一、煤制氢及气化装置概况

目录

一、煤制氢及气化装置概况

二、气化装置建设情况

三、装置开车及运行情况

四、运行优化

 

 

恒力2000万吨/年炼化一体化项目位于辽宁省大连市长兴岛临港工业园区,是国家对民营企业开放的第一个重大民营炼化项目,也是新一轮东北振兴的战略项目。

项目建设以450万吨/年芳烃联合装置为核心的2000万吨/年炼油装置、化工装置和公用工程、辅助生产设施及码头工程。

项目于2017年4月开工建设,2018年12月投料开车,2019年3月24日打通生产全流程,5月17日全面投产,刷新了同行业同体量项目最快建设记录。

恒力石化(大连)炼化有限公司介绍

 

 

为了满足重油加氢的需求,需建设最大能力为100万Nm3/h有效气的煤制氢装置,以港口来的原煤为原料,生产氢气,并制备一部分本项目所需的甲醇、醋酸等产品。

煤制氢项目,包括为空分装置8万Nm3/h、制氢装置50万Nm3/h、甲醇装置70万t/a、燃料气甲烷化12万Nm3

/h和醋酸装置。恒力石化煤制氢项目介绍

 

 恒力石化气化装置简介

煤制氢煤气化装置技术采用国内自主知识产权的四喷嘴对置式水煤浆加压气化技术,装置建设六套四喷嘴水煤浆加压气化炉,气化炉直径3.88

米 ,5开1备模式运行。气化炉操作压力6.5MPa,气化炉单炉投煤量3000吨/天(干基),单炉具备20万Nm3/h有效气的

生产能力。

装置构成

煤浆制备系统9个系列,正常7开2备;

气化系统分列两个气化框架内,每个气化框架设3套气化系统,一套烧嘴冷却水系统;

两个渣水框架,每个渣水框架设3套煤气初步净化及渣水处理系统;

装置构成

每个渣水框架对应2台沉降槽,1台灰水槽,一套高密度池,一套冷凝液汽提系统;

真空过滤系统:设4台过滤机,4台干燥机,一台过滤机对应一台干燥系统。

1、恒力气化装置

2017年4月开始开槽放线

打桩,土建开始。

2、2017年

10月5日气

化框架混凝

土结构封顶。

3、2017

年10月开

始气化框

架7楼以

上安装钢

结构。

 

 

4、2018年2月陆续开始设备安装管道预制,

3

月中旬开始管线焊接安装。

 

 

4

号炉吊装就位

6号炉吊装就位

5号炉吊装就位3号炉吊装就位

1号炉吊装就位

2号炉吊装就位

5、 2018

年4月27日第

一台气化炉吊

装就位,5月

11日第六台气

化炉顺利吊装

就位。全面进

入设备安装阶

段。

 

 

6、气化装置

共有设备733台(套),含静设

备325台,动设

备408台,换热

器类52台,容器

类设备175台,

泵类设备238台。

 

 1、 2018年

11月26日点

火原始烘炉,

2019年2月8

日18:40分6

号气化炉开

始二次烘炉

准备投料。

2、2019年2月15日中班原始化工投

料:18:10分6号气化炉CD 烧嘴投料,

火炬18:24着火,火炬着火以后18:26分投AB烧嘴。一次投料成功,标志着气化装置进入试运行阶段。

 

 

3、原料煤使用

?双击替换图片

?双击替换图片实际入炉

煤较全水高于

设计值、且波

动较大;灰分

低于设计值;

固定碳低于设

计值;灰熔点

低于设计值。

4、气化炉运行时间统计

炉号

时间天数时间天数6#2月15日-3月27日405月11-9月16日128 5#3月20日-5月11日526月23-8月21日59 4#3月30日-5月26日58 3#4月28日-6月23日567月17-9月14日59 2#5月24日-7月20日578月20-至今 

5、气化炉停车次数统计

炉号运行时间h

次数计划停车误操作电气仪表烧嘴设备空分6#3864

52 2 15#2664

32 1 4#1392

11 3#2832

21 1 2#136811

6、气化炉连投原因统计

炉号运行时

间h

次数电气仪表烧嘴设备空分

6#386451121 5#26645 1 4#13921 1 3#28326 1 5 2#13681 1 

制氢技术比较及分析报告

制氢技术综述&制氢技术路线选择 一、工业制氢技术综述 1.工业制氢方案 工业制氢方案很多,主要有以下几类: (1)化石燃料制氢:天然气制氢、煤炭制氢等。 (2)富氢气体制氢:合成氨生产尾气制氢、炼油厂回收富氢气体制氢、氯碱厂回收副产氢制氢、焦炉煤气中氢的回收利用等。 (3)甲醇制氢:甲醇分解制氢、甲醇水蒸汽重整制氢、甲醇部分氧化制氢、甲醇转化制氢。 (4)水解制氢:电解水、碱性电解、聚合电解质薄膜电解、高温电解、光电 解、生物光解、热化学水解。 (5)生物质制氢。 (6)生物制氢。 2.工业制氢方案对比选择 (1)煤炭制氢制取过程比天然气制氢复杂,得到的氢气成本也高。 (2)由于生物制氢、生物质制氢和富氢气体制氢等方法制取的氢气杂质含量高、纯度较低,不能达到GT等技术提供商的氢气纯度要求。 (3)国内多晶硅绝大多数都采用的是水电解制氢,只有中能用的是天然气制氢,而国外应用的更多是甲醇制氢,因此,我们重点选择以下三类方案进行对比: (A)天然气制氢 (B)甲醇制氢 (C)水电解制氢 3. 天然气制氢

(1)天然气部分氧化制氢因需要大量纯氧增加了昂贵的空分装置投资和制氧成本。 (2)天然气自热重整制氢由于自热重整反应器中强放热反应和强吸热反应分步进行,因此反应器仍需耐高温的不修锈钢管做反应器,这就使得天然气自热重整反应过程具有装置投资高,生产能力低的特点。 (3)天然气绝热转化制氢大部分原料反应本质为部分氧化反应。 (4)天然气高温裂解制氢其关键问题是,所产生的碳能够具有特定的重要

用途和广阔的市场前景。否则,若大量氢所副产的碳不能得到很好应用,必将限制其规模的扩大。 (5)天然气水蒸汽重整制氢,该工艺连续运行, 设备紧凑, 单系列能力较大, 原料费用较低。 因此选用天然气水蒸汽重整制氢进行方案对比。 4.甲醇制氢 (1)甲醇分解制氢,该反应是合成气制甲醇的逆反应,在低温时会产生少量的二甲醚。 (2)甲醇水蒸汽重整制氢,是甲醇制氢法中氢含量最高的反应。这种装置已经广泛使用于航空航天、精细化工、制药、小型石化、特种玻璃、特种钢铁等

煤制氢装置工艺说明书

浙江X X X X X X 有限公司 培训教材 煤制氢装置工艺说明书 二。一O年九月 第一章概述 1 设计原则 1.1本装置设计以无烟煤、蒸汽、空气为主要原料生产水煤气,然后经过一系列的净化变换处理生产工业氢气;生产规模:30000Nm3/h 工业氢气。 1.2本装置采用成熟、可靠、先进的技术方案,合理利用能源,降低能耗,节省投资。 1.3认真贯彻国家关于环境保护和劳动法的法规和要求,认真贯彻“安全第一、预防为主”的指导思想,对生产中易燃易爆、有毒有害的物质设置必要的防范措施,三废排放要符合国家现行的有关标准和法规。 1.4采用DCS集散型控制系统。 2 装置概况及特点 2.1装置概况 本装置技术采用固定床煤气发生炉制气、湿法脱硫、全低温变换、变压吸附 VPSA脱碳和(PSA提纯氢气的工艺技术路线,其中的变压吸附脱碳和提氢技术采用上海华西化工科技有限公司的专有技术。 本装置由原料煤储运工序、固定床煤气发生炉制水煤气工序、水煤气脱硫工序、水煤气压缩工序、全低温变换工序、变换气脱硫工序、变压吸附脱碳和提氢工序、造气和脱硫循环水处理工序以及余热回收等部分组成。 2.2装置组成 原料煤储运T造气T气柜T水煤气脱硫T水煤气压缩T全低温变换T变换气脱硫-变压吸附脱碳-变压吸附提氢 2.3生产规模 制氢装置的生产规模为30000NmVh ,其中0.6MPa产品氢7000 Nm3/h , 1.3 MPa 产品氢23000 Nm'/h。装置的操作弹性为30—110%年生产时数为8000小时。 2.4 物料平衡简图 本装置的界区自原料煤库出来的第一条输煤皮带的下料开始,至产品氢出口的最后一个阀门为止。

煤制氢装置工艺说明书

浙江X X X X X X有限公司培训教材 煤制氢装置工艺说明书 二○一○年九月

第一章 概 述 1 设计原则 1.1 本装置设计以无烟煤、蒸汽、空气为主要原料生产水煤气,然后经过一系列的净化变换处理生产工业氢气;生产规模:30000Nm 3/h 工业氢气。 1.2 本装置采用成熟、可靠、先进的技术方案,合理利用能源,降低能耗,节省投资。 1.3 认真贯彻国家关于环境保护和劳动法的法规和要求,认真贯彻“安全第一、预防为主”的指导思想,对生产中易燃易爆、有毒有害的物质设置必要的防范措施,三废排放要符合国家现行的有关标准和法规。 1.4 采用DCS 集散型控制系统。 2 装置概况及特点 2.1装置概况 本装置技术采用固定床煤气发生炉制气、湿法脱硫、全低温变换、变压吸附VPSA 脱碳和(PSA )提纯氢气的工艺技术路线,其中的变压吸附脱碳和提氢技术采用上海华西化工科技有限公司的专有技术。 本装置由原料煤储运工序、固定床煤气发生炉制水煤气工序、水煤气脱硫工序、水煤气压缩工序、全低温变换工序、变换气脱硫工序、变压吸附脱碳和提氢工序、造气和脱硫循环水处理工序以及余热回收等部分组成。 2.2装置组成 原料煤储运→造气→气柜→水煤气脱硫→水煤气压缩→全低温变换→变换气脱硫→变压吸附脱碳→ 变压吸附提氢 2.3生产规模 制氢装置的生产规模为30000Nm 3/h ,其中0.6MPa 产品氢7000 Nm 3/h ,1.3 MPa 产品氢23000 Nm 3/h 。装置的操作弹性为30—110%,年生产时数为8000小时。 2.4物料平衡简图 本装置的界区自原料煤库出来的第一条输煤皮带的下料开始,至产品氢出口的最后一个阀门为止。 煤造气气柜变换压缩脱硫VPSA 脱碳 VPSA 氢提纯余 热 回 收 系 统 动力站界外蒸汽管网硫回收 脱硫循环水造气循环水煤栈桥原料煤库 循环水站界外界外吹风气 粉煤 炉渣蒸汽VPSA 解析气 CO2气界外 界外外卖炉渣硫磺 硫泡沫 上水回水 0.6MPa 产品氢 1.3MPa 产品氢 变脱水煤气水煤气水煤气P-55 水煤气变脱气变换气P-63上水回水空气吹风气蒸汽 蒸汽 块煤 块煤蒸汽 飞灰烟气灰渣

现代煤化工煤制乙二醇技术概述

现代煤化工煤制乙二醇技术概述 摘要:本文主要研究现代煤化工中煤制乙二醇的技术。简单介绍了乙二醇的性质和用途,以及其制备技术的发展现状;对煤制乙二醇技术中的直接合成法及间接合成法做了概述;讨论了煤制乙二醇技术在发展过程中存在的问题;讨论了我国在乙二醇工艺技术中的现状。 关键字:煤制乙二醇;直接合成法;间接合成法;草酸酯法;现状 引言 乙二醇是一种重要的大宗基础有机化工原料,可用于生产多种化工产品,如聚酯纤维、防冻剂、不饱和聚酯树脂、润滑剂、增塑剂、非离子表面活性剂、炸药、涂料和油墨等,应用领域非常广泛。 在中国,乙二醇主要作为聚酯及防冻液的原料,其中聚酯消费占90%以上,2013年国内乙二醇进口量825万t,进口依存度高达70%左右,市场缺口巨大。2014年,国内新增聚酯产能预计达500万t,将继续拉动乙二醇消费量的增长。乙二醇在中国国民经济发展中正发挥着越来越重要的作用。乙二醇的生产工艺路线按原料不同可分为石油路线和非石油路线。在现阶段,全球主要的大型乙二醇生产装置均采用石油路线,也称乙烯路线,即在银催化剂、甲烷或H2致稳剂、氯化物抑制剂存在下,乙烯直接被O2氧化生成环氧乙烷,再与水直接或催化条件下反应生成乙二醇。石油路线经过多年的发展,工艺已趋于成熟,但耗水量大,生产过程副产物多且生产原料受石油价格波动影响较大,无法摆脱对石油资源的依赖。 因此,结合中国贫油、少气和相对富煤的能源结构特点,开发一条以煤为原料、经济合理的乙二醇合成工艺路线,符合中国的可持续发展战略。目前,国内掀起了开发煤基乙二醇的热潮,煤制乙二醇技术已经成为煤化工行业关注的焦点。

1乙二醇制备技术简介 1.1乙二醇性质简介 乙二醇(EG)是一种重要的石油化工基础有机原料,又名甘醇、亚乙基二醇,分子式为HOCH2CH2OH,是无色透明、稍带甜味的黏稠液体。乙二醇是最简单和最重要的脂肪族二元醇,主要用于生产聚酯和各类抗冻剂,前者用于制造纤维、薄膜和聚对苯二甲酸乙二醇酯(PET)树脂;其它用途则包括解冻液、表面涂层、照像显影液、水力制动用液体以及油墨等行业。高纯乙二醇可用做过硼酸铵的溶剂和介质,还可用于生产特种溶剂乙二醇醚。 1.2乙二醇制备的技术发展现状 目前,我国主要采用以下几种方法来制备乙二醇 1.1生物质发酵制备乙二醇 本工艺主要是将多糖、淀粉、秸秆等生物质混合发酵后制备多元醇,采用可再生能源作为原材料,具有广阔的应用前景目前,我国有多家科研单位和企业从事相关工作,如大连化物所采用玉米秸秆为原料制备了乙二醇、丙二醇等化工醇产品。 1.2石油路线制备乙二醇 该方法为目前世界上工业乙二醇生产中最为常用的一种方法该工艺以石油裂解产物乙烯为原料,经氧化后制得环氧乙烷,环氧乙烷水合后得到产物乙二醇,产品的收率可达90%以上。 1.3半石油路线制备乙二醇 该方法是石油路线的优化和改进,具有效率高和能耗小的优点,但是目前还没有实现工业化生产,仍在实验室中试阶段该方法采用环氧乙烷为原料,和二氧化碳反应生成碳酸乙烯醋,经过水解得到目标产物乙二醇。

制氢站使用维护说明书(天津大陆)

制氢站 1 水电解制氢装置用途 ---------------------------------------------------------- 2 2 水电解制氢装置工作原理 ----------------------------------------------------- 3 2.1 水电解制氢原理--------------------------------------------------------- 3 2.2 氢气干燥工作原理 ------------------------------------------------------ 3 3 FDQG10/3.2-IV型水电解制氢干燥装置系统详述:------------------------ 3 3.1 氢气制备及干燥系统---------------------------------------------------- 3 3.2 除盐水冷却系统--------------------------------------------------------- 4 3.3 气体分配系统 ----------------------------------------------------------- 5 3.4 储气系统 ---------------------------------------------------------------- 5 3.5 仪表气系统-------------------------------------------------------------- 5 3.6 制氢干燥部分主要设备的功能简述------------------------------------- 5 4 制氢干燥系统工作流程-------------------------------------------------------- 7 4.1 制氢干燥设备作业简介 ------------------------------------------------- 7 4.2 制氢干燥设备加水、补碱简介------------------------------------------ 8 4.3 配碱:------------------------------------------------------------------- 8 4.5 碱液从系统回收至碱箱 ------------------------------------------------- 9 4.6 制氢干燥过程 ---------------------------------------------------------- 10 4.7 N2置换流程------------------------------------------------------------- 13 5 FDQG10/3.2-IV型循环水电解制氢及干燥操作规程----------------------- 14 5.1 工艺部分开车前准备--------------------------------------------------- 14

煤制乙二醇工厂设计

化工安全期末作业 题目: 讨论煤制乙二醇工厂的定位、选址、工厂的初步布局、工艺设计的安全设计、职业毒害和职业病的防治。 工艺路线: 煤气化 合成气CO+RON 草酸酯 分离气固相催化反应 气固相催化反应 H+草酸酯乙二醇 2 一,煤制乙二醇工厂的定位: 1.工厂定位应该满足: (1)有原料、燃料供应和产品销售的良好的流通条件。对于煤制乙二醇工艺,主要原料为煤、亚 硝酸酯和氢气,因此工厂应该靠近煤矿产地,并且有良好的亚硝酸酯和氢气的购买渠道,以减少原料运输成本。; (2)有储运、公用工程和生活设施等方面良好的协作环境。工厂附近的基础设施完善,能够提供 良好的生活、工作条件; (3)靠近水量充足、水质良好的水源。工厂附近尽可能有河流、湖泊,能够提供充足的生活、生 产和灭火用水; (4)有便利的交通条件。工厂附近有高速公路、铁路或者港口码头,这样便于原料、产品的运输, 减少生产和销售成本; (5)有良好的工程地质和水文气象条件。该地区的地质地形、风速风向、雨雪量、雷电频发率及 自然灾害状况应该符合工厂要求。 2. 工厂应避免定位在 (1)发震断层地区和基本烈度在9级以上的地震区; (2)厚度较大的三级自重湿陷性黄土地区; (3)易受洪水、滑坡、泥石流等自然灾害危害的地区; (4)有开采价值的矿藏地区; (5)对机场、电台等使用有影响的地区; (6)国家规定的历史文物、生物保护和风景游览地区; (7)城镇等人口密集的地区。 3. 实际工厂定位过程中,主要考虑原料、燃料流通经济性问题,以尽可能减少经济成本。 二,煤制乙二醇工厂的选址 工厂选址应注意一下几点: (1)依据主导风向,把工厂置于社区的下风区域,以防止工厂逸出的有毒有害气体进入居民区或其他人口稠密地区,或者易燃易爆气体飘过其他工厂的煅烧炉之类的火源,又或者冷却塔的烟雾飘过交通繁忙的高速公路或道路等情况发生。厂区应该是一片平地,不应该有洼地,否则可能会形成毒性或易燃蒸汽或液体的聚集。相对于周围地区,厂区最好地势较高而不应该是低洼地。

CDEF系列说明书讲解

水电解制氢设备 操 作 使 用 手 册 苏州竞立制氢设备有限公司

1、简述 1.1、氢气的性质和用途: 氢是自然界分布最广的元素之一,它在地球上主要以化合状态存在于化合物中。在大气层中的含量却很低,仅有约1ppm(体积比)。氢是最轻的气体,它的粘度最小,导热系数很高,化学活性、渗透性和扩散性强(扩散系数为0.63cm2/s,约为甲烷的三倍),它是一种强的还原剂,可同许多物质进行不同程度的化学反应,生成各种类型的氢化物。 氢的着火、燃烧、爆炸性能是它的特性。氢含量范围在4-75%(空气环境)、4.65-93.9%(氧气环境)时形成可爆燃气体,遇到明火或温度在585℃以上时可引起燃爆。 压力水电解制出的氢气具有压力高(1.6或 3.2MPa)便于输送,纯度高(99.8%以上)可直接用于一般场合,还可以通过纯化(纯度提高到99.999%)和干燥(露点提高到-40~-90℃)的后续加工,可以作为燃料、载气、还原或保护气、冷却介质,广泛应用于国民经济的各行各业。 1.2、水电解制氢原理: 利用电能使某电解质溶液分解为其他物质的单元装置称为电解池。 任何物质在电解过程中,在数量上的变化服从法拉第定律。法拉第定律指出:电解时,在电极上析出物质的数量,与通过溶液的电流强度和通电时间成正比;用相同的电量通过不同的电解质溶液时,各种溶液在两极上析出物质量与它的电化当量成正比,而析出1克当量的任何物质都需要1法拉第单位96500库仑(26.8安培小时)的电量。水电解制氢符合法拉第电解定律,即在标准状态下,阴极析出1克分子的氢气,所需电量为53.6A/h。经过换算,生产1m3氢气(副产品0.5m3氧气)所需电量约2393Ah,原料水消耗0.9kg。 将水电解为氢气和氧气的过程,其电极反应为: 阴极: 2H 2O + 2e →H 2 ↑+ 2OH- 阳极: 2OH-- 2e →H 2O + 1/2O 2 ↑ 总反应: 2H 2O →2H 2 ↑+ O 2 ↑ 由浸没在电解液中的一对电极,中间隔以防止气体渗透的隔膜而构成水电解池,通以一定电压(达到水的分解电压1.23V和热平衡电压1.47V以上)的直流电,水就发生电解。根据用户产量需求,使用多组水电解池组合,减小体积和增加产量,就形成水电解槽的压滤型组合结构。 本公司生产的压力型水电解槽采用左右槽并联型结构,中间极板接直流电源正极,两端极板接直流电源负极,并采用双极性极板和隔膜垫片组成多个电解池,并在槽内下部形成共用的进液口和排污口,上部形成各自的氢碱和氧碱的气液体通道。由电解槽纵向看,A、B系列的氧气出口设计在中心线靠直流铜排一侧(氧铜侧),C、D、E、F系列的氢气出口设计在中心线靠直流铜排一侧(氢铜侧)。 我公司生产的压力型水电解槽,目前标准产品操作压力为1.6MPa和3.2MPa两种。具有结构紧凑,运行安全,使用寿命长的特点,电解液采用强制循环,电解消耗的原料

制氢的全部方法

制氢的全部方法 一、电解水制氢 多采用铁为阴极面,镍为阳极面的串联电解槽(外形似压滤机)来电解苛性钾或苛性钠的水溶液。阳极出氧气,阴极出氢气。该方法成本较高,但产品纯度大,可直接生产99.7%以上纯度的氢气。这种纯度的氢气常供:①电子、仪器、仪表工业中用的还原剂、保护气和对坡莫合金的热处理等,②粉末冶金工业中制钨、钼、硬质合金等用的还原剂,③制取多晶硅、锗等半导体原材料,④油脂氢化,⑤双氢内冷发电机中的冷却气等。像北京电子管厂和科学院气体厂就用水电解法制氢。 二、水煤气法制氢 用无烟煤或焦炭为原料与水蒸气在高温时反应而得水煤气(C+H2O→CO+H2—热)。净化后再使它与水蒸气一起通过触媒令其中的CO转化成CO2(CO+H2O→CO2+H2)可得含氢量在80%以上的气体,再压入水中以溶去CO2,再通过含氨蚁酸亚铜(或含氨乙酸亚铜)溶液中除去残存的CO 而得较纯氢气,这种方法制氢成本较低产量很大,设备较多,在合成氨厂多用此法。有的还把CO与H2合成甲醇,还有少数地方用80%氢的不太纯的气体供人造液体燃料用。像北京化工实验厂和许多地方的小氮肥厂多用此法。 三、由石油热裂的合成气和天然气制氢 石油热裂副产的氢气产量很大,常用于汽油加氢,石油化工和化肥厂所需的氢气,这种制氢方法在世界上很多国家都采用,在我国的石油化工基地如在庆化肥厂,渤海油田的石油化工基地等都用这方法制氢气 也在有些地方采用(如美国的Bay、way和Batan Rougo加氢工厂等)。 四、焦炉煤气冷冻制氢 把经初步提净的焦炉气冷冻加压,使其他气体液化而剩下氢气。此法在少数地方采用(如前苏联的Ke Mepobo工厂)。 五、电解食盐水的副产氢 在氯碱工业中副产多量较纯氢气,除供合成盐酸外还有剩余,也可经提纯生产普氢或纯氢。像化工二厂用的氢气就是电解盐水的副产。 六、酿造工业副产 用玉米发酵丙酮、丁醇时,发酵罐的废气中有1/3以上的氢气,经多次提纯后可生产普氢(97%以上),把普氢通过用液氮冷却到—100℃以下的硅胶列管中则进一步除去杂质(如少量N2)可制取纯氢(99.99%以上),像北京酿酒厂就生产这种副产氢,用来烧制石英制品和供外单位用。 七、铁与水蒸气反应制氢 但品质较差,此系较陈旧的方法现已基本淘汰。 八、金属与酸反应制氢气, 当然,金属必须是活动性排在氢前的(钾,钙,钠不行),可以用镁铝锌铁锡铅。酸不能用硝酸和浓硫酸。 工厂生产方法有: 1、电解水制氢. 水电解制氢是目前应用较广且比较成熟的方法之一。水为原料制氢过程是氢与氧燃烧生成水的逆过程,因此只要提供一定形式一定能量,则可使水分解。提供电能使水分解制得氢气的效率一般在75-85%,其工艺过程简单,无污染,但消耗电量大,因此其应用受到一定的限制。利用电网峰谷差电解水制氢,作为一种贮能手段也具有特点。我国水力资源丰富,利用水电发电,电解水制氢有其发展前景。太阳能取之不尽,其中利用光电制氢的方法即称为太阳能氢能系统,国外已进行实验性研究。随着太阳电池转换能量效率的提高,成本的降低及

气制氢装置工艺流程简介及主要设备情况说明

制氢装置工艺流程简介及主要设备情况说明 天然气制氢装置于2008年从中石化洞氮合成氨车间原料气头部分搬迁至神华。当年设计、当年施工,当年投产。目前运行良好。 工艺流程简要说明如下。 界区来的1.5MPa压力等级的天然气或液化干气在0101-LM和116-F脱液和除去杂质,进入原料气压缩机102-J压缩至4.2MPa, 通过调节进入转化炉对流段加热至350℃左右,进入加氢反应器 101-D加氢(有机硫转化为无机硫),氧化锌脱硫反应器108- DA/DB除去无机硫(H2S),然后与装置内中压蒸汽管网来的 3.5MPa等级的蒸汽混合,在转化炉对流段加热至500±10℃,进入一段转化炉101-B,在镍系催化剂和高温的作用下反应,约80%左 右的原料气转化生成CO、CO2、H2,工艺介质的温度从810℃降至330℃,其中的热量在废热锅炉101-CA/CB、102-C中得到回收利用,副产10.0MPa压力等级的蒸汽,减压并入装置内3.5MPa蒸汽管网。降温后的工艺介质进入高变反应器104DA将大部分的CO变换成 CO2,回收部分氢气,再在低变反应器104DB中反应,将少量的 CO变换成CO2和H2,经过热量回收和液体脱除后,工艺介质进入脱碳系统吸收塔1101-E,与上部下来的碳酸钾溶液对流换热、脱除CO2,吸收了热量和CO2的碳酸钾溶液从塔底进入再生塔1101-E 再生,脱除CO2后的工艺介质(氢气含量大于93%)从吸收塔顶去PSA工序,经过变压吸附得到纯度为99.5%以上的氢气,经压缩至3.0MPa送至全厂氢气管网,经过变压吸附吸附下来的富甲烷气作为燃料送至装置内转化炉燃烧。流程简图如下:

20万吨年煤制乙二醇生产装置建设

20万吨/年煤制乙二醇生产装置建设 项目建议书 一、总论 1、项目名称:20万吨/年煤制乙二醇生产装置建设 2、项目单位概况:需引进有实力的企业投资建设 3、项目拟建地点:四川合江临港工业园 四川合江临港工业园区是省级经济开发区,四川省首批成长型特色产业园区,中国西部化工城的重要组团。园区内环保容量大,已通过四川省环境保护局的环境影响评价。园区沿长江东岸纵向呈带状伸展,总占地面积约20平方公里。合(江)-渝(重庆)公路、“宜-泸-渝”高速路贯穿整个园区。园区功能分区为化工园区、物流园区、机械加工园区、综合工业园区。化工园区以四川天华股份有限公司为中心,发展天然气化工、精细化工、煤化工等,占地面积约6平方公里,园区现有存量土地5000亩(已完成九通一平)可满足企业用地需求。 4、项目建设内容与规模:占地约1000亩,建20万吨/年煤制乙二醇项目生产线及配套设施。 5、项目建设年限:24月。 二、项目建设的必要性和条件 1、项目建设的必要性分析。 目前,我国乙二醇产品主要用于生产聚酯、防冻液、粘合剂、油漆溶剂、耐寒润滑油、表面活性剂和聚酯多元醇等。其中聚酯是我国乙二醇的主要消费领域,其消费量约占国内总消费量的94.0%,另外

约 6.0%用于防冻剂、粘合剂、油漆溶剂、耐寒润滑油、表面活性剂以及聚酯多元醇等。近年来,我国聚酯(包括聚酯纤维、聚酯树脂和薄膜等)的生产发展很快,2000年生产能力只有595万吨, 2008年我国聚酯的产量约1730万吨,对乙二醇的需求量约636万吨;2010年聚酯的产量将达到约1900万吨,届时对乙二醇的需求量将达到约665万吨。加上在防冻剂以及其他方面的消费量,预计我国乙二醇的总需求量,2010年将达到约710万吨。 虽然我国乙二醇生产能力和产量增长较快,但仍不能满足国内聚酯等日益增长的市场需求,每年都得大量进口,且进口量呈逐年增长态势。1995年我国乙二醇进口量只有20.54万吨,2000年进口量突破100万吨达到104.97万吨,2008年更是增加到486.72万吨,进口依存度高达72.26%。 2、项目建设的条件分析: 合江县位于四川南部边缘,地处四川、贵州、重庆三省市的交界处,因长江和赤水河在此汇合而得名。合江是长江进出川的第一港口县,也是黔北物资通江达海的重要通道,是川、滇、黔、渝结合部的物资集散地和物流中心。全县幅员面积2422平方公里,辖27个乡镇,人口89万,县城人口超过12万,县城建成区面积6平方公里。全县地势较为低平,属亚热带湿润气候区,日照充足,雨量充沛,四季分明。合江距重庆120公里,距成都320公里,距泸州火车站50公里,距泸州蓝田机场49公里,正在修建的“宜-泸-渝高速公路”、“泸-遵高速公路”穿境而过,通车后到重庆外环线缩短到57公里,1小时内即可抵达重庆市区,将极大地缩短合江与成都、重庆、贵阳等周边城市的时空距离。境内长江航道全年可通航3000吨级船舶,最高

制氢装置工艺流程说明

制氢装置工艺流程说明 1.1 膜分离系统 膜分离单元主要由原料气预处理和膜分离两部分组成。 混合加氢干气经干气压缩机升压至 3.4MPa,升温至110℃,首先进入冷却器(E-102)冷却至45℃左右,然后进入预处理系统,预处理系统由旋风分离器(V-101)、前置过滤器(F-101AB)、精密过滤器(F-102AB)和加热器(E-101)组成。 预处理的目的是除去原料气中可能含有的液态烃和水,以及固体颗粒,从而得到清洁的饱和气体,为防止饱和气体在膜表面凝结,在进入膜分离器前,先进入加热器(E-101)加热到80℃左右,使其远离露点。 经过预处理的气体直接进入膜分离器(M-101),膜分离器将氢气与其他气体分离,从而实现提纯氢气的目的。 每个膜分离器外形类似一管壳式热交换器,膜分离器壳内由数千根中空纤维膜丝填充,类似于管束。原料气从上端侧面进入膜分离器。由于各种气体组分在透过中空纤维膜时的溶解度和扩散系数不同,导致不同气体在膜中的相对渗透速率不同,在原料气的各组分中氢气的相对渗透速率最快,从而可将氢气分离提纯。 在原料气沿膜分离器长度方向流动时,更多的氢气进入中空纤维。在中空纤维芯侧得到94%的富氢产品,称为渗透

气,压力为1.3 MPa(G),该气体经产品冷却器(E-103)冷却到40℃后进入氢气管网。 没有透过中空纤维膜的贫氢气体在壳侧富集,称为尾气,尾气进入制氢下工序。 本单元设有联锁导流阀(HV-103)和联锁放空阀(HV-104),当紧急停车时,膜前切断阀(HV-101)关闭,保护膜分离器,同时HV-103和HV-104自动打开,保证原料气通过HV-103直接进入制氢装置,确保制氢装置连续生产;通过HV-104的分流,可以保证通过HV-103进入制氢装置的气体流量不至于波动过大,使制氢装置平稳运行。 1.2 脱硫系统 本制氢装置原料共有三种:轻石脑油、焦化干气、加氢干气(渣油加氢干气、柴油加氢脱硫净化气、加氢裂化干气)。 以石脑油为原料时,石脑油由系统管网进入,先进入原料缓冲罐(V2001),然后由石脑油泵(P2001A、P2001B、P2001C、P2001D)抽出经加压至4.45MPa后进入原料预热炉(F2001)。钴-钼加氢脱硫所需的氢气,由柴油加氢装置来,但是一般采用南北制氢来的纯氢气或由PSA返回的自产氢经压缩机加压后在石脑油泵出口与石脑油混合,一起进入原料预热炉。 以加氢干气和焦化干气为原料时,干气首先进入加氢干气分液罐(V2002),经分液后进入加氢干气压缩机(C2001A、

制氢站使用维护说明书(天津大陆)

制氢站 1 水电解制氢装置用途------------------------------------------------ 2 2 水电解制氢装置工作原理-------------------------------------------- 2 2.1 水电解制氢原理---------------------------------------------- 2 2.2 氢气干燥工作原理-------------------------------------------- 2 3 FDQG10/3.2-IV 型水电解制氢干燥装置系统详述: ----------------------- 2 3.1 氢气制备及干燥系统------------------------------------------ 2 3.2 除盐水冷却系统---------------------------------------------- 3 3.3 气体分配系统------------------------------------------------ 3 3.4 储气系统---------------------------------------------------- 4 3.5 仪表气系统-------------------------------------------------- 4 3.6 制氢干燥部分主要设备的功能简述-------------------------------- 4 4 制氢干燥系统工作流程---------------------------------------------- 5 4.1 制氢干燥设备作业简介---------------------------------------- 5 4.2 制氢干燥设备加水、补碱简介------------------------------------ 6 4.3 配碱:------------------------------------------------------ 6 4.5 碱液从系统回收至碱箱----------------------------------------- 7 4.6 制氢干燥过程------------------------------------------------ 7 4.7 N 2 置换流程------------------------------------------------ 10 5 FDQG10/3.2-IV 型循环水电解制氢及干燥操作规程 --------------------- 10 5.1 工艺部分开车前准备----------------------------------------- 10 5.2 气动部分开车前的准备---------------------------------------- 12 5.3 开车顺序--------------------------------------------------- 12 5.4 正常操作及维护--------------------------------------------- 14 5.5 正常情况下停车--------------------------------------------- 15 5.6 非正常情况下停车------------------------------------------- 15 6 水电解制氢干燥装置常见故障及排除方法------------------------------ 16 6.1 水电解制氢装置常见故障排除方法------------------------------ 16 6.2 氢气干燥装置常见故障排除方法-------------------------------- 19 7 自控仪表的检修--------------------------------------------------- 20 8 水电解制氢装置安全注意事项--------------------------------------- 20附表一------------------------------------------------------------- 22

天然气制氢装置技术方案

目录 一、原料/燃料气条件 (2) 二、产品及要求 (2) 三、工艺技术方案 (2) 1. 工艺流程示意图 (2) 2. 工艺原理 (3) 3. 装置国产化水平 (4) 四、消耗指标 (4) 1. 氢气产品 (4) 2. 消耗 (4) 五、制氢装置生产成本估算 (5) 六、装置投资 (5) 七、说明 (5) 八、附件 (5)

一、原料气条件 原料气:天然气 温度:40℃ 压力:3.6MPa(G) 低热值:8795kcal/Nm3 组分: 组分含量%(体积) CH4 92.81 C2H6 4.255 C3 H8 0.783 iC4 H10 0.129 nC4 H10 0.129 iC5 H12 0.054 nC5 H12 0.024 C6+ 0.032 H2 0.02 N2+Ar 0.774 CO2 0.99 总S ≤20ppm ∑ 100.00 二、产品及要求 产品气:氢气 三、工艺技术方案 1. 工艺流程示意图 工艺流程示意图

2. 工艺原理 (1)烃类蒸汽转化 烃类的蒸汽转化是以水蒸汽为氧化剂,烃类物质与水蒸汽在镍催化剂的作用下进行反应,从而得到合成气。这一过程为吸热过程,需外供热量。一段转化炉转化所需的热量由转化管外的高温燃烧烟气提供。一段转化气进入二段转化炉后与适量的氧气混合,进行H 2与O 2的燃烧反应及CH 4部分氧化反应,所产生的热量供二段转化气中的甲烷进行深度转化。 在镍催化剂存在下烃类蒸汽转化反应为: 烃类蒸汽一段转化反应 CH 4+H 2O CO+3H 2-Q 6 C n H 2n+2+nH 2O nCO+(2n+1)H 2-Q 7 CO+H 2O H 2+CO 2+Q 8 二段转化反应 22291O H O()Q 2 H +=汽+ CH 4+2O 2 CO 2+2H 2+Q 2212 CO O CO Q +=+ 上述反应放出的反应热足以将二段转化炉炉头温度升至1200~1400℃,这就为二段炉内CH 4深度转化反应提供了足够的热源,发生如下转化反应: CH 4+H 2O CO+3H 2-Q CO+H 2O H 2+CO 2+Q (2)MDEA 脱碳 活化MDEA 法脱碳工艺原理简述如下: MDEA 化学名为N-甲基二乙醇胺,分子式C 5H 13NO 2,分子量119.17。 MDEA 与CO 2的反应如下: 2232323CO H O H HCO H R NCH R CH NH +- +++++= 上面二式相加为总反应: 2322233R NCH H O CO R CH NH HCO -++=++ CO 2和H 2O 的反应的速度很慢,为MDEA 吸收CO 2反应的控制步骤,加活化

变压吸附制氢工艺

变压吸附制氢工艺 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

工艺技术说明 1、吸附制氢装置工艺技术说明 1)工艺原理 吸附是指:当两种相态不同的物质接触时,其中密度较低物质的分子在密度较高的物质表面被富集的现象和过程。具有吸附作用的物质(一般为密度相对较大的多孔固体)被称为吸附剂,被吸附的物质(一般为密度相对较小的气体或液体)称为吸附质。吸附按其性质的不同可分为四大类,即:化学吸附、活性吸附、毛细管凝缩和物理吸附。变压吸附(PSA)气体分离装置中的吸附主要为物理吸附。 物理吸附是指依靠吸附剂与吸附质分子间的分子力(包括范德华力和电磁力)进行的吸附。其特点是:吸附过程中没有化学反应,吸附过程进行的极快,参与吸附的各相物质间的动态平衡在瞬间即可完成,并且这种吸附是完全可逆的。 变压吸附气体分离工艺过程之所以得以实现是由于吸附剂在这种物理吸附中所具有的两个基本性质:一是对不同组分的吸附能力不同,二是吸附质在吸附剂上的吸附容量随吸附质的分压上升而增加,随吸附温度的上升而下降。利用吸附剂的第一个性质,可实现对混合气体中某些组分的优先吸附而使其它组分得以提纯;利用吸附剂的第二个性质,可实现吸附剂在低温、高压下吸附而在高温、低压下解吸再生,从而构成吸附剂的吸附与再生循环,达到连续分离气体的目的。 吸附剂: 工业PSA-H2装置所选用的吸附剂都是具有较大比表面积的固体颗粒,主要有:活性氧化铝类、活性炭类、硅胶类和分子筛类吸附剂;另外还有针对某种组分选择性吸附而研制的特殊吸附材料,如CO专用吸附剂和碳分子筛等。吸附剂最重要的物理特征包括孔容积、孔径分布、表面积和表面性质等。不同的吸附剂由于有不同的孔隙大小分布、不同的比表面积和不同的表面性质,因而对混合气体中的各组分具有不同的吸附能力和吸附容量。 吸附剂对各种气体的吸附性能主要是通过实验测定的吸附等温线和动态下的穿透曲线来评价的。优良的吸附性能和较大的吸附容量是实现吸附分离的基本条件。 同时,要在工业上实现有效的分离,还必须考虑吸附剂对各组分的分离系数应尽可能大。所谓分离系数是指:在达到吸附平衡时,(弱吸附组分在吸附床死空间中残

10000煤制氢[1]

10000Nm3/h煤造气制氢装置技术方案 1.装置概况 本装置为制氢装置,装置制氢能力为10000Nm3/h。采用煤为原料工艺路线,制氢装置包括造气、脱硫、压缩、变换脱硫、变压吸附脱碳和变压吸附提氢、造气循环水站、余热回收工序等七个主要工序。 2.产品规格 产品氢气的质量指标 3.原材料及公用工程消耗 原辅材料规格及消耗量(以1000Nm3/h氢气量计) 公用工程规格及消耗量(以1000Nm3/h氢气量计) 注:(1)水煤气中的总硫按1.5g/Nm3计 (2)年操作时间8000小时 4.装置组成

本装置由如下工序组成: 造气工序、脱硫工序、压缩工序、变换工序、变压吸附制氢工序、造气循环水工序 、余热回收工序 5.界区划分 如图双点画线( -------- )框内为装置界区 6?工艺技术6.1造气工序 ⑴吹风 空气经空气鼓风机加压送入煤气炉内,在炉内空气与炭层燃烧,放出大量的热量储存于炭层间。出炉气称为吹风气,温度在350C左右。吹风气经旋风除尘器除尘后进入吹风气总管,去三废”混燃锅炉作燃料。 ⑵蒸汽吹净 为尽量降低水煤气中N2含量,采用低压蒸汽上吹,将系统中残余空气吹净,流程同吹风阶段。 ⑶上吹制气 蒸汽吹净后开始一次上吹制气,上吹用蒸汽来自本工段的夹套锅炉及废热锅炉,足部分由余热回收装置蒸汽管网补充。两部分低压过热蒸汽一起经蒸汽缓冲罐混合后,由煤气炉底部送入,自下而上经过炉内炭层分解而产生水煤气。 本阶段所产生的水煤气(上行煤气)出炉时温度在350C左右,进入水煤气总管经旋风除尘器除尘后,送至热管废热锅炉回收余热最后温度降至150C左右进入煤气洗涤塔冷却至常温后送往气柜。 ⑷下吹制气 低压过热蒸汽由煤气炉上部进入炉内,由上而下,经过炭层分解得到水煤气,由炉底引

煤制乙二醇项目解决方案介绍

Technology 技术纵横 摘要:为了推广一体化解决方案在煤制乙二醇装置上的应用,提高国产自控系统的竞争力,降低国内同类项目全生命周期成本,和利时HOLLiAS 一体化解决方案提供了覆盖用户工厂全部需求的产品和服务,从工艺控制、安全管理、资产管理、控制优化、生产管理等方面为用户提供增值的解决方案,使生产运营逐步实现精益化、智能化,最终的目标是实现企业运营最优化。一体化方案在乙二醇装置上的优势和实力,可为今后国内同行业自控装置的选型与配置提供借鉴和支撑。关键词:K 系列DCS ;乙二醇;一体化方案;控制 Abstract: In order to promote the integration of application in the Coal-to-ethylene Glycol plant, improve the competitiveness of automatic control system in China, and reduce the cost of whole life cycle of similar projects, HOLLiAS integration solution provides all customers' requirements for products and services in plant, and provides customers with value-added solutions for process control, safety management, asset management, control optimization, production management, etc., which make the operation gradually realize the streamline and intelligent, and its ultimate goal is to realize the enterprise operation optimization. Integration in the ethylene glycol plant's advantage and strength, is a reference and support for the automatic control system selection and con?guration for the future plant in China. Key words: K series DCS; Ethylene glycol; Integration solution; Control 目前,和利时已成功实施多个煤制乙二醇项目,为用户提供了DCS 与SIS 系统的一体化解决方案,并对氧煤比等主要回路进行 优化控制,实现安全稳定、优化控制与操作方便的统一。 1 行业简述 乙二醇(EG )是一种重要的有机化工原料,主要用于生产聚酯纤维和防冻剂,此外还可用于生产不饱和聚酯树脂、润滑剂、增塑剂、非离子表面活性剂以及炸药等,用途十分广泛。 截至2015年底,中国已投产运行和试车成功的煤(合成气)制乙二醇(CTMEG )项目共10个,总产能170万吨。早期投产的示范项目运行渐入佳境。 2016年将是中国煤制乙二醇产能爆发的开端之年,将新建10个项目,总计乙二醇产能166万吨/年。草酸酯路线煤制乙二醇的技术研发正在向低成本、高选择性、长催化剂寿命和环境友好的方向发展。由于产品质量不断优化,煤制乙二醇已经开始被大规模应用于聚酯化纤行业。来自亚化咨询的消息称,至2020年中国将总计建成41个煤制乙二醇项目,总产能将达到1026万吨。煤制乙二醇将成为中国聚酯化纤行业的重要原料来源。 2 主要工艺介绍 目前我国乙二醇的生产技术主要有两种路线。一种是以乙烯为原料经环氧乙烷(EO )非催化液相水合法生产乙二醇的石化路线。这种工艺存在乙烯氧化制环氧乙烷的选择性较低、环氧乙烷水合副产物多(主要为二乙二醇、三乙二醇)、分离精制工艺复杂、能耗大等问题,生产乙烯的原料是石油产品,原油来源受控因素较多。

制氢监控系统说明书分析

一、概述 1.自控设计原则 本装置自动设计原则是根据工艺的操作条件设置检测,调节,报警,联锁及电气控制系统以保证制氢装置可靠,安全,高质量地运行,制氢装置的产品是氢气和氧气,操作压力是3.14MPa。氢气是一种易燃易爆的气体,油类物质在高压纯氧里会自燃,制氢装置的电解液是腐蚀性较强的碱溶液,根据这些特点自控设计选用了具有防腐,防爆性能的仪表,对不具备防爆性能的仪表和电气设备都安装在现场相隔离的控制室内,对不具备防腐性能的仪表采用隔离措施,对与氧气相接触的仪表采取禁油措施,操作人员在控制室里就能方便地进行开、停车,监视制氢装置,了解运行机制、联锁点设置。 2.自控系统的构成 2.1下位机 下位机采用可编程序控制器(PLC)控制制氢设备。PLC选用SIEMENS公司生产的S7-400系列硬冗余PLC,系统主要的调节、控制、联锁保护功能均由它完成,因而保证了系统的高可靠性。 2.2上位机 上位机监控下位机的运行。上位机操作系统采用Windows2000中文版,监控软件采用INTOUCH软件。监控系统软件部分主要是上位机的人机交互界面,通过各个不同的画面,可使运行人员直观的监视各类系统参数,手动干预各调节参数和控制参数。 2.3通讯 下位机与就地监控上位机之间是通过2块西门子专用的CP1613网卡进行通讯的。 本说明书只对人机交互界面的使用进行说明,关于PLC、微机、网卡等硬件方面的使用请参考相关硬件使用说明书,自控系统原理图

见说明书最后一页附图。 4.自控系统硬件构成(请以具体的实物为准) PLC是制氢装置自控系统的核心硬件、PLC除了包括电源、CPU 之外还包括模拟量输入模块、模拟量输出模块、数字量输入模块、数字量输出模块以及模板所需的外部提供24V直流仪表电源。 4.1 模拟量输入模块 模拟量输入模块采用8通道331-7KF02-0AB0模块4块,光电隔

相关文档
最新文档