高考数学等差等比数列知识点解读

高考数学等差等比数列知识点解读
高考数学等差等比数列知识点解读

等差数列

一、学习目标:等差数列的概念、性质及前n 项和求法。

1.设数列{}n a 的前n 项和为n S .已知5a 1=,13n n n a S +=+,*n ∈N .设3n n n b S =-,

求数列{}n b 的通项公式;

解:依题意,113n n n n n S S a S ++-==+,即123n n n S S +=+,

由此得1132(3)n n n n S S ++-=-.

因此,所求通项公式为n n n n 23-S b ==。

2.设数列{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项为 2 .

3.已知等差数列{}n a 的公差0d ≠,且139,,a a a 成等比数列,则1392410a a a a a a ++++=1316

. 【考点梳理】

1.在解决等差数列问题时,如已知,a 1,a n ,d ,n S ,n 中任意三个,可求其余两个。

2.补充的一条性质

1)项数为奇数21n -的等差数列有:1

s n s n =-奇偶n s s a a -==奇偶中,21(21)n n s n a -=- 2)项数为偶数2n 的等差数列有:1

n n s a s a +=奇偶,s s nd -=偶奇 21()n n n s n a a +=+ 3.等差数列的判定:{a n }为等差数列???????+=+=+==-?+++数”)(缺常数项的“二次函的“一次函数”)

(关于(定义)Bn An S n B An a a a a d a a n

n n n n n n 22112 即:*),2(2(11n 1n N n n a a a d d a a a n n n n ∈≥+=?=-?-++为常数)}{

Bn An s b kn a n n +=?+=?2;

4.三个数成等差可设:a ,a +d ,a +2d 或a -d ,a ,a +d ;

四个数成等差可设:a -3d ,a -d ,a +d ,a +3d .

5.等差数列与函数:1)等差数列通项公式与一次函数的关系:从函数的角度考查等差数列的通项公式:a n = a 1+(n-1)d=d ·n+ a 1-d, a n 是关于n 的一次式;从图像上看,表示等差数列的各点(n,n a )均匀排列在一条直线上,由两点确定一条直线的性质,不难得出,任两

项可以确定一个等差数列.k=d=11--n a a n ,d=m

n a a m n --,由此联想点列(n ,a n )所在直线的斜率.2)点)S (n,n 在没有常数项的二次函数2n S pn qn =+上。其中,公差不为0.

6.等差数列前n 项和最值的求法(结合二次函数的图象与性质理解)

1)若等差数列{}n a 的首项10a >,公差0d <,则前n 项和n S 有最大值。 (ⅰ)若已知通项n a ,则n S 最大?100

n n a a +≥??≤?;

(ⅱ)若已知2n S pn qn =+,则当n 取最靠近2q p

-

的非零自然数时n S 最大; 2)若等差数列{}n a 的首项10a <,公差0d >,则前n 项和n S 有最小值 (ⅰ)若已知通项n a ,则n S 最小?100

n n a a +≤??≥?;

(ⅱ)若已知2n S pn qn =+,则当n 取最靠近2q p

-的非零自然数时n S 最小。 7.等差数列的定义、通项公式、求和公式、性质等

等 差 数 列

定义 {a n }为等差数列?a n+1-a n =d (常数),n ∈N +?2a n =a n-1+a n+1(n ≥2,n ∈N +) 通项公式 1)n a =1a +(n-1)d=k a +(n-k )d ;n a =dn +1a -d b kn += 2)推广:a n =a m +(n -m )d. 3)变式:a 1=a n -(n -1)d ,d=11--n a a n ,d=m

n a a m n --,由此联想点列(n ,a n )所在直线的斜率.

求和公式 1)n B n A )2(22)1(2)(S 21211?+?=-+=-+=+=n d a n d d n n na a a n n n 2)变式:

21n a a +=n S n =n a a a n +???++21=a 1+(n -1)·2d =a n +(n -1)·(-2

d ).

等差中项

1)等差中项:若a 、b 、c 成等差数列,则b 称a 与c 的等差中项,且b =2c a +;a 、b 、c 成等差数列是2b =a +c 的充要条件.2)推广:2n a =m n m n a a +-+

质 1 m n l k m n l k a a a a +=+?+=+(反之不一定成立);特别地,当2m n p +=时,有2m n p a a a +=;特例:a 1+a n =a 2+a n-1=a 3+a n-2=…。 2 下标成等差数列且公差为m 的项a k ,a k +m ,a k +2m ,…组成的数列仍为等差数列,公差为md . 3 n n n n n s s s s s 232,,-- 成等差数列。 4 )(11n m n m a a n a a d n m n ≠--=--=

5 增减性

{}为递增数列n a 0d ?> {}为常数列n a 0d ?=

{}为递减数列n a 0d ?< 其 它 性 质

1 a n =a m +(n -m )d.

2 若数列{a n }是公差为d 的等差数列,则数列{λa n +b }(λ、b 为常数)是公差为λd 的等差数列;若{b n }也是公差为d 的等差数列,则{λ1a n +λ2b n }(λ1、λ2为常数)也是等差数列且公差为λ1d +λ2d .

3 a n =an+b ,即a n 是n 的一次型函数,系数a 为等差数列的公差;

S n =an 2+bn ,即S n 是n 的不含常数项的二次函数;

三、合作探究:

题型1 等差数列的基本运算

例1 在等差数列{a n }中,

(1)已知a 15=10,a 45=90,求a 60;

(2)已知S 12=84,S 20=460,求S 28;

(3)已知a 6=10,S 5=5,求a 8和S 8.

等差数列知识点总结最新版

等差数列 1.定义 一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常 数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差, 公差通常用字 母d 表示。 用递推公式表示为a .—a .」二d ( d 为常数)(n_2); 2 ?等差数列通项公式 (1) a n (n -1)d =dn y -d(n N )(首项:a !,公差:d ,末项: 3. 等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即: 2a n = an-1 ■ an 1 (n — 2) = 2a . 1 二 a . a . .2 d 2 1 n (a 1 d )n 2 2 2 =An Bn 等差数列的证明方法 二d 或am-a n=d (常数「N )= & 是等差数列. 「a, 是等差数列 = 2a . - a n-1 ' a . 1 (n 一 2) = 2a n 1 = a . ' a . 2 ? (3) 数列"a n *是等差数列二a n 二kn ? b (其中k,b 是常数)。 (4) 数列乩1是等差数列二&二A n 2 ? Bn ,(其中A 、B 是常数)。 注:(1)等差数列的通项公式及前 n 和公式中,涉及到 5个元素:a 1、d 、n 、a n 及S n , (2) a n "m (n —m)d . 从而d =勺屯; n —m a n ) (2 ) 等差 中 项 数列;、和是等差 等差数列的前n 项和公式: n(a 1 +a n ) Sn 厂 (其中A 、B 是常数) (当d M 0时,S 是关于n 的二次式且常数项为 0) (1)定义法:若a n -a n j

等差数列知识点总结最新版

等差数列 1. 定义 一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。 用递推公式表示为d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式: (1)* 11(1)()n a a n d dn a d n N =+-=+-∈(首项:1a ,公差:d ,末项:n a ) (2)d m n a a m n )(-+=. 从而m n a a d m n --=; 3.等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A += 或b a A +=2 ( 2 ) 等差中项:数列 {} n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4.等差数列的前n 项和公式:1() 2 n n n a a s += 1(1) 2 n n na d -=+ 211 ()22 d n a d n = +- 2An Bn =+ (其中A 、B 是常数) (当d ≠0时,S n 是关于n 的二次式且常数项为0) 5.等差数列的证明方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. ( 2 ) 等差中项:数列 {} n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . (3)数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2 n S An Bn =+,(其中A 、B 是常数)。 注:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,

等差等比数列的证明例举

等差等比数列的证明 在数列的解答题中,有时第一问会要求证明某个数列是等差等比数列,既考察了学生证明数列的能力,同时也为后面的问题做好铺垫。 一、基础知识: 1、如何判断一个数列是等差(或等比)数列 (1)定义法(递推公式):1n n a a d +-=(等差), 1 n n a q a +=(等比) (2)通项公式:n a kn m =+(等差),()0n n a k q q =?≠(等比) (3)前n 项和:2n S An Bn =+(等差),n n S k q k =-(等比) (4)等差(等比)中项:数列从第二项开始,每一项均为前后两项的等差(等比)中项 2、如何证明一个数列是等差等比数列: (1)通常利用定义法,寻找到公差(公比) (2)也可利用等差等比中项来进行证明,即n N * ?∈,均有: 122n n n a a a ++=+(等差) 2 12n n n a a a ++=?(等比) 二、典型例题: 例1:已知数列{}n a 的首项1133,,521 n n n a a a n N a *+= =∈+. 求证:数列11n a ?? -? ??? 为等比数列 思路一:构造法,按照所给的形式对已知递推公式进行构造,观察发现所证的数列存在 1 n a 这样的倒数,所以考虑递推公式两边同取倒数:113121 213n n n n n n a a a a a a +++= ?=+ 即 1121 33n n a a +=+ ,在考虑构造“1-”:112111111333n n n a a a +?? -=+-=- ??? 即数列11n a ??-? ??? 是公比为1 3的等比数列

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

高中数学-等差等比数列经典例题以及详细答案

等差等比数列综合应用 【典型例题】 [例1] 一个等比数列共有三项,如果把第二项加上4所得三个数成等差数列,如果再把这个等差数列的第3项加上32所得三个数成等比数列,求原来的三个数。 解:等差数列为d a a d a +-,, ∴ ?????=++--=+?-2 2 )32)(()4()()(a d a d a a d a d a ∴ ?????=-+-+-=-) 2()(32)()1(168222222a d a d a a a d a ∴ 2 23232168a d a a =-++- 0432=-+d a 代入(1) 16)24(3 1 82+-?-=-d d 0643232=+-d d 0)8)(83(=--d d ① 8=d 10=a ② 38=d 9 26=a ∴ 此三数为2、16、18或92、910-、9 50 [例2] 等差数列}{n a 中,3931-=a ,76832-=+a a ,}{n b 是等比数列,)1,0(∈q ,21=b ,}{n b 所有项和为20,求: (1)求n n b a , (2)解不等式 2211601 b m a a m m -≤++++Λ 解:(1)∵ 768321-=+d a ∴ 6=d ∴ 3996-=n a n 2011=-q b 10 9 =q ∴ 1 )10 9( 2-?=n n b 不等式10 921601) (21 21??-≤++?+m a a m m m

)1(1816)399123936(2 1 +??-≤-+-? m m m m 0)1(181639692≤+??+-m m m 032122≤+-m m 0)8)(4(≤--m m }8,7,6,5,4{∈m [例3] }{n a 等差,}{n b 等比,011>=b a ,022>=b a ,21a a ≠,求证:)3(≥ ),1(+∞∈q 01>-q 01>-n q ∴ 0*> ∴ N n ∈ 3≥n 时,n n a b > [例4] (1)求n T ;(2)n n T T T S +++=Λ21,求n S 。 解:???=-=????=+++-=+++221 04811598 7654d a a a a a a a a Λ n T 中共12-n 个数,依次成等差数列 11~-n T T 共有数1222112-=+++--n n Λ项 ∴ n T 的第一个为2)12(211 21?-+-=--n n a ∴ 2)12()2(2 1 )232(2 111 ?-?+-?=---n n n n n T 122112222232-----+?-=n n n n 2222323+-?-?=n n

等差数列知识点总结学习资料

第一讲 数列定义及其性质 一、基本概念: 1、通项公式:n a ; 2、前n 项和:n S 3、关系:1(2)n n n a S S n -=-≥ 二、性质: 1、单调性:增数列:1n n a a ->;减数列:1n n a a -<;常数列:1n n a a -= 2、最值: 77878789+++(0)0,00,=0,0,n n a S a a S S S a a a ???????---????>

1、已知数列{}n a 通项公式是231 n n a n =+,那么这个数列是( ) A.递增数列 B.递减数列 C.摆动数列 D.常数列 2、已知数列{}n a 满足10a >,112 n n a a +=,那么这个数列是( ) A.递增数列 B.递减数列 C.摆动数列 D.常数列 3、已知数列{}n a 通项公式是22n a n kn =++,若对任意*n N ∈,都有1n n a a +>成立,则 实数k 的取值范围是( ) 4、已知数列{}n a 通项公式是10,21 n n n a T n +=+是数列{}n a 的前n 项积,即123n n T a a a a =L ,当n T 取到最大值是,n 的值为( ) 5、设数列{}n a 的前n 项和2n S n =,则8a 的值是( )

证明或判断等差(等比)数列的常用方法

证明或判断等差(等比)数列的常用方法 湖北省 王卫华 玉芳 翻看近几年的高考题,有关证明、判断数列是等差(等比)数列的题型比比皆是,如何处理这些题目呢且听笔者一一道来. 一、利用等差(等比)数列的定义 在数列 {} n a 中,若 1n n a a d --=(d 为常数)或 1 n n a q a -=(q 为常数),则数列{}n a 为等差(等比)数列.这是证明数列{}n a 为等差(等比)数更最主要的方法.如: 例1.(2005北京卷)设数列{}n a 的首项114a a =≠,且11 214 n n n a n a a n +???=??+??为偶数为奇数 , 记211 1234 n n b a n -=-=,,,,…. (Ⅰ)求23a a ,;(Ⅱ)判断数列{}n b 是否为等比数列,并证明你的结论. 解:(Ⅰ)213211111 44228a a a a a a =+=+==+,; (Ⅱ)43113428a a a =+=+,所以54113 2416 a a a ==+, 所以1123351111111144424444b a a b a a b a a ????=- =-=-=-=-=- ? ????? ,,, 猜想:{}n b 是公比为 1 2 的等比数列. 证明如下:因为121221111111()424242 n n n n n b a a a b n *++-??=-=-=-=∈ ???N , 所以{}n b 是首项为14a - ,公比为1 2 的等比数列. 评析:此题并不知道数列{}n b 的通项,先写出几项然后猜测出结论,再用定义证明,这是常规做法。

等比数列知识点总结与典型例题+答案

等比数列知识点总结与典型例题 2、通项公式: 4、等比数列的前n 项和S n 公式: (1)当 q 1 时,S n na i n ⑵当q 1时,5罟 5、等比数列的判定方法: 等比数列 等比中项:a n 2 a n 1a n 1 (a n 1a n 1 0) {a n }为等比数列 通项公式:a n A B n A B 0 {a n }为等比数列 1、等比数列的定义: a n 1 a n 2,且n N * , q 称为公比 n 1 a n ag a i B n a i 0,A B 0,首项:a 1;公比:q 推广:a n a m q a n a m a n m — \ a m 3、等比中项: (1)如果a, A, b 成等比数 那么A 叫做a 与b 的等差中项,即: A 2 ab 或 A ab 注意:同号的两个数才有等比中并且它们的等比中项有两个( (2)数列a n 是等比数列 2 a n a n 1 a q q A'B n A' ( A, B,A',B'为常数) (1) 用定义:对任意的 都有a n 1 qa n 或旦口 q (q 为常数,a n 0) {a n }为 a n

6、等比数列的证明方法: 依据定义:若-a^ q q 0 n 2,且n N*或i qa“ {a“}为等比数列a n 1 7、等比数列的性质: (2) 对任何m,n N*,在等比数列{a n}中,有a. a m q n m。 (3) 若m n s t(m,n,s,t N*),则a. a m a s a t。特别的,当m n 2k 时,得 2 a n a m a k注:3] a n a2 a n 1 a3a n 2 等差和等比数列比较: 经典例题透析 类型一:等比数列的通项公式

等差数列知识点总结

等差数列知识点总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

等差数列的性质总结 1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式: *11(1)()n a a n d dn a d n N =+-=+-∈, 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而m n a a d m n --=; 3.等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2b a A +=或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4.等差数列的前n 项和公式: 1()2n n n a a S +=1(1)2 n n na d -=+ 特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . (3) 数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。(K=d ,b=a1-d) (4) 数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. 7.提醒:等差数列的通项公式n a 及前n 项和n S 公式中,涉及到5个元素:n n S a n d a 及、、、1,其中d a 、1称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2. 8. 等差数列的性质: (1)当公差0d ≠时, 等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ; 前n 和211(1)()222 n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。 (3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=. 注:12132n n n a a a a a a --+=+=+=???, (4)若{}n a 、{}n b 为等差数列,则{}{}12n n n a b a b λλλ++,都为等差数列 (5) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列 (6)数列{}n a 为等差数列,每隔k(k ∈*N )项取出一项(23,,,,m m k m k m k a a a a +++???)仍为等差数列

等差数列知识点总结及练习(精华word版)

等差数列的性质总结 1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式: * 11(1)()n a a n d dn a d n N =+-=+-∈, 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而m n a a d m n --=; 3.等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A += 或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4.等差数列的前n 项和公式: 1()2n n n a a S += 1(1) 2 n n na d -=+ 特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . (3) 数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4) 数列{}n a 是等差数列?2 n S An Bn =+,(其中A 、B 是常数)。 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列. 7.提醒:等差数列的通项公式n a 及前n 项和n S 公式中,涉及到5个元素:n n S a n d a 及、、、1,其中d a 、1称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2. 8. 等差数列的性质: (1)当公差0d ≠时, 等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ; 前n 和211(1)()222 n n n d d S na d n a n -=+ =+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。 (3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=. 注:12132n n n a a a a a a --+=+=+=???, (4)若{}n a 、{}n b 为等差数列,则{}{}12n n n a b a b λλλ++,都为等差数列 (5) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列 (6)数列{}n a 为等差数列,每隔k(k ∈* N )项取出一项(23,,,,m m k m k m k a a a a +++???)仍为等差数列 (7)设数列{}n a 是等差数列,d 为公差,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和 1.当项数为偶数n 2时, () 121135212n n n n a a S a a a a na --+=+++???+= =奇 () 22246212 n n n n a a S a a a a na ++=+++???+==偶 ()11=n n n n S S na na n a a nd ++-=-=-偶奇

(完整版)等差数列知识点整理与经典例题解

等差数列复习 一、等差数列的有关概念: 1、等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。 如设{}n a 是等差数列,求证:以b n = n a a a n +++Λ21 *n N ∈为通项公式的数列{}n b 为等差数列。 2、等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。 如(1)等差数列{}n a 中,1030a =,2050a =,则通项n a = (答:210n +); (2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______(答:833 d <≤) 3、等差数列的前n 和:1()2n n n a a S +=,1(1)2 n n n S na d -=+。 如(1)数列 {}n a 中,*11(2,)2n n a a n n N -=+≥∈,32n a =,前n 项和152n S =-,则1a = _,n =_(答:13a =-,10n =); (2)已知数列 {}n a 的前n 项和212n S n n =-,求数列{||}n a 的前n 项和n T (答: 2*2*12(6,)1272(6,) n n n n n N T n n n n N ?-≤∈?=?-+>∈??). 4、等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2a b A +=。 提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d );偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(公差为2d ) 5、等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222 n n n d d S na d n a n -=+ =+-是关于n 的二次函数且常数项为0.

新课标高考数学题型全归纳:等比数列与等差数列概念及性质对比典型例题

等比数列与等差数列概念及性质对比 1.数列的定义 顾名思义,数列就是数的序列,严格地说,按一定次序排列的一列数叫做数列. 数列的基本特征是:构成数列的这些数是有序的. 数列和数集虽然是两个不同的概念,但它们既有区别,又有联系.数列又是一类特殊的函数.2.等差数列的定义 顾名思义,等差数列就是“差相等”的数列.严格地说,从第2项起,每一项与它的前一项的差等于同一个常数的数列,叫做等差数列. 这个定义的要点有两个:一是“从第2项起”,二是“每一项与它的前一项的差等于同一个常数”.这两个要点,刻画了等差数列的本质. 3.等差数列的通项公式 等差数列的通项公式是:a n= a1+(n-1)d .① 这个通项公式既可看成是含有某些未知数的方程,又可将a n看作关于变量n的函数,这为我们利用函数和方程的思想求解问题提供了工具. 从发展的角度看,将通项公式①进行推广,可获得更加广义的通项公式及等差数列的一个简单性质,并由此揭示等差数列公差的几何意义,同时也可揭示在等差数列中,当某两项的项数和等于另两项的项数和时,这四项之间的关系. 4.等差中项 A称作a与b的等差中项是指三数a,A,b成等差数列.其数学表示是: 2b a A + =,或2 A=a+b. 显然A是a和b的算术平均值. 2 A=a+b(或 2b a A + =)是判断三数a,A,b成等差数列 的一个依据,并且,2 A=a+b(或 2b a A + =)是a,A,b成等差数列的充要条件.由此得,等差数列中从第2项起,每一项(有穷等差数列末项除外)都是它的前一项与后一项的等差中项. 值得指出的是,虽然用2A=a+b(或 2b a A + =)可同时判定A是a与b的等差中项及A是b 与a的等差中项,但两者的意义是不一样的,因为等差数列a,A,b与等差数列b,A,a不是同一个数列. 5.等差数列前n项的和

(完整版)等差等比数列知识点总结

1.等差数列: 一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数d ,那么这个数列就叫做等差数列,这个常数d 叫做等差数列的公差,即 d a a n n =--1(d 为常数)(2≥n );. 2.等差中项: (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A +=或 b a A +=2 ( 2 ) 等 差 中 项 : 数 列 {} n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 3.等差数列的通项公式: 一般地,如果等差数列{}n a 的首项是1a ,公差是d ,可以得到等差数列的通项公式为: ()d n a a n 11-+= 推广: d m n a a m n )(-+=. 从而m n a a d m n --=; 4.等差数列的前n 项和公式: 1()2n n n a a S += 1(1)2n n na d -=+211 ()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . (3) 数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4) 数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列.

等差、等比数列证明(补差1)

1. 等差、等比数列证明 例 1:已知数列前n 项和n s n n 22 +=,求通项公式n a ,并说明这个数列是否为等差数列。 解:1=n 时,32111=+==s a ; 2≥n 时,()()[]121222 1-+--+=-=-n n n n s s a n n n 12+=n 因为1=n 时,31121=+?=a 所以12+=n a n 因为2≥n 时,21=--n n a a 为常数,所以{}n a 为等差数列。 例2: 设数列{}n a 的前n 项的和为n S ,且()*11,24,1N n a S a n n ∈+==+。 (1)设n n n a a b 21-=+,求证:数列{}n b 是等比数列; (2)设n n n a c 2=,求证:数列{}n c 是等差数列; 证明:(1)2≥n 时 11144-++-=-=n n n n n a a S S a , ()11222-+-=-∴n n n n a a a a , 12-=∴n n b b 又3232112121=+=-=-=a a S a a b {}n b ∴是首项为3,公比为2的等比数列。 (2),232,23111 -+-?=-∴?=n n n n n a a b (),432321 22122111111 1=??=-=-=-∴-++++++n n n n n n n n n n n a a a a c c 又21 21 1==a c , {}n c ∴是首项为21,公差为43 的等差数列。

例3:设数列{}n a 的前n 项的和() +∈++=N n n n S n ,422, ⑴写出这个数列的前三项321,,a a a ; ⑵证明:数列{}n a 除去首项后所成的数列 432,,a a a 是等差数列。 解:⑴由n s 与n a 的关系 ???≥-==-)2()1(11n S S n S a n n n 得到 74121211=+?+==S a 5742222122=-+?+=-=S S a ()75743232233=+-+?+=-=S S a ⑵当2≥n 时, ()()()[] 12412142221+=+-+--++=-=-n n n n n S S a n n n ∴()[](),2121121=+-++=-+n n a a n n 对于任意2≥n 都成立,从而数列 432,,a a a 是等差数列。 注:由于212-=-a a ,故21=-+n n a a 不对任意N n ∈成立,因此,数列{}n a 不是等差数列。 例4:设数列{}n a 的首项11=a ,前n 项和n s 满足关系()t s t ts n n 33231=+--,求证{}n a 为等比数列。 证明如下:3≥n 时: ()t s t ts n n 33231=+-- ()t s t ts n n 332321=+--- 两式相减得:()()()0323211=-+-----n n n n s s t s s t 即:()03231=+--n n a t ta 所以:t t a a n n 3321+=- (这只能说明从第二项开始,后一项与前一项的比为定值,所以需要对第二项与第一项的比另外加以证明,以达到定义的完整性。) 又因为2=n 时: ()t s t ts 332312=+-

等差等比数列练习题(含答案)

一、选择题 1、如果一个数列既是等差数列,又是等比数列,则此数列 ( ) (A )为常数数列 (B )为非零的常数数列 (C )存在且唯一 (D )不存在 2.、在等差数列 {}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为 ( ) (A )13+=n a n (B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a 3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则 y c x a +的值为 ( ) (A ) 2 1 (B )2- (C )2 (D ) 不确定 4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项, y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( ) (A )成等差数列不成等比数列 (B )成等比数列不成等差数列 (C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列 5、已知数列 {}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为 ( ) (A )22-=n a n (B )28-=n a n (C )12-=n n a (D )n n a n -=2 6、已知))((4)(2z y y x x z --=-,则 ( ) (A )z y x ,,成等差数列 (B )z y x ,,成等比数列 (C ) z y x 1,1,1成等差数列 (D )z y x 1 ,1,1成等比数列 7、数列 {}n a 的前n 项和1-=n n a S ,则关于数列{}n a 的下列说法中,正确的个数有 ( ) ①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列 (A )4 (B )3 (C )2 (D )1 8、数列1 ?,16 1 7,815,413,21,前n 项和为 ( ) (A )1212+-n n (B )212112+-+n n (C )1212+--n n n (D )212 112 +--+n n n 9、若两个等差数列 {}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足 5 524-+= n n B A n n ,则 13 5135b b a a ++的值为 ( ) (A ) 9 7 (B ) 7 8 (C ) 2019 (D )8 7 10、已知数列 {}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为 ( ) (A )56 (B )58 (C )62 (D )60 11、已知数列 {}n a 的通项公式5+=n a n 为, 从{}n a 中依次取出第3,9,27,…3n , …项,按原来的顺序排成一个新的数列,则此数列 的前n 项和为 ( )

证明数列是等差或等比数列的方法

一、证明或判断数列为等差数列的方法 1.定义法 在数列{}n a 中,若d a a n n =--1(d 为常数),则数列{}n a 为等差数列 例:已知正项数列{}n a 的前n 项和为n S ,3 21=a ,且满足2 11322++=+n n n a S S (*N n ∈) 证明:数列{}n a 是等差数列 证明:由2 11322++=+n n n a S S 得2 1132)(2++=++n n n n a S a S 整理得12 1234++-=n n n a a S 则n n n a a S 23421-=- 两式相减得n n n n n a a a a a 2233412 2 1+--=++ n n n n a a a a 2233122 1+=-++ 因为{}n a 是正项数列,所以01>++n n a a 所以()231=-+n n a a ,即3 21=-+n n a a 所以{}n a 是首项为32,公差为3 2 的等差数列 2.等差中项法 212{}n n n n a a a a +++=?是等差数列 例:设数列{}n a 的前n 项和为n S ,已知11=a ,62=a ,113=a ,且 1(58)(52)123n n n S n S An B n +--+=+=,,,,,其中A 、B 为常数 (1)求A 与B 的值 (2)证明数列{}n a 是等差数列 解:(1)因为11=a ,62=a ,113=a ,所以1231718S S S ===,, 把1=n ,2=n 分别代入()()B An S n S n n n +=+--+25851 得B A +=?-?-1773 B A +=?-?2712182 解得:20-=A ,8-=B (2)由(1)知()()82025851--=+--+n S n S n n n 整理得()82028511--=---++n S S S S n n n n n

等差等比数列练习题及答案

等差 、 等比数列练习 一、选择题 1、等差数列{}n a 中,10120S =,那么110a a +=( ) A. 12 B. 24 C. 36 D. 48 2、已知等差数列{}n a ,219n a n =-,那么这个数列的前n 项和n s ( ) A.有最小值且是整数 B. 有最小值且是分数 C. 有最大值且是整数 D. 有最大值且是分数 3、已知等差数列{}n a 的公差1 2 d =,8010042=+++a a a ,那么=100S A .80 B .120 C .135 D .160. 4、已知等差数列{}n a 中,6012952=+++a a a a ,那么=13S A .390 B .195 C .180 D .120 5、从前180个正偶数的和中减去前180个正奇数的和,其差为( ) A. 0 B. 90 C. 180 D. 360 6、等差数列{}n a 的前m 项的和为30,前2m 项的和为100,则它的前3m 项的和为( ) A. 130 B. 170 C. 210 D. 260 7、在等差数列{}n a 中,62-=a ,68=a ,若数列{}n a 的前n 项和为n S ,则( ) A.54S S < B.54S S = C. 56S S < D. 56S S = 8、一个等差数列前3项和为34,后3项和为146,所有项和为390,则这个数列的项数为( ) A. 13 B. 12 C. 11 D. 10 9、已知某数列前n 项之和3n 为,且前n 个偶数项的和为)34(2 +n n ,则前n 个奇数项的和为( ) A .)1(32+-n n B .)34(2-n n C .2 3n - D . 3 2 1n 10若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边比为( ) A .6 B .8 C .10 D .12 二.填空题 1、等差数列{}n a 中,若638a a a =+,则9s = . 2、等差数列{}n a 中,若2 32n S n n =+,则公差d = . 3、在小于100的正整数中,被3除余2的数的和是

等差数列知识点解读

等差数列 一、学习目标:等差数列的概念、性质及前n 项和求法。 1.设数列{}n a 的前n 项和为n S .已知5a 1=,13n n n a S +=+,* n ∈N .设3n n n b S =-, 求数列{}n b 的通项公式; 解:依题意,113n n n n n S S a S ++-==+,即123n n n S S +=+, 由此得1132(3)n n n n S S ++-=-. 因此,所求通项公式为n n n n 23-S b ==。 2.设数列{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项为 2 . 3.已知等差数列{}n a 的公差0d ≠,且139,,a a a 成等比数列,则 1392410a a a a a a ++++=13 16 . 【考点梳理】 1.在解决等差数列问题时,如已知,a 1,a n ,d ,n S ,n 中任意三个,可求其余两个。 2.补充的一条性质 1)项数为奇数21n -的等差数列有:1s n s n =-奇偶n s s a a -==奇偶中,21(21)n n s n a -=- 2)项数为偶数2n 的等差数列有:1 n n s a s a +=奇偶,s s nd -=偶奇 21()n n n s n a a +=+ 3.等差数列的判定:{a n }为等差数列????? ? ?+=+=+==-?+++数”)(缺常数项的“二次函的“一次函数”)(关于(定义)Bn An S n B An a a a a d a a n n n n n n n 22 112 即:*),2(2(11n 1n N n n a a a d d a a a n n n n ∈≥+=?=-?-++为常数)}{ Bn An s b kn a n n +=?+=?2; 4.三个数成等差可设:a ,a +d ,a +2d 或a -d ,a ,a +d ; 四个数成等差可设:a -3d ,a -d ,a +d ,a +3d . 5.等差数列与函数:1)等差数列通项公式与一次函数的关系:从函数的角度考查等差数列的通项公式:a n = a 1+(n-1)d=d ·n+ a 1-d, a n 是关于n 的一次式;从图像上看,表示等差数列的各点(n,n a )均匀排列在一条直线上,由两点确定一条直线的性质,不难得出,任两项可以确定一个等差数列.k=d= 1 1--n a a n ,d=m n a a m n --,由此联想点列(n ,a n )所在直线的 斜率.2)点)S (n,n 在没有常数项的二次函数2n S pn qn =+上。其中,公差不为0. 6.等差数列前n 项和最值的求法(结合二次函数的图象与性质理解) 1)若等差数列{}n a 的首项10a >,公差0d <,则前n 项和n S 有最大值。 (ⅰ)若已知通项n a ,则n S 最大?1 00n n a a +≥?? ≤?; (ⅱ)若已知2n S pn qn =+,则当n 取最靠近2q p -的非零自然数时n S 最大; 2)若等差数列{}n a 的首项10a <,公差0d >,则前n 项和n S 有最小值 (ⅰ)若已知通项n a ,则n S 最小?10 n n a a +≤?? ≥?;

相关文档
最新文档