高温气冷堆核电站示范工程安全审评原则

高温气冷堆核电站示范工程安全审评原则
高温气冷堆核电站示范工程安全审评原则

工作行为规范系列

高温气冷堆核电站示范工程安全审评原则

(标准、完整、实用、可修改)

编号:FS-QG-64659高温气冷堆核电站示范工程安全审

评原则

Principles of safety review for high-temperature gas-cooled reactor nuclear power plant demonstration project

说明:为规范化、制度化和统一化作业行为,使人员管理工作有章可循,提高工作效率和责任感、归属感,特此编写。

1.前言

高温气冷堆核电站示范工程(HTR-PM)是我国自主开发的,已列入国家中长期科技发展规划重大专项的先进核电厂项目。类似HTR-PM这类先进核电厂的一个重要特征是利用固有安全特性和非能动安全系统,以期大大提高核电厂的安全水平。

与传统的核电厂一样,保证HTR-PM安全的根本也是保证控制反应性、排出堆芯热量、包容放射性物质并控制运行排放以及限制事故释放三项基本安全功能。在实现这三项基本安全功能的方式上,HTR-PM具有以下特点:

(1)HTR-PM具有良好的负反馈特性,在正常运行工况下

燃料元件的温度与其允许的温度限值之间有相当大的裕度,在某些瞬态或事故发生而导致不期望的功率上升时,仅通过燃料温升引入的较大负反应性就可以实现自动停堆或者将堆芯功率降低到一个很低的水平;

(2)HTR-PM具有较低的堆芯功率密度,堆芯石墨构件具有较大的热容,采用可以耐受较高温度的包覆颗粒燃料元件,这导致HTR-PM具有比较平缓的堆芯瞬态特征。同时,采用有利的堆芯几何形状设计,将为非能动堆芯余热排出创造有利条件;

(3)作为最后一道实体屏障,传统轻水堆核电厂的安全壳在限制事故后果和包容放射性物质方面起着至关重要的作用,而HTR-PM主要依赖具有高度可靠性的包覆颗粒燃料元件实现放射性物质的包容功能。

目前核电厂的设计主要依据确定论的安全要求,它与具体的堆型和系统设计密切相关。对于传统的压水堆和沸水堆核电厂,这套确定论的安全要求比较完备,其中的一些重要原则仍可作为HTR-PM的参考。但是许多国家和有关的国际组织也认识到,已有的安全要求对HTR-PM这类先进核电厂

并不完全适用,而针对这种类型核电厂,安全要求的建立仍不完备。美国核管会(NRC)正在为先进堆制定一套许可证管理的框架文件,以明确高层管理准则和一些重要安全问题的要求。国际原子能机构(IAEA)在20xx年颁布的新版核动力厂安全标准No.NS-R-1“SAFETYOFNUCLEARPOWERPLANTS:DESIGN”中提到,该标准对于其它类型的反应堆,包括未来的革新型系统,一些要求可能并不适用,或者在解释它们时需要一些判断。

国家核安全局充分认识到了上述问题,为了HTR-PM安全审评的需要,在原则上遵守我国现行有效的核安全法规和标准的基础上,制定了本审评原则,以明确国家核安全局对一些重要问题的立场。

本审评原则的建立参考了国内外高温气冷堆(包括HTR-10)多年发展所形成的一些经验以及近些年的最新研究成果。应该充分认识到的是,HTR-PM安全要求的建立,必须经过一个实践,认识,再实践,再认识的反复过程。对本审评原则的应用,也应抱有这样的态度。

2.安全目标

(1)定性安全目标

HTR-PM的安全总目标是:在HTR-PM中建立并保持对放射性危害的有效防御,以保护人员、社会和环境免受危害。

这个安全总目标由辐射防护目标和技术安全目标所支持。

辐射防护目标:保证在所有运行状态下HTR-PM内的辐射照射或由于HTR-PM任何计划排放放射性物质引起的辐射照射保持低于规定限值并且合理可行尽量低,保证减轻任何事故的放射性后果。

技术安全目标:采取一切合理可行的措施预防HTR-PM的事故,并且一旦发生事故时减轻其后果;对于在HTR-PM设计时考虑过的所有可能事故,包括概率很低的事故,要以高可信度保证任何放射性后果尽可能小且低于规定限值;保证实际地排除有严重放射性后果的事故发生。

在上述安全目标基础上,HTR-PM在设计上所要达到的一个目标是:“尽管管理当局仍然可以要求,一个基本目标是在技术上对外部干预措施的需求可以是有限的,甚至是可免除的”(同IAEA在No.NS-R-1

“SAFETYOFNUCLEARPOWERPLANTS:DESIGN”中表述的目标)。

(2)概率安全目标

核安全导则HAD102/17《核动力厂安全评价与验证》中推荐了对新的核动力厂的概率安全目标:堆芯损坏频率小于10-5/堆年,放射性物质大量释放频率小于10-6/堆年。

针对HTR-PM的特点,为其推荐的概率安全目标是:采用概率安全分析,所有导致场外(包括厂址边界处)个人有效剂量超过50mSv的超设计基准事故序列累计频率应小于10-6/堆年。

3.纵深防御概念

核安全法规《核动力厂设计安全规定》(HAF102)确定了纵深防御概念,即保证安全有关的全部活动,包括与组织、人员行为或设计有关的方面,均置于重叠措施的防御之下,即使有一种故障发生,它将由适当的措施探测、补偿或纠正,以便对由厂内设备故障或人员活动及厂外事件等引起的各种瞬变、预计运行事件及事故提供多层次的保护。

纵深防御概念应用于核动力厂的设计,提供一系列多层次的防御(固有特性、设备及规程),用以防止事故并在未能

防止事故时保证提供适当的保护。

(1)第一层次防御的目的是防止偏离正常运行及防止系统失效。这一层次要求:按照恰当的质量水平和工程实践,例如多重性、独立性及多样性的应用,正确并保守地设计、建造、维修和运行核动力厂。为此,应十分注意选择恰当的设计规范和材料,并控制部件的制造和核动力厂的施工。能有利于减少内部灾害的可能、减轻特定假设始发事件的后果或减少事故序列之后可能的释放源项的设计措施均在这一层次的防御中起作用。还应重视涉及设计、制造、建造、在役检查、维修和试验的过程,以及进行这些活动时良好的可达性、核动力厂的运行方式和运行经验的利用等方面。整个过程是以确定核动力厂运行和维修要求的详细分析为基础。

(2)第二层次防御的目的是检测和纠正偏离正常运行状态,以防止预计运行事件升级为事故工况。尽管注意预防,核动力厂在其寿期内仍然可能发生某些假设始发事件。这一层次要求设置在安全分析中确定的专用系统,并制定运行规程以防止或尽量减小这些假设始发事件所造成的损害。

(3)设置第三层次防御是基于以下假定:尽管极少可能,

某些预计运行事件或假设始发事件的升级仍有可能未被前一层次防御所制止,从而演变成一种较严重的事件。这些不大可能的事件在核动力厂设计基准中是可预计的,并且必须通过固有安全特性、故障安全设计、附加的设备和规程来控制这些事件的后果,使核动力厂在这些事件后达到稳定的、可接受的状态。这就要求设置的专设安全设施能够将核动力厂首先引导到安全可控状态,并最终引导到安全停堆状态,并且至少维持一道包容放射性物质的屏障。

(4)第四层次防御的目的是针对设计基准可能已被超过的超设计基准事故,并保证放射性释放保持在尽实际可能的低。这一层次最重要的目的是保护包容功能。除了事故管理规程之外,这可以由防止事故进展的补充措施与规程,以及减轻选定的超设计基准事故后果的措施来达到。由包容提供的保护可用最佳估算方法来验证。

(5)第五层次,即最后层次的防御,其目的是减轻可能由事故工况引起潜在的放射性物质释放造成的放射性后果。这方面要求有适当装备的应急控制中心及厂内、厂外应急响应计划。

对于HTR-PM来说,总体上仍维持上述五个纵深防御的层次,但考虑到其堆型的特点,在纵深防御层次设置的重点上与传统的压水堆核电厂和沸水堆核电厂可能会有所不同,例如,保证第一道放射性包容屏障,即包覆颗粒燃料元件的完整性将会起更加重要的作用。另外HTR-PM较长的宽容时间也可视为纵深防御的一个重要手段。

HTR-PM纵深防御各层次设置的合理性应该通过完整的安全评价加以证明。

4.总的设计基准

(1)电厂状态划分

HTR-PM的电厂状态划分为四类,除正常运行工况外,还包括预计运行事件、设计基准事故和超设计基准事故。这些电厂状态的划分主要参照各类事件发生的频率范围,并参考已有的和其它堆型的经验来确定。预计运行事件、设计基准事故频率范围划分以假设始发事件的发生频率为依据;超设计基准事故划分以事故序列的频率,并结合确定论和工程判断为依据。

1)预计运行事件

在该模块反应堆的寿期中有可能发生的,并且可能影响HTR-PM安全的一类事件,该类事件的下界定为10-2/堆年。预计运行事件用于HTR-PM正常运行工况下的环境评价,剂量限值是:向环境释放的放射性物质对公众个人(成人)造成的有效剂量应小于0.25mSv/电厂年。

这些事件的典型例子有:

一根反射层控制棒在功率运行工况下失控提升;

一回路主氦风机误加速;

失去厂外电源;

丧失正常给水流量;

汽轮机外负荷丧失,等等。

2)设计基准事故

HTR-PM设计基准事故划分为两类:稀有事故和极限事故。

对于稀有事故,预计在一座模块反应堆的整个寿期中不会发生,但在可能建造的这类堆型的总体中(假设数百个模块)有可能会发生,其频率范围为10-2-10-4/堆年。

这些事故的典型例子有:

给水管道小破口;

核电基础知识

核电基础知识 核电技术发展:自1951年12月美国实验增殖堆1号(EBR-1)首次利用核能发电以来,世界核电至今已有50多年的发展历史。截止到2005年年底,全世界核电运行机组共有440多台,其发电量约占世界发电总量的16% 1、什么是核能 世界上一切物质都是由原子构成的,原子又是由原子核和它周围的电子构成的。轻原子核的融合和重原子核的分裂都能放出能量,分别称为核聚变能和核裂变能,简称核能。 本书内提到的核能是指核裂变能。前面提到核电厂的燃料是铀。铀是一种重金属元素,天然铀由三种同位素组成: 铀-235 含量0.71% 铀-238 含量99.28% 铀-234 含量0.0058% 铀-235是自然界存在的易于发生裂变的唯一核素。

当一个中子轰击铀-235原子核时,这个原子核能分裂成两个较轻的原子核,同时产生2到3个中子和射线,并放出能量。如果新产生的中子又打中另一个铀-235原子核,能引起新的裂变。在链式反应中,能量会源源不断地释放出来。 铀-235裂变放出多少能量呢?1千克铀-235全部裂变放出的能量相当于2700吨标准煤燃烧放出的能量。 2、核反应堆原理 反应堆是核电站的关键设计,链式裂变反应就在其中进行。反应堆种类很多,核电站中使用最多的是压水堆。 压水堆中首先要有核燃料。核燃料是把小指头大的烧结二氧化铀芯块,装到锆合金管中,将三百多根装有芯块的锆合金管组装在一起,成为燃料组件。大多数组件中都有一束控制棒,控制着链式反应的强度和反应的开始与终止。 压水堆以水作为冷却剂在主泵的推动下流过燃料组件,吸收

了核裂变产生的热能以后流出反应堆,进入蒸汽发生器,在那里把热量传给二次侧的水,使它们变成蒸汽送去发电,而主冷却剂本身的温度就降低了。从蒸汽发生器出来的主冷却剂再由主泵送回反应堆去加热。冷却剂的这一循环通道称为一回路,一回路高压由稳压器来维持和调节。 3、什么是核电站 火力发电站利用煤和石油发电,水力发电站利用水力发电,而核电站是利用原子核内部蕴藏的能量产生电能的新型发电站核电站大体可分为两部分:一部分是利用核能生产蒸汽的核岛、包括反应堆装置和一回路系统;另一部分是利用蒸汽发电的常规岛,包括汽轮发电机系统。 核电站用的燃料是铀。铀是一种很重的金属。用铀制成的核燃料在一种叫“反应堆”的设备内发生裂变而产生大量热能,再用处于高压力下的水把热能带出,在蒸汽发生器内产生蒸汽,蒸汽推动气轮机带着发电机一起旋转,电就源源不断地产生出来,并通过电网送到四面八方,这就是最普通的压水反应堆核电站的工作原理。 在发达国家,核电已有几十年的发展历史,核电已成为一种

核电站论文:由核殇看核电站安全之重要性

由核殇看核电站安全之重要性 【摘要】:随着核资源广泛利用,核安全也越来越受到人们的关注。在新的安全形势下,特别是近年来,世界范围内核恐怖事件的潜在危险在不断增加,核设施和辐射设施在运行过程中,由于失误等原因引起事故的可能性是客观存在的,针对核安全和辐射安全存在的隐患,应从应急组织体系建设、监测系统开发、人员培训、基本信息数据库的建立、应急决策支持系统开发、完善法规、加强国际合作等方面提出改善我国核安全与辐射安全现状的相关对策,以不断提高我国核安全和辐射安全的水平。 正文: 何为“核殇”?这是我自己对于核事故所起的 名字,因为核事故只要一发生,不管是大是小,都 会带来让人心痛的后果,是故为“殇”…… 1986年4月26日凌晨1时23分,在现为乌克 兰的前苏联境内的切尔诺贝利核电厂发生核泄露 灾难,距今全球共有20亿人口受切尔诺贝利事故 影响,27万人因此患上癌症,其中致死9.3万人。 右图为核事故后的切尔诺贝利核电厂。 1988年1月6日,美国俄克拉何马州的一座核 电站,由于对核材料筒加热不当引起爆炸,造成1 名工人死亡,100人受伤。 1992年11月,法国发生了最严重的核事故: 三名工作人员未穿防护服进入一座核粒子加速器后 受到污染。 1999年,东京附近的一座核反应堆曾发生辐射泄漏,造成2名工人死亡。 1998年到2002年:印度在四年间核电站共发生了6次核泄漏事故。 2003年12月29日:韩国荣光核电厂5号机组发生核泄漏事故。 2004年8月9日,正值日本长崎市民纪念第五十九个“原子弹被爆日”时,日本中部福井县美滨核电站再次发生蒸汽泄漏事故,导致4人死亡,7人受伤。 2005年5月,英国最大核电站、位于英格兰北部的塞拉菲尔德核电站的热氧再处理电厂因发生放射性液体泄漏事件被迫关闭。 太多太多的事故归根结底是因为核安全技术措施还不够到位,而造成核事故损失巨大的则是因为核辐射,可见提高核安全与辐射安全水平的是紧密相关的,核科学技术获得发展和应用的前提是拥有一个高水平的核安全和辐射安全环境。由于核与辐射突发事件的危害性极大,因此,引起世人关注,关于核安全及其应对策略的研究是时代发展的需要。虽然到目前为止,我国还未发生大型的核事故事件,但是为了预防事故可能性,保证核安全,我建议采取相关措施提高我国核安全与辐射安全水平。 一、加强建立应急组织体系建设。 健全核与辐射事故应急组织体系,明确职责,提高自制指挥快速反应能力,是有效应对核与辐射突发事件的前提。建立国家核应急组织、省(自治区、直辖市)核应急组织和地方单位应急组织的三级应急组织体系,明确各级组织的职责,对全国范围内的核安全实施

核电厂污染控排

■文│上官志洪 张晓峰 黄彦君 我国现行核电厂放射性流出物的排放管理主要遵循国际上通用的可合理达到尽量低条件下的公众剂量约束管理,同时辅以明确的年排放总量管理要求,对于排放浓度的管理则是间接的,可操作性相对较差。随着我国核电产业的发展,内陆核电厂的建设势在必行,作为内陆核电厂受纳水体的河流或湖泊存在诸多的环境敏感点,特别是可能涉及公众饮用水的安全,因此核电厂液态放射性流出物的排放管理面临着更高的要求。 液态污染物控排手段 在污染物排放管理中排放浓度控制和年排放总量控制是两个最重要的管理指标。我国常规项目相关的污染物排放标准针对不同的区域环境特征,对每一类污染物的排放浓度均制定了明确的定量控制要求,同时对于一些重要的污染物则提出了更高的年排放总量控制目标。但是,我国现行的核电厂放射性流出物的排放管理与常规项目污染物的排放管理则稍有差别,核电厂放射性流出物的排放管理主要遵循国际上通用的可合理达到尽量低条件下的公众剂量约束管理,同时辅以明确的年排放总量管理要求,对于排放浓度的管理则是间接的,可操作性相对较差。其中对于核电厂液态放射性流出物的排放,要求必须实 现可控的槽式排放,监测合格后才允 许排放,同时在排放管线上实现两级 报警,将报警与自动锁闭排放管线相 连锁,避免误排放。 关于核电厂放射性流出物排放的 控制,我国现行法律和标准中提出了 明确要求。《中华人民共和国放射性 污染防治法》第四十条规定,向环境 排放放射性废气、废液,必须符合国 家放射性污染防治标准。《电离辐射 防护与辐射源安全基本标准》第8.6 条规定,向环境排放放射性物质时, 注册者和许可证持有者应保证,排放 不超过审管部门认可的排放限值, 包括排放总量限值和浓度限值;在 其所负责源的运行期间,应使所有放 射性物质的排放量保持在排放管理限 值以下可合理达到的尽量低的水平。 针对核电厂的专项环境标准《核电厂 环境辐射防护规定》(以下简称《规 定》)则明确针对核电厂正常运行的 流出物排放,首先从公众辐射剂量方 面提出了剂量约束管理的要求,其次 则规定了每一个核电厂址的各类放射 性流出物的年排放总量控制标准。但 对于公众所关注的流出物排放浓度的 控制,该标准给出了间接的控制要 核电厂污染控排 ◆田湾核电站

高温气冷堆的技术及装备

高温气冷堆的技术及装备 随着经济社会发展,人类对能源需求日渐增多。但传统化石能源有着污染大,不可再生的缺陷,并且储量日益减少。核能为人类提供了一个清洁,取之不尽用之不竭的能源宝库,到现在为止已有四代核电技术的历史,人们通常把五、六十年代建造的验证性核电站称为第一代;70、80年代标准化、系列化、批量建设的核电站称为第二代;第三代是指90年代开发研究成熟的先进轻水堆;第四代核电技术是指待开发的核电技术,其主要特征是防止核扩散,具有更好的经济性,安全性高和废物产生量少。第四代核反应堆的六个构型中,就有高温气冷堆,高温气冷堆是国际公认的具有先进技术的新型核反应堆,我国的高温气冷堆研究技术处于国际领先地位。其主要特点是固有安全性能好、热效率高、系统简单。目前已成功地建设了10MW实验电站,并完成了多项安全性实验工作,在向商业化转化的过程中,得到国家有关部门的大力扶持。项目已经列入《国家中长期科学和技术发展规划纲要》和《中华人民共和国国民经济和社会发展第十一个五年规划纲要》。 传统核反应堆存在建造周期长,相对效率较低,安全性不高成本高的不足。自从前苏联切尔诺贝利电站发生核泄漏事故以后,人类更希望有更安全的利用核能的方式。高温气冷堆是在以天然铀为燃料、石墨为慢化剂、CO2为冷却剂的低温气冷堆的基础上发展起来的,具有固有的安全性,使得反应堆辅助系统减少,有效降低了成本

并且拥有很高的效率。高温气冷堆是现有堆型中工作温度最高的堆型,可以广泛应用于需要高温高热的工业部门。高温气冷堆作为第四代核反应堆具有广阔的应用前景。 1.高温气冷堆的组成结构及其工作原理 通俗地说,反应堆就是“原子锅炉”,是通过控制核燃料的反应来产生原子能的装置。通常,反应堆的核燃料是铀235,在中子的作用下能够产生核裂变。一个铀235原子核吸收一个中子以后,会分裂成两个较轻的原子核,以热的形式释放出能量,并产生两个或者三个新的中子。在一定的条件下,新产生的中子会引发其它的铀235原子核裂变,这种反应延续下去,就是“链式裂变反应”。要形成“链式裂变反应”,不仅铀235要达到一定数量,还必须用慢化剂把高能量的中子减慢为“热”中子。控制反应堆中核燃料的反应使核能缓慢释放,并用载热剂从反应堆中导出热量,就能对核能加以利用。 高温气冷堆是一种用氦气作冷却剂的先进核反应堆,采用全陶瓷型球形燃料元件(核燃料经20多道工序加工成直径为6cm的球状物),冷却剂即为氦气,慢化剂和结构材料采用石墨,堆芯最高温度达到1600摄氏度。反应堆可采用模块化方式制造,建造时就像搭积木般,能随时连续地装卸核燃料和不定期停堆拆卸更换,因而和其它反应堆相比,可用率约高达45%以上。高温气冷堆的堆芯核燃料由低富集铀或高富集铀加钍的氧化物(或碳化物)制成直径约200微米的陶瓷型颗粒核心,外面涂上2-3层热解碳和碳化硅,涂层厚度约150-200 微米,构成直径约为1毫米左右的核燃料颗粒。然后将颗粒弥散在石

高温气冷堆

高温气冷堆 高温气冷堆,用氦气作冷却剂,出口温度高的核反应堆。高温气冷堆采用涂敷颗粒燃料,以石墨作慢化剂。堆芯出口温度为 850~1000℃,甚至更高。根据堆芯形状,高温气冷堆分球床高温气冷堆和棱柱状高温气冷堆。 高温气冷 高温气冷堆,(high temperature gas cooled reactor),高温气冷堆的蒸发器能达到560℃,发电效率大大提升,高温气冷堆核电站具有良好的固有安全性,它能保证反应堆在任何事故下不发生堆芯熔化和放射性大量释放。高温气冷堆具有热效率高 (40%~41%),燃耗深(最大高达20MWd/t铀),转换比高 (0.7~0.8)等优点,由于氦气化学稳定性好,传热性能好,而且诱生放射性小,停堆后能将余热安全带出,安全性能好。 70年代中期,中国高温气冷堆的研究发展工作始于70年代中期,主要研究单位是清华大学核研院。 1986年,在国家863计划支持下,清华大学正式开始了10兆瓦高温气冷堆实验堆的研发。 1988~1989年,间德国的两座球床高温气冷堆反应堆相继被关闭,其原因是担心安全性。

2000年12月,建成临界。 高温气冷 2003年1月,实现满功率并网发电,中国对高温气冷堆技术的研发取得了突破性成果,基本掌握了核心技术和系统设计集成技术。这一科技成果在国内外引起广泛的影响,使中国在高温气冷堆技术上处于国际先进行列。 2004年9月底,由国际原子能机构主持,清华大学核研院在10兆瓦高温气冷堆实验堆上进行了固有安全验证实验。实验结果显示,在严重事故下,包括丧失所有冷却能力的情况下,不采取任何人为和机器的干预,反应堆能保持安全状态,并将剩余热量排出。 2006年1月,国务院将大型先进压水堆和高温气冷堆核电站示范工程列为国家重大专项。 2008年2月,高温气冷堆核电站重大专项实施方案获国务院批准,专项牵头实施单位为清华大学核研院、华能山东石岛湾核电有限公司、中核能源科技有限公司。 2009年9月,美国能源部发表声明说:“下一代核电站(NGNP)项目将采用新型的高温气冷堆技术,一个设施支持多种工业应用,比如发电的同时进行石油精炼。NGNP项目将使核能利用延伸到更宽广的工业和交通领域,降低燃料消耗和污染,并在现有的商业化轻水堆技术基础上提高固有安全性。”而后来美国选择了阿海珐公司设计的棱柱高温气冷堆。 2011年3月1日,筹备了7年之久的山东荣成石岛湾核电站终于通

核工业基本知识复习题

核工业基本知识复习题 是非题 一、核能基础知识 1.核能是一种可持续发展的能源,通过几十年经验总结证明,核能是安全、 (+)经济、干净的能源。 2.核能是一种可持续发展的能源,其优越性是干净、经济、负荷因子高和功 (+)率调节能力强。 3.核电站具有安全、经济、负荷因子高和污染少等优点。(+ ) 4.我国目前投入商业运行的核电站都是轻水堆型。(-) 5.核能是原子核内部的化学反应释放出来的能量。(—) 6.核能是由质量转换出来的,符合爱因斯坦的著名公式E=mc2。(+) 7.核电是释放核子内部能量来发电的,目前释放核子能的方法是裂变。(+) 8.我国当前核电站的主要堆型是轻水压水堆。(+) 9.我国压水堆核电站中所使用的冷却剂和载热剂也是降低裂变的中子能量 (+)的慢化剂。 10.核电站的类型是由核反应堆堆型确定的,目前世界上的核电站堆型仅有轻 (—)水堆、重水堆。 11.核岛是发生核裂变并将核能变为热能的场所。(+) 12.核电站的常规岛就是常规的火电站。(—) 13.核电站主要由核岛、常规岛和辅助设施组成。(+) 14.核电站按冷却剂分类有水堆、气堆、液态金属堆和熔盐堆。(+) (+)15.核电安全的三道安全屏障指的是核燃料元件包壳、一回路压力边界和安全 壳。 16.秦山一期核电站反应堆是用轻水作为慢化剂和冷却剂的。(+) 17.铀-235链式裂变反应是核能发电的物理基础。(+) 18.秦山三期核电站反应堆是用重水作为慢化剂,轻水作为冷却剂的。(—) 19.全世界当前拥有的核电站数量已超过400座。(+) 20.当前核电站单机容量最大的核电站是重水堆核电站。(—) 21.目前大部分压水堆核电站的燃料棒包壳由锆合金管制成。(+) 22.压水堆核电站中的蒸汽发生器其主要作用是将一回路高温高压的水转变(+)

辐射防护与核电站安全(标准版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 辐射防护与核电站安全(标准版)

辐射防护与核电站安全(标准版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 辐射存在于整个宇宙空间。辐射防护是研究保护人类和其他生物种群免受或少受辐射危害的应用性学科。辐射分为电离辐射和非电离辐射两类。α射线、β射线、γ射线、X射线、质子和中子等属于电离辐射,而红外线、紫外线、微波和激光则属于非电离辐射。在核能领域,人们主要关心的是电离辐射可能产生的健康影响及其防护。通常将电离辐射简称为辐射或辐射照射。 人类有史以来一直受着天然电离辐射源的照射,包括宇宙射线、地球放射性核素产生的辐射等。事实上,辐射无处不在,食物、房屋、天空大地、山水草木乃至人们体内都存在着辐射照射。人类所受到的集体辐射剂量主要来自天然本底辐射(约76.58%)和医疗(约20%),核电站产生的辐射剂量非常小(约0.25%)。在世界范围内,天然本底辐射每年对个人的平均辐射剂量约为2.4毫希,有些地区的天然本底辐射水平要比这个平均值高得多。 核能应用领域的辐射照射来源于核能产生装置(如核电站)在运

核电站环境问题

因核电站的建造和运行而引起对周围环境的影响,以及为防治对环境的污染和破坏而采取的各种措施。包括核电站对环境的影响、核电站的环境标准、核电站的环境保护以及核电站对环境影响的评价等。 环境影响核电站对环境产生的影响有非放射性影响和放射性影响。非放射性影响主要是指化学物质的排放、热污染、噪声及土地和水资源的耗用等,类似火电站对环境的影响。核电站对环境的主要影响是产生放射性。电站核反应堆在运行过程中,由于核燃料裂变和结构材料、腐蚀产物及堆内冷却水中杂质吸收中子均会产生各种放射性核素。少量的裂变产物可通过核燃料元件包壳裂缝漏进冷却剂或慢化剂,排入环境。以一座100万千瓦的压水堆核电站为例,每年排入环境的放射性物质为:放射性惰性气体(如氙-133、氪-85等)、气溶胶氚200居里(1居里相当于3.7×1010贝可)和131I0.05~0.5居里;排入环境的放射性液、氚2000居里,其他核素(除氙以外)总放射性约为8居里;产生各种低放射性固体废物550米3,放射性含量2375居里。核电站反应堆发生事故时,大量放射性物质会通过各种途径排入环境。如1986年苏联切尔诺贝利核事故,仅4月26日一天就有20~22兆居里的放射性物质排入大气。反应堆排出的废液和废气中的放射性核素,通过各种途径,经过一系列复杂的物理、化学和生物的变化过程到达人体。以一座 100万千瓦压水堆为例,在居民所受到的剂量中,放射性惰性气体的贡献最大,居住在 100公里范围内的居民集体剂量负担为1.4人·雷姆/吉瓦·年,废气中的氚对1~100公里范围内的居民造成的集体剂量负担为0.04

人·雷姆/吉瓦·年。反应堆废液排放到用作生活水源的江河,其中氚直接摄入人体内。估计废物的氚造成的集体剂量负担为7人·雷姆/吉瓦·年。 环境标准为了限制核电站向环境排放放射性物质的量,尽量减少对环境的污染和破坏,减少对人体的危害,发展核电的国家都制定了严格的标准。中国国家环境保护局于1986年 4月23日发布了《核电厂环境辐射防护规定》(简称《规定》)。《规定》对核电站选址和正常工况及事故工况下的控制值分别要求:“核电厂周围应设置非居民区,非居民区的半径(以反应堆为中心)不得小于0.5km。核电厂非居民区周围应设置限制区,限制区的半径一般不得小于5km。” 核电站在正常运行工况下的剂量限值和排放量控制值是:每座核电站向环境释放的放射性物质对公众中任何个人(成人)造成的有效剂量当量,每年应小于0.25毫希(25毫雷姆);每座压水堆型核电厂气载和液体放射性流出物的年排放量,除满足以上的规定值外,一般还应低于表1、2所列控制值。其他堆型的控制值根据具体情况另外确定。核电站在发生最大可信事故条件下周围居民接受有效剂量的限定值见表3。核电厂在事故工况下的环境评价标准见表4。 核电站环境问题

高温气冷堆实习报告[1]

高温堆相关技术及安全性 摘要:以清华大学核研院10MW高温气冷堆为基础,简要地介绍高温堆的应用及其安全性,高温堆的使用现状及其应用前景等。经过科学的分析和大量的实验经验验证了:高温气冷堆较其他堆型是具有较强竞争力的。 关键词:高温堆安全性 一、高温堆的的简介 高温气冷堆是采用耐高温的陶瓷型涂敷颗粒燃料、用化学惰性和热工性能良好的氦作冷却剂、用耐高温的石墨作慢化剂和结构材料、冷却剂出口温度可达750~950 ℃的核反应堆,甚至更高。高温气冷堆具有热效率高(40%~41%),燃耗深(最大高达20MWd/t铀),转换比高(0.7~0.8)等优点。由于氦气化学稳定性好,传热性能好,而且诱生放射性小,停堆后能将余热安全带出,安全性能好。其核燃料一般采用高浓二氧化铀,亦有采用低浓二氧化铀的。根据堆芯形状,高温气冷堆分球床高温气冷堆和棱柱状高温气冷堆。 人们通常把五、六十年代建造的验证性核电站称为第一代;70、80年代标准化、系列化、批量建设的核电站称为第二代;第三代是指90年代开发研究成熟的先进轻水堆;第四代核电技术是指待开发的核电技术,其主要特征是防止核扩散,具有更好的经济性,安全性高和废物产生量少。 第四代核反应堆的六个构型中,就有高温气冷堆,这是一个很有前途的方案,现行的高温气冷堆有两个流派:石墨球床和柱状燃料的,前者的使用者是中国和南非,后者是美、俄和日本喜欢的,这里着重说一下我国的石墨球床堆电厂的技术特点。 石墨球床堆也叫卵石堆,最早是德国在本世纪60年代建成了原理堆,由于技术和需求的限制,30年没有大的发展,直到上个世纪90年代,国际能源危机的压力日趋严重,南非和中国先后开始了对这一技术的现代化研究和实用化探索,分别是南非国营电力设计的PBMR(400MW热功率)和中国原子能技术研究

核电厂安全知识点

核电厂潜在的危险性:1)核电厂存在大量的放射性物质2 反应堆停闭后会长时间释放衰变热3)反应堆存在大量的高温高压水4)反应堆功率可能迅速升高。 核安全文化的定义:安全文化是在于单位和个人中的种种特性和态度的总和,他建立在一种超出一切之上的观念,即核电厂的安全问题由于他的重要性得到应有的重视。 特性:安全文化的有形导出、安全文化主动精神。 实质:在电厂内建立一整套科学严密的规章制度和组织体系,在核电厂内营造人人自觉关注安全的氛围,通过培训,提高员工的知识技能,培养员工尊章守纪的自觉性和良好的工作习惯,从而提高人员绩效和核电厂的安全性能。 人品特性:质疑的工作态度、严谨的工作方法、相互交流的工作习惯。 自我检查是一种极高人员绩效的工具,常用方法:STAR”stop停止、think思考、act行动、review 检查。 监护:指两名操作人员同时检查将要进行的操作的正确性。 安全文化评价的方法:人员访谈、行为观察、文件查阅。 我国核安全法规体系分为:国家法律、国务院行政法规、部门规章、指导性文件、参考性文件。 核电安全许可证:核电厂厂址安全审查安全批准书、核电厂建造许可证、核电厂首次装料批准书、核电厂运行许可证、核电厂退役批准书、操作员执照、高级操作员执照。 核电厂环境影响报告书指许可证申请者向环境保护部提交的环境影响评价文件。 核安全报告分为定期报告、不定期报告、和事故报告。 核事故应急管理的方针:常备不懈、积极兼容、统一指挥、大力协同、保护公众保护环境。应急计划是针对应急响应行动制定的文件,是其他应急文件的基础。 应急计划区:为了在核事故发生时能够及时、有效的采取保护公众的防护行动,事先在核电厂周围划出制定应急计划并做好适当准备的区域。 应急状态分级:应急待命、厂房应急、厂区应急、场外应急。 通用应急水平即又防护行动客避免的剂量。。。。隐蔽10 撤离50 典防护100 临时性避迁(第一个月30 第二个月10)(mSv)永久性在居住寿期内1Sv 核电安全的总目标是建立在核动力厂中建立并保持对放射性危害的有效防御,以保护人民和环境免受危害。用防护目标、核电技术安全目标、核电安全目标的目标的数量指标做补充。核动力厂设计的纵深防御的五个层次:1)高质量的设计、施工及运行,使偏离正常运行状态的情况很少发生、2)设置停堆保护系统和相应的支持系统,防止运行中出现的偏差发展成为事故3)设置专设安全设施,限制设计基准设计的后果,防止发生堆芯融化的严重事故4)利用特殊设计设施,进行事故管理5)场外应急设施和措施。 轻水堆核电厂普遍采用的四道实体屏障:芯块、燃料元件包壳、反应堆冷却剂系统承压边界和安全壳及安全壳系统 概率安全分析:把整个系统的失效概率通过结果的逻辑推理与他各个层次的子系统、部件及外界条件等的失效概率联系起来,从而找出各种事故发生的概率。 概率论的分析方法:1)事件树分析:建立事件树即进行功能模化,继始发事件后,把各项与安全相关的功能按失效与否逐级开展,就能得到一系列后果不同的事件序列。2)故障树分析:把系统的失效作为分析的目标,由此反推,寻找直接导致这一失效的全部因素。直至毋需再研究其发生的因素为止。 电厂的概率安全分析通常是在三个级别上进行的。一级概率安全分析确定可导致堆芯损坏的事件序列及这些序列的估算频率,可对上述弱点及防止堆芯损坏的的方法提供重要见解。二

压水堆基础思考题

一回路复习题 绪论概述 1.简述压水堆核电站的基本组成。 答:以压水堆为热源的核电站。主要由核岛(NI),常规岛(CI),电站配套设施(BOP)三大部分组成。 (1)核岛:蒸汽发生器、稳压器、主泵和堆芯等四大部件。在核岛中的系统设备主要有压水堆本体,一回路系统,以及为支持一回路系统正常运行和保证反应堆安全而设置的辅助系统。 (2)常规岛:主要包括汽轮发电机组、变压器、冷凝器、加热器、主给水泵及二回路系统等,其形式与常规火电厂类似。 (3)电站配套设施:除核岛和常规岛以外的配套建筑物、构筑物及其设施的统称。 2.压水堆核电站如何将核能转化为电能? 答:压水堆核电站将核能转变为电能的过程分为四步,在四个主要设备中实现的。 (1)反应堆:将核能转变为热能(高温高压水作慢化剂和冷却剂); (2)蒸汽发生器:将一回路高温高压水中的热量传递给二回路的给水,使其变为饱和蒸汽,在此只进行热量交换,不进行能量的转变; (3)汽轮机:将饱和蒸汽的热能转变为高速旋转的机械能。 (4)发电机:将汽轮机传来的机械能转变为电能。 3.核岛厂房主要有哪些?分别布置哪些系统? 答:核岛厂房主要有反应堆厂房(RX1、RX2),燃料厂房(KX),核辅助厂房(NX),电气厂房(LX)。分别布置的系统有: (1)反应堆厂房又称安全壳,其内主要有反应堆和其他一回路主要设备以及部分专设安全系统和核辅助系统设备。 (2)燃料厂房是一个平顶方形混凝土结构,其内主要有乏燃料水池,用以贮放堆芯中卸出的乏燃料。 (3)核辅助厂房为两机组共用。厂房呈矩形,主要布置核辅助系统(如化学容积控制系统、硼和水补给系统等)、废物处理系统及部分专设安全系统设备。 (4)电气厂房布置有主控室和各种仪表控制系统及供配电设备。 4.常规岛主要有哪些厂房?分别布置哪些系统? 答:常规岛厂房主要由汽机厂房和辅助间(1MX 2MX)及联合泵站(1PX 2PX)所组成。汽机厂房布置有二回路及其辅助系统的主要设备,如汽轮机、发电机、冷凝器、除氧器、给水泵等。毗邻的建筑物还有通风间、润滑油传送间、主变压器区等。联合泵站位于循环冷却水(海水)的取水口处,其内主要设置循环水泵和旋转滤网,为汽轮机组的冷凝器提供冷却水源(海水)。 5.厂房及房间的识别符号如何定义? 6.设备的识别符号如何定义? 答:答: 7.工程图纸的识别符号如何定义? 答: 第一章反应堆结构 1.压水型反应堆由哪几大部分组成? 答:反应堆的组成:由堆芯、压力容器、堆内构件和控制棒驱动机构等四部分组成。 2.堆芯内有多少束燃料组件?试述燃料组件的组成? 答:堆芯有157各结构完全相同的燃料组件。燃料组件的组成:由骨架和燃料棒组成,呈17×17正方形栅格排列,总共有289个栅格,其中264个装有燃料棒;24个装有控制棒导向管,它们为控制棒的插入和提出导向;1根通量测量管位于组件中心位置,为机组运行过程中测量堆芯内中子通量的测量元件提供通道。 3.控制棒组件按材料和功能各如何分类?其作用如何? 答:按材料分类:(1)黑棒组:由24根吸收剂棒组成,吸收能力强;(2)灰棒组:由8根吸收剂棒和16根不锈钢棒组成,吸收能力弱。 按功能分类:分为功率调节棒、温度调节棒和停堆棒三类,每类又分为若干组。正常运行时,功率调节棒位于机组功率对应的棒位高度,用于调节反应堆功率;温度调节棒在堆芯上部一定范围移动,用于控制冷却剂温度的波动;停堆棒用于事故紧急停堆,正常运行时提出堆外。

高温气冷堆

高温气冷堆 高温气冷堆 来源:中国核电信息网发布日期:2009-07-06 【英文名】:high temperature gas cooled reactor 用氦气作冷却剂,出口温度高的核反应堆。高温气冷堆采用涂敷颗粒燃料,以石墨作慢化剂。堆芯出口温度为850~1000℃,甚至更高。核燃料一般采用高 浓二氧化铀,亦有采用低浓二氧化铀的。根据堆芯形状,高温气冷堆分球床高 温气冷堆和棱柱状高温气冷堆。高温气冷堆具有热效率高(40%~41%),燃耗深(最大高达20MWd/t铀),转换比高(0.7~0.8)等优点。由于氦气化学稳定性好,传热性能好,而且诱生放射性小,停堆后能将余热安全带出,安全性能好。 【实际应用】 10兆瓦高温气冷实验堆: 在国家"863"计划的支持下,自上世纪八十年代中期,我国开展了10MW高 温气冷实验堆的研究、开发,于2000年12月建成临界,2003年1月实现满功 率并网发电,我国对高温气冷堆技术的研发取得了突破性成果,基本掌握了核 心技术和系统设计集成技术。这一科技成果在国内外引起广泛的影响,使我国 在高温气冷堆技术上处于国际先进行列。2006年1月,国务院正式发布的"国 家中长期科学和技术发展规划纲要(2006--2020年)"中,将"大型先进压水堆和 高温气冷堆核电站示范工程"列为国家重大专项。 第四代先进核能系统 近年来,国际上提出了"第四代先进核能系统"的概念,这种核能系统具有 良好的固有安全性,在事故下不会对公众造成损害,在经济上能够和其它发电 方式竞争,并具有建设期短等优点,高温气冷堆是有希望成为第四代先进核能 系统的技术之一。

我国高温气冷堆的研究发展工作始于70年代中期,主要研究单位是清华大学核研院。 值得一提的是,建成的首座高温气冷堆的压力壳直径4.7米,高12.6米,重150吨,是我国自己设计和制造的迄今体积最大的核安全级压力容器。蒸汽发生器直径2.9米,高11.7米,重30吨,堆内有约13000个零部件,总重量近200吨。这些设备的制造成功,使我国成为少数几个能够加工制造高温气冷堆关键设备的国家之一,为高温气冷堆的国产化做出了重要贡献。 高温气冷堆特点 1安全性好 高温气冷堆是国际核能界公认的一种具有良好安全特性的堆型。三里岛核事故后世界核反应堆安全性改进的趋势,其堆芯融化概率有了显著的改进。目前世界上的核电厂堆芯融化概率均能达到图2中实线所表示"满足要求的电厂"的水平,而且一些核电厂达到了"优异安全性电厂"的水平。美国电力研究所(EPRI)制定的《电力公司用户要求》文件提出的先进轻水堆的堆芯融化概率设计要求为10-5/堆.年。模块式高温气冷堆(MHTR)为革新型的堆型,其估计的堆芯熔化概率低于10-7/堆.年,远小于先进轻水堆堆芯熔化概率的要求。 高温气冷堆采用优异的包覆颗粒燃料是获得其良好安全性的基础。铀燃料被分成为许多小的燃料颗粒,每个颗粒外包覆了一层低密度热介碳,两层高密度热介碳和一层碳化硅。包覆颗粒直径小于1mm,包覆颗粒燃料均匀弥散在石墨慢化材料的基体中,制造成直径为6cm的球形燃料元件(见图3)。包覆层将包覆颗粒中产生的裂变产物充分地阻留在包覆颗粒内,实验表明,在1600℃的高温下加热几百小时,包覆颗粒燃料仍保持其完整性,裂变气体的释放率仍低于10-4。高温气冷堆具有如下的基本安全特性: 1.1反应性瞬变的固有安全特性在整个温度范围内,高温气冷堆堆芯反应性温度系数(燃料和慢化剂温度系数之和)均为负,具有瞬发效应的燃料温度系数也为负。因此,在任何正反应性引入事故情况下,堆芯均能依靠其固有反应性反馈补偿能力,实现自动停堆。高温气冷堆正反应性引入事故主要有:

核电站基本知识考试习题

核电厂的安全目标是什么,其两个解释目标是什么? 答:安全目标是建立并维持一套有效的防护措施,以保证工作人员、公众和环境免遭放射性危害。 辐射防护目标 确保在正常时放射性物质引起的辐射照射低于国家规定的限值,并保持在可合理达到的尽量低的水平。 技术安全目标 防止发生事故,减少严重事故发生概率及其后果。 核能发电有何特点? 1、核能具有很高的能量密度 2、核电是清洁的能源 3、核能是极为丰富的能源 4、核电在经济性具有竞争力 5、核电的安全性具有保障 纵深防御原则是什么,与核电站设计有何关系? 多道屏障:燃料芯块、燃料元件包壳、反应堆冷却剂系统承压边界、安全壳 多级防御 预防,预防出现异常工况和系统故障; ——保守设计、高质量建造和运行 保护,异常工况的控制和故障检测; ——控制、保护系统和定期检查 限制,控制事故在设计基准事故内; ——工程安全设施和事故处置程序 缓解,防止事故的扩展,减轻严重事故的后果; ——备用措施和事故管理 应急,减轻大量放射性物质释放所造成的环境影响; ——厂外应急响应计划。 反应堆冷却剂系统的功能是什么? 系统功能: 可控的产生链式裂变反应 导出堆芯热量,冷却堆芯,防止燃料元件烧毁 产生蒸汽 第二道实体屏障,包容放射性物质 反应堆的功能是什么? 以铀为核燃料,可控制地使一定数量的核燃料发生自持链式裂变反应,并持续不断地将核裂变释放能量带出作功。 由以下部分组成:堆芯、下部堆内构件、上部堆内构件、压力容器(含筒体及顶盖)、控制棒驱动机构。 主泵的功能是什么?目前,压水大型堆核电厂主要使用哪种类型的主泵,为什么?

功能:用于驱动冷却剂在RCP内的循环,连续不断地将堆芯产生的热量传递给蒸汽发生器二次侧给水。 空气冷却、立式电动单级离心泵,带有可控泄漏轴封装置。 大流量、低扬程。 稳压器的基本功能是什么?如何实现?稳压器的压力与水位控制如何实现? 压力控制—维持一回路压力在整定值附近,防止堆芯冷却剂汽化; 压力保护—系统超压时,安全阀自动开启,使RCP卸压; 作为一回路冷却剂的缓冲箱,补偿RCP水容积变化 在启堆时使RCP升压,停堆时使RCP降压。 化学和容积控制系统的基本功能是什么? 启动前向一回路系统充水,进行水压试验。 运行中用于调节稳压器水位,保持一回路冷却剂系统水体积。 调节冷却剂系统硼浓度,控制反应堆反应性的慢变化 净化冷却剂,减少反应堆冷却剂中裂变产物和腐蚀产物的含量。 为主泵提供轴封水; 向反应堆冷却剂加入适量的腐蚀抑制剂,以保持一回路水质。 冷却剂泵停运后提供稳压器的辅助喷淋水。 RCV系统的功能如何实现? 下泄回路 净化回路 上充回路 轴封水及过剩下泄回路 低压下泄管线 反应堆硼和水补给系统的功能是什么? 为一回路系统提供除气除盐含硼水,辅助化容系统实现容积控制; 为进行水质的化学控制提供化学药品添加设备; 为改变反应堆冷却剂硼质量分数,向化容系统提供硼酸和除气除盐水; 为换料水储存箱、安注系统的硼注入罐提供硼酸水和补水,为稳压器卸压箱提供辅助喷淋冷却水,为主泵轴封蓄水管供水。 余热排出系统的功能是什么? 当反应堆进入冷停闭的第二阶段以下时,用于排出堆芯余热,水和设备中的释热,以及运行的主泵在一回路中产生的热量。 在反应堆停堆及装卸料或维修时,导出燃料发出的余热,将一回路水保持在冷态温度。 换料操作后,余热排出泵可将反应堆换料腔中的水送回换料水箱。 主泵停止时,可以使一回路硼浓度均匀化。 与化容系统相连,当一回路压力过低时,可排放和净化一回路冷却剂。 用RRA排料腔水时,水由此去PTR水箱。 设备冷却水系统的功能是什么,系统有何特点?

核电站环境影响与安全

核电站环境影响与安全 摘要根据国家能源发展的中长期规划,我国未来十年将有大批核电建成投产。介绍核电运行的基本原理,分析历史上的重大核泄漏事故的原因及危害,讨论核电站的辐射等因素对周围环境与人员的影响,以及为保证核电站的安全所采取的部分保障措施。 关键词核电站;核事故;核安全;核辐射 核能是一种经济的能源。来自欧盟的报告显示,欧洲通过比较各种燃料循环的外部成本得出的结论是:燃煤和燃油发电,相关的外部成本5美分左右,天然气约1美分,核电的平均成本在0.35美分左右。我国第一座自己研究、设计和建造的核电站是秦山核电站,该电站于1984年破土动工,1991年12月15日并网发电,从那时起走到今年,我国投入运行的核电装机只有908万千瓦,即未来十年的核电装机量将比现阶段总量大的多。 核电站大体可分为相对独立的两部分:一部分是利用核能生产蒸汽的核岛,包括反应堆装置和一回路系统;另一部分是利用蒸汽发电的常规岛,包括汽轮发电机系统。核电站用的燃料是铀,铀是一种很重的金属。用铀制成的核燃料在一种叫“反应堆”的设备内发生裂变而产生大量热能,再用处于高压力下的水把热能带出,在蒸汽发生器通过热交换使二回路内产生蒸汽,蒸汽推动气轮机带着发电机一起旋转,电就源源不断地产生出来,并通过电网送到四面八方。这就是世界上最普及的压水反应堆核电站的工作原理。 从第一座反应堆运行至今出现过三哩岛核事故和切尔诺贝利核事故两次重大核事故。1986年4月26日,前苏联切尔诺贝利核电站研究人员在做一次安全实验时,切断了反应堆所有的安全措施,却又要启动反应堆,这个实验方案严重违反了安全规程,制订的计划又极不认真,极不负责。这个试验造成第四号反应堆大厅起火,并发生化学爆炸,反应堆厂房顶盖被炸掀,放射性物质随着蒸汽和烟云进入大气,造成了对周围环境的严重污染。事故当时有2人被炸死,1人死于心脏病,救火中有29人受辐射损伤,其中28人因患急性放射性病致死。事故后周围30公里范围内撤离了21万居民。这是一次严重的责任事故,而且前苏联开发的这种石墨水冷堆具有较大的缺陷,它有一段正温度系数的正反馈工作区。在该工作区时温度增加后核反应会加剧而不是减慢,这在反应堆的设计上是不能允许的。另外,切尔诺贝利核电站没有绝大多数核电站具有的安全壳,这也使该事故危害加大。 三哩岛和切尔诺贝利核电站事故,促使有核电站运行的所有国家重新仔细检查了核电站的基本安全特性。通过经验教训分析反馈,促进了更先进的反应堆的研究与开发工作,以提高核反应堆的安全性和可靠性。这两次事故也促进了正在运行的核电站安全可靠性的提高。核电其实是一种安全性能好的能源,采取了各种安全措施,并且正确的选择核反应堆的堆型,就可以做到核电站发生事故的机率为4×10-6/堆·年,即100个核电站运行2500年,才有可能发生一次堆芯熔化的事故。而且随着时代的发展和科技的进步,人们还可以进一步地减小这一机率。即

华能集团介绍

中国华能集团公司的中文全称:中国华能集团公司 中文简称:华能集团公司 英文全称:China Huaneng Group 英文简称:CHINA HUANENG 英文缩写:CHNG 中国华能集团公司法定住所:北京市海淀区学院南路40号。 该企业在中国企业联合会、中国企业家协会联合发布的2006年度中国企业500强排名中名列第三十六,2007年度中国企业500强排名中名列第三十八。 公司简介 中国华能集团公司是经国务院批准成立的国有重要骨干企业,是国家授权投资的机构和国家控股公司的试点,是世界500强企业。 按照国务院关于国家电力体制改革的要求,中国华能集团公司是自主经营、自负盈亏,以经营电力产业为主,综合发展的企业法人实体。 中国华能集团公司依照[公司法],对其全资、控股、参股企业进行改建和规范,建立资本纽带关系,实行母子公司体制,逐步建立起符合社会主义市场经济要求的管理体制和运行机制。 中国华能集团公司根据业务需要,可以按照国家规定在境内外投资设立全资或控股的子公司以及分公司、办事处等分支机构。 中国华能集团公司的经营宗旨是:遵守国家法律、法规,执行国家政策,根据国民经济发展规划、国家产业政策以及市场需求,依法自主从事生产经营活动,坚持改革、改组、改造和加强管理,改善产业结构,发挥集团整体优势,提高经济效益,增强市场竞争力,确保国有资产保值增值;以电为主,综合发展,逐步成为实力雄厚、管理一流、服务国家、走向世界,具有国际竞争力的大型企业集团。 中国华能注册资本200亿元,主要包括:电源的开发、投资、建设、经营和管理,电力(热力)的生产和销售,金融、交通运输、新能源、环保相关产业及产品的开发、投资、建设、生产、销售,实业投资经营及管理。 中国华能从1985年创立第一家公司至今,历经20余年的发展历程,为国民经济建设和电力工业的改革与发展做出了积极贡献,逐步形成了“为中国特色社会主义服务的红色公司,注重科技、保护环境的绿色公司,坚持与时俱进、学习创新、面向世界的蓝色公司”的“三色”公司理念和“坚持诚信、注重合作、不断创新、积极进取、创造业绩、服务国家”的核心价值观。 截至2009年6月底,中国华能在全国26个省、市、区及海外拥有运营的全资、控股电厂130 座,装机容量8896.7万千瓦,煤炭、金融、科技研发、交通运输等产业初具规模。

压水堆核电站工作原理简介.

压水堆核电站工作原理简介 核反应堆是核电动力装置的核心设备,是产生核能的源泉。在压水反应堆中,能量主要来源于热中子与铀-235核发生的链式裂变反应。 裂变反应是指一个重核分裂成两个较小质量核的反应。在这种反应中,核俘获一个中子并形成一个复合核。复合核经过很短时间(10-14s的极不稳定激化核阶段,然后开裂成两个主要碎片,同时平均放出约2.5个中子和一定的能量。一些核素,如铀-233、铀-235、钚-239和钚-241等具有这种性质,它们是核反应堆的主要燃料成分。铀-235的裂变反应如图1.3-1所示。 对于铀-235与热中子的裂变反应来说,目前已发现的裂变碎片有80多种,这说明是以40种以上的不同途径分裂。 在裂变反应中,俘获1个中子会产生2~3个中子,只要其中有1个能碰上裂变核,并引起裂变就可以使裂变继续进行下去,称之为链式反应。 由于反应前后存在质量亏损,根据爱因斯坦相对论所确定的质量和能量之间的关系,质量的亏损相当于系统的能量变化,即ΔE=Δmc2。对铀-235来说,每次裂变释放出的能量大约为200Mev(1兆电子伏=1.6×10-13焦耳。这些能量除了极少数(约2%随裂变产物泄露出反应堆外,其余(约98%全部在燃料元件内转化成热能,由此完成核能向热能的转化。 水作为冷却剂,用于在反应堆中吸收核裂变产生的热能。高温高压的一回路水由反应堆冷却剂泵送到反应堆,由下至上流动,吸收堆内裂变反应放出的热量后流出反应堆,流进蒸汽发生器,通过蒸汽发生器的传热管将热量传递给管外的二回路主给水,使二回路水变成蒸汽,而一回路水流出蒸汽发生器后再由反应堆冷却剂泵重新送到反应堆。如此循环往复,形成一个封闭的吸热和放热的循环过程,构成一个密闭的循环回路,称为一回路冷却剂系统。 蒸汽发生器产生的饱和蒸汽由主蒸汽管道首先送到汽轮机的高压阀组以调节进入高压缸的蒸汽量,从高压阀组出来的蒸汽通过四根环形蒸汽管道进入高压缸膨胀

超高温气冷堆介绍

超高温气冷堆(VHTR)调研报告

目录 0.引言 (3) 1.发展历史 (3) 1.1 高温气冷堆—实验堆 (3) 1.2 高温气冷堆—原型堆 (3) 1.3 高温气冷堆-模块式 (4) 2.目前各个国家的发展状况 (4) 3.VHTR反应堆结构 (5) 4.VHTR堆型的优缺点 (8) 5.VHTR发展趋势 (9) 5.1 前景展望 (9) 5.2 VHTR需要填补的技术缺口 (10) 6.总结 (11) 参考文献 (12)

0.引言 未来十几年,全世界都需要能源和优化能源基础建设来满足日益增长的电力和运输用燃料的需要。第四代国际核能论坛(GIF)确定的6种核能系统概念具有满足良好的经济性、安全性、可持续性、防核扩散和防恐怖袭击等目标的绝对优势。 在第四代核能系统概念中,超高温气冷反应堆VHTR(Very High Temperature Reactor)作为高温气冷反应堆渐进式开发过程中下一阶段的重点对象,第四代国际核能论坛(GIF)已将VHTR列入研发计划。VHTR将反应堆出口温度比HTGR提高100℃,达到1000℃或以上,对所用燃料和材料提出了更高要求,实现制氢的工艺设计也需要研发创新。目前,多个国家和组织投入力量,正给予重点研发。我国也将高温气玲堆电站列入中长期科学和技术发展重大专项规划,希望近期取得重大技术突破。 1.发展历史 VHTR(Very High Temperature Reactor)是高温气冷反应堆渐进式开发过程中下一阶段的重点对象,而高温气冷堆的发展主要经历了以下阶段[1]。 1.1 高温气冷堆—实验堆 英国1960年建造20MW实验堆“龙堆”(Dragon)。 美国1967年建成40MW的桃花谷(Peach Bottom)实验堆。 德国1967年建成15MW的球床高温气冷堆(A VR),并发展了具有自己特色的球形燃料元件和球床高温堆。 这三座实验堆的成功运行,证明了高温气冷堆在技术上是可行的。 1.2 高温气冷堆—原型堆 美国1968年建造330MW圣·符伦堡(Fort Stvrain)电站,1976年并网发电。 德国1971年建造300MW钍高温球床堆THTR-300,1985年并网发电。 高温气冷堆在设计、燃料和材料的发展、建造和运行方面都积累了成功的经验,开始进入发电应用的商用化阶段。

相关文档
最新文档