火车车轮锻造工艺分析实用版

火车车轮锻造工艺分析实用版
火车车轮锻造工艺分析实用版

YF-ED-J9009

可按资料类型定义编号

火车车轮锻造工艺分析实

用版

In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment.

(示范文稿)

二零XX年XX月XX日

火车车轮锻造工艺分析实用版

提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。

铁路交通是我国运输系统的重要组成部分,在国民经济和社会发展过程中,铁路运输扮演着不可替代的重要角色。我国一直以来都十分重视铁路运输的发展。最近几年以来,随着以高铁为代表的新型铁路运输技术的应用,我国铁路运输朝着高速、重载方向发展,车轮在复杂的运行工况和恶劣的工作条件下,受到来自于速度效应和制动方式的双重影响,对其耐磨性、强韧性以及抗疲劳性提出了更高的要求。但是我国现有的车轮锻压生产技术,还不能完全满足铁路运输发展对火车车轮质量的要

求。尤其是我国高速列车的车轮,在车轮的制造中,还存在废品率较高的现象。因此,笔者认为,研究火车车轮锻压生产工艺,提高我国火车车轮锻压生产技术水平,制造优质火车车轮,对于降低我国火车整车生产成本,促进铁路运输的发展,有十分重要的现实意义。

1.火车车轮概述。

1.1.我国火车车轮形制特征简析

火车车轮是火车整车零件中的一个关键组成部分,是火车机车生产中技术较高的环节之一。由于火车的种类繁多,工作环境和机车构造也不尽相同,所以火车车轮的结构形式和形制特征也多种多样。一般由轮毂、轮辋、辐板三个部分组成。

火车车轮属于典型的金属塑性成形产品,

常常会出现多种内部和外部缺陷。比较常见的有偏心缺陷、组织和填充不完全等缺陷。所以车轮生产中对锻压技术要求较高。

1.2.我国现行车轮生产工艺。

当前包括我国在内的世界各国普遍采用模锻——轧制法(又称整体辗钢车轮生产法)进行火车车轮锻造生产,这一方法主要采用模锻和轧制扩径两个主要步骤来完成车轮主体的成形。和铸造法相比较,该法所生产的车轮内在质量要好很多,与全模锻制造法相比,该法的优点在于对模锻设备的要求较低。全世界有20多个生产厂家,虽然各自的生产工艺有其独有特点,但是总体来说从流程来讲可以分为三个主要步骤:预成型及成型、轧制扩径和压弯冲孔。通过初步总结,笔者认为,各厂家在工艺

上的差别,主要体现在预成型及成型的差异上,压弯压力机的配置方面则基本相同,冲孔设备的配置也只是稍有差别。

2.火车车轮锻造工艺分析。

2.1.车轮预成型工艺。

车轮坯料采用圆柱形钢坯下注,坯料直径介于380mm——406mm之间。使用高速锯床对钢坯进行锯切成段,成段坯料经加热后,有机械手夹持上料到压力机进行预成型工序。在预成型工序中,上磨具采用成型模,下模具则选用中央突起的压痕模,以此实现对轮辋、轮毂的金属体积分配。在压力机模锻工序采用的是静压力锻造,整个锻造过程在一次行程中完成。优异的车轮预成型工艺,不但能够保证车轮初步形状的成形,同时还可以起到改善车

轮内部组织结构和金属流线的双重作用。但是如果此阶段的工艺不合理,则会直接导致车轮偏心、填充不完全等缺陷。给后续加工阶段操作带来困难,严重的还会直接导致车轮报废。

2.2.车轮成型工艺。

在车轮的成型阶段,主要得到的是轮毂和压制辐板的形状,同时完成轮辋主要部位的成形。其过程属于典型的开式无飞边模锻。模具压下后,首先受压的是车轮的辐板处,车轮内层金属受到来自中央冲头的作用力,带动外侧金属沿水平方向流动。随着下压量的急剧增大,轮坯的最外侧金属和成形模的内壁接触。在中央冲头和成形模内壁的共同作用下,轮坯内的金属形成一个分流面,分别流向轮毂和轮辋下侧以及轮辋上侧。在该流程中,轮辋下侧

的填充情况最佳。此外,由于该工序中模具模膛的高度有所不同,所以直接导致轮坯中不同部分的金属变形量不一样,其中辐板处变形量最为突出,而轮辋部分的变形量则最小。车轮成形工艺是热成形机组轧压能力匹配的关键工艺。合理科学的成形工艺,不仅要保证压力机的压力极限数值满足事先设定的工艺数值,同时还要满足下道工序中轧机的轧制能力需求。

2.3.车轮压弯工艺。

车轮压弯工序一般情况下是和冲孔工序一起在同一台压力机上进行,是火车车轮热成形中的最后一道工序。其主要目的是对辐板进行压弯成形、对轮辋表面进行平整以及确定车轮两侧和车轮内径等的成形。

2.4.轮坯各个部位加工余量的确

定。

车轮加工中的锻造余量,是整个车轮锻造工艺设计中非常重要的环节。它与车轮材料的利用率、成品率以及生产率密切相关,直接决定着车轮生产的成本。因此,要合理确定轮坯合理的锻造余量。踏面余量的确定。在确定轮坯踏面余量时,轮坯的椭圆度和热处理过程中直径0.1—0.2%的变化量应该予以充分考虑。但是,主要还是要注意踏面上表面氧化皮压入、裂纹以及结疤等的消除。经过实践中的反复摸索,笔者认为,踏面锻造余量的确定取8mm较为合适。

轮毂外径余量确定。轮毂外径余量的确定,主要取决于设备对轮毂、轮辋偏心的精度控制。目前,山西某重型机械集团公司在

这一精度控制上可以达到6mm以内。为了确保最大偏心后,轮毂能有3mm的加工余量,初期生产中,应该把轮毂余量确定为9mm。实践证明,在设备正常情况下的批量生产中,轮毂外径余量取7mm比较适宜。

轮毂、轮辋端面的余量确定。这两项余量的确定主要取决于端面氧化皮压入、端面的不平整状况以及预成形时轮毂端面尖角部位填充不完全所造成的轮毂端部圆角三个因素。在模具首次设计中,这一余量一般取7mm 和6mm。为了降低成本,曾经试图降低这两种余量,结果造成轮毂端面尖角部位加工不起来。所以,最终仍然将轮毂、轮辋的单边余量设定至7mm和6mm的初期水平。

辐板和轮辋内径加工余量的确定。

由于在淬火和冷却处理过程中辐板会出现变形,因此辐板加工余量的确定,不仅要考虑氧化皮压入、表面裂纹等缺陷的去除,还要格外重视辐板变形的影响。经生产企业长期批量生产经验的积累,辐板单边余量确定为6mm最为适合。轮辋内径也取相同尺寸为宜。

淬火下沉量的确定。车轮淬火后,轮辋的增大量叫做淬火下沉量。压弯模设计时,应该确保车轮压弯成形以后,毂辋距减小一个淬火下沉量,以确保淬火后的毂辋距符合要求尺寸。淬火下沉量的确定,和火车轮的型号有关。据苏联资料介绍,915车轮淬火下沉量为3—5mm。安徽某钢厂在915车轮模具设计时,淬火下沉量取6mm。

2.5.车轮锻造过程中的数值模拟分析。

由于火车车轮的锻造工序繁多,各环节中对轮坯不同部分的数据误差要求较高,且由于涉及到材料金属物理化学性质的变更,因此对锻造过程中的数据控制和数值模拟要求较高,所以对于锻造工作的每个环节而言,建立数值模拟分析是十分必要的。

目前在数值分析方面,主要采取的是有限元数值分析法,这是一种将连续体根据实际需要,分化为若干个大小有限的单元个体集合,以方便分析连续体力学问题相关数据的方法。这一方法应用在车轮锻造生产过程中,可以精确求解轮坯变形时内部速度场、应力场以及应变场等的变量,从而为车轮锻造各道工序,提供了科学的理论依据。在目前我国火车车轮生产中,基于有限元理论和相关软件支

持,已经普遍建立起了火车轮预成形和成形工步数值模拟分析模型、压弯过程数值模拟分析模型、冲孔过程数值模拟分析模型等一系列环节的模拟分析模型。使得工作人员能够及时掌握各阶段数值的变化,以及由此带来的对成品质量的影响,实时调整参数设置,确保车轮最终质量得以实现。

2.6.当前火车车轮锻造工艺存在的问题。

随着对火车车轮数量要求的增加和质量要求的提高,我国火车车轮锻造工艺的缺陷也显露出来。目前主要问题在于各工步,尤其是在车轮预成形和压弯工步,对金属变形量的分配以及模具结构和尺寸的设计等诸多问题,有待进一步研究和改进。这些问题的存在

不仅使得车轮锻造工序和模具设计的周期更长、对模具和车轮的调试以及模具维修的过程趋于复杂,而且还会导致车轮辐板出现裂纹、车轮成形形状和尺寸满足不了设计要求等一系列质量问题,使得当前的火车车轮生产,从数量到质量都与实际需要存在相当差距。

火车车轮的锻造,是一个从材料选择、模具设计制造、到前期预成形、成形、再到后期压弯和冲孔的连续性工序系统。由于金属在各工艺阶段会发生相应的物理和化学变化,因此常常会出现诸如填充不充分和偏心等缺陷,导致产品质量不能达到预期要求,严重者产生废品。从加工流程优化、数值模拟分析等方面加以完善,是弥补当前车轮锻造工艺相关环节缺陷,保证车轮最终质量的有效途径。

以有限元理论为基础的数值模拟分析模型,是目前实现锻造过程数值模拟分析的可靠途径,是实现对锻造过程中相关数值精确控制的有效手段。笔者认为,我国火车车轮锻造工艺的改进,除了要注重生产设备和新型工艺的开发外,对以有限元理论为依托的计算机软件辅助分析系统的开发运用也应该予以重视,将其纳入工艺改进的重要组成部分。

低压铸造铝合金车轮设计要点

低压铸造铝合金车轮设计要点 铝合金车轮具有质量轻、能耗低、散热快、减震性好、安全可靠、外观漂亮、图案丰富以及平衡性好等优点,被整车制造企业和广大车主所青睐。 我国铝合金轮毂的生产大多采用低压铸造工艺。该工艺是在20世纪80年代后期由中信戴卡公司引进,经过20多年的发展,已经比较成熟。但真正意义上的开发设计工作是在最近几年,随着我国整车制造水平的提升,才开始与整车开发同步进行设计。 车轮设计要点 铝合金车轮的设计包括外观设计和工程设计。车轮外观要与整车外观相匹配,车轮不仅是外观件,还是重要的安全部件,因此外观设计时就必须考虑工程要求。一般情况下,在车轮进行外观设计时,工程人员也要参与,与造型设计师共同完成外观设计工作,以缩短车轮的开发周期。 现以大众车轮设计为例,具体分析低压铸造铝合金车轮设计中关注的要点。大众车轮执行德国大众标准和欧盟的设计规范,主要考虑的方面有整车造型、车轮装配、车轮生产工艺和车轮试验。 1.整车造型 车轮是整车的时尚装饰,是对整车外形设计的一种延伸,因此车轮造型作为整车造型的一部分,必须与整车的造型风格协调一致,给人以美感。 2.车轮装配 车轮最终要装配到整车上,装配时与之相配合的零部件有轮胎、平衡块、刹车鼓、安装盘、安装螺栓和气门嘴。 铝合金车轮设计时注意的装配要点如下: (1)轮胎与铝合金车轮装配的轮胎一般情况下是无内胎的子午线轮胎,在轮胎与车轮轮辋之间形成一个封闭的空间。大众车轮的轮辋结构执行欧洲轮辋标准——ETRTO标准,该标准对轮辋各部位的结构、尺寸做出了明确规定,在车轮设计时必须严格遵守。同时,为防止车辆行驶过程中路肩石划伤车轮表面(路肩石的高度标准为150mm),要求车轮正面不能超出轮胎外侧面,一般要缩进2.5mm以上。 (2)平衡块平衡块的作用是使车轮在高速旋转下保持平衡,避免车辆在行驶过程中抖动和方向盘振动,提高车辆的舒适性。车轮设计时,要求平衡块与刹车鼓之间的间隙不小于3mm。 (3)刹车鼓在车辆行驶过程中,车轮是旋转的,刹车鼓是静止的,因此在车轮设计时要保证车轮内表面与刹车鼓之间有一定的间隙,一般控制在3mm以上。 (4)安装盘、安装螺栓安装螺栓是将车轮定位、紧固到安装盘上的零件。在车轮设计时,要考虑安装盘的尺寸,车轮与安装盘的接触面积,安装螺栓的尺寸、结构和数量,螺栓

铝合金车轮低压铸造工艺

铝合金车轮低压铸造工艺 铝合金车轮制造技术是多种多样的,而铝车轮的铸造工艺,目前主要有两种:一种是金属型重力铸造,一种是低压铸造。我们主要是做汽车铝合金车轮,制造工艺采用的是低压铸造。我们教材面向的对象主要是我们公司的员工,所以对工艺技术的介绍是有针对性的,介绍的方法也是不一样的。 1 低压铸造原理 低压铸造是将铸型放在一个密闭的炉子上面,型腔的下面用一个管(叫升液管)和炉膛里的金属液相通。如果在炉膛中金属液面上加入带压力的空气,金属液会从升液管中流入型腔。待金属液凝固以后,将炉膛中的压缩空气释放,未凝固的金属从升液管中流回到炉中。控制流入炉膛空气的压力、速度,就可以控制金属流入型腔中的速度和压力,并能让金属在压力下结晶凝固,压力一般不超过 1 ㎏/㎝2。这种工艺特点是铸件在压力下结晶,组织致密,机械性能好;低压另一个特点就是用一个升液管将铸型直接和炉膛连通,在压力的作用下,直接浇注铸型,不用冒口,浇口也很小。所以金属的利用率高。 2 低铸汽车铝合金轮的工艺特点 汽车铝合金车轮的结构特征:汽车铝合金车轮有大有小,有正偏距,有负偏距,有二片式,有三片式,都是圆形铸件,轮缘是均匀壁厚,面积比较大,轮辐比较厚,轮辐和轮缘交接处热节都比较大。而铝轮毂的浇注系统只有一个小浇口,没有冒口。轮辐多半作为横浇道,但是轮辐的位置是由轮毂的结构所决定的,不是由铸造工艺的设计者来决定的。因此偏距小,或负偏距车轮,会让铸造工艺设计者很头痛。然而轮毂的正面为装饰面,一般要求较高,要求精加工、车亮面、抛光、电镀,而低压铸造正好可以把轮毂的正面放在下模,放在浇口的旁边,在压力下结晶,得到致密的组织。使得低压铸造轮毂正面加工以后,表面质量,表面光洁度都比较好。 3 汽车铝轮低压铸造工艺设计 工艺设计之前,轮毂设计之初,需考虑与轮毂相关的几个基本内容。首先要正确的计算结构强度,这是影响到它生产出来以后安全使用的问题,另一个重要问题是否方便于铸造工艺,是否有利于机加,抛光和电镀,是否有利于减少废品降低成本,提高铸件整体质量,设计一款美观的车轮是不能不考虑它的铸造、加工工艺性的。 4 汽车铝轮低压铸造模具设计 模具设计之前工艺方案是重大的原则问题,方案错了,整个模具设计将全功尽废,如果设计不当,不从铸造工艺角度上去考虑,会极大地影响铸造厂去生产出完美的致密的铸件来。所以在确定模具的设计方案之前,要请专家和现场工作者进行评审。根据产品结构的特点(要注意完全符合顺序凝固条件的产品结构是很少的)评审出一个能创造顺序凝固条件的模具设计方案。模具设计者要深黯与之相关的铸造设备和铸造工艺,设计者要多到现场去请现场的工作者指导。动手设计时要对以下方面进行考虑: a在轮毂的零件图上画出轮毂各部份的加工余量; b在上下模和型芯各个部位,需要考虑适当的拔模斜度; c为了考虑铸件的顺序凝固,对铸件壁厚要通过“补贴”调整圆角,减小热节等措施来尽量符合“壁厚梯度”原则,还要在铸件补缩的距离上给予适当的壁厚考虑,在必要的地方要考虑风冷或水冷,总之整个模具从轮缘到浇口要创造一个顺序凝固的温度场。 d铸型的排气,特别在大平面或死角部分; e在铸件的凸台部份考虑是否用铜块,增加冷却速度;

火车车轮锻造工艺分析(最新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 火车车轮锻造工艺分析(最新 版) Safety management is an important part of production management. Safety and production are in the implementation process

火车车轮锻造工艺分析(最新版) 铁路交通是我国运输系统的重要组成部分,在国民经济和社会发展过程中,铁路运输扮演着不可替代的重要角色。我国一直以来都十分重视铁路运输的发展。最近几年以来,随着以高铁为代表的新型铁路运输技术的应用,我国铁路运输朝着高速、重载方向发展,车轮在复杂的运行工况和恶劣的工作条件下,受到来自于速度效应和制动方式的双重影响,对其耐磨性、强韧性以及抗疲劳性提出了更高的要求。但是我国现有的车轮锻压生产技术,还不能完全满足铁路运输发展对火车车轮质量的要求。尤其是我国高速列车的车轮,在车轮的制造中,还存在废品率较高的现象。因此,笔者认为,研究火车车轮锻压生产工艺,提高我国火车车轮锻压生产技术水平,制造优质火车车轮,对于降低我国火车整车生产成本,促进铁路运输的发展,有十分重要的现实意义。 1.火车车轮概述。

1.1.我国火车车轮形制特征简析 火车车轮是火车整车零件中的一个关键组成部分,是火车机车生产中技术较高的环节之一。由于火车的种类繁多,工作环境和机车构造也不尽相同,所以火车车轮的结构形式和形制特征也多种多样。一般由轮毂、轮辋、辐板三个部分组成。 火车车轮属于典型的金属塑性成形产品,常常会出现多种内部和外部缺陷。比较常见的有偏心缺陷、组织和填充不完全等缺陷。所以车轮生产中对锻压技术要求较高。 1.2.我国现行车轮生产工艺。 当前包括我国在内的世界各国普遍采用模锻——轧制法(又称整体辗钢车轮生产法)进行火车车轮锻造生产,这一方法主要采用模锻和轧制扩径两个主要步骤来完成车轮主体的成形。和铸造法相比较,该法所生产的车轮内在质量要好很多,与全模锻制造法相比,该法的优点在于对模锻设备的要求较低。全世界有20多个生产厂家,虽然各自的生产工艺有其独有特点,但是总体来说从流程来讲可以分为三个主要步骤:预成型及成型、轧制扩径和压弯冲孔。通过初

铸造工艺设计实例

轴承座铸造工艺设计说明书 一、工艺分析 1、审阅零件图 仔细审阅零件图,熟悉零件图,而且提供的零件图必须清晰无误,有完整的尺寸和各种标记。仔细样。注意零件图的结构是否符合铸造工艺性,有两个方面:(1)审查零件结构是否符合铸造工艺 (2 )在既定的零件结构条件下,考虑铸造过程中可能出现的主要缺陷,在工艺设计中采取措施避 零件名称:轴承座 零件材料:HT150 生产批量:大批量生产 2、零件技术要求 铸件重要的工作表面,在铸造是不允许有气孔、砂眼、渣孔等缺陷。 3、选材的合理性 铸件所选材料是否合理,一般可以结合零件的使用要求、车间设备情况、技术状况和经济成本等, 用铸造合金(如铸钢、灰铸铁、球墨铸铁、可锻铸铁、蠕墨铸铁、铸造铝合金、铸造铜合金等)的 牌号、性能、工艺特点、价格和应用等,进行综合分析,判断所选的合金是否合理。 4、审查铸件结构工艺性 铸件壁厚不小于最小壁厚5-6又在临界壁厚20-25以下。 二、工艺方案的确定

1、铸造方法的确定 铸造方法包括:造型方法、造芯方法、铸造方法及铸型种类的选择 (1)造型方法、造芯方法的选择 根据手工造型和机器造型的特点,选择手工造型 (2)铸造方法的选择 根据零件的各参数,对照表格中的项目比较,选择砂型铸造。 (3)铸型种类的选择 根据铸型的特点和应用情况选用自硬砂。 2、浇注位置的确定 根据浇注位置选择的4条主要规则,选择铸件最大截面,即底面处。 3、分型面的选择 本铸件采用两箱造型,根据分型面的选择原则,分型面取最大截面,即底面。 三、工艺参数查询 1、加工余量的确定 根据造型方法、材料类型进行查询。查得加工余量等级为11~13, 取加工余量等级为12。

挤压铸造代替压力铸造生产铝合金车轮

摘要采用挤压铸造代替压力铸造生产铝合金车轮,不仅克服了压铸件内部容易形成气孔和氧化夹杂的缺陷,而且提高了成品率及材料利用率。介绍了铝合金车轮挤压铸造的模具结构及设计参数,分析了挤压铸造的工艺参数及选择依据。 关键词:铝合金车轮挤压铸造模具结构 目前,国内卡丁车(类似碰碰车)都从国外进口,其中铝合金车轮是一个重要零件。过去,国外采用压力铸造生产该铸件,铸件质量差,且成品率低,劳动强度大。针对该铸件的结构特点和性能要求,如何提高其产品质量、降低原材料消耗、节约能源、提高劳动生产率及降低铸件成本,是当前生产中的关键。从研制的情况可知,采用挤压铸造代替压力铸造是今后制造铝合金车轮行之有效的工艺。 1车轮材料、要求及铸件设计 图1所示为铝合金车轮零件图。车轮不仅有较高的性能要求,而且形状十分复杂。 图1车轮零件图 车轮材料的化学成分(质量分数)为:1.5%~3.5%的Cu,10.5%~12.0%的Si,<0.3%的Mg,<1.0%的Zn,<0.5%的Mn,<1.3%的Fe,<0.5%的Ni,<0.5%的Sn,其余为Al。力学性能要求:σb>276 MPa,σs>115 MPa,σ>4.4%,HB>92。 该车轮内外形的尺寸精度较高,都应加放加工余量及余块。按挤压铸造工艺的要求,把形状复杂的车轮零件图设计如图2所示的铸件图。由该图可见,为便于从铸件内孔脱出及简化模具加工,把原来的阶梯轴孔设计成圆柱形中心孔,其直径为 φ30 mm,内壁斜度为3°[1]。

图2车轮铸件图 2模具结构及设计参数[1] 2.1挤压铸造模具结构 铝合金车轮挤压铸造的模具结构如图3所示。它主要有凸模、右凹模、顶杆镶块和左凹模组成所要求的型腔。左凹模和右凹模分别固定在左凹模定模板和右凹模动模板上,左凹模定模板用螺钉紧固在下模板上,右凹模动模板经过侧缸在导柱上实施开启及闭合。 图3车轮挤压铸造模具 1.上模板 2.凸模固定板 3.凸模 4.导柱 5.右凹模 6.右凹模动模板 7.垫板8.下模板9.顶杆镶块10.左凹模11.左凹模定模板 采用2000 kN油压机改装进行挤压铸造,其工作过程是:将定量的合金熔液浇入型槽后,固定在活动横梁上的凸模以一定速度向下挤入型腔,压力达一定数值后保压;铝合金凝固后卸压,凸模通过工作缸的回程向上移动,顶杆镶块通过下顶缸从铸件内向下退出,直到全部脱离铸件之后,再用侧缸开启右凹模,取出铸件。 2.2模具设计的主要参数

铝合金车轮低压铸造工艺讲解

铝合金车轮低压铸造工艺 目录 铝合金车轮低压铸造工艺 1 低压铸造工艺 1.1 低压铸造原理 1.2 低铸汽车铝合金轮的工艺特点 1.3 汽车铝轮低压铸造工艺设计 1.4 汽车铝轮低压铸造模具设计 1.5 铝轮低压铸造工艺过程 1. 模具检查 2. 模具喷砂 3. 模具的准备 4. 模具涂料 5. 涂料性能和配比 6. 涂料的选择 7. 模具的预热和喷涂 1.6 开机前的准备工作 1. 保温炉的准备 2. 陶瓷升液管的准备 3. 设备和工艺工装的准备

1.7 铝车轮低压铸造液面加压规范 1. 加压规范的几种类型 2. 铝车轮低压铸造加压规范的设定 3. 设计铝轮低铸加压曲线的步骤 4. 铝轮低铸工艺曲线实例 1.8 铸件缺陷分析,原因及解决办法 1. 疏松(缩松)的形成与防止 2. 缩孔的形成与防止 3. 气孔的形成与防止 4. 针孔的形成与防止 5. 轮毂的变形原因及防止 6. 漏气的产生原因及防止 7. 冷隔(冷接,对接),欠铸(浇不足,轮廓不清)的形成与防止 8. 凹(缩凹,缩陷)的形成与防止 铝合金车轮低压铸造工艺 铝合金车轮制造技术是多种多样的,而铝车轮的铸造工艺,目前主要有两种:一种是金属型重力铸造,一种是低压铸造。我们主要是做汽车铝合金车轮,制造工艺采用的 是低压铸造。我们教材面向的对象主要是我们公司的员工,所以对工艺技术的介绍是有针对性的,介绍的方法也是不一样的。 1 低压铸造工艺 1.1 低压铸造原理 低压铸造是将铸型放在一个密闭的炉子上面,型腔的下面用一个管(叫升液管)和炉膛里的金属液相通。如果在炉膛中金属液面上加入带压力的空气,金属液会从升液管中

火车车轮锻造工艺分析示范文本

火车车轮锻造工艺分析示 范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

火车车轮锻造工艺分析示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 铁路交通是我国运输系统的重要组成部分,在国民经 济和社会发展过程中,铁路运输扮演着不可替代的重要角 色。我国一直以来都十分重视铁路运输的发展。最近几年 以来,随着以高铁为代表的新型铁路运输技术的应用,我 国铁路运输朝着高速、重载方向发展,车轮在复杂的运行 工况和恶劣的工作条件下,受到来自于速度效应和制动方 式的双重影响,对其耐磨性、强韧性以及抗疲劳性提出了 更高的要求。但是我国现有的车轮锻压生产技术,还不能 完全满足铁路运输发展对火车车轮质量的要求。尤其是我 国高速列车的车轮,在车轮的制造中,还存在废品率较高 的现象。因此,笔者认为,研究火车车轮锻压生产工艺, 提高我国火车车轮锻压生产技术水平,制造优质火车车

锻造工艺学

第一、二章 锻造生产用原材料与下料 1、钢锭由冒口、锭身和底部组成。 2、大型钢锭的组织结构: 答:1)细晶粒层 由于钢液接触模壁冷凝速度快,产生大量晶核,因而表面首先凝固成细小的等轴晶粒层(或称激冷层);2)柱状晶区 表面细晶粒层形成后,锭模温度上升,继续散热速度减慢,晶粒开始沿着与模壁垂直的方向发展,从而形成柱状晶区。由于选择结晶的缘故,易熔成分挤向中心,所以柱状晶区的夹杂及其他缺陷较少;3)倾斜树枝晶区 随着柱状晶区的不断发展,锭模温度继续上升,散热速度愈加减慢,加以杂质和气体上浮的运动作用,于是形成晶轴偏离柱状晶体方向的倾斜树枝晶区,并且A 形偏析区也在这一区间形成;4)粗大等轴晶区 倾斜树枝晶区长大到一定阶段后,由于外层收缩脱离锭模产生间隙,散热速度更加减慢,中心区的钢液有可能达到同一过冷度而同时凝固,最终形成粗大等轴晶区。在这一区间的上部出现V 形偏析,下部出现负偏析,夹杂与疏松等缺陷较多,由此不难看出钢锭中心处组织较差;5)沉积堆 底部的钢液凝固快,形成较厚的细晶粒层。此外,由于上部钢液中最初形成的晶体因比重大而下沉,并将碰断的树枝状晶分枝一起向下堆积。在这一过程中,由于周围凝固,并且钢液补缩能力较小,所以沉积堆的组织疏松,氧化物夹杂多,在化学成分上构成负偏析区;6)冒口区 因为选择结晶的关系,钢锭内首先凝固的部分纯度高,最后凝固的冒口区杂质最多,特别是熔点低的硫化物和磷化物。冒口区的钢液比重小,在凝固过程中得不到补缩,因而最终形成大缩孔,其周围并存在大量疏松。钢锭底部和冒口占钢锭重量的5--7%和18--25%。对于合金钢,切除的冒口应占钢锭的25--30%,底部占7--10%。 3、大型钢锭的内部缺陷以及形成原因: 答:1)偏析 钢锭内部化学成分和杂质分布不均匀性称为偏析。偏析是钢液凝固时选择结晶的产物。偏析可分为树枝状偏析(或显微偏析)和区域偏析(或低倍偏析)两种。树枝状偏析是指钢锭在晶体范围内化学成分的不均匀性。区域偏析是指钢锭在宏观范围内的不均匀性;2)夹杂 钢锭内部不溶解于基体金属的非金属化合物,加过加热、冷却热处理仍不能消失,称为非金属夹杂物,通称夹杂。大型锻件内部通常存在的非金属夹杂有:硅酸盐、硫化物和氧化物等;3)气体 在冶炼过程中氮、氢、氧等气体通过炉料和炉气溶入钢液。钢液凝固时,这些气体虽然析出一部分,但在固态钢锭内仍有残余。氢和氮在钢锭中以氧化物和氮化物出现,氢则以原子状态存在,也可能形成一部分分子状态氢和氰化物;4)缩孔和疏松 从钢液冷凝成钢锭时,发生物理收缩现象,如果没有钢液补充,钢锭内部某些地方将形成空洞。缩孔是在冒口区形成的。疏松是由于晶间钢液最后凝固收所造成的晶间空隙和钢液凝固过程中析出气体构成的显微空隙。 4、生产过程中常见的下料方法有:剪切、冷折、锯断、车断、砂轮切割、剁断及特殊精密下料等。 第三章 锻前加热、锻后冷却与热处理 5、锻造前加热的目的及加热方法 加热的目的是:提高金属塑性、降低变形抗力、使之易于流动成形并获得良好锻后组织。 按所采用的热源不同,可以分为火焰加热与电加热两大类。火焰加热是利用燃气(煤、焦炭、重油、柴油和煤气)在火焰加热炉内燃烧产生含有大量热能的高温气体(火焰),通过对流、辐射把热能传给坯料表面,再由表面向中心热传导而使金属坯料加热。电加热是通过把电能转变为热能来加热金属坯料。其中有感应电加热、接触电加热、电阻炉加热和盐浴炉加热等。 6、加热过程中常见的缺陷(种类、原因、危害) (1)氧化 钢加热到高温时,表层中的铁和炉气中的氧化性气体(如2O 、2CO 、O H 2和

铸造工艺分析与设计

3.6 工艺分析与设计 3.6.1浇注位置的确定 根据对合金凝固理论的研究和生产经验,确定浇注位置时应考虑以下原则: 1.铸件的重要部分应尽量置于下部。 2.重要加工面应朝下或呈直立状态。 3. 使铸件的大平面朝下,避免夹砂结疤类缺陷。 对于大的平板类铸件,可采用倾斜浇注,以便增大金属液面的上升速度,防止夹砂结疤类缺陷(见图1、2)。倾斜浇注时,依砂箱大小,H值一般控制在200~400mm范围内。 图1具有大平面的铸件正确的浇注位置图2 大平板类铸件的倾斜浇注 4.应保证铸件能充满。 对具有薄壁部分的铸件,应把薄壁部分放在下半部或置于内浇道以下,以免出现浇不到、冷却等缺陷。图3为曲轴箱的浇注位置。 5.应有利于铸件的补缩。 6. 避免用吊砂、吊芯或悬臂式砂芯,便于下芯、合箱及检验。 7. 应使合箱位置、浇注位置和铸件冷却位置相一致这样可避免变合箱后或于浇注后再次翻转铸型。 此外,应注意浇注位置、冷却位置与生产批量密切相关。 图 3 曲轴箱的浇注位置 a)不正确b)正确 3.6.2 分型面的选择 分型面是指两半铸型相互接触的表面。除了地面软床造型、明浇的小件和实型铸造法以外,都要选择分型面。 分型面一般在确定浇注位置后再选择。但分析各种分型面方案的优劣之后,可能需重新调整浇注位置。生产中,浇注位置和分型面有时是同时确定的。分型面的优劣,在很大程度上影响铸件的尺寸精度、成本和生产率。应仔细地分析、对比,慎重选择。 分型面的选择原则如下:

1. 应使铸件全部或大部分置于同一半型内; 2. 应尽量减少分型面的数目; 分型面数目少,铸件精度容易保证,且砂箱数目少。 3. 分型面尽量选用平面; 平直分型面可简化造型过程和模底版制造,易于保证铸件精度。 4. 便于下芯、合箱和检查型腔尺寸; 5. 不使砂箱过高; 分型面通常选在铸件最大截面上,以使砂箱不致过高。 6. 受力件的分型面选择不应削弱铸件结构强度; 7. 注意减轻铸件清理和机械加工量。 一个铸件应以哪几项原则为主来选择分型面,需要进行多方案的对比,根据实际生产条件,并结合经验来作出正确的判断,最后选出最佳方案。 3.6.3浇注系统设计 浇注系统是铸型中液态金属流入型腔的通道之总称。铸铁件浇注系统的典型结构如图4所示,它由浇口杯(外浇口)、直浇道、直浇道窝、横浇道和内浇道等部分组成。广义地说,浇包和浇注设备也可认为是浇注系统的组成部分,浇注设备的结构、尺寸、位置高低等,对浇注系统的设计和计算有一定影响;此外,出气孔也可看成是浇注系统的组成部分。 图4 典型浇注系统的结构 a)封闭式b)开放式 1浇口环2直浇道3直浇道窝4横浇道5末端延长段6内浇道 一、对浇注系统的基本要求 1)所确定的内浇道的位置、方向和个数应符合铸件的凝固原则或补缩方法。 2)在规定的饶注时间内充满型腔。 3)提供必要的充型压力头,保证铸件轮廓、棱角清晰。 4)使金属液流动平稳,避免严重紊流。防止卷入、吸收气体和使金属过度氧化。 5)具有良好的阻渣能力。 6)金属液进入型腔时线速度不可过高,避免飞溅、冲刷型壁或砂芯。 7)保证型内金属液面有足够的上升速度,以免形成夹砂结疤、皱皮、冷隔等缺陷。 8)不破坏冷铁和芯撑的作用。 9)浇注系统的金属消耗小,并容易清理。 10)减小砂型体积,造型简单,模样制造容易。

锻造工艺

复杂弯轴类锻件辊锻-摩擦压力机模锻复合锻造工艺 一、前言 复杂弯轴类锻件的最佳成形法一直是锻造行业致力研究的问题,前些年我国轻轿车生产数量不大,没有形成规模经营,故轻轿车复杂弯轴锻件的生产主要以传统的锤上模锻工艺进行小批量生产,有的厂家甚至采用自由锻—胎模锻工艺,需几火次才能锻成。近年来,我国轻轿车生产迅速发展,生产批量越来越大,整机制造水平越来越高,对复杂弯轴类锻件而言,不仅形状复杂,而且锻件尺寸精度,表面质量等方面的要求也更加严格,故探索轻轿车复杂弯轴类锻件的合理锻造方法,显得尤为重要。根据一汽轻轿车生产实际需求,在试验研究的基础上,我们采用了辊锻制坯—摩擦压力机模锻复合工艺替代传统的锤上模锻,生产了轻型车左转向节臂,奥迪轿车左、右下控制臂等五种复杂弯轴类锻件,其锻件技术水平达到了轻型车、奥迪轿车原图纸设计要求,各项技术经济指标均达到了预期目标。 二、工艺分析与方案确定 轻轿车复杂弯轴类锻件,其特点是轴线呈空间曲线形,多向弯曲,截面差与落差大,外形复杂,锻造成形与模具加工难度较大。以左转向节臂(图1)为例,按传统的锤上模锻工艺,一般要采用拨长—滚压—弯曲—锻造等工步。其突出缺点是锻件精度较差,工作时震动噪音大,材料消耗与能耗大,劳动条件差。如采用较先进的热模锻压力机成形法,虽然工人劳动条件好,生产率及锻件尺寸精度较高,也便于实现机械化和自动化,但其突出缺点是制造成本高,不便于拔长、滚压等制坯工步,需配其它辅助设备制坯。 图1 针对现有锻造工艺的诸多问题及复杂弯轴类锻件自身的技术特点,我们确定了辊锻——摩擦压力机模锻复合锻造工艺的方案,其工艺流程为:下料→中频感应加

典型铸铁件铸造工艺设计与实例

典型铸铁件铸造工艺设计与实例叙述铸造生产中典型铸铁件——气缸类铸件、圆筒形铸件、环形铸件、球墨铸铁曲轴、盖类铸件、箱体及壳体类铸件、阀体及管件、轮形铸件、锅形铸件及平板类铸件的铸造实践。内容涉及材质选用、铸造工艺过程的主要设计、常见主要铸造缺陷及对策等。 第1章气缸类铸件 1.1 低速柴油机气缸体 1.1.1 一般结构及铸造工艺性分析1.1.2 主要技术要求 1.1.3 铸造工艺过程的主要设计1.1.4 常见主要铸造缺陷及对策1.1.5 铸造缺陷的修复 1.2 中速柴油机气缸体 1.2.1 一般结构及铸造工艺性分析1.2.2 主要技术要求 1.2.3 铸造工艺过程的主要设计1.3 空气压缩机气缸体 1.3.1 主要技术要求 1.3.2 铸造工艺过程的主要设计第2章圆筒形铸件 2.1 气缸套 2.1.1 一般结构及铸造工艺性分析2.1.2 工作条件 2.1.3 主要技术要求 2.1.4 铸造工艺过程的主要设计2.1.5 常见主要铸造缺陷及对策2.1.6 大型气缸套的低压铸造2.1.7 气缸套的离心铸造 2.2 冷却水套 2.2.1 一般结构及铸造工艺性分析2.2.2 主要技术要求 2.2.3 铸造工艺过程的主要设计2.2.4 常见主要铸造缺陷及对策2.3 烘缸 2.3.1 结构特点 2.3.2 主要技术要求 2.3.3 铸造工艺过程的主要设计2.4 活塞 2.4.1 结构特点 2.4.2 主要技术要求 2.4.3 铸造工艺过程的主要设计2.4.4 砂衬金属型铸造 第3章环形铸件 3.1 活塞环3.1.1 概述 3.1.2 材质 3.1.3 铸造工艺过程的主要设计 3.2 L形环 3.2.1 L形环的单体铸造 3.2.2 L形环的筒形铸造 第4章球墨铸铁曲轴 4.1 主要结构特点 4.1.1 曲臂与轴颈的连接结构 4.1.2 组合式曲轴 4.2 主要技术要求 4.2.1 材质 4.2.2 铸造缺陷 4.2.3 质量检验 4.2.4 热处理 4.3 铸造工艺过程的主要设计 4.3.1 浇注位置 4.3.2 模样 4.3.3 型砂及造型 4.3.4 浇冒口系统 4.3.5 冷却速度 4.3.6 熔炼、球化处理及浇注 4.4 热处理 4.4.1 退火处理 4.4.2 正火、回火处理 4.4.3 调质(淬火与回火)处理 4.4.4 等温淬火 4.5 常见主要铸造缺陷及对策 4.5.1 球化不良及球化衰退 4.5.2 缩孔及缩松 4.5.3 夹渣 4.5.4 石墨漂浮 4.5.5 皮下气孔 4.6 大型球墨铸铁曲轴的低压铸造 第5章盖类铸件 5.1 柴油机气缸盖 5.1.1 一般结构及铸造工艺性分析 5.1.2 主要技术要求 5.1.3 铸造工艺过程的主要设计 5.2 空气压缩机气缸盖 5.2.1 一般结构及铸造工艺性分析 5.2.2 主要技术要求 5.2.3 铸造工艺过程的主要设计 5.3 其他形式气缸盖 5.3.1 一般结构 5.3.2 主要技术要求 5.3.3 铸造工艺过程的主要设计 第6章箱体及壳体类铸件 6.1 大型链轮箱体 6.2 增压器进气涡壳体 6.3 排气阀壳体 6.4 球墨铸铁机端壳体 6.5 球墨铸铁水泵壳体 6.6 球墨铸铁分配器壳体 第7章阀体及管件 7.1 灰铸铁大型阀体 7.2 灰铸铁大型阀盖 7.3 球墨铸铁阀体 7.4 管件 7.5 球墨铸铁螺纹管件 7.6 球墨铸铁管卡箍 7.6.1 主要技术要求 7.6.2 铸造工艺过程的主要设计 7.6.3 常见主要铸造缺陷及对策 第8章轮形铸件 8.1 飞轮 8.2 调频轮 8.3 中小型轮形铸件 8.4 球墨铸铁轮盘 第9章锅形铸件 9.1 大型碱锅 9.2 中小型锅形铸件 第10章平板类铸件 10.1 大型龙门铣床落地工作台 10.2 大型立式车床工作台 10.3 大型床身中段 10.4 大型底座 中国机械工业出版社精装16开定价:299元

火车车轮锻造工艺分析标准范本

解决方案编号:LX-FS-A70008 火车车轮锻造工艺分析标准范本 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

火车车轮锻造工艺分析标准范本 使用说明:本解决方案资料适用于日常工作环境中对未来要做的重要工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 铁路交通是我国运输系统的重要组成部分,在国民经济和社会发展过程中,铁路运输扮演着不可替代的重要角色。我国一直以来都十分重视铁路运输的发展。最近几年以来,随着以高铁为代表的新型铁路运输技术的应用,我国铁路运输朝着高速、重载方向发展,车轮在复杂的运行工况和恶劣的工作条件下,受到来自于速度效应和制动方式的双重影响,对其耐磨性、强韧性以及抗疲劳性提出了更高的要求。但是我国现有的车轮锻压生产技术,还不能完全满足铁路运输发展对火车车轮质量的要求。尤其是我国高速列车的车轮,在车轮的制造中,还存在废品率较高的现

锻压工艺学

锻造工艺学 1.电阻加热:利用电流通过炉内电热体时产生的热量来加热金属; 感应加热:在感应器通入交变电流产生的交变磁场作用下,置于交变磁场中的金属坯料内部产生交变电势,形成交变涡流,由于金属毛坯电阻,引起的涡流发热和磁滞损失发热,加热坯料; 接触电加热:将被加热坯料直接接入电路,当电流通过坯料时,因坯料自身的电阻,产生电阻热,使坯料加热; 2.锻前加热的目的:提高金属塑形,降低变形抗力,即增加金属的可锻性,使金属易于流动成形,使锻件获得良好的组织和力学性能。 3.坯料加热时的缺陷及防止: (1)组织结构上:组织转变,过热、过烧(严格控制金属坯料的加热温度,尽量缩短金属在高温下的停留时间,在锻造时给予足够大的变形量;过烧只能报废回炉重炼,严格执行加热规范,防止炉子跑温,不要把坯料放在炉内局部温度过高区域); (2)化学变化上:氧化,脱碳(采用少无氧化加热,如快速加热,介质保护加热,少无氧化火焰加热;采用真空加热或控制炉中的气体成分); (3)力学性能上:内应力,裂纹(严格控制入炉温度、加热速度和保温时间;低温阶段缓慢加热) 4.确定45钢和T10钢锻造的温度范围:锻造温度范围的确定原则:保证金属在锻造温度范围内具有较高的塑性和较小的变形抗力,使锻件获得所需的组织和性能;范围尽可能取得宽一些,减少锻造火次,降低能耗,提高生产效率。始锻温度的确定:⑴必须保证钢无过烧现象;⑵对于碳钢:始锻温度应比铁-碳平衡图的固相线低150~250℃ 。终锻温度的确定:⑴保证钢料在终锻前具有足够的塑性;⑵使锻件获得良好的组织性能;通常钢的终锻温度应稍高于其再结晶温度50-100℃。碳钢的终锻温度在铁碳相图Ar1线以上20-80℃。 5.低碳钢加热至奥氏体和铁素体共存的两相区,两相塑性均较好,不会给锻造带来困难;中碳钢加热至单相奥氏体区,组织均一,塑性良好,满足要求;高碳钢加热至奥氏体和渗碳体共存的双相区,可借助塑性变形将析出的渗碳体破损呈弥散化,避免析出网状渗碳体。 6.镦粗的目的:由横截面积较小的坯料得到横截面积较大而高度较小的锻件或中间坯;冲孔前增大坯料的横截面积以便于冲孔和端面平整;反复拔长与镦粗可以提高锻造比,使合金钢中碳化物破碎,达到均匀分布;提高锻件横向力学性能以减小力学性能的异向性。 7.镦粗的变形分析:鼓形三个变形区(难变形区,上下,三压;小变形区,左右,两压一拉;大变形区,中间,三压) 8.镦粗时坯料尺寸如何选择? 9.平砧拔长时的缺陷及措施: (1)表面横向裂纹和角裂:受拉应力作用引起;控制送进量和一次压下的变形量,进行倒角; (2)表面折叠:送进料与压下量不合适引起;横向折叠增大送进量,纵向折叠减小压缩量; (3)内部横行裂纹:由于相对送进量太小,拔长时出现双鼓形,而轴心部位受到轴向拉应力的作用从而引起中心裂纹;适当增大相对送进量,控制一次压下量; (4)内部纵向裂纹:拔长是进给量过大,压下量相对较小引起;选择合理的进给量,采用V型砧拔长; (5)对角线裂纹:拔长温度过低,剪切应力过大;控制锻造温度和进给量大小; (6)端面缩口:拔长的首次送进量太小,表面金属变形,中心部位金属未变形或变形较小而引起;坯料端部变形时,应保证有足够的被压缩长度和较大的压缩量; (7)端部孔壁裂纹:拔长过程中内表面受切向拉应力作用引起;t/d>0.5采用上平砧下V形型砧拔长,

铝合金铸件的铸造工艺分析

铝合金铸件的铸造工艺分析 摘要:随着我国汽车工业的迅猛发展,一方面对汽车用压铸件的需求量日益提升;另一方面为了应对环境污染以及资源紧张的发展现状,对汽车用压铸件的质 量要求及应用范围提出了更高的要求。本文从高压铸造的角度探讨铝合金铸件几 种关键的高圧鋳造工艺。 关键词:铝合金铸件;铸造工艺 压力铸造是近代金属加工工艺中发展较快的一种少无切削的特种铸造方法, 具有生产效率高、经济指标优良、铸件尺寸精度高和互换性好等特点,在制造业,尤其是规模化产业得到了广泛应用和迅速发展。压力铸造是铝、镁和锌等轻金属 的主要成形方法,适用于生产大型复杂薄壁壳体零件。压铸件已成为汽车、运动 器材、电子和航空航天等领域产品的重要组成部分,其中汽车行业是压铸技术应 用的主要领域,占到70%以上。随着汽车、摩托车、内燃机、电子通信、仪器仪表、家用电器、五金等行业的快速发展,压铸件的功能和应用领域不断扩大,从 而促进了压铸技术不断发展,压铸件品质不断提高。本文针对铝合金高压压铸技 术进行分析探讨。 1高性能压铸合金技术 对于新型高强韧压铸铝合金的开发,主要包括两个方面:一是针对现有传统压 铸铝合金的合金成分或添加合金元素进行优化设计;二是开发新型压铸铝合金系。而新型压铸铝合金一般要求其满足以下几点:①适用于壁厚为2-v4 mm复杂结构 压铸件的生产;②铸态下的抗拉强度和屈服强度分别可以达到300 MPa和150 MPa,且具有15%的伸长率;③具有良好的耐腐蚀性能;④可以通过工业上对变形 铝合金常用的高温喷漆过程对合金进行一定的强化;⑤可进行热处理强化处理;⑥ 可回收利用且环境友好。当前常用的高强韧压铸铝合金有Silafont-36, Magsimal-59, Aural-2及ADC-3等牌号,均为国外开发,其共同特点是Fe含量均比普通压 铸铝合金更低;另外其他杂质元素如Zn,Ti等均进行了严格控制。 对于新型压铸镁合金的开发,主要包含三个方面:超轻高强度压铸镁合金;抗高温蠕变压铸镁合金;耐蚀压铸镁合金。超轻高强度压铸镁合金的研究主要集中在 Mg-Li系合金,Li元素可提高合金的韧性,而强度则下降,通过添加第三元素, 经热处理后,合金的强度得到大幅度提高。抗高温蠕变压铸镁合金的研究主要集 中在添加合金元素,其有三方面作用:一是细晶强化,合金元素的添加有利于形成高熔点形核质点达到异质形核细化晶粒的效果;二是析出相强化并钉扎晶界,组织晶界滑移;三是固溶强化,Y等元素固液界面前沿形成强的溶质过冷层,抑制了初 生相生长而细化晶粒。而耐蚀压铸镁合金的研究同样集中在添加合金元素上,同 时还应与提高力学性能和抗高温蠕变性能相结合,以开发耐腐蚀热稳定优良的压 铸镁合金系列为目的,加强对压铸镁合金添加合金元素的研究;开展压铸镁合金后期处理的研究,例如对镁合金表面进行涂层、强化处理,阻止氧化反应和介质腐蚀。 目前国内对这部分压铸合金的规模化回收处理通常是采用直接加入火焰炉或 感应炉内重熔的方式,此种回收处理工艺所带来的主要问题是金属烧损大、重熔 能耗高、环境污染较重、人工劳动强度大、作业条件恶劣等。 2高真空压铸技术 当前,真空压铸以抽除型腔内气体的形式为主流,将真空阀装在模具上,其 最大的优点在于模具的设计和结构基本上与常规压铸相同,在分型面、推杆配合

制造工艺详解——铸造

制造工艺详解——铸造 铸造是人类掌握比较早的一种金属热加工工艺,已有约6000年的历史。中国约在公元前1700~前1000年之间已进入青铜铸件的全盛期,工艺上已达到相当高的水平。 一、铸造的定义和分类 铸造的定义:是将液体金属浇铸到与零件形状相适应的铸造空腔中,待其冷却凝固后,获得具有一定形状、尺寸和性能金属零件毛坯的成型方法。 常见的铸造方法有砂型铸造和精密铸造,详细的分类方法如下表所示。 砂型铸造:砂型铸造——在砂型中生产铸件的铸造方法。钢、铁和大多数有色合金铸件都可用砂型铸造方法获得。由于砂型铸造所用的造型材料价廉易得,铸型制造简便,对铸件的单件生产、成批生产和大量生产均能适应,长期以来,一直是铸造生产中的基本工艺。 精密铸造:精密铸造是用精密的造型方法获得精确铸件工艺的总称。它的产品精密、复杂、接近于零件最后形状,可不加工或很少加工就直接使用,是一种近净形成形的先进工艺。 铸造方法分类 二、常用的铸造方法及其优缺点 1. 普通砂型铸造

制造砂型的基本原材料是铸造砂和型砂粘结剂。最常用的铸造砂是硅质砂,硅砂的高温性能不能满足使用要求时则使用锆英砂、铬铁矿砂、刚玉砂等特种砂。应用最广的型砂粘结剂是粘土,也可采用各种干性油或半干性油、水溶性硅酸盐或磷酸盐和各种合成树脂作型砂粘结剂。 砂型铸造中所用的外砂型按型砂所用的粘结剂及其建立强度的方式不同分 为粘土湿砂型、粘土干砂型和化学硬化砂型3种。 砂型铸造用的是最流行和最简单类型的铸件已延用几个世纪.砂型铸造是用来制造大型部件,如灰铸铁,球墨铸铁,不锈钢和其它类型钢材等工序的砂型铸造。其中主要步骤包括绘画,模具,制芯,造型,熔化及浇注,清洁等。 工艺参数的选择 加工余量:所谓加工余量,就是铸件上需要切削加工的表面,应预先留出一定的加工余量,其大小取决于铸造合金的种类、造型方法、铸件大小及加工面在铸型中的位置等诸多因素。 起模斜度:为了使模样便于从铸型中取出,垂直于分型面的立壁上所加的斜度称为起模斜度。 铸造圆角:为了防止铸件在壁的连接和拐角处产生应力和裂纹,防止铸型的尖角损坏和产生砂眼,在设计铸件时,铸件壁的连接和拐角部分应设计成圆角。 型芯头:为了保证型芯在铸型中的定位、固定和排气,模样和型芯都要设计出型芯头。 收缩余量:由于铸件在浇注后的冷却收缩,制作模样时要加上这部分收缩尺

铝合金车轮低压铸造工艺与铸造缺陷分析

参考文献 [1]陈亭楠.现代企业文化[M].北京:企业管理出版社,2003,25-31. [2]张云初,王清, 陈静. 让企业文化起来[M]. 深圳:海天出版社,2003,13-25. [3]侯大年.数字电子技术[M].北京:电子工业出版社,2002,21-23. [4]李庆春.铸型形成理论基础[M].北京:机械工业出版社,2001,39-53. [5]宫克强.特种铸造[M].北京:机械工业出版社,2003,25-30. [6]王宵峰,王波,赵振伟.汽车车轮结构强度分析[J].汽车研究,2002,(4):95-101. [7]高军.整体式锻造铝合金车轮及其发展[J].汽车工艺与材料,2001,(5):15. [8]王祝堂.中国的再生铝工业[J].中国资源综合利用,2002(9):30-38.

辞谢 走的最快的总是时间,来不及感叹,大学生活已近尾声,随着本次毕业论文的完成,将要划下完美的句号。 经过五个多月的构思与设计,在谢亚青老师的精心指导和安排下,本毕业论文已经完成。但是由于时间比较仓促,加上本人工作经验的不足。因此,在分析问题、解决问题时显得不够严密、完善,还需要正在以后的工作中不断完善。 在临近毕业之际,我还要借此机会向给予我诸多教诲和帮助的各位老师表示由衷的谢意,感谢他们的辛勤栽培。不积跬步何以至千里,各位任课老师认真负责,在他们的悉心帮助和支持下,我能够很好的掌握和运用专业知识,我相信这些所学知识在以后的工作中会得到应用的。 这次毕业论文的完成,很感谢谢亚青老师,因为论文是在谢亚青老师的悉心指导下完成的,谢老师指引我毕业论文写作的方向和架构,并对本论文初稿进行逐字批阅,指正出其中误谬之处,使我有了思考的方向,她的严谨细致、一丝不苟的作风,将一直是我工作、学习中的榜样。还有衷心感谢我的班主任吴老师,在生活中给我很多关心和帮助,教育我们很多为人处事之道。这些都是在我以后的路中有很大帮助的。 我还要感谢各位同学以及我的各位室友,在学校的这段时间里,你们给了我很多的帮助,在此我表示深深地感谢你们,是你们让我们的寝室充满快乐与温馨,愿我们以后的人生都可以充实、多彩与快乐、工作顺利。

火车车轮锻造工艺分析实用版

YF-ED-J9009 可按资料类型定义编号 火车车轮锻造工艺分析实 用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

火车车轮锻造工艺分析实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 铁路交通是我国运输系统的重要组成部分,在国民经济和社会发展过程中,铁路运输扮演着不可替代的重要角色。我国一直以来都十分重视铁路运输的发展。最近几年以来,随着以高铁为代表的新型铁路运输技术的应用,我国铁路运输朝着高速、重载方向发展,车轮在复杂的运行工况和恶劣的工作条件下,受到来自于速度效应和制动方式的双重影响,对其耐磨性、强韧性以及抗疲劳性提出了更高的要求。但是我国现有的车轮锻压生产技术,还不能完全满足铁路运输发展对火车车轮质量的要

求。尤其是我国高速列车的车轮,在车轮的制造中,还存在废品率较高的现象。因此,笔者认为,研究火车车轮锻压生产工艺,提高我国火车车轮锻压生产技术水平,制造优质火车车轮,对于降低我国火车整车生产成本,促进铁路运输的发展,有十分重要的现实意义。 1.火车车轮概述。 1.1.我国火车车轮形制特征简析 火车车轮是火车整车零件中的一个关键组成部分,是火车机车生产中技术较高的环节之一。由于火车的种类繁多,工作环境和机车构造也不尽相同,所以火车车轮的结构形式和形制特征也多种多样。一般由轮毂、轮辋、辐板三个部分组成。 火车车轮属于典型的金属塑性成形产品,

相关文档
最新文档