、上汽、吉利等汽车龙头纷纷就地取材,与邻近 大学展开技术合作,共同研发纯,比如东风公司与武汉理工大学共同研发了东风风神E70, 该车采用镍钻锰酸锉,电池容量高达49.1 kWh,最大续航里程可达300 km,补贴后售价仅13.98万元人民币,在当前纯市场中具有较强的技术与价格竞争力。 2 纯的特点 2.1发展优势 纯相比传统的内燃机汽车,最大的优势莫过于不会对环境产生污染,不像汽油机或者柴油 机会产生大量的CO2和其他的有害气体。其次纯充电所需电能的来源众多,火力发电、水利发电、风能发电乃至核能发电等方式,都可以作为电力来源,因此不会受到石油枯竭的制约,具有很大的发展空间。 而在我国在发展纯方面,也有较大的技术优势,在纯的两大核心部件和电机上,都取得了 技术上的突破性发展。方面,以制造起家的比亚迪公司,由于多年研发的技术积累,成为我 国乃至全球在汽车行业中的一匹黑马,在2007年成功研发出磷酸铁铿电池,并实现了量产,结束了特斯拉公司三元铿离子电池在纯电动车方面的技术垄断地位。电机方面,众泰集团在 驱动电机和整车控制系统上都研发出自己的专利技术,并取得我国第一个纯生产批号。 除以上发展优势外,我国在矿产资源上也有着极大的优势。纯的性能与成本很大程度上取 决于其。目前,综合性能和成本考虑,纯采用锉离子电池是其唯一的选择,而中国拥有着储 量超过百万吨级别的西藏的扎布耶盐湖,这是欧洲、日本和美国等资源匮乏国家所不具备的 矿产优势。 2.2发展劣势 我国发展纯最大的问题是配套的基础设施建设相当不完善,可以说大多数城市的配套设施 建设几乎是一片空白。再加上我国工业发展起步较晚,城市建设规划不合理,许多地方电网 建设混乱,不利于充电站或是换电站的规划建设。此外,各汽车厂的充电接口都不一致,更 加大了建设的难度,而建设配套的基础设施投资巨大,远非一家或几家汽车公司所能承担, 因此需要企业和相关政府部门共同合作寻找解决办法。 3 纯的发展前景 综上所述,虽然纯在我国的发展仍存在诸多问题,但以发展前景而论仍是有相当大的潜力的。 (1)环保方面,近几年来,国民饱受雾n等环境污染之害,已拥有较高的环保意识,纯在环保方面的优势较传统的内燃机汽车非常明显,因此会有越来越多的环保人士选择纯出行。(2)能源方面,我国目前的石油储量处于国际较低水平,对国外石油的进口依赖性较大,而采用纯可以有效利用我国丰富的发电资源,比如在夜间进行充电,避开白天的波峰用电期,

纯电动汽车技术专利竞争态势分析报告文案

纯电动汽车技术专利竞争态势分析报告 首先从纯电动汽车技术的专利区域分布情况来看当前的发展现状。日本区域专利数量领先于其他国家,数量上占据绝对优势。但值得注意的是,中国的专利数量排在日本之后,居于第二,甚至在数量上超过美国专利,而美国、德国和中国在纯电动汽车专利数量上差距并不明显,可以说不分伯仲。同时可以发现,对于汽车技术领域数百万的专利数据而言,该领域的专利绝对数量较少,这主要是因为纯电动汽车技术的大规模开发刚刚兴起,技术发展还有广阔的发展空间。

结合趋势图(图2)来看,可以看到,纯电动汽车专利大部分都是在90年代后申请的,之前专利数量不多,而日本专利自1993年数量开始大幅增加,并于1996年达到顶峰,这表明在1993年前后,纯电动车技术实现了突破,而从近年的情况来看,中国和美国专利数量开始增加,特别是中国,专利数量直线攀升,相比之下日本的专利数量已经呈下降的趋势,这表明纯电动汽车技术在中国和美国这两个汽车最大的消费市场的潜力开始显现。

从图3、图4可知,当前纯电动技术主要技术手段为电源管理、电机控制、系统总成、电源类型、驱动系统、传动系统以及其他设备,其中电源管理占据了较大比重。而纯电动技

术相关的功能效果主要集中在稳定可靠、设计合理、安全性好、提高效率、节约能源、精度高、操作方便上,其中稳定可靠和设计合理占了很大的比例。由此可见当前纯电动汽车技术侧重的是设计制造的合理、安全、可靠性,而汽车各项性能指标的专利不多,研发处于初级阶段。 再结合技术手段的趋势图(图5),可以看到当前电源管理的专利申请量近两年上升势头强劲,是纯电动技术发展中的侧重点和热点所在。 通过上述排名与趋势图的分析,基本上对纯电动汽车的技术与功效的大致情况有了了解,下面进一步通过技术-功效矩阵图,进行更加深入的探讨。下图中,横轴表示各技术手段,纵轴表示各功能效果,交叉点数量表示该相应技术手段实现该功能效果的专利数量,该技术点的专利越多,球形越大。 下面是针对电源管理和电机控制这两项技术所做的技术与功效的剖析。

电动汽车动力性能分析与计算

电动汽车与传统内燃机汽车之间的主要差别是采用了不同的动力源,它由蓄电池提供电能,经过驱动系统和电动机,驱动电动汽车行驶。电动汽车的能量供给和消耗,与蓄电池的性能密切相关,直接影响电动汽车的动力性和续驶里程,同时影响电动汽车行驶的成本效益。 电动汽车在行驶中,由蓄电池输出电能给电动机,用于克服电动汽车本身的机械装置的内阻力,以及由行驶条件决定的外阻力。电动汽车在运行过程中,行驶阻力不断变化,其主电路中传递的功率也在不断变化。对电动汽车行驶时的受力状况以及主电路中电流的变化进行分析,是研究电动汽车行驶性能和经济性能的基础。 1、电动汽车的动力性分析 1.1 电动汽车的驱动力 电动汽车的电动机输出轴输出转矩M,经过减速齿轮传动,传到驱动轴上的转矩Mt,使驱动轮与地面之间产生相互作用,车轮与地面作用一圆周力F0,同时,地面对驱动轮产生反作用力Ft.Ft 与F0大小相等方向相反,Ft方向与驱动轮前进方向一致,是推动汽车前进的外力,将其定义为电动汽车的驱动力。有: 电动汽车机械传动装置是指与电动机输出轴有运动学联系的减速齿轮传动箱或变速器、传动轴及主减速器等机械装置。机械传动链中的功率损失包括:齿轮啮合点处的摩擦损失、轴承中的摩擦

损失、旋转零件与密封装置之间的摩擦损失以及搅动润滑油的损失等。 1.2 电动汽车行驶方程式与功率平衡 电动汽车在上坡加速行驶时,作用于电动汽车的阻力与驱动力始终保持平衡,建立如下的汽车行驶方程式: 以电动汽车行驶速度va乘以(2)式两端,考虑机械损失,再经过单位换算之后可得: 或 由(4)、(5)两式可以看出,电动汽车在行驶时,电动机传递到驱动轮的输出功率与体现在驱动轮上的阻力功率始终保持平衡。将(4)变换可得: 式中PM为电动机的输出功率。 用曲线图表示上述功率关系,将电动机的输出功率、汽车经常遇到的阻力功率与对应车速的关系归置在x-y坐标图上得到电动汽车功率平衡图如图1所示。

低速电动车调研市场分析报告报告材料.doc

低速电动车市场调研 一、低速电动车概念 1、低速电动车概念 低速电动汽车是指速度低于70km/h 的简易四轮纯电动汽车。一般最高速度为70km/h , 而外形、结构、性能与燃油汽车类似。低速电动车广泛的定义可以涵盖电动自行车、电动摩 托车、电动三轮车、低速电动汽车,而四轮低速电动车又可分为: 高尔夫车及改装车。用于高尔夫球场、公司仓库搬运货物、建筑工地、家庭使用,年产量 2~3 万辆 观光车、老爷车。譬如用于车速20~30km 旅游观光、住宅小区保安巡逻等场所使用。 全国约有 200 多家企业生产,年产约 1 万辆 打猎车、越野车。由于电动车具有低速大扭矩的特点,爬坡能力比内燃机汽车更强。 年产 1 万辆左右 特种车。如高空作业车、城市扫地车、垃圾车等。年产l 万辆,国内已经开始使用 警用巡逻车。年产l 万辆左右 简易客车。车速在40km/h , 6~20 个座位,产量不多,主要集中在山东省小城镇 微型电动轿车。主要产地在山东,多数为私人购买,用于出租、客运、私家车等。 车速在 50~60km/h, 2009 国内销售8000 多辆,出口2000 多辆 二、发展低速电动车背景 国内汽车业界对于是否要发展低速电动汽车存在争议,目前低速电动汽车并不在政府的 节能与新能源汽车的鼓励范围之列, 一些生产企业也没有汽车生产资质。国家发改委、工信 部等主管部门没有明令禁止发展低速电动汽车, 但是由于低速电动汽车不能进入《车辆生产 企业及产品公告》 , 因此不能上牌 , 所以仍然属于受限制行列。 随着资源与环境双重压力的持续增大,电动汽车已成为未来汽车工业的发展方向。我国 电动汽车产业虽已取得很大进步,但在关键技术方面与海外汽车巨头相比还存在一定差距。 从我国目前的市场容量、技术水平看低速电动汽车具有经济性能好、节能环保、节约资源、 使用成本低、充电方便等优势,是二、三线城市最经济、最环保、最易推广的交通工具,是 我国实现绿色交通的战略选择。随着国家节能与新能源汽车补贴政策的出台,我国重点扶持纯电动汽车的战略路线基本确定。当前市场在售或即将进入市场的纯电动汽车基本都是高端 电动车,价格大都在 15 万元以上,甚至有的达到20 多万元,即便是享受国家补贴,但大部分人还是觉得价格偏高,同时担心充电设施不配套及电池的续航里程短等问题,导致企业已上“公告” 的纯电动汽车迟迟无法推出市场,个别已上市的产品也得不到消费者的认可。相反,低速电动汽车因为价廉物美,得到了不少消费者的青睐。在山东、江苏、河南、浙江、 河北等地一些城镇,节能环保低速纯电动汽车已经形成一定的规模,保有数量日益增长。由于我国对汽车产品准入采取的是公告管理,没有进入国家公告的汽车产品不能上市销售,所以目前多数低速电动汽车生产企业生产的电动汽车不能进入工信部的《车辆生产企业及产品公告》。当前,为解决现有高端、高价电动汽车产品有价无市的市场形势,有效利用电动汽 车现有技术水平,在发展电动汽车大方向不变的前提下,优先发展低速电动汽车更符合我国 的现实国情,也更有利于电动汽车的推广应用。 三、低速电动车市场潜力 优先发展低速电动汽车符合我国新能源汽车战略规划,根据我国汽车市场需求的层次

纯电动车经济性能影响因素仿真教学文案

纯电动车经济性能影响因素仿真 1 纯电动汽车经济性能指标 纯电动汽车是以二次电池为储能载体二次电池以铅酸电池镍氢电池埋离子电池为主。由于二次电池目前在储电量、充放电性能、使用寿命、成本等方面无法与内燃机相比,因此近一时期以来,研究进展不大,大多数研究单位已将研究目标转为混合动力汽车。纯电动汽车的经济性能是在保证动力性的前提下,汽车以尽量少的能量消耗行驶的能力,纯电动汽车在等速行驶、加速行驶和循环工况下的能量消耗率和续驶里程来决定经济性能的优劣。车辆能耗经济性评价常用的指标都是以一定的车速或者循环行驶工况为基础,以车辆行驶一定里程的能量消耗量或一定能量可反映出车辆行驶的里程来衡量。纯电动汽车能量消耗率是动力电池存放的电量维持汽车某一工况下运行的能力,如单位里程消耗的能量、百公里消耗能量;续驶里程是指纯电动汽车从动力电池全充满状态开始到试验规定结束时所走过的里程,如以45km/h行驶的里程等。为了使电动汽车能耗经济性评价指标具有普遍性,其评价指标应该具有以下三个条件: (1)可以对不同类型的电动汽车进行比较; (2)指标参数值与整车存储能量总量无关; (3)可以直接通过参数指标进行能耗经济性判断; 不同的纯电动汽车在不同的行驶工况下能量消耗率和续驶里程可能会不同,很难用统一的公式进行计算,下面将运用仿真的方法得出纯电动汽车的续驶里程和能量消耗率。 2 铃木电动车仿真分析 根据目前国内外有关学者对纯电动汽车的研究结论,可以看出,纯电动汽车的研发出现了难以进行下去的问题。一方面是由于纯电动汽车面临的成本和续驶里程等问题,一直没有很好的解决;另一方面,和人们对电动汽车的要求过于完美化,提出不切实际的过高要求有关。因此,对纯电动车经济性能影响因素的分析和研究,可以对解决这个问题找到一些方法或者启示。 电动汽车仿真软件ADVISOR由美国国家再生能源实验室开发,使用后向仿真为主、前向仿真为辅的混合设计方法,具有车辆总成参数匹配与优化、传动/驱动系统能量转化分析、排放特性/能量消耗对比、车辆能量管理策略评价、整车综合性能预测分析等功能。以下是铃木某款纯电动车的整车部分参数,汽车采用永磁电机和镍氢电池,并建立ADVISOR的仿真模型,分析影响纯电动汽车经济性能的参数[2]。建立ADVISOR的仿真模型需要的参数有整车整备质量、空气阻力系数、迎风面积、轴距、最大载荷、电机最大功率、电机额定电压、电机最大扭矩、电池容量、主减速比。在已知以上参数的情况下建立ADVISOR的仿真模型。微型电动汽车具有无污染、低噪音、小体积、低速度和易驾驶等优点,使得它可以穿梭与大城市的各种道路,能够直接到达出租车都不能到达的身居小巷。微型电动汽车的最高时速一般为45km/h,虽然比一般小汽车的速度慢,但比步行或骑自行车快得多。因此微型电动汽车作为代步工具是相当合适的。另外,微型电动汽车的低速度也提高了它在居住区行驶时的安全性。驾驶微型电动汽车,比驾驶小汽车简单得多。ADVIDOR提供了道路循环(Drive Cycle)、多重循环(Multiple)和测试过程(Test Procedure)3种仿真工况来仿真车辆的性能。道路循环提供了CYC.ECE、CYC.FTP和CYC.1015等56种国外标准的道路循环供用户选择,另外提供了行程设计器(Trip Buider),可以将多达8种不同的道路循环任意组合在一起,综合仿真车辆的性能。多重循环功能可以用批量处理的方式以相同的初始条件,快速计算和保存不同的道路循环情况下的仿真结果,并将它们显示在一起,供用户比较。测试过程包括

电动汽车调研分析

电动汽车调研报告 日期:2015.11.09 随着我国经济和社会的快速发展,经济、技术实力和国力不断增强,温室气体排放总量仍在大幅增加,国际上要求我国承担量化减排温室气体义务日益强烈,中国面临着越来越大的碳减排压力。另一方面,近年来我国环境污染问题,特别是雾霾天气问题凸显。而来自《中国低碳经济发展报告2013》的调查中,认为PM2.5的主要排放源为:机动车排放和道路扬尘占比50%,工业排放占比37%,石化燃料燃烧和电厂排放占比10%左右。与传统汽车相比,电动汽车不燃烧汽柴油等石化能源,在能源转化效率上显著高于传统汽车,这有利于节约能源和减少温室气体排放量,减少大气污染排放来源,提升环境质量。 从国家战略高度思考,在石化能源紧缺,环境污染愈加严重的今天,发展电动汽车已成为降低石化能源消耗、减少环境污染的有效举措,各国政府开始逐渐扶持电动汽车产业的发展。中国面临着严重的环境污染问题、原油对外依赖度居高不下、汽车产业发展也落后于发达国家,基于以上几点,发展新能源汽车是中国国家战略的必然选择。 下面对市场上销售的5款纯电动汽车作调研: 车型信息 北汽 EV200>2015款 轻享版 比亚迪e6>2016款 豪华型 江淮iEV5>2015 款 奇瑞eQ>豪华型 特斯拉MODEL S>MODEL S 2014 款MODEL S 85 基本属性 上市时间2014年12月16日2015年10月2015年2014年11月2014年4月动力类型纯电动 72马力纯电动122马力纯电动 68马力纯电动 57马力纯电动 367马力生产厂家北汽新能源比亚迪安徽江淮汽车 奇瑞新能源汽车技术 有限公司 特斯拉 颜色白色,银色蓝,红,黑,白红、白、银冰雪蓝、奇瑞白、摩卡 棕、翡翠紫、卡其白、 激情红 棕色,红色,白色,珍 珠白,灰色,蓝色,绿 色,黑色,银色 质保三年或6万公里五年或10万公里五年或10万公里五年四年或8万公里中央补贴 4.5万(2015) 5.4万 4.5万(2015) 4.5万 地方补贴 4.5万北京5.4万 4.5万 4.5万 厂商指导价(万元)24.6930.98 18.0816.49 73.40

电动汽车市场前景分析

电动汽车市场前景分析 摘要:随着环境问题日趋严重,全球石油能源日益短缺,新能源汽车,尤其是纯电动汽车逐渐成为未来汽车发展的主攻方向。本文通过问卷调查结合网络数据统计结果,对南通市电动汽车的发展现状和市场前景做出了分析,提出了几点建议。 关键词:电动汽车;市场现状;市场前景;发展策略 大气污染防治,石油短缺,节能和减排问题上,我国面临越来越大的压力,发展纯电动汽车是我国汽车产业的一次重要机遇。本文以江苏省南通市为例,针对南通市民对电动汽车的了解、关注因素以及接受度、购买倾向等因素做了调研,用以分析南通市电动汽车市场发展的趋势和前景。调查结果显示,92.5%的人表示当有购车需求的时候会考虑购买电动汽车,主要关注要素如下:1.价格是首要关注要素,60%的群众能够接受的价格区间在5W-10W,25%的群众对于中端价格10W-15W也是能够接受的,较少数的人群认为15W-20W也较为满意。2.动力性及续航能力是次要关注要素,80%的群众要求续航车速能够达到80km/h,能够接受的最小续航里程为300km。3.售后,尤其是动力电池的保修期是第三关注要素,平均调查结果为15万公里保修期。4.外观是次要关注要素,85%的群众认为电动汽车外观较新颖,接受度较高。总体数据结果分析显示,目前南通市电动汽车用户购买比例偏低,但市场潜力较大;购买顾客群体以女性为主且年龄普遍偏低(以20—35岁为主);销售区域主要集中在市区,周边县区相对较少。

一、南通市电动汽车市场前景分析 (一)优势分析(S—Strength) 1.汽车零部件产业领域基础良好 目前南通市中型规模的汽车零配件企业有将近60余家。南通市涉及到生产汽车零部件企业产品橡塑件制造、汽车玻璃系列、汽车电器产品系列、蓄电池生产部门、轮胎制造等近百个品种。 2.新能源汽车重大项目加快推进 国企、外资或者合资企业已明确4个投资项目,投资金额达到4.5个亿。(1)江苏大地投资有限公司,自主研发12.5米插电式混合动力接待车、10.5米纯电动公交车已经初步投入使用,目前正在研发中的纯电动清扫车、纯电动或混合动力的清障车等车型也即将面向市场。(2)苏通科技技术园区受政府委托组建纯电动汽车所需要的零配件工厂。(3)南通市政府相继出台了相关的扶持政策,促进我市的汽车行业发展。(4)我国将持续推进新能源信用体系建设。 (二)劣势分析(W—Weakness) 1.技术创新水平较低,产业链不够完善,产业集群不太明显。目前南通市在光伏产业链上严重缺失了太阳能电池及组件这一中间环节,在那些高附加值,多盈利点环节上,还存在“断链”现象,尚未形成本土化,规模化的生产配套。 2.南通市发展新能源汽车所面临的另一较大问题是充电桩数量少,且分布不均匀,消费者有所顾虑。 (三)机遇分析(O—Opportunity) 目前,江苏省将发展纯电动汽车项目放在至关重要的位置上,政

纯电动汽车动力性计算公式(可编辑修改word版)

XXEV 动力性计算 1初定部分参数如下 整车外廓(mm)11995×2550× 3200(长×宽×高) 电机额定功率100kw 满载重量约 18000kg 电机峰值功率250kw 主减速器速比 6.295:1 电机额定电压540V 最高车(km/h)60 电机最高转速2400rpm 最大爬坡度14% 电机最大转矩2400Nm 2最高行驶车速的计算 最高车速的计算式如下: V max = 0.377 ? n.r i g i = 0.377 ?2400 ? 0.487 1? 6.295 = 70km / h = 43.5mph 1) 式中: n—电机转速(rpm); r—车轮滚动半径(m); i g —变速器速比;取五档,等于1; i 0 —差速器速比。 (2- 所以,能达到的理论最高车速为70km/h。 3最大爬坡度的计算 满载时,最大爬坡度可由下式计算得到,即 =arcsin(T tq.i g.i0.d-f)=arcsin(2400?1?6.295?0.9-0.015)=8.20 max m.g.r18000 ? 9.8? 0.487

所以满载时最大爬坡度为 t a n ( max )*100%=14.4%>14%,满足规定要求。 4 电机功率的选型 纯电动汽车的功率全部由电机来提供,所以电机功率的选择须满足汽车的最高车速、最大爬坡度等动力性能的要求。 4.1 以最高设计车速确定电机额定功率 当汽车以最高车速V max 匀速行驶时,电机所需提供的功率(kw )计算式为: 1 C .A .V 2 P n = (m .g . f 3600 + d max ).V 21.15 max (2-1) 式中: η—整车动力传动系统效率(包括主减速器和驱动电机及控制器的工作效 率),取 0.86; m —汽车满载质量,取 18000kg ; g —重力加速度,取 9.8m/s 2; f —滚动阻力系数,取 0.016; C d —空气阻力系数,取 0.6; A —电动汽车的迎风面积,取 2.550× 3.200=8.16m 2(原车宽*车身高); V max —最高车速,取 70km/h 。 把以上相应的数据代入式(2-1)后,可求得该车以最高车速行驶时,电机所需提供的功率(kw ),即 1 C .A .V 2 P n = (m .g . f + D max ).V max 3600 ? = 1 3600 ? 0.86 21.15 (18000 ? 9.8? 0.016 + 0.6 ?8.16 ? 702 21.15 ) ? 70 (3-2) = 89.5kw <100kw 4.2 满足以 10km/h 的车速驶过 14%坡度所需电机的峰值功率 将 14%坡度转化为角度: = tan -1(0.14) = 80 。 车辆在 14%坡度上以 10km/h 的车速行驶时所需的电机峰值功率计算式为:

电动汽车动力匹配计算规范(纯电动)

XH-JS-04-013 电动汽车动力匹配计算设计规范 编制:年月日 审核:年月日 批准:年月日 XXXX有限公司发布

目录 一、概述 (1) 二、输入参数 (1) 2.1 基本参数列表 (1) 2.2 参数取值说明 (1) 三、XXXX动力性能匹配计算基本方法 (2) 3.1 驱动力、行驶阻力及其平衡 (3) 3.2 动力因数 (6) 3.3 爬坡度曲线 (6) 3.4 加速度曲线及加速时间 (7) 3.5 驱动电机功率的确定 (7) 3.6 主驱动电机选型 (8) 3.7 主减速器比的选择 (8) 参考文献 (9)

一、概述 汽车作为一种运输工具,运输效率的高低在很大程度上取决于汽车的动力性。动力性是各种性能中最基本、最重要的性能之一。动力性的好坏,直接影到汽车在城市和城际公路上的使用情况。因此在新车开发阶段,必须进行动力性匹配计算,以判断设计方案是否满足设计目标和使用要求。 二、输入参数 2.1 基本参数列表 进行动力匹配计算需首先按确定整车和发动机基本参数,详细精确的基本参数是保证计算结果精度的基础。下表是XXXX动力匹配计算必须的基本参数,其中发动机参数将在后文专题描述。 表1动力匹配计算输入参数表。 2.2 参数取值说明 1)迎风面积 迎风面积定义为车辆行驶方向的投影面积,可以通过三维数模的测量得到,三维数据不健全则通过设计总布置图测得。XXXX车型迎风面积为A

一般取值5-8 m 2 。 2)动力传动系统机械效率 根据XXXX 车型动力传动系统的具体结构,传动系统的机械效率T η主要由主驱动电机传动效率、传动轴万向节传动效率、主减速器传动效率等部分串联组成。 采用有级机械变速器传动系的车型传动系统效率一般在82%到85%之间,计算中可根据实际齿轮副数量和万向节夹角与数量对总传动效率进行修正,通常取传动系统效率T η值为78-82%。 3)滚动阻力系数f 滚动阻力系数采用推荐的客车轮胎在良好路面上的滚动阻力系数经验公式进行匹配计算: f =??? ???????? ??+??? ??+4 410100100a a u f u f f c 其中:0f —0.0072~0.0120以上; 1f —0.00025~0.00280; 4f —0.00065~0.002以上; a u —汽车行驶速度,单位为km/h ; c —对于良好沥青路面,c =1.2。 三、 XXXX 动力性能匹配计算基本方法 汽车动力性能匹配计算的主要依据是汽车的驱动力和行驶阻力之间的平衡关系,汽车的驱动力-行驶阻力平衡方程为 j i w f t F F F F F +++= (1)

相关文档
最新文档