偏微分实验报告1

偏微分实验报告1
偏微分实验报告1

青岛农业大学

微分方程数值解法实验报告

姓名:

学院:

专业:

班级:

学号:

/

完成时间:

2012年 11 月 4 日

微分方程数值解法实验课:实验一

微分方程数值解法实验课:实验二

微分方程数值解法实验课:实验三

偏微分方程数值解期末试题及标准答案

偏微分方程数值解试题(06B ) 参考答案与评分标准 信息与计算科学专业 一(10分)、设矩阵A 对称,定义)(),(),(2 1)(n R x x b x Ax x J ∈-=,)()(0x x J λλ?+=.若0)0('=?,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令 ),(2),()()()(2 000x Ax x b Ax x J x x J λλλλ?+-+=+=, (3分) 0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若n R x ∈0满足b Ax =0,则对于任意的x ,)(),(2 1)0()1()(00x J x Ax x x J >+==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的展开式3分, 每问3分,推理逻辑性1分 二(10分)、 对于两点边值问题:?????==∈=+-=0 )(,0)(),()('b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ],[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和Galerkin 形式的变分方程。 解: 设}0)(),,(|{11=∈=a u b a H u u H E 为求解函数空间,检验函数空间.取),(1b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(1 b a H v E ∈? 即变分问题的Galerkin 形式. (3分)

积分电路和微分电路实验报告

竭诚为您提供优质文档/双击可除积分电路和微分电路实验报告 篇一:实验6积分与微分电路 实验6积分与微分电路 1.实验目的 学习使用运放组成积分和微分电路。 2.实验仪器 双踪示波器、信号发生器、交流毫伏表、数字万用表。 3.预习内容 1)阅读op07的“数据手册”,了解op07的性能。2)复习关于积分和微分电路的理论知识。3)阅读本次实验的教材。 4.实验内容 1)积分电路如图5.1。在理想条件下,为零时,则 dV(t)Vi(t) ??co,当c两端的初始电压Rdt Vo(t)?? 1t

Vi(t)dtRc?o 因此而得名为积分电路。 (1)取运放直流偏置为?12V,输入幅值Vi=-1V的阶跃电压,测量输出饱和电压和有效积分时间。 若输入为幅值Vi=-1V阶跃电压时,输出为 Vo(t)?? Vi1t Vdt??t,(1)i Rc?oRc 这时输出电压将随时间增长而线性上升。 通常运放存在输入直流失调电压,图6.1所示电路运放直流开路,运放以开环放大倍数放大输入直流失调电压,往往使运放输出限幅,即输出电压接近直流电源电压,输出饱和,运放不能正常工作。在op07的“数据手册”中,其输入直流失调电压的典型值为30μV;开环增益约为112db,即4×105。据此可以估算,当Vi=0V时,Vo=30μV×4×105=12V。电路实际输出接近直流偏置电压,已无法正常工作。 建议用以下方法。按图6.1接好电路后,将直流信号源输出端与此同时Vi相接,调整直流信号源,使其输出为-1V,将输出Vo接示波器输入,用示波器可观察到积分电路输出饱和。保持电路状态,关闭直流偏置电源,示波器x轴扫描

偏微分方程的历史与应用

偏微分方程的历史及应用 数学与信息科学学院 09级数学与应用数学专业 学号 09051140129 姓名项猛猛 摘要 偏微分方程是反映有关的未知变量关于时间的导数和关于空间变量的导数之间制约关系的等式。许多领域中的数学模型都可以用偏微分方程来描述,很多重要的物理、力学等学科的基本方程本身就是偏微分方程。偏微分方程已经成为当代数学中的一个重要的组成部分,是纯粹数学的许多分支和自然科学及工程技术等领域之间的一座重要的桥梁。本文旨在介绍偏微分方程的起源和历史,以及偏微分方程在人口调查、传染病动力学等实际问题中的应用。了解偏微分方程曲折的发展史并了解其广阔的应用前景,从而激励读者更深入的学习和研究偏微分方程。 关键字偏微分方程偏微分方程历史偏微分方程应用 引言 偏微分方程已经成为当代数学中的一个重要的组成部分,是纯粹数学的许多分支和自然科学及工程技术等领域之间的一座重要的桥梁.本文阐述了偏微分方程的发展历史及在实际生活中的应用,为以后更深入的研究及更广的应用提供了例证。 正文 一、偏微分方程的起源及历史 微积分方程这门学科产生于十八世纪,欧拉在他的著作中最早提出了弦振动的二阶偏微分方程,随后不久,法国数学家达朗贝尔也在他的著作《论动力学》中提出了特殊的偏微分方程。这些著作当时没有引起多大注意。1746年,达朗贝尔在他的论文《张紧的弦振动时形成的曲线的研究》中,提议证明无穷多种和正弦曲线不同的曲线是振动的模式。这样就由对弦振动的研究开创了偏微分方程这门学科。 和欧拉同时代的瑞士数学家丹尼尔·贝努利也研究了数学物理方面的问题,提出了解弹性系振动问题的一般方法,对偏微分方程的发展起了比较大的影响。拉格朗日也讨论了一阶偏微分方程,丰富了这门学科的内容。 对物理学中出现的偏微分方程研究在十八世纪中叶导致了分析学的一个新的分支------数学物理方程的建立。 J.达朗贝尔(D’Alembert)(1717-1783)、L.欧拉(Euler)(1707-1783)、D.伯努利(Bernoulli)(1700-1782)、J.拉格朗日(Lagrange)(1736-1813)、P.拉普拉斯(Laplace)(1749-1827)、S.泊松(Poisson)(1781-1840)、J.傅里叶(Fourier)(1768-1830)等人的工作为这一学科分支奠定了基础。它们在考察具体的数学物理问题中,所提出的思想与方法,竟适用于众多类型的微分方程,成为十九世纪末偏微分方程一般理论发展的基础。 十九世纪,偏微分方程发展的序幕是由法国数学家傅里叶拉开的,他于1822

偏微分方程数值解实验报告

偏微分方程数值解实验报告

1、用有限元方法求下列边值问题的数值解:''()112x -y +y =2s i n ,0∈∈??∈(0,)?, 其中取1ν= 要求画出解曲面。迭代格式如下: 1221212111111111122142212n n n n n n j j j j j j n n n n n n j j j j j j V V V V V V h h V V V V V V h h τ++++++++++-+-??-()-()()-()??++?????? ??-+-+??=+??????

1、 %Ritz Galerkin方法求解方程 function u1=Ritz(x) %定义步长 h=1/100; x=0:h:1; n=1/h; a=zeros(n-1,1); b=zeros(n,1); c=zeros(n-1,1); d=zeros(n,1); %求解Ritz方法中内点系数矩阵 for i=1:1:n-1 b(i)=(1/h+h*pi*pi/12)*2; d(i)=h*pi*pi/2*sin(pi/2*(x(i)+h))/2+h*pi*pi/2*sin(pi/2*x(i+1))/2; end %右侧导数条件边界点的计算 b(n)=(1/h+h*pi*pi/12); d(n)=h*pi*pi/2*sin(pi/2*(x(i)+h))/2; for i=1:1:n-1 a(i)=-1/h+h*pi*pi/24; c(i)=-1/h+h*pi*pi/24; end %调用追赶法 u=yy(a,b,c,d) %得到数值解向量 u1=[0,u] %对分段区间做图 plot(x,u1) %得到解析解 y1=sin(pi/2*x); hold on plot(x,y1,'o') legend('数值解','解析解') function x=yy(a,b,c,d) n=length(b); q=zeros(n,1); p=zeros(n,1); q(1)=b(1); p(1)=d(1); for i=2:1:n

差分法求解偏微分方程MAAB

南京理工大学 课程考核论文 课程名称:高等数值分析 论文题目:有限差分法求解偏微分方程 姓名:罗晨 学号: 成绩: 有限差分法求解偏微分方程 一、主要内容 1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程:具体求解的偏微分方程如下: 2.推导五种差分格式、截断误差并分析其稳定性; 3.编写MATLAB程序实现五种差分格式对偏微分方程的求解及误差分析;

4.结论及完成本次实验报告的感想。 二、推导几种差分格式的过程: 有限差分法(finite-differencemethods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。 推导差分方程的过程中需要用到的泰勒展开公式如下: ()2100000000()()()()()()()......()(()) 1!2!! n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+-(2-1) 求解区域的网格划分步长参数如下: 11k k k k t t x x h τ ++-=?? -=?(2-2) 2.1古典显格式 2.1.1古典显格式的推导 由泰勒展开公式将(,)u x t 对时间展开得 2,(,)(,)( )()(())i i k i k k k u u x t u x t t t o t t t ?=+-+-?(2-3) 当1k t t +=时有 21,112,(,)(,)( )()(())(,)()() i k i k i k k k k k i k i k u u x t u x t t t o t t t u u x t o t ττ+++?=+-+-??=+?+?(2-4) 得到对时间的一阶偏导数 1,(,)(,)()=()i k i k i k u x t u x t u o t ττ+-?+?(2-5) 由泰勒展开公式将(,)u x t 对位置展开得 223,,21(,)(,)()()()()(())2!k i k i k i i k i i u u u x t u x t x x x x o x x x x ??=+-+-+-??(2-6) 当11i i x x x x +-==和时,代入式(2-6)得

偏微分方程数值解期末试题及答案(内容参考)

偏微分方程数值解试题(06B) 参考答案与评分标准 信息与计算科学专业 一(10分)、设矩阵A 对称,定义)(),(),(2 1 )(n R x x b x Ax x J ∈-= ,)()(0x x J λλ?+=.若0)0('=?,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令 ),(2 ),()()()(2 000x Ax x b Ax x J x x J λλλλ?+ -+=+=, (3分) 0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有 0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若 n R x ∈0满足 b Ax =0,则对于任意的 x ,)(),(2 1 )0()1()(00x J x Ax x x J >+ ==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的展开式3分, 每问3分,推理逻辑性1分 二(10分)、 对于两点边值问题:????? ==∈=+-=0 )(,0)() ,()(' b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ] ,[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和 Galerkin 形式的变分方程。 解: 设}0)(),,(|{11 =∈=a u b a H u u H E 为求解函数空间,检验函数空间.取),(1 b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(1 b a H v E ∈? 即变分问题的Galerkin 形式. (3分)

RC一阶电路实验报告材料

实验二十一一阶线性电路过滤过程的观测 一、实验目的 1、测定RC一阶电路的零输入响应,零状态响应及完全响应。 2、学习电路时间常数的测量方法。 3、掌握有关微分电路和积分电路的概念。 4、学会用示波器测绘图形。 二、实验容 RC串联电路,在方波序列脉冲的重复激励下,当满足τ=RC<

时间常数的测量 R=4K

R=1K R=6K C=0.22U

R=1K R=1K

三、误差分析 1)实验过程中的读数误差 2)仪器的基本误差 3)导线连接不紧密产生的接触误差 四、实验总结 在RC一阶电路的R=2k,C=0.047u中理论值t=RC=0.094MS,在仿真实验中t=0.093.5ms 其相对误差为r=0.0005/0.094*100%=0.531%<5% 在误差允许的围测得的数值可以采用。 当T=t时,Uc(t)=0.368Us,此时所对应的时间就是t,亦可用零状态响应波形增长到0.632Us所对应的时间测量。 在RC的数值变化时,即t=RC也随之变化,t越小其响应变化就越快,反之越慢。 积分电路的形成条件:一个简单的RC串联电路序列脉冲的重复激励下,当满足t=RC>>T/2条件时,且由C端作为响应输出,即为积分电路。 积分电路波形变换的特征:积分电路可以使输出方波转换成三角波或斜波。积分电路可以使矩形脉冲波转换成锯齿波或三角波。 稍微改变电阻值或增大C值,RC值也会随之变化,t越大,锯齿波的线性越好。

偏微分方程的应用

偏微分方程在生物学上的应用 刘富冲pb06007143 1偏微分方程的发展 偏微分方程是反映有关的未知变量关于时间的导数和关于空间变量的导数之间制约关系的等式。许多领域中的数学模型都可以用偏微分方程来描述,物理学中的许多基本方程本身就是偏微分方程。早在微积分理论刚形成后不久,人们就开始用偏微分方程来描述、解释或预见各种自然现象,并将所得到的研究方法和研究成果运用于各门科学和工程技术中,不断地取得了显著的成效,显示了偏微分方程对于人类认识自然界基本规律的重要性。逐渐地,以物理、力学等各门科学中的实际问题为背景的偏微分方程的研究成为传统应用数学中的一个最主要的内容,它直接联系着众多自然现象和实际问题,不断地提出和产生出需要解决的新课题和新方法,不断地促进着许多相关数学分支(如泛函分析、微分几何、计算数学等)的发展,并从它们之中引进许多有力的解决问题的工具。偏微分方程已经成为当代数学中的一个重要的组成部分,是纯粹数学的许多分支和自然科学及工程技术等领域之间的一座重要的桥梁。 在国外,对偏微分方程的应用发展是相当重视的。很多大学和研究单位都有应用偏微分方程的研究集体,并得到国家工业、科学部门及军方、航空航天等方面的大力资助。比如在国际上有重大影响的美国的Courant研究所、法国的信息与自动化国立研究所等都集中了相当多的偏微分方程的研究人员,并把数学模型、数学方法、应用软件及实际应用融为一体,在解决实际课题、推动学科发展及加速培养人才等方面都起了很大的作用。 2偏微分方程的应用 在科技和经济发展中,很多重要的实际课题都需要求解偏微分方程,为相应的工程设计提供必要的数据,保证工程安全可靠且高效地完成任务。 在很多的实际课题中,有不少课题(特别是国防课题)是不能或很难用工程试验的方法来进行研究的(一方面是危险系数大,另一方面是耗费大),因此就需要尽可能地减少试验的次数或在试验前给出比较准确的预计。 随着电子计算机的出现及计算技术的发展,电子计算机成为解决这些实际课题的重要工具。但是有效地利用电子计算机,必须具备如下先决条件: 针对所考虑的实际问题建立合理的数学模型,而这些能精确描述问题的模型大都是通过偏微分方程给出的。 对相应的偏微分方程模型进行定性的研究。 根据所进行的定性研究,寻求或选择有效的求解方法。 编制高效率的程序或建立相应的应用软件,利用电子计算机对实际问题进行模拟。 因此,总体上来说,上述这些先决条件都属于偏微分方程应用的研究范围,这些问题解决的好坏直接影响到使用电子计算机所得结果的精确性及耗费的大小。如果解决得好,就会对整个问题的解决起到事半功倍的效果。 到目前为止,偏微分方程已经在解决有关人口问题、传染病动力学、高速飞行、石油开发及城市交通等方面的实际课题中做出了重大的贡献。 下面主要讲一下大家比较熟悉的人口问题及传染病动力学问题,详细阐述偏微分方程在解决实际问题中的应用。

偏微分方程数值解实验报告

精品文档 偏微分方程数值解 上 机 实 验 报 告 (一)实验一 一、上机题目: 用线性元求解下列边值问题的数值解:

精品文档 ′′22?? ?? ??,0

精品文档 (二)实验二 四、上机题目: 求解 Helmholtz 方程的边值问题: u k 2u 1 ,于(0,1)*(0,1) u0,于1{ x0,0y1} U{0x1, y 1} 1{ x0,0y1} U{0x1, y1} u 0,于2{0x1, y 0} U { x1,0y1} n 其中 k=1,5,10,15,20 五、实验程序:

北京理工大学数学专业偏微分方程期末试题2014级A卷(MTH17178)

课程编号:MTH17178 北京理工大学2016-2017学年第一学期 2014级偏微分方程期终考试(A ) 1.(10分)利用特征线方法求解一阶波动方程初值问题:()22,,0,0,t x x u u u x t u x e x -+=∈>???=∈?? 。 2.(10分)利用Fourier 变换方法求解:()() (),,,0,0,t x u bu cu f x t x t u x x x ?--=∈>???=∈?? 。 3.(10分)利用行波法求解:()()()()0,,,0,,0 tt xx u u t x u x x x x u x x x x ?ψ?-=>?-=?。 给出适当的相容性条件。如果?在(],0a -上给定,ψ在[)0,b 上给定,给出其决定区域。 4.(15分)求解初边值问题:()()()20,01,00,0,1,0,0,0,01 t xx x x u a u u x t u t u t t u x A x ?-+=<<>?==>??=<?==∈??=+=≥? 推导边界条件齐次化的公式(不需要解方程)。 6.(13分)对于有界区域()(],0,T Q a b T =?上的热方程()2 ,0t xx u a u c x t u -+=,其中(),c x t 下有界,证明如果(),u x t 在抛物边界上非正,则(),u x t 在T Q 上非正。 7.(15分)考虑波动方程初边值问题[]()()()()[]()()()20,0,,0,0,,0,0,0,0,,,0,0 tt xx t x x u a u x L t u x x u x x x L u t u L t u L t t ?ψσ?-=∈>?==∈??=+=≥?,其中 0σ>,令t 时刻的能量()()()22222011,22 L t x E t u a u dx a u L t σ=++?,证明()E t 守恒,并由此证明相应的一般非齐次方程非齐次初边值问题的解的唯一性。 8.(20分)设() ()1,02,1T T u C Q C Q ∈ 且满足初边值问题()()()()[]()()[] ,,,,0,0,0,,0,0,t xx T x u u f x t x t Q u x x x L u t u L t t T ??-=∈?=∈??==∈?,证明:[]()()()()22220000000,sup ,,,L T L L T L x t T u x t dx dt u x t dx M x dx dt f x t dx ?∈??+≤+??????????,其中M 仅依赖于T 。 提示:Gronwall 不等式:设(][]1 0,0,G C T C T ∈ ,()00G =,且对于任意的[]0,t T ∈,有()()()G t CG t F t '≤+,其中C>0,F 非负单调递增,则有 ()()()()()11,Ct Ct G t C e F t G t e F t -'≤-≤。

RC一阶电路的响应测试实验报告

? 实验七 RC 一阶电路的响应测试 一、实验目的 1. 测定RC 一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用示波器观测波形。 二、原理说明 1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 2.图7-1(b )所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法: 用示波器测量零输入响应的波形如图7-1(a)所示。 根据一阶微分方程的求解得知u c =U m e -t/RC =U m e -t/τ 。当t =τ时,Uc(τ)=0.368U m 。 此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632U m 所对应的时间测得,如图13-1(c)所示。 a) 零输入响应 (b) RC 一阶电路 (c) 零状态响应 图 7-1 4. 微分电路和积分电路是RC 一阶电路中较典型的电路, 它对电路元件参数和输入信号的周期有着特定的要求。一个简单的 RC 串联电路, 在方波序列脉冲的重复激励下, 当 满足τ=RC<< 2 T 时(T 为方波脉冲的重复周期),且由R 两端的电压作为响应输出,则该电路就是一个微分电路。因为此时电路的输出信号电压与输入信号电压的微分成正比。如图 0.368t t t t 0.6320 000c u u U m c u c u u U m U m U m

偏微分方程数值及matlab实验报告.docx

偏微分方程数值实验报告八 实验题目:利用有限差分法求解 u ( x) u(x) f (x), u( 1) 0, u(1) 0. 真解为 u( x) e x 2 (1 x 2 ) 实现算法:对于两点边值问题 d 2u f , x l , dx 2 (1) u(a),u(b) , 其中 l ( a, b) (a b), f 为 l [ a,b] 上的连续函数, , 为给定常数 . 其相应的有限差分法的算法如下: 1.对求解区域做网格剖分,得到计算网格 .在这里我们对区间 l 均匀剖分 n 段,每个剖分单元 b a 的剖分步长记为 h . n 2.对微分方程中的各阶导数进行差分离散,得到差分方程 .运用的离散方法有: 方法一 :用待定系数和泰勒展开进行离散 d 2u( x i ) i 1 u( x i 1) i u( x i ) i 1 u( x i 1) d( x i )2 方法二:利用差商逼近导数 d 2u( x i ) u( x i 1 ) 2u( x i ) u( x i 1 ) d( x i )2 h 2 将(2) 带入 (1)可以得到 u(x i 1) 2u(x i ) u(x i 1 ) ) R i (u) , h 2 f ( x i 其中 R i (u) 为无穷小量,这时我们丢弃 R i (u) ,则有在 x i 处满足的计算公式: u(x i 1) 2u( x i ) u( x i 1 ) 1,..., n 1 h 2 f ( x i ), i 3.根据边界条件,进行边界处理 .由 (1)可得 u 0 , u n (2) (3) (4) 称(3)(4)为逼近 (1) 的差分方程,并称相应的数值解向量 U n 1 为差分解, u i 为 u( x i ) 的近似值 . 4.最后求解线性代数方程组,得到数值解向量U n 1 .

最新偏微分方程期末复习笔记

《偏微分方程》期末考试复习 一、波动方程(双曲型方程)U tt -a 2U xx 二f (x,t) (一)初值问题(柯西问题) < 2 U tt —a U xx = f(x,t) 1、一维情形 Ut t^a (x) (1) 解法(传播波法): 由叠加原理,原初值问题的解可表示为下述初值问题的解之 和, * 2 * 2 U tt —a U xx =o U tt —a U xx = f (x,t) (i) J U t^=

②决定区域:区间[x1,X2】的决定区域为:{(x,t)|捲? at込x込X2-at}

实验九 积分与微分电路

实验九积分与微分电路 学院:信息科学与技术学院专业:电子信息工程 姓名:刘晓旭 学号:2011117147

一.实验目的 1.掌握集成运算放大器的特点、性能及使用方法。 2.掌握比例求和电路、微积分电路的测试和分析方法。 3.掌握各电路的工作原理和理论计算方法。 二.实验仪器 1.数字万用表2.直流稳压电源3.双踪示波器4.信号发生器5.交流毫伏表。三.预习要求 1.分析图7-8 实验电路,若输入正弦波,u o 与u i 的相位差是多少?当输入信号为100Hz、有 效值为2V时,u o =? 2.图7-8 电路中,若输入方波,u o 与u i 的相位差?当输入信号为160Hz幅值为1V时,输出 u o =? 3.拟定实验步骤,做好记录表格。 四.实验原理 集成运放可以构成积分及微分运算电路,如下图所示: 微积分电路的运算关系为: 五.实验内容: 1.积分电路 按照上图连接积分电路,检查无误后接通+12,-12V直流电源。 (1)取U i=-1v,用示波器观察波形u0,并测量运放输出电压的正向饱和电压值。

(2)取U i=1V,测量运放的负向饱和电压值。 (3)将电路中的积分电容改为改为0.1uF,u i分别输入1KHz幅值为2v的方波和正弦信号,观察u i和u o的大小及相位关系,并记录波形,计算电路的有效积分时间。 (4)改变电路的输入信号的频率,观察u i和u o的相位,幅值关系。 2.微分电路 实验电路如上图所示。 (1)输入正弦波信号,f=500Hz,有效值为1v,用示波器观察u i和u o的波形并测量输出电压值。 (2)改变正弦波频率(20Hz-40Hz),观察u i和u o的相位,幅值变化情况并记录。 (3)输入方波,f=200Hz,U=5V,用示波器观察u0波形,并重复上述实验。 (4)输入三角波,f=200Hz,U=2V,用示波器观察u0波形,并重复上述实验 3.积分-微分电路 实验电路如图所示 (1)输入f=200Hz,u=6V的方波信号,用示波器观察u i和u o的波形并记录。 (2)将f改为500Hz,重复上述实验。 解答: 1.(1)取U i=-1v,用示波器观察波形u0,并测量运放输出电压的正向饱和电压值 电路仿真图如下图所示:

偏微分方程期末试题A卷

安徽大学20 08 —20 09 学年第 二 学期 《 偏微分方程 》考试试卷(A 卷) (闭卷 时间120分钟) 院/系 年级 专业 姓名 学号 一、填空题(每小题3分,共15分) 1.对常系数方程x y z u au bu cu du f ?++++=作未知函数的变换 可以将所有一阶微商消失. 2.设:R R Φ→是光滑凸函数,(,)u x t 是热传导放程0t u u -?=的解,则()u Φ是热传导方程 的 (下解;上解;解). 3.上半平面的Green 函数G(x,y)为 ,其中12(,)y y y =为上半平面中某固定点. 4.设函数u 在以曲面Γ为边界的区域Ω内调和,在ΩΓ 上有连续的一阶偏导数,则u dS n Γ ????= ,其中n 是Γ的外法方向. 5.热传导方程2()0t xx yy u a u u -+=的特征曲面为 .

二、计算题(每小题10分,共40分) 1.求解初值问题 0,(,)(0,)(,0),,t x u bu cu x t R u x g x R ++=∈?∞??=∈? 其中,,b c R ∈都是常数. 2.试用延拓法求解半有界直线上的热传导方程的边值问题: 200 0,0,0,|(), |0.t xx t x u a u x t u x u ?==?-=>>? =??=?

3.试求解 2 2 008(), |,|.tt xx yy zz t t t u u u u t u xy u z ==?-++=??==?? 4.写出定解问题: 200 (),0,0,|0,|0, |().t xx x x l t u a u f x x l t u u u g x ===?-=<<>? ==??=? 解的一般形式.

微积分电路 实验报告

模拟电路实验报告 微积分电路

一.实验目的 1.微积分电路的工作原理及计算方法。 2.微积分电路的测试分析方法。 二.实验仪器 数字万用表 信号发生器 示波器 交流毫伏表 直流稳压电源 三.实验原理 实验原理可以构成积分和微分运算电路: 微分电路的运算关系:u 。=-RC dt du i 积分电路的运算关系:u 。=-RC 1 i u dt 四.实验内容 1.积分电路 连接积分电路,检查无误后接通+12v 和-12v 直流电源。 ①取ui=-1v,用示波器观察波形u 。,并测量运放输出电压的正向饱和电压值。(即为积分带最大时,为11.118v ) ②取ui=1v,测量运放的负向饱和电压值。(为-11.118v ) 由于波形上下波动很快,所以无法在实验实测其饱和电压值。 ③将电路中的积分电容改为0.1uF ,ui 分别输入1KHz 幅值为2v 的方波和正弦信号,观察u i 和u 。的大小及相位关系,并记录波形,计算电路的有效积分时间。

a. 输入1KHz 的方波时(记录为幅值) b. 输入1KHz 的方波时(记录为幅值) 有效积分时间:31010?==RC τ6101.0-??=0.001s ④改变电路的输入信号的频率,观察ui 和u 。的相位,幅值关系。(输入为正弦波) 随着频率变大,幅值变小,相位不变。 2.微分电路 在输入端串联滑动变阻,改进微分电路,滑动变阻器可以减少电路反馈滞后与内部滞后产生自激引起的失真。

①输入正弦波信号,f=500Hz,有效值为1v,用示波器观察Ui和U。的波形并测量输出电压值。(记录为幅值) 仿真值:ui=1.4V u。=4.3V 实验值:ui=1.4V u。=4.5V 此时滑动变阻为1k欧姆,波形无失真。 ②改变正弦波频率(20Hz——40Hz),观察Ui和U。的相位,幅值变化的情况并记录。(记录为幅值) 随着频率的增大,幅值也在增大,相位没有变化。 ③输入方波,f=200Hz,U=±5v,用示波器观察U。波形,并重复上述实验。 实验:输入方波,f=200Hz,U=±5v,滑动变阻为45k欧姆。 ④输入三角波,f=200Hz,U=±2v,用示波器观察U。波形,重复上述实验。 仿真波形为:输出为4v. 实验:输入方波,f=200Hz,U=±5v,滑动变阻为45k欧姆。 3.积分——微分电路: 在输入端串联滑动变阻,改进微分电路,滑动变阻器可以减少电路反馈滞后与内部滞后产生自激引起的失真。

双曲型偏微分方程的求解及其应用[文献综述]

毕业论文文献综述 信息与计算科学 双曲型偏微分方程的求解及其应用 一、前言部分 在科学技术日新月异的发展过程中,人们研究的许多问题用一个自变量的函数来描述已经显得不够了,不少问题有多个变量的函数来描述。比如,从物理角度来说,物理量有不同的性质,温度、密度等是用数值来描述的叫做纯量;速度、电场的引力等,不仅在数值上有不同,而且还具有方向,这些量叫做向量;物体在一点上的张力状态的描述出的量叫做张量,等等。这些量不仅和时间有关系,而且和空间坐标也有联系,这就要用多个变量的函数来表示。 应该指出,对于所有可能的物理现象用某些多个变量的函数表示,只能是理想化的,如介质的密度,实际上“在一点”的密度是不存在的。而我们把在一点的密度看作是物质的质量和体积的比当体积无限缩小的时候的极限,这就是理想化的。介质的温度也是这样。这样就产生了研究某些物理现象的理想了的多个变量的函数方程,这种方程就是偏微分方程[1]。 随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。从这个角度说,偏微分方程变成了数学的中心。 其中,可以变的标准型有:椭圆型、双曲型、抛物型。而基本方程可以归结为四大类:波动、热传导、传输[2]。 随着电子计算机的出现和发展, 偏微分方程的数值解得到了前所未有的发展和应用.在科学的计算机化进程中,科学与工程计算作为工具性、方法性、边缘交叉性的新学科开始了自己的新发展.由于科学基本规律大多是通过偏微分方程来描述的,因此科学与工程计算的主要任务就是求解形形色色的偏微分方程,特别是一些大规模、非线性、几何非规则性的方程. 双曲型和抛物型方程描述了物质扩散和波动等不定常物理过程,这两类偏微分方程的定解问题在力学、热传导理论、燃烧理论、化学、空气动力学、电磁学和经济数学等方面都有

偏微分方程期末考试试题(06)

课程名称:偏微分方程数值解法 课程编号:24014110 适用专业(班级):数学 共1页 命题人:潘晓丽 教研室主任: 第1页 一、(15分)写出三类典型泛定方程并分别说明其名称和特点. 二、(10分)求一维波动方程()()()()()22 222 ,,0,0,,0t u u a x t t x u x x u x x ?ψ???=-∞<<+∞>?????==? 的通解. 三、(15分)写出达朗贝尔公式并利用公式求解 ()()()2,0,,0sin ,0cos tt xx t u a u t x u x x u x x ?=>-∞<<+∞? =?? =? 四、(10分)计算积分()32x J x dx -?. 五、(15分)设1,1≥≥n m ,证明 ()()()dx x p x m dx x p x n m n m n m ??--=++1 111 1 六、(15分)用分离变量法求解 ()()()()()20,0,0,00,,00,0,,0 tt xx t u a u x l t u x u x x u t u l t ?-=<<>? ==?? ==? 七、(10分)解固有值问题()()()''0,''0 y y l x l y l y l λ+=-<

课程名称:偏微分方程数值解法 课程编号:24014110 适用专业(班级):数学 共1页 命题人:潘晓丽 教研室主任: 第1页 一、解:波动方程:()22 2,u a u f t x t ?=?+? 热传导方程: ()2,u a u f t x t ?=?+? 位势方程:()u f x ?= ……………………….5分 其中()12,,,n x x x x = ,a 为常数,(),f t x 及()f x 为已知函数,在波动方程及 热传导方程中,未知函数u 是时间变量t 和空间坐标变量()12,,,n x x x x = 的函数,在位势方程中,未知函数u 是空间坐标变量()12,,,n x x x x = 的函数,而与时间t 无关,三类典型方程均为二阶线性偏微分方程。……………………….15分 二、解:首先判别方程的类型, 20a ?=> ………………………2分 即此方程在整个全平面上都是双曲型的。 特征方程为:()()2 2 20dx a dt -= () ()2 2 200dx a dt dx adt -=?= 特征曲线为1 2 x at c x at c -=??+=? ………………………6分 做变量替换,令x at x at ξη=-??=+?, 由链式法则得 0u ξη= 通解()()()()u f g f x at g x at ξη=+=-++ ……………………….10分

电路实验报告

实验一 元件特性的示波测量法 一、实验目的 1、学习用示波器测量正弦信号的相位差。 2、学习用示波器测量电压、电流、磁链、电荷等电路的基本变量 3、掌握元件特性的示波测量法,加深对元件特性的理解。 二、实验任务 1、 用直接测量法和李萨如图形法测量RC 移相器的相移??即uC u s ??-实验原理图如图 5-6示。 2、 图5-3接线,测量下列电阻元件的电流、电压波形及相应的伏安特性曲线(电源频率在 100Hz~1000Hz 内): (1)线性电阻元件(阻值自选) (2)给定非线性电阻元件(测量电压范围由指导教师给定)电路如图5-7 3、按图5-4接线,测量电容元件的库伏特性曲线。 4、测量线性电感线圈的韦安特性曲线,电路如图5-5 5、测量非线性电感线圈的韦安特性曲线,电源通过电源变压器供给,电路如图5-8所示。 图 5-7 图 5-8 这里,电源变压器的副边没有保护接地,示波器的公共点可以选图示接地点,以减少误差。 三、思考题 1、元件的特性曲线在示波器荧光屏上是如何形成的,试以线性电阻为例加以说明。

答:利用示波器的X-Y方式,此时锯齿波信号被切断,X轴输入电阻的电流信号,经放大后加至水平偏转板。Y轴输入电阻两端的电压信号经放大后加至垂直偏转板,荧屏上呈现的是u x,u Y的合成的图形。即电流电压的伏安特性曲线。 3、为什么用示波器测量电路中电流要加取样电阻r,说明对r的阻值有何要求? 答:因为示波器不识别电流信号,只识别电压信号。所以要把电流信号转化为电压信号,而电阻上的电流、电压信号是同相的,只相差r倍。r的阻值尽可能小,减少对电路的影响。一般取1-9Ω。 四、实验结果 1.电阻元件输入输出波形及伏安特性

相关文档
最新文档