金属离子与蛋白质的相互作用

金属离子与蛋白质的相互作用
金属离子与蛋白质的相互作用

金属离子与血清白蛋白的相互作用

一、实验目的:

测定过渡金属离子对蛋白质功能的影响

二、实验原理:

金属离子在许多生命过程中发挥关键作用,研究金属离子与蛋白质的结合作用是生命科学的重要内容,是化学和生命科学研究的前沿领域。血清白蛋白是哺乳动物血浆中含量最丰富的蛋白质,它能够储存和转运众多的内源性和外源性物质。由于血清白蛋白在生理上的重要性和易于分离、提纯,从上世纪50年度(国内80年代末)开始,人们对血清白蛋白与金属离子(和药物分子等)的相互作用展开了大量研究,以期在分子水平上揭示相关生命过程的奥秘。

许多蛋白质含有金属离子,金属离子对蛋白质发挥生物学功能起着关键性的作用。在人体基因组编码的蛋白质中,超过30%的蛋白质含有一个或多个金属离子;所有酶中,超过40%的蛋白质含有金属离子,它们在生命活动过程中发挥着各样的生物学功能。许多人类的疾病与金属离子-蛋白质的异常相互作用相关。

目前用于研究金属离子与蛋白质相互作用的研究方法主要有:(1)紫外-可见吸收光谱法;(2)荧光光谱法;(3)平衡透析法;(4)毛细管电泳法;(5)电泳法等。

(一)紫外-可见光谱法

蛋白质通常有3个明显不同的紫外吸收带:(1)210nm以下的吸收来自肽键的吸收以及许多构象因素;(2)210-250nm为芳香族和其他残基的吸收、某些氢键的吸收、与其他构象和螺旋相关的相互作用等多种因素;(3)250-290nm附近为芳香族的残基,其中酪氨酸残基在278nm(Tyr,260-290nm)附近有强吸收,色氨酸残基(Trp)在290nm附近有强吸收,而苯丙氨酸(Phe,250-260nm)的吸收较弱。外界因素如溶剂极性以及pH等会影响吸收光谱。

当金属离子与蛋白质结合时,蛋白质或金属离子吸收光谱的强度或者谱带位置会发生变化,可分为两种情况:(1)蛋白质微扰的金属离子光谱变化,可以推断金属离子的配位环境;(2)金属离子微扰的蛋白质光谱变化,可以推断生色基微环境及蛋白质结构的变化。通过对光谱的比较分析和计算,可以推断金属离子与蛋白质的结合情况。若蛋白质的吸收峰增强,则可认为小分子进入蛋白质的疏

水腔,导致肽链伸展,疏水环境下降。单纯的溶剂效应下,峰的蓝移表示原先深埋于蛋白质非极性区的生色基被暴露于极性溶剂,红移则表示生色基被翻转到极性较小的区域。

图1 芳香酸的紫外吸收图谱

(二)荧光光谱法

荧光光谱法是研究蛋白质分子构象的一种有效方法,具有灵敏度高、选择性强、用样量少、方法简便等优点。血清白蛋白中含有色氨酸、酪氨酸和苯丙氨酸残基,因此能发出荧光。在通常条件下,色氨酸、酪氨酸和苯丙氨酸的荧光强度比为100:9:0.5,因此蛋白质的天然荧光主要来自色氨酸。当金属离子与血清白蛋白结合后,可引起蛋白质或少数金属离子荧光的改变,由此可进行定性定量研究。常用荧光猝灭法测定金属离子与蛋白质的结合数和结合常数,用共振能量转移法测定金属离子与蛋白质分子中色氨酸残基之间的距离。

1、荧光猝灭

荧光淬灭的原因是溶液中淬灭剂分子和荧光物质之间发生相互作用致使荧光效率降低或激发态寿命缩短,特异性的淬灭是由于荧光物质与淬灭物质之间发生了特异性的化学作用所引起的。许多过程可引起荧光猝灭,如:激发态反应、能量转移、配合物形成和碰撞猝灭。荧光猝灭的机制主要静态猝灭和动态猝灭。(1)动态猝灭

动态猝灭又称为碰撞猝灭,是由于荧光体与猝灭体之间的扩散作用导致的。假设猝灭为动态猝灭,则按照斯特恩-沃尔默(Stern-V olmer)方程:F0 / F = 1 + K q τ0 [Q] = 1 + K D [Q]计算K q。其中F0为猝灭体不存在猝灭体的荧光强度,F为

加入猝灭体后的荧光强度,K q为双分子猝灭常数,[ Q] 为猝灭体浓度,τ0为猝灭体不存在时荧光体的荧光寿命,K D为Stern-V olmer 常数,K D = K qτ0。

当按照Stern-V olmer方程作图得到一条直线时,表明只存在一种荧光体,并且都是猝灭体可接近的;如果存在两种荧光体,则按Stern-V olmer方程作图会偏离直线,并且逐渐偏向横轴。即使按照Stern-V olmer方程作图是直线,也并不一定是发生了碰撞猝灭。

(2)静态猝灭

猝灭体与荧光体之间形成不发荧光的基态配合物所导致的猝灭,符合方程

F0 / F = 1 + K s [ Q] ,K s为荧光体与猝灭体之间的结合常数。对于静态猝灭通常采用Lineweaver-Burk双倒数函数关系,即由上式变形可得F0 / ( F0 - F) = 1 + K d (1/ [ Q]),K d为离解常数,K d = 1/ K s,静态猝灭常数就是配合物的结合常数K s。

静态猝灭方程与动态猝灭方程表观上一样,静态猝灭用配合物的结合常数

K s表示,而动态猝灭则用Stern-V olmer 常数K D表示。

(3)如何区分动态猝灭和静态猝灭

1)通过荧光寿命计算猝灭常数K q。生物分子的荧光寿命约为10 ns数量级,各种猝灭剂对生物分子的最大扩散碰撞猝灭常数约为2.0×1010(L ·mol- 1·s- 1)。当K q大于2.0×1010(L ·mol- 1·s- 1)时,则认为是静态猝灭。

2)观察温度对猝灭常数(K q或者K s)的影响。动态猝灭依赖扩散,升高温度则导致扩散加快,因此猝灭常数则随温度升高而增大;升高温度会导致配合物稳定性降低,因此静态猝灭常数随温度升高而减小。

3)观察荧光体的吸收光谱。碰撞猝灭仅仅影响荧光体的激发态,因此动态猝灭不影响荧光体的吸收光谱;而基态配合物的形成会引起荧光体的吸收光谱不断变化,则可以判断该体系为静态猝灭。

2、福斯特(Forster)共振能量转移

当血清白蛋白分子的发射光谱与金属离子的吸收光谱有相互重叠时,通过分子间偶极-偶极的共振偶合可使能量从色氨酸(给体)转移到金属离子(受体)。按照福斯特(Forster)共振能量转移理论,可以求出金属离子与蛋白质中色氨酸残基的距离r,并由r的变化分析其它物质对血清白蛋白构象的影响。给体-受体间能量转移效率E与给体-受体间距离r和能量转移距离R0存在如下关系:

E=1-F/F0=R06/( R06 + r6 )

其中R0 是转移效率为50%时的临界距离,R06=8.8×10-25K2N-4ФJ。式中K2为偶极空间取向因子,取K2=2/3;N为介质的折射指数,取1.336;Ф为授体的荧光量子产率,Φ=0.118;J 为给体(蛋白质)的荧光发射光谱与受体的吸收光谱间的光谱重叠积分,可表示为:J=[∑F (λ)?ε(λ)?λ4?λ]/[ ∑F (λ)??λ],F(λ)为荧光授体在波长λ处的荧光强度,ε(λ)为受体在波长λ处的摩尔消光系数。

图2 芳香酸的荧光发射图谱

三、设备与器材

(一)设备

紫外分光光度计、台式高速离心机、生物制冰机、冰箱、自动三重纯水蒸馏器、干燥箱、水浴锅(6-8孔)、pH酸度计、离心管、微量注射器(50μL)、分析天平。

烧杯、容量瓶、移液管。

(二)试剂:

Cu(Ac)2.H2O、FeCl3、牛血清白蛋白(BSA)、过氧化氢、亚硝酸钠、氢氧化钠、氯化钠、氯化钾、磷酸氢钠。

四、实验内容:

1、溶液的配制

(1)10mg/mLBSA溶液:200mgBSA溶于20mL磷酸盐缓冲溶液中,4℃保存。

(2)准确称取Cu(Ac)2.H 2O 和FeCl 3,先在烧杯中用少量水溶解,然后转移到容量瓶中定容,配成2mM ,室温保存。

(3)100mM 磷酸盐缓冲液:7.16gNa 2HPO 4.12H 2O 溶于200mL 水中,调pH 为7.0(大约需要加入浓盐酸600uL )。

(4)100 m mol/L NaNO 2溶液:称取0.69 g NaNO 2,先在烧杯中用少量水溶解,二次水定容至100 mL 。

(5)100 m mol/L H 2O 2溶液:取30% H 2O 2 11.1 μL ,加入990μL 的二次水中。 (6)1 mol/L NaOH 溶液:称取8 g NaOH ,二次水定容至200 mL 。 2、金属离子与蛋白质相互作用的紫外吸收光谱测定

试管中固定BSA 的浓度为1.0mg/mL ,加入不同浓度的Cu 2+和Fe 3+溶液,使终浓度分别为0、2.0、4.0、8.0、12.0、16.0、20.0(×10-5M ),补加相应磷酸盐缓冲溶液。37℃恒温水浴中反应30min 。以磷酸盐缓冲溶液做参比,扫描200-400nm 范围内的紫外吸收光谱,2nm 取一点。

3、Cu 2+-NO 2--H 2O 2和Fe 3+- NO 2--H 2O 2体系导致BSA 蛋白质硝化的可见光谱测定 (1)蛋白质硝化

蛋白质硝基化(protein nitration )主要指的就是蛋白质中酪氨酸的硝化反应。酪氨酸中含有酚基,硝化反应也正是发生在酚基的苯环上。如图:

-

2

3-nitro-tyrosine

C 9H 11NO 3tyrosine

C 9H 10N 2O 5

含有酚羟基的苯环上所发生的硝化反应可由两种途径得到:一种是硝鎓离子NO 2+的亲电取代反应,NO 2+具有线形结构,亲电性很强:

Protein-Tyr + NO 2+ = Protein-Tyr-NO 2 + H +

另一种反应途径就是自由基反应,这是更接近生物体系的一种反应形式。自由基的定义为:“任何包含一个未成对电子的原子或原子团,均称之为自由基”。自由基具有反应性强、顺磁性和寿命短的特点。当生物体系中自由基产生过量时就会带来一系列的不良反应,引发一定条件下的病理过程。

(2)蛋白质硝化的检测方法

最简单的硝基酪氨酸定量检测方法是分光光度法,其原理主要是基于3-硝基酪氨酸稳定存在,且在280到450nm波长范围有最大吸收。在酸性条件(pH<3.5)硝化酪氨酸和酪氨酸在280nm和365nm处均有最大吸收;在碱性条件(pH>9.5左右)硝化酪氨酸在430nm有最大吸收,因此可以依据吸收光谱来计算硝基酪氨酸的浓度。

(3)、实验方案

按照加样表加样后,37℃水浴温浴30 min。反应后取2 mL反应液,加入200 L 1 mol/L的NaOH溶液,在430 nm处测定吸光度。

五、实验要求:

4人一组

扫描得到紫外图谱,并进行简单分析。

蛋白质硝化数据作出柱状图形。

六、思考题

1、测定为什么要在37℃下进行?

2、缓冲溶液的pH为什么要保持在7.0-7.4?

检测两种蛋白质之间相互作用

检测两种蛋白质之间相互作用得实验方法比较 1、生化方法 ●免疫共沉淀免疫共沉淀就是以抗体与抗原之间得专一性作用为基础得用于研究蛋白质相互作用得经典方法.改法得优点就是蛋白处于天然状态,蛋白得相互作用可以在天然状态下进行,可以避免认为影响;可以分离得到天然状态下相互作用得蛋白复合体。缺点:免疫共沉淀同样不能保证沉淀得蛋白复合物时候为直接相互作用得两种蛋白。另外灵敏度不如亲与色谱高。 ●Far—Western 又叫做亲与印记。将PAGE胶上分离好得凡百样品转移到硝酸纤维膜上,然后检测哪种蛋白能与标记了同位素得诱饵蛋白发生作用,最后显影。缺点就是转膜前需要将蛋白复性。2?、等离子表面共振技术(Surfaceplasmonresonance)该技术就是将诱饵蛋白结合于葡聚糖表面,葡聚糖层固定于几十纳米厚得技术膜表面。当有蛋白质混合物经过时,如果有蛋白质同“诱饵”蛋白发生相互作用,那么两者得结合将使金属膜表面得折射率上升,从而导致共振角度得改变。而共振角度得改变与该处得蛋白质浓度成线性关系,由此可以检测蛋白质之间得相互作用。该技术不需要标记物与染料,安全灵敏快速,还可定量分析。缺点:需要专门得等离子表面共振检测仪器。 3、双杂交技术原理基于真核细胞转录因子得结构特殊性,这些转录因子通常需要两个或以上相互独立得结构域组成.分别使结合

域与激活域同诱饵蛋白与猎物蛋白形成融合蛋白,在真核细胞中表达,如果两种蛋白可以发生相互作用,则可使结合域与激活域在空间上充分接近,从而激活报告基因.缺点:自身有转录功能得蛋白会造成假阳性.融合蛋白会影响蛋白得真实结构与功能。不利于核外蛋白研究,会导致假隐性. 5、荧光共振能量转移技术指两个荧光法色基团在足够近(〈100埃)时,它们之间可发生能量转移得现象。荧光共振能量转移技术可以研究分子内部对某些刺激发生得构象变化,也能研究分子间得相互作用。它可以在活体中检测,非常灵敏,分辩率高,能够检测大分子得构象变化,能够定性定量得检测相互作用得强度。缺点此项技术要求发色基团得距离小于100埃。另外设备昂贵,还需要融合GFP给蛋白标记。?此外还有交联技术(cross-linKing),蛋白质探针技术,噬菌体展示技术(Phage display)以及生物信息学得方法来检测蛋白质之间相互作用。 1,酵母双杂交 1-5 酵母双杂交系统就是将待研究得两种蛋白质得基因分别克隆到酵 体,从表达产物分析两种蛋白质相互作用得系统 酵母双杂交得原理就是,把报告基因HIS3与l a c Z 整合到酵母细胞基因组中,并受转录因子

蛋白质结构与功能 测试试题 选择

测试题 1.在生理条件下,下列哪种氨基酸残基的侧链所带的正电荷最 多?C A.Cys B.Glu C.Lys D.Thr E.Ala 2. 在中性条件下混合氨基酸在溶液中的主要存在形式是:A A.兼性离子 B.非极性分子 C.带单价正电荷 D.疏水分子 E.带单价负电荷 3. 蛋白质合成后修饰而成的氨基酸是:B A.脯氨酸 B.胱氨酸 C.赖氨酸 D.蛋氨酸 E.天门冬氨酸 4. 蛋白质在280nm处有最大光吸收,主要是由下列哪组结构引 起的?D A.组氨酸的咪唑基和酪氨酸的酚基 B.酪氨酸的酚基和色氨酸的吲哚环 C.酪氨酸的酚基和苯丙氨酸的苯环 D.色氨酸的吲哚环和苯丙氨酸的苯环 E.苯丙氨酸的苯环和组氨酸的咪唑基 5. 关于蛋白质等电点的叙述下列哪项是正确的?A A.在等电点处蛋白质分子所带净电荷为零 B.等电点时蛋白质变性沉淀 C.不同蛋白质的等电点相同 D.在等电点处蛋白质的稳定性增加 E.蛋白质的等电点与它所含的碱性氨基酸的数目无关

6. 有一混合蛋白质溶液,各种蛋白质的PI为4.6;5.0;5.3;6.7; 7.3。电泳时欲使其中4种泳向正极,缓冲液的PH应该是E A.4.0 B.5.0 C.6.0 D.8.0 E.7.0 7. 下列关于蛋白质结构叙述中,不正确的是:C A.α-螺旋是二级结构的一种 B.无规卷曲是在一级结构基础上形成的 C.只有二、三级结构才能决定四级结构 D.一级结构决定二、三级结构 E.三级结构即具有空间构象 8. 使蛋白质和酶分子显示巯基的氨基酸是:B A.赖氨酸 B.半胱氨酸 C.胱氨酸 D.蛋氨酸 E.谷氨酸 9. 蛋白质多肽链具有的方向性是:C A.从5'端到3'端 B.从3'端到5'端 C.从N端到C端 D.从C端到N端 E.以上都不是 10. 关于蛋白质分子三级结构的描述,其中错误的是:A A.具有三级结构的多肽链都具有生物学活性 B.决定盘曲折叠的因素是氨基酸残基 C.亲水基团多聚集在三级结构的表面 D.三级结构的稳定性主要是次级键维系 E.天然蛋白质分子均具有这种结构

研究蛋白质与蛋白质相互作用方法总结-实验步骤

研究蛋白质与蛋白质相互作用方法总结-实验步骤 蛋白质与蛋白质之间相互作用构成了细胞生化反应网络的一个主要组成部分,蛋白-蛋白互作网络与转录调控网络对调控细胞及其信号有重要意义。把原来spaces空间上的一篇蛋白质与蛋白质间相互作用研究方法转来,算是实验技巧分类目录的首篇。(另补充2:检测两种蛋白质之间相互作用的实验方法比较) 一、酵母双杂交系统 酵母双杂交系统是当前广泛用于蛋白质相互作用组学研究的一种重要方法。其原理是当靶蛋白和诱饵蛋白特异结合后,诱饵蛋白结合于报道基因的启动子,启动报道基因在酵母细胞内的表达,如果检测到报道基因的表达产物,则说明两者之间有相互作用,反之则两者之间没有相互作用。将这种技术微量化、阵列化后则可用于大规模蛋白质之间相互作用的研究。在实际工作中,人们根据需要发展了单杂交系统、三杂交系统和反向杂交系统等。Angermayr等设计了一个SOS蛋白介导的双杂交系统。可以研究膜蛋白的功能,丰富了酵母双杂交系统的功能。此外,酵母双杂交系统的作用也已扩展至对蛋白质的鉴定。 二、噬茵体展示技术 在编码噬菌体外壳蛋白基因上连接一单克隆抗体的DNA序列,当噬菌体生长时,表面就表达出相应的单抗,再将噬菌体过柱,柱上若含目的蛋白,就会与相应抗体特异性结合,这被称为噬菌体展示技术。此技术也主要用于研究蛋白质之间的相互作用,不仅有高通量及简便的特点,还具有直接得到基因、高选择性的筛选复杂混合物、在筛选过程中通过适当改变条件可以直接评价相互结合的特异性等优点。目前,用优化的噬菌体展示技术,已经展示了人和鼠的两种特殊细胞系的cDNA文库,并分离出了人上皮生长因子信号传导途径中的信号分子。 三、等离子共振技术 表面等离子共振技术(Surface Plasmon Resonance,SPR)已成为蛋白质相互作用研究中的新手段。它的原理是利用一种纳米级的薄膜吸附上“诱饵蛋白”,当待测蛋白与诱饵蛋白结合后,薄膜的共振性质会发生改变,通过检测便可知这两种蛋白的结合情况。SPR技术的优点是不需标记物或染料,反应过程可实时监控。测定快速且安全,还可用于检测蛋白一核酸及其它生物大分子之间的相互作用。

检测两种蛋白质之间相互作用

检测两种蛋白质之间相互作用的实验方法比较 1. 生化方法 ●免疫共沉淀免疫共沉淀是以抗体和抗原之间的专一性作用为基础的用于研究蛋白质相互作用的经典方法。改法的优点是蛋白处于天然状态,蛋白的相互作用可以在天然状态下进行,可以避免认为影响;可以分离得到天然状态下相互作用的蛋白复合体。缺点:免疫共沉淀同样不能保证沉淀的蛋白复合物时候为直接相互作用的两种蛋白。另外灵敏度不如亲和色谱高。 ●Far-Western 又叫做亲和印记。将PAGE胶上分离好的凡百样品转移到硝酸纤维膜上,然后检测哪种蛋白能与标记了同位素的诱饵蛋白发生作用,最后显影。缺点是转膜前需要将蛋白复性。 2. 等离子表面共振技术(Surface plasmon resonance)该技术是将诱饵蛋白结合于葡聚糖表面,葡聚糖层固定于几十纳米厚的技术膜表面。当有蛋白质混合物经过时,如果有蛋白质同“诱饵”蛋白发生相互作用,那么两者的结合将使金属膜表面的折射率上升,从而导致共振角度的改变。而共振角度的改变与该处的蛋白质浓度成线性关系,由此可以检测蛋白质之间的相互作用。该技术不需要标记物和染料,安全灵敏快速,还可定量分析。缺点:需要专门的等离子表面共振检测仪器。 3. 双杂交技术原理基于真核细胞转录因子的结构特殊性,这些转录因子通常需要两个或以上相互独立的结构域组成。分别使结合域和

激活域同诱饵蛋白和猎物蛋白形成融合蛋白,在真核细胞中表达,如果两种蛋白可以发生相互作用,则可使结合域和激活域在空间上充分接近,从而激活报告基因。缺点:自身有转录功能的蛋白会造成假阳性。融合蛋白会影响蛋白的真实结构和功能。不利于核外蛋白研究,会导致假隐性。 5. 荧光共振能量转移技术指两个荧光法色基团在足够近(<100埃)时,它们之间可发生能量转移的现象。荧光共振能量转移技术可以研究分子内部对某些刺激发生的构象变化,也能研究分子间的相互作用。它可以在活体中检测,非常灵敏,分辩率高,能够检测大分子的构象变化,能够定性定量的检测相互作用的强度。缺点此项技术要求发色基团的距离小于100埃。另外设备昂贵,还需要融合GFP给蛋白标记。 此外还有交联技术(cross-linKing),蛋白质探针技术,噬菌体展示技术(Phage display)以及生物信息学的方法来检测蛋白质之间相互作用。 1,酵母双杂交 1-5 酵母双杂交系统是将待研究的两种蛋白质的基因分别克隆到酵母表达质粒的转录激活因子(如GAL4等)的DNA结合结构域基因和转录激活因子(如GAL4等)激活结构域基因,构建成融合表达载体,从表达产物分析两种蛋白质相互作用的系统

蛋白质相互作用

蛋白质相互作用的概述 一、为什么要研究蛋白质相互作用 二、蛋白质相互作用亲和力:K d=[A][B]/[AB] 三、蛋白质相互作用的应用 A、利用抗原和抗体的相互作用:Western blot,免疫共沉淀,染色质沉淀,抗体筛库 B、利用已知的相互作用建立tag:GST pull down,Biotin-Avidin结合, C、直接利用蛋白质的相互作用:蛋白质亲和层析,酵母双杂交,phage display,Bait蛋白质筛表达库,蛋白质组 四、相互作用的生物学意义:蛋白质间的相互作用是细胞生命活动的基础。 五、生物学功能的研究:获得功能或失去功能 I、一些常用蛋白质相互作用技术 ?Traditional co-purification (chromatography co-purification and co-sedimentation) ?Affinity chromatography:GST pull down,Epitope-tag ?(co-)Immunoprecipitation ?Western和Far-Western blot Surface Plasmon Resonance Two-Hybrid System Fluorescence Resonance Energy Transfer (FRET) (实验过程及原理,注意事项,优缺点) III、研究实例讨论 一、酵母双杂交系统 作用:发现新的相互作用蛋白质;鉴定和分析已有的蛋白质间的相互作用;确定蛋白质相互作用的功能基团 具体过程:见书本 优点:是酵母细胞的in vivo相互作用;只需要cDNA,简单;弱的相互作用也能检测到 缺点:都是融合蛋白,万一融合出新的相互作用;酵母的翻译后修饰不尽相同,尤其是蛋白质的调控性修饰;自身激活报告基因;基因库德要求比较高,单向1/3是in frame 蛋白质毒性;第三者Z插足介导的相互作用;假阳性 酵母双杂交系统是当前广泛用于蛋白质相互作用组学研究的一种重要方法。其原理是当靶蛋白和诱饵蛋白特异结合后,诱饵蛋白结合于报道基因的启动子,启动报道基因在酵母细胞内的表达,如果检测到报道基因的表达产物,则说明两者之间有相互作用,反之则两者之间没有相互作用。将这种技术微量化、阵列化后则可用于大规模蛋白质之间相互作用的研究。在实际工作中,人们根据需要发展了单杂

金属离子与蛋白质的相互作用

金属离子与血清白蛋白的相互作用 一、实验目的: 测定过渡金属离子对蛋白质功能的影响 二、实验原理: 金属离子在许多生命过程中发挥关键作用,研究金属离子与蛋白质的结合作用是生命科学的重要内容,是化学和生命科学研究的前沿领域。血清白蛋白是哺乳动物血浆中含量最丰富的蛋白质,它能够储存和转运众多的内源性和外源性物质。由于血清白蛋白在生理上的重要性和易于分离、提纯,从上世纪50年度(国内80年代末)开始,人们对血清白蛋白与金属离子(和药物分子等)的相互作用展开了大量研究,以期在分子水平上揭示相关生命过程的奥秘。 许多蛋白质含有金属离子,金属离子对蛋白质发挥生物学功能起着关键性的作用。在人体基因组编码的蛋白质中,超过30%的蛋白质含有一个或多个金属离子;所有酶中,超过40%的蛋白质含有金属离子,它们在生命活动过程中发挥着各样的生物学功能。许多人类的疾病与金属离子-蛋白质的异常相互作用相关。 目前用于研究金属离子与蛋白质相互作用的研究方法主要有:(1)紫外-可见吸收光谱法;(2)荧光光谱法;(3)平衡透析法;(4)毛细管电泳法;(5)电泳法等。 (一)紫外-可见光谱法 蛋白质通常有3个明显不同的紫外吸收带:(1)210nm以下的吸收来自肽键的吸收以及许多构象因素;(2)210-250nm为芳香族和其他残基的吸收、某些氢键的吸收、与其他构象和螺旋相关的相互作用等多种因素;(3)250-290nm附近为芳香族的残基,其中酪氨酸残基在278nm(Tyr,260-290nm)附近有强吸收,色氨酸残基(Trp)在290nm附近有强吸收,而苯丙氨酸(Phe,250-260nm)的吸收较弱。外界因素如溶剂极性以及pH等会影响吸收光谱。 当金属离子与蛋白质结合时,蛋白质或金属离子吸收光谱的强度或者谱带位置会发生变化,可分为两种情况:(1)蛋白质微扰的金属离子光谱变化,可以推断金属离子的配位环境;(2)金属离子微扰的蛋白质光谱变化,可以推断生色基微环境及蛋白质结构的变化。通过对光谱的比较分析和计算,可以推断金属离子与蛋白质的结合情况。若蛋白质的吸收峰增强,则可认为小分子进入蛋白质的疏

蛋白质

第4章 蛋白质 蛋白质(protein )是生物体细胞的重要组成成分,在生物体系中起着核心作用;蛋白质也是一种重要的产能营养素,并提供人体所需的必需氨基酸;蛋白质还对食品的质构、风味和加工产生重大影响。 蛋白质是由多种不同的α—氨基酸通过肽链相互连接而成的,并具有多种多样的二级和三级结构。不同的蛋白质具有不同的氨基酸组成,因此也具有不同的理化特性。蛋白质在生物具有多种生物功能,可归类如下:酶催化、结构蛋白、收缩蛋白(肌球蛋白、肌动蛋白、微管蛋白)、激素(胰岛素、生长激素)、传递蛋白(血清蛋白、铁传递蛋白、血红蛋白)、抗体蛋白(免疫球蛋白)、储藏蛋白(蛋清蛋白、种子蛋白)和保护蛋白(毒素和过敏素)等。 4.1 概述 4.1.1 蛋白质的化学组成 一般蛋白质的相对分子量在1万至几百万之间。根据元素分析,蛋白质主要含有C 、H 、O 、N 等元素,有些蛋白质还含有P 、S 等,少数蛋白质含有Fe 、Zn 、Mg 、Mn 、Co 、Cu 等。多数蛋白质的元素组成如下:C 约为50%~56%,H 为6%~7%,O 为20%~30%,N 为14%~19%,平均含量为16%;S 为0.2%~3%;P 为0~3%。 4.1.2 组成蛋白质的基本单位—氨基酸 蛋白质在酸、碱或酶的作用下,完全水解的最终产物是性质各不相同的一类特殊的氨基酸,即L —α—氨基酸。L —α—氨基酸是组成蛋白质的基本单位,其通式如图4—1。 NH 2H R C COOH NH 3H R C COO + 两性离子形 式非 解离形式 图4—1 L —α—氨基酸 4.2 氨基酸和蛋白质的分类和结构 4.2.1 氨基酸的分类和结构 自然界氨基酸种类很多,但组成蛋白质的氨基酸仅20余种。根据氨基酸通式中R 基团极性的不同,可将氨基酸分为3类:①非极性或疏水的氨基酸;②极性但不带电荷的氨基酸;③在介质中性条件下带电荷的氨基酸;见表4—1。 表中由于脯氨酸的结构不符合通式,所以给出了它的全结构式;第一类氨基酸的水溶性低于后两类,这类氨基酸的疏水性随着R 侧链的碳数增加而增加;第二类氨基酸含极性但不带电荷的侧链,它们能和水分子形成氢键,其中半胱氨酸和酪氨酸侧链的极性最高,甘氨酸的最小;第三类氨基酸的侧链在pH 接近7时带有电荷。随着pH 变化这些侧链电荷可以通过质子的得失而得失,这是蛋白质具有两性和等电点的基础。

蛋白质相互作用数据库和分析方法

蛋白质相互作用数据库和分析方法 1. 蛋白质相互作用的数据库 蛋白质相互作用数据库见下表所示: 数据库名 说明 网址 BIND 生物分子相互作用数据库 http://bind.ca/ DIP 蛋白质相互作用数据库 https://www.360docs.net/doc/403250748.html,/ IntAct 蛋白质相互作用数据库 https://www.360docs.net/doc/403250748.html,/intact/index.html InterDom 结构域相互作用数据库 https://www.360docs.net/doc/403250748.html,.sg/ MINT 生物分子相互作用数据库 http://mint.bio.uniroma2.it/mint/ STRING 蛋白质相互作用网络数据库 http://string.embl.de/ HPRD 人类蛋白质参考数据库 https://www.360docs.net/doc/403250748.html,/ HPID 人类蛋白质相互作用数据库 http://wilab.inha.ac.kr/hpid/ MPPI 脯乳动物相互作用数据库 http://fantom21.gsc.riken.go.jp/PPI/ biogrid 蛋白和遗传相互作用数据,主要来自于酵母、线虫、果蝇和人 https://www.360docs.net/doc/403250748.html,/ PDZbase 包含PDZ 结构域的蛋白质相互作用数据库 https://www.360docs.net/doc/403250748.html,/services/pdz/start Reactome 生物学通路的辅助知识库 https://www.360docs.net/doc/403250748.html,/ 2. 蛋白质相互作用的预测方法 蛋白质相互作用的预测方法很非常多,以下作了简单的介绍 1) 系统发生谱 这个方法基于如下假定:功能相关的(functionally related)基因,在一组完全测序的基因组中预期同时存在或不存在,这种存在或不存在的模式(pattern)被称作系统发育谱;如果两个基因,它们的序列没有同源性,但它们的系统发育谱一致或相似.可以推断它们在功能上是相关的。

蛋白质-金属纳米粒子

蛋白质—金属纳米粒子体系荧光增强效应及其分析应用 摘要: 近年来,随着纳米科技的兴起,金属纳米粒子以其独特的光学和电学性质、良好的稳定性、小尺寸和表面效应以及独特的生物亲和性,使其在医药、卫生分析以及生化免疫等领域显示了潜在的价值,引起广大科技工作者的兴趣。金属纳米粒子独特的表面效应是其具有优良性能以及与其他材料复合时表现出来的独特性能的关键。金属纳米微粒的粒径、形状以及排列情况与其紫外一可见吸收光谱、表面增强拉曼散射(SERS)光谱、共振散射光谱以及荧光光谱之间有强烈的依赖关系。金属纳米颗粒与荧光分子直接结合或经修饰后连接,可以改变荧光体系的紫外-可见吸收光谱、增强表面拉曼散射光谱和共振散射光谱,对荧光光谱的影响随金属纳米颗粒的种类以及荧光分子的种类不同可产生猝灭作用也可产生增强作用。本论文以分析化学、生物化学以及材料化学为研究背景,结合纳米科学技术手段,并利用荧光光谱、吸收光谱、光散射光谱、园二色谱、透射电子显微镜和高分辨透射电子显微镜、荧光寿命以及Zeta电位等测定技术,研究了各种蛋白质对各种金属纳米荧光体系的荧光增强作用,探讨了蛋白质与金属纳米粒子结合及其荧光增强作用的机理,建立了利用金属纳米粒子作为荧光探针来测定微量蛋白质的分析方法。论文的第一章阐述了金属纳米颗粒的制备方法、金属纳米颗粒的应用、研究进展以及发展趋势。共引用文献191篇。论文的第二章研究了蛋白质对金纳米颗粒近红外荧光的增强效应及其分析应用。利用液相还原法制备了不同大小的金纳米颗粒。吸收光谱研究指出,大颗粒胶体金只在250nm处有吸收,随胶体金粒径减小至21nm,在525nm处出现新的吸收峰,且其强度随纳米颗粒的减小而增强,并伴有吸收峰的兰移。研究发现,15nm的金纳米颗粒能够发射近红外荧光,其激发和发射峰分别为538nm和811.2nm。同时还发现,蛋白质能够明显增强金纳米近红外荧光强度,并研究了影响荧光增强效应的各种因素。实验指出,在最佳实验条件下(即15nm的纳米金颗粒,pH7.0时),蛋白质浓度在一定范围内与体系的荧光强度呈线性关系,P450、BSA、HRP、和HSA 的线性范围分别是 2.3×10~(-7)-1.0×10~(-5)mol/L、2.0×10~(-7)-1.5×10~(-5)mol/L、 1.5×10~(-7)-1.5×10~(-5)mol/L和1.5×10~(-7)-1.5×10~(-5)mol/L,它们的检出限分别达到 2.4×10~(-8)mol/L、2.2×10~(-8)mol/L、2.0×10~(-8)mol/L和2.0×10~(-8)mol/L,可见该方法具有较高的灵敏度。该方法已用于实际样品的分析,其结果令人满意。本文以BSA蛋白质金纳米荧光体系为代表,利用Zeta电位、荧光寿命、TEM电镜、吸收光谱、共振散射光谱、园二色谱以及荧光光谱等技术,研究了体系中蛋白质与金纳米颗粒间的相互作用和蛋白质对金纳米颗粒近红外荧光的增强机理。研究表明,金纳米颗粒表面荷负电,能与蛋白质结合。认为胶体金以蛋白质为模板能够在其表面发生聚集,金纳米体系按一定的规律定向排列,纳米粒子聚集后间距减小,导致表面等离子体传播特性的改变以及局域表面等离子体模式和表面等离子体模式的相互作用,这种相互作用受到外围环境的介电特性的影响。同时,金属粒子所产生的等离子体可以增强其表面周围环境的电场,这种增强的电场可以和周围环境发生相互作用,其表现为如吸收光谱兰移等光谱特性的改变。这可能是使整个金标记蛋白体系荧光强度增强的部分原因。而蛋白质为金纳米颗粒提供的疏水性环境是荧光体系荧光增强的另一原因。论文的第三章研究了铕纳米颗粒的制备、光谱性质和蛋白质对其荧光的增强效应及其分析应用。利用单宁酸做还原剂,首次将金属铕从它的硝酸盐中还原出来,制成金属铕纳米颗粒。以硫辛酸做修饰剂,修饰铕纳米颗粒,并与蛋白质结合。比较修饰、结合蛋白质前后纳米颗粒的光学性质的变化。研究指出,通过还原剂的不同用量可以控制生成的铕纳米颗粒的大小,随着还原剂单宁酸用量的逐渐减少,生成的铕纳米颗粒直径不断增大。各种粒径的铕纳米颗粒都在275nm处有最大吸收,且随着铕纳米颗粒直径的增大,吸收峰

蛋白质-蛋白质相互作用

蛋白质-蛋白质相互作用 蛋白质与蛋白质之间相互作用构成了细胞生化反应网络的一个主要组成部分,蛋白-蛋白互作网络与转录调控网络对调控细胞及其信号有重要意义。把原来spaces空间上的一篇蛋白质与蛋白质间相互作用研究方法转来,算是实验技巧分类目录的首篇。(另补充2:检测两种蛋白质之 间相互作用的实验方法比较) 一、酵母双杂交系统 酵母双杂交系统是当前广泛用于蛋白质相互作用组学研究的一种重要方法。其原理是当靶蛋白和诱饵蛋白特异结合后,诱饵蛋白结合于报道基因的启动子,启动报道基因在酵母细胞内的表达,如果检测到报道基因的表达产物,则说明两者之间有相互作用,反之则两者之间没有相互作用。将这种技术微量化、阵列化后则可用于大规模蛋白质之间相互作用的研究。在实际工作中,人们根据需要发展了单杂交系统、三杂交系统和反向杂交系统等。Angermayr等设计了一个SOS蛋白介导的双杂交系统。可以研究膜蛋白的功能,丰富了酵母双杂交系统的功能。此外,酵母双杂 交系统的作用也已扩展至对蛋白质的鉴定。 二、噬茵体展示技术 在编码噬菌体外壳蛋白基因上连接一单克隆抗体的DNA序列,当噬菌体生长时,表面就表达出相应的单抗,再将噬菌体过柱,柱上若含目的蛋白,就会与相应抗体特异性结合,这被称为噬菌体展示技术。此技术也主要用于研究蛋白质之间的相互作用,不仅有高通量及简便的特点,还具有直接得到基因、高选择性的筛选复杂混合物、在筛选过程中通过适当改变条件可以直接评价相互结合的特异性等优点。目前,用优化的噬菌体展示技术,已经展示了人和鼠的两种特殊细胞系的cDNA文库,并分离出了人上皮生长因子信号传导途径中的信号分子。 三、等离子共振技术 表面等离子共振技术(Surface Plasmon Resonance,SPR)已成为蛋白质相互作用研究中的新手段。它的原理是利用一种纳米级的薄膜吸附上“诱饵蛋白”,当待测蛋白与诱饵蛋白结合后,薄膜的共振性质会发生改变,通过检测便可知这两种蛋白的结合情况。SPR技术的优点是不需标记物或染料,反应过程可实时监控。测定快速且安全,还可用于检测蛋白一核酸及其它生物大分子之间 的相互作用。 四、荧光能量转移技术

金属盐的战略用途

金属盐: 阳离子为重金属的盐称为重金属盐(例如铜、铅、锌、铁、镍、锰、镉、汞等金属形成的)。 重金属是指密度为5.0g/cm3以上的金属,轻金属为密度为5.0g/cm3以下的金属。 重金属盐类如醋酸铅、氯化汞、硫酸铜、硝酸银等都是蛋白质的沉淀剂。蛋白质是组成人体细胞的重要物质,人若吸收了重金属盐类,体内的蛋白质就会生成沉淀物——蛋白质盐,人也就会因蛋白质变性而中毒。 若发生重金属中毒,可及时服用蛋清、牛奶、豆浆等高蛋白物质,以减少重金属盐对人体蛋白质的作用,并立即求医治疗。 多数重金属盐有毒,但是硫酸钡不溶于水、不溶于酸,不会游离出Ba2+离子。医疗上用作X射线检查肠胃病时,病人服用的“钡餐”。 重金属盐: 重金属盐 重金属指比重大于5的金属(一般指密度大于4.5g/cm3的金属)。重金属指的是相对原子质量大于55的金属。如铁的相对原子质量为56,大于55,故也是重金属。重金属约有45种,一般都是属于过渡元素。如铜、铅、锌、铁、钴、镍、锰、镉、汞、钨、钼、金、银等。尽管锰、铜、锌等重金属是生命活动所需要的微量元素,但是大部分重金属如汞、铅、镉等并非生命活动所必须,而且所有重金属超过一定浓度都对人体有毒。

有重金属元素参与组成的盐称为重金属盐。 中毒原因: 重金属盐类如醋酸铅、氯化汞、硫酸铜、硝酸银等都是蛋白质的沉淀剂.重金属盐使蛋白质变性,是因为重金属阳离子可以和蛋白质中游离的羧基形成不溶性的盐,在变性过程中有化学键的断裂和生成,因此是一个化学变化。蛋白质是组成人体细胞的重要物质,人若吸收了重金属盐类,体内的蛋白质就会生成沉淀物——蛋白质盐,人也就会因蛋白质变性而中毒.

检测蛋白质与蛋白质之间相互作用的实验技术

一、检测蛋白质与蛋白质相互作用 ① FRET技术(in vivo) FRET,Fluorescence resonance energy transfer,即荧光共振能量转移技术。该技术的原理是用一种波长的光激发某种荧光蛋白后,它释放的荧光刚好又能激发另一种荧光蛋白,使其释放另一波长的荧光,如下图所示: 以下图为例,若要利用FRET检测两种蛋白是否有相互作用,需将两种蛋白的基因分别与这两种荧光蛋白的基因融合,并在细胞内表达出两种融合蛋白。然后只需用紫外光对CFP进行激发,并检测GFP是否放出绿色荧光。如果能检测到绿色荧光,那么可以说明这两种蛋白可能有相互作用;反之,则是这两种蛋白没有相互作用。 ②酵母双、三杂交技术(in vivo) 酵母双杂交系统主要用于考察两种蛋白是否有相互作用,其原理是典型的真核生长转录因子,如GAL4、GCN4等都含有二个不同的结构域,即AD和BD。这些转录因子只有同时具有这两个结构域时才能起始转录。由此,设计不同的两个载体,一个含有AD基因(假设为A载体),另一个含有BD基因(假设为B载体)。 一般将一个已知蛋白的基因连在B载体上,作为诱饵(Bait),将未知蛋白的基因连在A载体上,将这两个载体都转到特定的酵母细胞内,看未知蛋白与已知蛋白是否有相互作用。如果两者有相互作用,那么就可以启动报告基因的转录,从而使这个酵母细胞能在选择培养基上显现出来或者生存下来;如果两者无相互作用,那么报告基因就无法表达,那么这个酵母细胞就无法在择培养基上显现出来或者生存下来,如下图所示:

由于酵母双杂交系统不能鉴定膜蛋白间的相互作用,因此又发展出了分离泛素酵母双杂交系统。该系统的原理如下图所示: 如图所示,将泛素蛋白拆分为两个片段,即C端段(Cub)和N端段(NubG),并在C端段的N端接上一个LexA-VP16转录因子,此时它并不能激活基因转录(因为它被限制在了C端段上,不能进入细胞核发挥作用)。 将该C端段连到一个膜蛋白上,将N端段连接到另一个膜蛋白上。若两个膜蛋白有相互作用,那么两个膜蛋白在相互靠近时会使泛素蛋白的N端段和C端段靠近结合,形成一个完整的泛素蛋白。此时泛素蛋白酶体会将这一段被泛素标记的片段降解,那么连接C端段的LexA-VP16转录因子掉落,即可进入细胞核启动标记基因的表达。 酵母三杂交的原理与双杂交一样,只是它研究的是两个蛋白和第三个成分间的相互作用,通过第三个成分使两个蛋白相互靠近。第三个成分可以是:蛋白、RNA或小分子,如下图所示: 如上图所示,在加入第三种成分前,蛋白X与蛋白Y之间并无直接相互作用,因此无法使BD和AD靠近,报告基因不能表达;当加入第三种成分后,蛋白X与蛋白Y的距离被拉近,BD和AD靠近,报告基因表达,从而可以被检测到。 ③ Pulldown技术(in vitro) Pulldown,即蛋白沉降技术,它是建立在蛋白质亲和层析的基础上的一种检测蛋白质间相互作用的分析方法。亲和层析的原理如下图所示,不同蛋白对配体的亲和程度不同,因此可以先将非特异结合的蛋白用低浓度缓冲液给清洗出去,只剩目的蛋白与层析柱结合,然后再用洗脱液将目的蛋白洗脱下来,达到纯化目的蛋白的作用。

1.蛋白质结构与功能-----氨基酸

蛋白质结构与功能——氨基酸 2010遗传学 Chapter 1 氨基酸 I 蛋白质的天然组成 天然蛋白质几乎都是由18种普通的氨基酸组成:L-氨基酸,L-亚氨基酸(脯氨酸)和甘氨酸。 一些稀有的氨基酸在少量的蛋白质中结合了L-硒代胱氨酸。 II 氨基酸的结果 每种氨基酸(除了脯氨酸):都有一个羧基,一个氨基,一个特异性的侧链(R基)连接在α碳原子上。 在蛋白质中,这些羧基和氨基几乎全部都结合成肽键。在一般情况下,除了氢键的构成以外,是不会发生化学反应的。 氨基酸的侧链残基(R基)提供了多种多样的功能基团,这些基团赋予蛋白质分子独特的性质,导致: A.一种独特的折叠构象 B.溶解性的差异 C.聚集态 D.和配基或其他大分子构成复合物的能力,酶 活性等等。 蛋白质的功能是与蛋白质氨基酸排列顺序和每个氨基酸残基的特征有关。那些残基赋予蛋白质独一无二的功能。 氨基酸的分类是依照它的侧链性质的 A.非极性侧链的氨基酸 B.不带电的极性侧链氨基酸 C.酸性侧链的氨基酸

D . 碱性侧链的氨基酸 A.非极性侧链氨基酸 非极性氨基酸在蛋白质中的位置: 在可溶性蛋白质中,非极性氨基酸链趋向于集中在蛋白质内部。 甘氨酸 (Gly G ) 结构:最简单的氨基酸,在蛋白质氨基酸当中,是唯一缺乏非对称结构的氨基酸。 特征:甘氨酸在蛋白质结构中起到一个很重要的作用,与其它氨基酸残基相比,由于缺少β-碳原子,它在蛋白质的构象上有很大的灵活性和更容易达到它的空间结构。 功能和位置: 1. 甘氨酸经常位于紧密转角;和出现在大分子侧链产生空间位阻影响螺旋的紧密包装处(如胶原) 和结合底物的地方。 2. 由于缺乏空间位阻侧链,所以甘氨酸在邻近的肽键的位置有更强化学反应活性。例如:Asn-Gly 3. 甘氨酸也出现在酶催化蛋白质特异性修饰的识别位点,例如N 端的十四酰基化(CH2(CH2)12CO -)和精氨酸甲基化的信号序列。 丙氨酸 (Ala A ) 结构:是20种氨基酸中最没有“个性”的氨基酸,没有长侧链,没有特别的构象性质,可以出现在蛋白质结构的任何部位。 特征: 1、 丙氨酸是蛋白质中含量最丰富的氨基酸残基 之一,弱疏水性。 2、 化学活性非常弱。 缬氨酸 (Val V) 特征:中度疏水的脂肪族侧链残基。 功能: 3、 这个中度疏水残基β碳原子上的甲基降低了 蛋白质的构象的灵活性。 2、使邻近的肽键的化学反应产生空间位阻,特别是相邻残基具有β-分支的侧链(缬氨酸或异亮氨酸)。 异亮氨酸 (Ile I ) 特征:疏水的脂肪族残基侧链 功能: 1. β-分支链在空间上阻碍邻近的肽键反应。 2. 疏水侧链趋向在折叠蛋白的内部,比起α螺 旋这种侧链在二级结构中更容易形成β折叠。

1.蛋白质结构与功能-----氨基酸

页脚 蛋白质结构与功能——氨基酸 2010遗传学Chapter 1 氨基酸 I 蛋白质的天然组成 天然蛋白质几乎都是由18种普通的氨基酸组成:L-氨基酸,L-亚氨基酸(脯氨酸)和甘氨酸。 一些稀有的氨基酸在少量的蛋白质中结合了L-硒代胱氨酸。 II 氨基酸的结果 每种氨基酸(除了脯氨酸):都有一个羧基,一个氨基,一个特异性的侧链(R基)连接在α碳原子上。 在蛋白质中,这些羧基和氨基几乎全部都结合成肽键。在一般情况下,除了氢键的构成以外,是不会发生化学反应的。 氨基酸的侧链残基(R基)提供了多种多样的功能基团,这些基团赋予蛋白质分子独特的性质,导致: A.一种独特的折叠构象 B.溶解性的差异 C.聚集态 D.和配基或其他大分子构成复合物的能力,酶 活性等等。 蛋白质的功能是与蛋白质氨基酸排列顺序和每个氨基酸残基的特征有关。那些残基赋予蛋白质独一无二的功能。 氨基酸的分类是依照它的侧链性质的 A.非极性侧链的氨基酸 B.不带电的极性侧链氨基酸 C.酸性侧链的氨基酸

页脚 D . 碱性侧链的氨基酸 A.非极性侧链氨基酸 非极性氨基酸在蛋白质中的位置: 在可溶性蛋白质中,非极性氨基酸链趋向于集中在蛋白质部。 甘氨酸 (Gly G ) 结构:最简单的氨基酸,在蛋白质氨基酸当中,是唯一缺乏非对称结构的氨基酸。 特征:甘氨酸在蛋白质结构中起到一个很重要的作用,与其它氨基酸残基相比,由于缺少β-碳原子,它在蛋白质的构象上有很大的灵活性和更容易达到它的空间结构。 功能和位置: 1. 甘氨酸经常位于紧密转角;和出现在大分子侧链产生空间位阻影响螺旋的紧密包装处(如胶原)和结合底物的地方。 2. 由于缺乏空间位阻侧链,所以甘氨酸在邻近的肽键的位置有更强化学反应活性。例如:Asn-Gly 3. 甘氨酸也出现在酶催化蛋白质特异性修饰的识别位点,例如N 端的十四酰基化(CH2(CH2)12CO -)和精氨酸甲基化的信号序列。 丙氨酸 (Ala A ) 结构:是20种氨基酸中最没有“个性”的氨基酸,没有长侧链,没有特别的构象性质,可以出现在蛋白质结构的任何部位。 特征: 1、 丙氨酸是蛋白质中含量最丰富的氨基酸残基 之一,弱疏水性。 2、 化学活性非常弱。 缬氨酸 (Val V) 特征:中度疏水的脂肪族侧链残基。 功能: 3、 这个中度疏水残基β碳原子上的甲基降低了 蛋白质的构象的灵活性。 2、使邻近的肽键的化学反应产生空间位阻,特别是相邻残基具有β-分支的侧链(缬氨酸或异亮氨酸)。 异亮氨酸 (Ile I ) 特征:疏水的脂肪族残基侧链 功能: 1. β-分支链在空间上阻碍邻近的肽键反应。 2. 疏水侧链趋向在折叠蛋白的部,比起α螺旋 这种侧链在二级结构中更容易形成β折叠。 3. 异亮氨酸有第二个不对称中心。 亮氨酸 ( Leu L ) 结构:有一个大的疏水残基。

蛋白质相互作用的主要研究方法

蛋白质相互作用的主要研究方法 细胞接受外源或是内源的信号,通过其特有的信号途径,调节其基因的表达,以保持其生物学特性。在这个过程中,蛋白质占有很重要的地位,它可以调控, 介导细胞的许多生物学活性。虽然有一些蛋白质可以以单体的形式发挥作用,但是大部分的蛋白质都是和伴侣分子一起作用或是和其他蛋白质形成复合物来发挥作用的。因此,为了更好地理解细胞的生物学活性,必须很好地理解蛋白质单体和复合物的功能,这就会涉及到蛋白质相互作用的研究。在现代分子生物学中,蛋白质相互作用的研究占有非常重要的地位。 研究蛋白质相互作用时要根据不同的实验目的及条件选择不同的实施策略。研究已知蛋白间的相互作用人们关注的是蛋白间能否发生结合,实验本身更趋向于验证性,因此,应选择操作性强、可信度高、接近生理条件的技术方法,尽量减少实验本身带来的假阴性或假阳性。蛋白质相互作用方面的研究方法主要有免疫共沉淀、Far Western blotting、生物信息学、酵母双杂交系统、噬菌体展示、表面等离子共振、荧光能量转移等几种。 1 免疫共沉淀 免疫共沉淀(Co-Immunoprecipitation)是以抗体和抗原之间的专一性作用为基础的用于研究蛋白质相互作用的经典方法。是确定两种蛋白质在完整细胞内生理性相互作用的有效方法。其基本原理是:细胞裂解液中加入抗体,和抗原形成特异免疫复合物,经过洗脱,收集免疫复合物,然后进行SDS-PAGE及Western blotting分析。免疫共沉淀既可以用于检验已知的两个蛋白质在体内的相互作用,也可以找出未知的蛋白质相互作用,不管是两者的哪个,其原则都是一样的,都需要用特异性的抗体和其中的一种蛋白质结合,之后通过蛋白质A或蛋白质G琼脂糖微珠将复合物沉淀下来,然后用SDS-PAGE鉴定。免疫共沉淀中设置正确的对照非常重要,因为该方法可能出现假阳性的概率比较高,设置的对照包括:在对照组中使用对照抗体,以缺失目的蛋白的细胞系作为阴性对照等等。 在免疫共沉淀试验中要保证试验结果的真实性应注意以下几点:(1)确保共沉淀的蛋白是由所加入的抗体沉淀得到的,而并非外源非特异蛋白。单克隆抗体的使用有助于避免污染的产生。(2)要确保抗体的特异性。即在不表达抗原的细胞溶解物中添加抗体后不会引起共沉淀。(3)确定蛋白间的相互作用是发

重金属与蛋白质作用的光谱研究

重金属与蛋白质作用的光谱研究 李媛媛 (天津科技大学海洋科学与工程学院,天津 300457) 摘要:蛋白质是细胞内的功能分子,在所有的生命过程中起着关键的作用,具有运载和储存功能,其特定 结构与其生物功能密切相关。血清白蛋白是血浆中最丰富的蛋白质,具有许多重要的生理功能,可与许多化 学物质以不同方式结合,并携带着这些物质通过血液在体内进行转运、运输、分配和代谢。重金属离子进 入动物体内与蛋白质发生作用,可能会影响或改变蛋白分子固有的结构和功能。本文介绍了蛋白质的结构, 血清白蛋白的结构,重金属离子与血清白蛋白作用的光谱研究方法,重点是荧光光谱法。 关键词:重金属;血清白蛋白;光谱方法 Research on Action of Heavy Metal and Protein Li Yuanyuan (Tianjin University of Technology&Science Marine science and Engineering college,Tianjin 300457) Abstract:Protein as the essential biological material in the cells has been playing many vitalroles for all kinds of biological phenomena.It has many important functions such as transportation and distribution,whose biological function is dependent on its special structure.Serum Albumin (SA) is the most abundant carrier protein in blood.Serum albumin has many important physiological functions.For example,by binding to chemicals,serum albumin realize their transportation, distribution and metabolismin the body.This paper introduced the construction of protein and serum albumin,spectrum methodology of the interaction of heavy metal and serum albumin,stressing the spectrum methodology of the fluorescence. Keywords:Heavy Metal,Serum Albumin,Spectrum 1. 前言 1.1 概述 蛋白质是构成生命体最重要的有机物质之一,也是生物学中最基本的功能单元之一。他们能起多种作 用,包括物质的输送(如血红蛋白载氧),生命反应的催化(酶),生物材料的(肌肉,骨骼,毛发等)的形成、 发生免疫反应或通过与其它蛋白质相结合起调节作用。由于蛋白质在几乎所有的生物学过程中都起着极其 重要的作用,因此对蛋白的结构功能关系的研究自然就构成了从分子水平上认识生命现象的重要方面[1]。 探索蛋白质的构象、组成、结构,研究药物、染料、表面活性剂、有机有毒小分子、离子、量子点等小分 子与蛋白质的相互作用机理和作用过程,了解在客体分子作用下蛋白质结构与功能等方面的变化,不仅对 研究生物大分子和小分子(包括有机小分子、离子、量子点等)相互结合作用的配位本质、促进生命科学的 发展有着重要的意义,而且对改进和发展检测蛋白质的方法也有促进作用。此外,其在药代动力学及临床 药理学上也具有重要意义。因此,该领域己成为从事生命科学、化学、药代动力学和临床医学科研者共同 关注的课题[2,3]。近年来,国内外有关研究也日趋活跃。 蛋白质的种类繁多,目前已经商品化的种类也较多。根据研究目的和任务不同,可选取具有不同功能 的蛋白质如血清白蛋白、血红蛋白,免疫球蛋白,胆汁蛋白,卵清蛋白等为模型蛋白。其中,血清白蛋白 是血浆中最丰富的蛋白质,是生物体内具有重要生理功能的大分子,它可以同许多内源性和外源性物质结 作者简介:李媛媛(1986-),女,学生,e-mail:583936263@https://www.360docs.net/doc/403250748.html, 合,起着重要的储存和运输作用。并且,血液中血清白蛋白浓度长期以来一直是检验健康和疾病的指标。 与其它蛋白质相比,血清白蛋白具有分子量小、水溶性好、稳定性高、易提纯制备,分子结构确知等优点, 在临床药物研究中一直作为模型蛋白,也是研究高分子蛋白物理化学性质、结构与功能、临床应用以及变

研究蛋白质与蛋白质相互作用方法总结

研究蛋白质与蛋白质相互作用方法总结 蛋白质与蛋白质之间相互作用构成了细胞生化反应网络的一个主要组成部分,蛋白-蛋白互作网络与转录调控网络对调控细胞及其信号有重要意义。 一、酵母双杂交系统 酵母双杂交系统是当前广泛用于蛋白质相互作用组学研究的一种重要方法。其原理是当靶蛋白和诱饵蛋白特异结合后,诱饵蛋白结合于报道基因的启动子,启动报道基因在酵母细胞内的表达,如果检测到报道基因的表达产物,则说明两者之间有相互作用,反之则两者之间没有相互作用。将这种技术微量化、阵列化后则可用于大规模蛋白质之间相互作用的研究。在实际工作中,人们根据需要发展了单杂交系统、三杂交系统和反向杂交系统等。Angermayr等设计了一个SOS蛋白介导的双杂交系统。可以研究膜蛋白的功能,丰富了酵母双杂交系统的功能。此外,酵母双杂交系统的作用也已扩展至对蛋白质的鉴定。 二、噬茵体展示技术 在编码噬菌体外壳蛋白基因上连接一单克隆抗体的DNA序列,当噬菌体生长时,表面就表达出相应的单抗,再将噬菌体过柱,柱上若含目的蛋白,就会与相应抗体特异性结合,这被称为噬菌体展示技术。此技术也主要用于研究蛋白质之间的相互作用,不仅有高通量及简便的特点,还具有直接得到基因、高选择性的筛选复杂混合物、在筛选过程中通过适当改变条件可以直接评价相互结合的特异性等优点。目前,用优化的噬菌体展示技术,已经展示了人和鼠的两种特殊细胞系的cDNA文库,并分离出了人上皮生长因子信号传导途径中的信号分子。 三、等离子共振技术 表面等离子共振技术(Surface Plasmon Resonance,SPR)已成为蛋白质相互作用研究中的新手段。它的原理是利用一种纳米级的薄膜吸附上“诱饵蛋白”,当待测蛋白与诱饵蛋白结合后,薄膜的共振性质会发生改变,通过检测便可知这两种蛋白的结合情况。SPR技术的优点是不需标记物或染料,反应过程可实时监控。测定快速且安全,还可用于检测蛋白一核酸及其它生物大分子之间的相互作用。 四、荧光能量转移技术

相关文档
最新文档