src激酶抑制剂综述

src激酶抑制剂综述
src激酶抑制剂综述

Src(sarcoma gene)受体激酶家族抑制剂

研究综述

药学0703班

U200717953

周俊

Src(sarcoma gene)受体激酶家族抑制剂研究综述

摘要;本文介绍了src的组成,作用以及与相关疾病的作用,总结了近几年研究src激酶家

族的方向,以src激酶家族作为靶点寻找抗癌药物中的一些进展和成果,并逐一分析比较有代表性的药物,如喹啉衍生物,嘧啶衍生物等等化合物,最后总结近期成果,指出现有工作的不足和未来的研究方向。

关键词鸡肉瘤病毒基因(src)酪氨酸蛋白激酶抑制因子ATP结合位点

引言:

sarcoma gene(鸡肉瘤病毒基因,以下简称src)的组成

Src是一类癌基因,其表达产物主要是酪氨酸蛋白激酶类。Src在许多组织细胞中表达,在癌症发病机制中处于重要的地位,是肿瘤,癌症分子表达途径的重要的激酶。Src家族是研究最早最深入的家族,包括Blk, Brk, Fgr, Frk,Fyn, Hck, Lck, Lyn, c-Src, Srm,c-Yes等成员。根据氨基酸序列,可以分为两个亚族:一族是Src, Fyn, Yes and Fgr并且广泛在不同的组织中表达,Lck, Blk, Lyn and Hck和造血细胞有关.研究表明,Src与其他众多酶类可联合在一起促进多个细胞反应进程。Src 与多种激酶受体偶联,包括酪氨酸激酶受体,整合单白受体,G蛋白偶联受体等。.通过偶联作用影响细胞生长,发育,乃至转移扩散。最好的例子就是与EGFR(一种有关细胞生长的受体)的结合,Src可以使EGFR自身磷酸化,降低EGFR 的中间体的调节与胞吞作用。

除了牵涉到细胞内的反应,Src可能也在初级肿瘤细胞的转移中扮演着一个重要的角色。实际上Src转移细胞的存在减少了ECM反应以及组织反应的损失。分子调节这些过程的机理建立在Src和FAK的反应的基础上。Src与粘附分子有关。Src的磷酸化使得在粘附分子上的整联蛋白受体接收的黏着性与转移信号得以传播。

Src的作用靶点

一般来说就目前的研究而言,src的作用靶点有以下几类:

第一种是以src激酶为作用靶点。到目前为止还没有被批准的src激酶抑制剂,但是新的分子,有选择性的有潜力的化合物已经在被合成。设计测试更加有效的抑制剂,运用分子模型筛选技术,组合化学研发新的药物已经成为趋势。一般而言,一个抑制剂的选择性应该严格作用于癌细胞而不干扰正常细胞的生长进程,抑制剂也应间接作用于酶合成这样的在癌细胞进程中也会发生的物质。

第二种就是以SH2和SH3区域为靶点的药物,该药物是很多疾病的重要靶点,如癌症cardiovascular ,restenosis。这些分子阻断src和其他蛋白底物作用属于信号阻断途径,一般而言,SH2区域识别特殊的多肽包括一个磷酸化的酪氨酸残基。SH2的抑制剂分子设计基于氨基酸特定的排列顺序。在许多例子中,多肽库中产生的第一代配体给与了重要的信息以成功设计连接无受体的src的SH2的受体。而SH3的抑制剂则是基于与该区域作用的分子的多肽,其配体能够和SH3区域的酪氨酸富集区作用,但是一般而言这种作用是很弱的,因为形成的离子键和氢键数量有限。因此SH3抑制剂KI值在微摩尔范围内很低。尽管合成此种抑制剂的效果已经显现,但只有少量例子在文献中出现。

Src激酶家族的作用

Src酪氨酸激酶联系的受体对细胞的生长和分裂是非常重要的,它具有双重作用,既可以

作为一种受体,又可以作为一种酶(酪氨酸激酶)。在其休眠状态时,酶的活性部位是关闭着的,但当受体被信号分子激活,其活性部位被打开,同时在细胞内部产生级联信号,这种信号可以是基因激活,蛋白质被大量合成,细胞因此大量复制,繁殖分化。当这些受体变的不能控制或对其表达过度时,就有可能导致肿瘤等疾病的发生。受体的过度表达式由于对其遗传基因密码的过度表达引起【1】

由此可见,将级联信号传递过程中各个环节中参与的酶或受体作为靶点,阻断信号传递将会非常有意义,该类src激酶抑制剂可能会取得比较好的效果,有可能可以开发出疗效较好的抗肿瘤药物。

激酶催化的磷酸化过程

如果要设计出高效的酶抑制剂,首先要弄清该酶所催化的反应以及底物的性质,该种激酶的底物有两个,一个底物是另外一个蛋白质分子的酪氨酸残基,而另一个底物是三磷酸腺苷,它是磷酸化过程的磷酰化试剂,镁离子对于ATP与酶键合的作用是非常重要的,磷酸化过程包括磷酸基从A TP分子向酪氨酸残基的转移过程。

Src激酶家族与疾病关系

癌症

SFK(src酪氨酸激酶家族,以下简称SFK)在细胞标记以及许多细胞疾病发生发展的过程中扮演着重要的角色,尤其是癌症。正常细胞对不同生理条件包括有丝分裂发生,分化,生存,粘附以及转移表现出不同的应答方式,所有的应答过程都受到癌症过程的调节。Src致命的活化过程往往伴随着一个细胞失去对自身活性反馈调节的能力。在一些癌症病因的调查中,一些调查研究表明src变异的细胞往往表现出癌细胞特征,不论是一开始发现的v-Src,还是病毒引起的同类分子c-Src,不论是人或鸡类家禽,都以C端负反馈调节的缺失为标志。【2】

SFK的活性由酶的过度表达程度决定,即便是在克隆性癌症中出现也是如此。变异的关键牵涉到氨基酸531,并且这种含src-531的片段也具有活性。Src蛋白激酶水平以及活性的变化与恶性肿瘤的程度相关联。SFK的恶性活化长期维持较高的蛋白酶活性,在诸多的人类癌症中已有体现,如乳腺癌,胃癌,胰腺癌,卵巢癌,脑癌,肺癌,中性肿瘤以及白血病,淋巴瘤和骨髓瘤。

Src和其他疾病

SFK也参与了其他生理过程如介导骨质丢失,参与风湿性关节炎,心血管疾病以及免疫系统失衡。c-Src涉及到一些骨病如骨质疏松,帕氏病,高钙血症以及骨癌转移。【3】最近发现c-Src也促进增殖和骨肉瘤的高潜力生长。在正常条件下,成骨细胞与破骨细胞的作用相平衡,c-Src控制成骨细胞活性,引导蛋白酶的分泌,同时调节骨组织微管和肌动蛋白聚合物。在转移的时候,肿瘤细胞能够从初期肿瘤组织转移至骨组织,并刺激破骨细胞,诱导src表达,产生细胞因子反馈调节初期肿瘤组织,进一步促进其生长,造成恶性循环。Src的抑制剂能够阻断这些步骤的每一步,另一种骨病也涉及c-Src的表达,主要是Csk(一种抑制src

催化活性的激酶)的过度表达,表明src抑制剂有治疗类风湿性关节炎的潜在作用。

Src同时也参与了增加血管通透性的生理机制,表达不同的分子包括血管内皮生长因子,src 抑制剂通过VGEF减少了血管通透性【4】研究表明SFK的重要性体现在src和Yes能够减少VEGF介导的血管通透性,因此src抑制剂将会对脑化学损伤和心肌梗死的治疗有所帮助。实际上,PP1(一种src激酶的抑制剂)可以减少脑损伤,对于小鼠还可以减少血管通透性以及提供有效地脑保护。Src同样在其他过程中也有作用,例如调节NDMA(N-甲基-D-天门冬氨酸,以下简称NDMA)受体的活性,有治疗NDMA受体介导的神经痛的潜在活性。近期研究表明src与普列昂氏症有关联,包括可遗传的脑病。普氏症是一种自我繁殖的反常表达的蛋白颗粒引起的疾病。在该病细胞培养模型中发现了SFK的增长。Src可能是细胞间疾病作

用机制关键因素。

Src抑制因子的研究方向

Src抑制因子的研究可以被分为三种类别:体外研究;临床动物模型研究;临床试验;在这些研究中,三种不同类型的抑制因子已经被测试出来:ATP竞争性抑制因子,干扰蛋白质-蛋白质之间与Src反应的分子和导致Src不稳定的小分子【5】。

CGP2511为代表的药物

CGP2511为代表的药物先导化合物为staurosporine【6】,它是一种微生物的代谢物,是一种具有较高活性的蛋白激酶抑制剂,另外,还发现它有可以同ATP一起竞争ATP的键合部位,但是由于该化合物没有选择性,所以他对丝氨酸-苏氨酸激酶以及酪氨酸激酶都有抑制作用。

Staurosporine分子是一个复杂的聚环结构,它包括一个带有四个手性中心的二氢吡喃环,这样复杂的结构因为不一合成,因此必须简化它的结构,最容易的简化过程就是去掉其结构中的二氢吡喃环,使原来的聚环结构得到简化,同时又消除了四个手性中心。Arcyriaflavin A 是消除了二氢吡喃环后得到一个合适的结构,注意到它的结构中额外增加了一个羰基,这也是一种结构简化的方法,因为导入了这个羰基后化合物分子变成了一个对称的结构,一般情况下对称分子较容易合成。虽然arcyriaflavin A 的活性比先导化合物低,但是仍然是一个酶抑制剂,且对蛋白激酶C(以后简称PKC)的特殊的激酶有选择性。

对该结构进一步简化,除去中间的芳环结构,进而合成了一系列双吲哚基马来酰胺类化合物,试验表明,该类化合物对PFC的抑制活性较强。继续对其进行构效关系研究:

●亚胺上氮原子不能被取代,否则活性将丧失

●苯胺基所在的芳环是活性所必须的,如果用环己烷环代替则活性消失。

●芳环上的取代基R1必须是小分子基团,否则活性下降,事实上取代基仅有氟原子。R1为甲基时化合物活性下降。

●苯胺基的氮原子不能取代,如果其中一个R2被甲基取代,则活性下降;如果两个R2都被甲基取代,则活性完全消失。

●苯胺上的氮原子是活性必需的基团,如果将NR2用硫原子取代则活性消失

●两个羰基结构对活性是必需的,如果去掉其中一个羰基的氧原子形成内酰胺而不是亚胺则活性大幅度降低。

结构见图1

二苯胺基苯邻二甲酰亚胺

合成路线见图2

喹啉衍生物:

目前最具潜力的作用在ATP结合位点合成src抑制剂,最初被Wyeth-Ayerst的研究人员作为表皮生长因子抑制剂合成,第一次记录于文献的药物。药物SKI-606【7】是其中的代表药物,是src的潜在抑制剂,IC50仅有1.2nM,该化合物选择性很强,另外还与环Src活性靶点结合,喹啉的一号氮原子与341号蛋氨酸中的氨基形成较强的氢键,苏氨酸的侧链羟基与氰基,喹啉的二号碳与谷氨酸的羰基之间均有作用。这些空间定位集团构成了激酶专属的“袋子”。同时SKI-606也是Abl的抑制剂,IC50为1nM,同时他也被报道说与白细胞系发生反应,抑制Brc和Abl阳性细胞的生长。因为这些理由,该化合物能够应用于某些癌症。目前该药正在临床试验阶段。另外SKI-606的类似物也是很好的src抑制剂。

SKI-606

嘧啶衍生物

嘧啶衍生物是最重要的src激酶抑制剂种类之一并且按稠合的环种类分为不同的亚族。1997年,Parke-Davis发表了先导化合物PD 089828,该化合物也是一种没有选择性的src 激酶抑制剂,据文献记载,它对c-Src,PDGFR,FGFR的IC50为0.22,1.25以及0.14M。该类新的化合物显示出ATP竞争性抑制活性。化合物33则被报道称对src,PDGFR,FGFR 的IC50分别为18,210,40nM,并且在体内试验中延迟了Colo-205肿瘤的繁殖长达14天。化合物35对src的IC50为0.26,对其他生长因子受体也有较高活性,并且对src有一定程度的选择性。

1995年,通过高通量筛选技术针对src特异性抑制剂进行筛选,二氢酰亚胺【4,5-b】并喹啉类化合物被发现有特异性作用于酶靶点,化合物在研究中显示出了极度特异性,对c-Src 的抑制作用相比于对PKA的抑制作用足足高出6000倍,该作用比对表皮生长因子受体酪氨酸激酶(以后简称EGFRTK)的作用也高出了150倍。如果7位有甲基取代也能保持活性,相对的,在8位有甲基取代则少了7倍的活性。在嘧啶环上N原子的取代都会使活性降低,只有甲基取代的时候会保持活性;所有的芳香衍生物取代会使活性降低。该类化合物与ATP没有竞争抑制活性,其作用位点明显在核苷酸的结合“口袋”中。以化合物43为例,对src激酶显示出的IC50值为2.4nM。

其他不同结构的化合物

PD-145709显示出对src的IC50值为0.65,另外二硫化物也被用于合成作src的抑制剂,比如化合物75,对src的IC50为0.4nM,但是对EGFR(表皮生长因子,文中简称EGFR)则活性相对较低,这些衍生物都没有ATP竞争性抑制活性。它们的抑制作用是不可逆的,在酶的活性中心位点与半胱氨酸形成共价键,因此对Lck显示出7.32的IC50值。

有实验表明这类化合物以硫为亲核试剂进行反应:Lck中的半胱氨酸残基在酶的作用下打开异丙噻唑环,其苯基的衍生物是ATP的竞争性抑制剂,对Lck有很强的选择性:据文献报道化合物77就对Lck和c-Src的IC50为0.032M和0.46M。3位取代的吲哚环系列化合物有酪氨酸激酶抑制活性,但是对src没有选择性。

另外一种src抑制剂的家族为三环类,如化合物86,据文献报道对Lck和c-Src的IC50值为5和2nM,并且对很多酪氨酸或丝氨酸激酶,有很高的选择性。这类化合物细胞间活性低于100nM并且在小鼠体内IL-2产生试验模型中和环孢霉素A同样有效。据报道2-氨基噻唑类化合物有潜在的SFK和Jak激酶抑制剂活性。

以环丙基氨基化合物的衍生物化合物87为例,它对Lck和src的IC50值均为35nM和10nM,对于T细胞繁殖,化合物87的IC50值也为884nM。对这类化合物,改造最成功的是衍生物88,对不同的src家族激酶均有1nM左右的IC50值,并且该化合物延迟了细胞繁殖,并且在啮齿目动物体内炎症模型中有活性。

PD-145709

化合物87

化合物88

总结

自然资源中还有一些非常有希望的衍生物,但是他们和主要的家族并无太多关联,近期文献中有所报道这些化合物对src激酶的抑制活性。过去的几年里在直接作用于src的药物制作上做了大量的工作,也有一些活性分子被发现,但是研究工作远远没有到能够完全解决问题的程度,选择性和毒性问题仍然有待解决,而且更加重要的是,在利用这些抑制剂之前,选中的分子与其他的酶可能的在信号传导过程中的相互作用还有待弄清楚,除了src,许多其他激酶对癌症或是其他疾病也有重要作用。

目前所有的该靶点药物还没有真正能够上市进行销售的药物,很难有能够通过临床试验的药物,原因之一就是所有药物没有办法做到有效性和安全性兼顾,或者选择性不高,所以抗癌药物的寻找仍然面临严峻的挑战。

参考文献

【1】Anti-Cancer Agents in Medicinal Chemistry, 2007, 7, 660-680,1871-5206/07 $50.00+.00 ? 2007 Bentham Science Publishers Ltd.,Synthetic Src-Kinase Domain Inhibitors and Their Structural Requirements Silvia Schenone1,*, Fabrizio Manetti2 and Maurizio Botta2

【2】Synthetic Src-Kinase Domain Inhibitors Anti-Cancer Agents in Medicinal Chemistry, 2007, V ol. 7, No. 6 663

【4】Anti-Cancer Agents in Medicinal Chemistry, 2007, Vol. 7, No. 6 Schenone et al.

【5】Src inhibitors: drugs for the treatment of osteoporosis, cancer or both ?Mira Svusv a, Martin Missbach and Jonathan Green

【6】药物化学,G。帕特里克著,第十三章从先导化合物到二苯胺基邻二甲酰亚胺,2004年8月第二版

【7】Src Inhibitors as Potential Therapeutic Agents for Human Cancers

Jose G. Trevino1,2, Justin M. Summy1 and Gary E. Gallick*,1

1University of Texas MD Anderson Cancer Center, Department of Cancer Biology, Unit 173, Smith Research Building, 7777 Knight Rd, Houston TX 77054, USA

2Current Address: University of Illinois at Chicago, Department of Surgery, 840 South Wood Street Suite 518-E CSB, Chicago, Illinois 60612-7322, USA

【8】同【6】

脲酶、硝化抑制剂综述.

引言 1.2缓控释肥料 1.2.1 缓控释肥料分类 缓控释肥料主要分为三类:1)通过化学方法改变肥料的结构而产生的缓控释肥料,主要有难溶性有机化合物(脲甲醛等)、水溶性化合物(异丁叉二脲等)、低溶解性无机盐(磷酸镁铵等),目前这类肥料在国外研究较多,但是成本的增加巨大。2)通过在肥料的表面包裹一层其他的材料生产的包膜肥料,使得养分释放变缓,高水平的产品可以通过调控与作物的需肥规律大致符合。3)添加抑制剂(脲酶抑制剂、硝化抑制剂)生产的长效缓释肥料,通过脲酶抑制剂和硝化抑制剂调控土壤中酶和微生物的活性,使得速效肥料在土壤中残留更长时间。 1.2.2国内外缓控释肥料研究进展 缓控释肥料在国外研究较早,美国、日本、欧洲等是世界上主要的缓控释肥料的生产国和消费国。1961年美国TV A首先通过实验室和小规模试验开发出来的包硫尿素,后续又开发出了以热固性聚合物包膜复合肥料,90年代中期,美国的包硫尿素的年产量与消费量约为10万t、聚合物包膜肥料产量约4万t,消费量约为4.5万t。缓控释肥以包硫尿素为主,并大多与速效肥掺混使用,主要应用于高尔夫球场、专业养护草坪等非农业领域;在添加抑制剂方面,美国道化公司开发的西吡[2-氯-6(三氯甲基)-吡啶]商品名为N-serve主要应用于美国的农场,主要原因是时间管理的需要;70年代末,日本多家公司开发了热塑性聚合物包膜肥料,最著名的为以聚烯烃和乙烯乙酸酯共聚物为包膜层的包膜复合肥料,90年代中期,日本聚合物包膜肥料年消费量为7.2万t,而包硫尿素仅为0.6万t,日本缓控释肥料以聚合物包膜复合肥为主,并大多是几种不同释放速率的包膜肥掺混,用于大田作物,主要用于水稻新耕作法栽培,在添加抑制剂方面,硫脲是日本最早使用的硝化抑制剂,由于其受影响的因素太多,使用量并不大;欧

酪氨酸激酶抑制剂类抗肿瘤药物研究方法进展

现代生物医学进展https://www.360docs.net/doc/4035643.html, Progress in Modern Biomedicine Vol.10NO.16AUG.2010 酪氨酸激酶抑制剂类抗肿瘤药物研究方法进展* 刘振凯1艾 菁2耿美玉1,2△ (1中国海洋大学医药学院山东青岛266003;2中国科学院上海药物研究所上海201203) 摘要:酪氨酸激酶(protein tyrosine kinases,PTKs )在肿瘤细胞的增殖、分化、迁移、侵袭等相关信号通路中起到了关键的调控作用,已经成为肿瘤靶向性治疗的重要靶点。本文对靶向酪氨酸激酶的小分子抑制剂的筛选和评价方法进行综述,以期促进酪氨酸激酶抑制剂类抗肿瘤药物的研究。 关键词:酪氨酸激酶;抗肿瘤药物;小分子抑制剂;抑制剂筛选 中图分类号: R730.5,R915文献标识码:B 文章编号:1673-6273(2010)16-3134-04Advances in Research of Protein-tyrosine Kinases Inhibitors as Anticancer Drug* LIU Zhen-kai 1,AI Jing 2,GENG Mei-yu 1,2△ (1Marine drug and food Institute,Ocean university of China,Qingdao,266003,China;2Shanghai Institute of Materia Medica,Chinese Academy of Sciences,Shanghai,201203,China ) ABSTRACT:Protein tyrosine kinases (PTKs)have long been recognized as promosing therapeutic targets involved in a variety of human diseases and in particular several types of cancer.They play important roles in regulating intracellular signal transduction path-ways closely associated with the invasion,metastasis and angiogenesis of many tumors.An effort towards the development of new and more effective PTK inhibitors represents an attractive therapeutic strategy for cancer therapy.In this paper,we review the screening and evaluation methods of small-molecule inhibitors of PTKs with a view to promote the study of PTKs. Key words:Protein-tyrosine kinases;Antitumordrugs;Small-molecule inhibitors;Inhibitors screening Chinese Library Classification (CLC ):R730.5R915Document code:B Article ID:1673-6273(2010)16-3134-04 *基金项目:国家杰出青年科学基金资助(No 30725046) 作者简介:刘振凯(1983-),男,硕士。研究方向:分子药理学。E-mail :lzkai111@https://www.360docs.net/doc/4035643.html, △通讯作者:耿美玉(1963-),研究员、博士生导师。E-mail :mygeng@https://www.360docs.net/doc/4035643.html, (收稿日期:2010-05-07接受日期:2010-06-01) 恶性肿瘤是严重威胁人类生命和健康的疾病。目前,临床上常用的抗肿瘤药物主要是细胞毒类药物,这类药物大多存在难以避免的选择性差、毒副作用强、易产生耐药等缺点[1]。近年来,随着生命科学研究的飞速发展,恶性肿瘤细胞内的信号转导、 细胞周期的调控、细胞凋亡的诱导、血管生成以及细胞与胞外基质的相互作用等各种基本过程正在被逐步阐明,给抗肿瘤药物的研发理念带来了巨大转变。以一些与肿瘤细胞分化增殖相关的细胞信号转导通路的关键酶/蛋白作为药物靶点,筛选发现选择性强、高效、低毒的新型抗癌药物已成为当今抗肿瘤药物研究开发的重要方向[2]。 蛋白酪氨酸激酶是一类具有酪氨酸激酶活性的蛋白质,它们能催化ATP 分子上的γ-磷酸基转移到底物蛋白的酪氨酸残基上,使其发生磷酸化。酪氨酸激酶分为受体型和非受体型两种。受体酪氨酸激酶是一种单次跨膜蛋白,目前至少已有近六十种分属20个家族的受体酪氨酸激酶被识别。不同的受体酪氨酸激酶和配体结合后,受体自身发生二聚化或结构重排,并进一步使受体胞内区特异的酪氨酸残基发生自身磷酸化或交叉磷酸化,从而激活下游的信号转导通路[3]。它们在信号由胞外转导至胞内的过程中发挥重要的作用。而非受体酪氨酸激酶是一种胞浆蛋白,现已经确认的有约30种,分为10大家族。蛋白酪氨酸激酶在细胞信号转导通路中占据了十分重要的地位, 调节细胞生长、分化、死亡等一系列生理生化过程。蛋白酪氨酸激酶功能失调则引发生物体内一系列疾病。大量资料表明,超过50%的原癌基因和癌基因产物都具有蛋白酪氨酸激酶活性,它们的异常激活或过度表达将导致细胞无限增殖,周期紊乱,最终导致肿瘤的发生发展[4]。 同时,酪氨酸激酶调控异常还与肿瘤的侵袭、 转移,肿瘤新生血管生成,肿瘤化疗抗性等密切相关。事实上,以酪氨酸激酶为靶点进行抗肿瘤药物的开发已成为国际研究的前沿。 1酪氨酸激酶抑制剂的开发策略 目前酪氨酸激酶抑制剂的开发策略主要分为胞外、胞浆和核内三个层面:细胞外策略主要是针对于受体型,配体与受体的生物拮抗剂以及特异性抗体,通过拮抗配体和受体的相互作用,抑制酪氨酸激酶的激活[5];胞浆内策略主要分为抑制激酶区的激酶活性和拮抗酪氨酸激酶与其下游信号分子的相互作用两个方面[6];核内策略主要是利用miRNA 降解或者干扰酪氨酸激酶的mRNA ,抑制激酶的蛋白表达而达到抑制激酶活性的目的[7,8]。其中研究最多的是抑制激酶区激酶活性的小分子抑制剂,而本文也主要是针对这部分抑制剂的研究方法进行探讨。酪氨酸激酶的自磷酸化过程和催化下游信号分子磷酸化的过程都涉及到ATP 上磷酸基团的转移,这一反应过程是酪氨酸 3134··

缓释控肥料

缓控释化肥的研究现状以及发展 摘要:由于长期以来化肥的利用率不高,对环境、健康以及自然资源造成的危害日益严重。因此提高化肥利用率当今农业发展的重要任务和科学研究的重要课题。本文从缓释控肥料的定义出发,综述了缓释控肥料的分类、作用机理,着重描述了我国缓释控肥料的进展。关键词:缓释控肥料;作用机理;进展 1.引言 尽管化肥一直以来促进着农业的发展,但随着化肥行业的发展以及农民对化肥的依赖性的增加,使其带来的副作用日益显著,因此不得不重视化肥大量使用带来的弊端。据统计目前我国氮肥利用率仅为20 %~50 %、磷肥为15 %~25 %、钾肥为30 %~35 % ,因肥料利用率低下而造成严重的经济损失、环境污染等[1]。随着人类对环境、健康以及自然资源可持续利用等的关注的不断提高,在保证粮食产量的同时,最大限度减少环肥的用量,提高其利用率是当今农业发展的重要任务和科学研究的重要课题。经过研究发现化肥的过度利用很大一部分是由于不合理的施肥引起的,因此为提高肥料利用率,20 世纪初人们就提出了缓释肥料的设想。只有遵循生态系统养分循环及环境平衡规律,改进施肥技术和化肥工艺,研究高效长效化肥以及合理施肥才能实现农业的健康、可持续发展。 缓释肥(Slow Release Fertilizers 缩写为SRF) 又称缓释肥料[1]、长效肥料、迟效肥料,通常由于肥料化学成分改变或表面包涂半透水性或不透水性物质而使其中的有效养分缓慢释放,来满足作物的营养需

求,因此避免了传统速溶肥料已流失的缺点,大大提高了化肥的利用率,有效地减小了因过度施肥而带来的环境污染,同时还能减少农民的劳动成本。因此缓控释肥是当今世界肥料研究和开发的热点。继20世纪60年代开展大量农田实验以来,90 年代之后,新型缓释肥成为国内外研究热点。 一般来说,“缓释”是指化学养分的释放速率远小于速溶肥料的转化释放效率。美国TV A 的R·D Hauck 于1985 年将缓释肥料分为四类: (1) 微溶于水的合成有机氮化合物; (2) 微水溶性或柠檬酸溶性合成无机肥料; (3) 加工过的天然有机肥料; (4) 包膜(包裹) 型肥料。“控制”是指基于各种调控机制使养分按照设定模式进行释放,并且与作物养分吸收规律一致。这类肥料能最大限度提高肥料利用率,防止多余养分对环境的污染。因此真正意义上的控释肥料还应具有营养供应的阶段性、连续性和可调性等特性。 2.缓释控肥料的分类 2.1.按照制备工艺分 缓释控肥料按照制备工艺可分为物理阻碍型、化学合成型和生化抑制型。 2.1.1.物理阻碍型 物理阻碍型缓控释肥料主要是通过喷涂、干燥等手段在肥料颗粒表面涂覆一层或多层低水溶性材料,形成致密的低渗透性包衣来阻碍水分进入肥料内核的速度,进而达到限制养分释放的目的。包膜包裹

src激酶抑制剂综述

Src(sarcoma gene)受体激酶家族抑制剂 研究综述 药学0703班 U200717953 周俊

Src(sarcoma gene)受体激酶家族抑制剂研究综述 摘要;本文介绍了src的组成,作用以及与相关疾病的作用,总结了近几年研究src激酶家 族的方向,以src激酶家族作为靶点寻找抗癌药物中的一些进展和成果,并逐一分析比较有代表性的药物,如喹啉衍生物,嘧啶衍生物等等化合物,最后总结近期成果,指出现有工作的不足和未来的研究方向。 关键词鸡肉瘤病毒基因(src)酪氨酸蛋白激酶抑制因子ATP结合位点 引言: sarcoma gene(鸡肉瘤病毒基因,以下简称src)的组成 Src是一类癌基因,其表达产物主要是酪氨酸蛋白激酶类。Src在许多组织细胞中表达,在癌症发病机制中处于重要的地位,是肿瘤,癌症分子表达途径的重要的激酶。Src家族是研究最早最深入的家族,包括Blk, Brk, Fgr, Frk,Fyn, Hck, Lck, Lyn, c-Src, Srm,c-Yes等成员。根据氨基酸序列,可以分为两个亚族:一族是Src, Fyn, Yes and Fgr并且广泛在不同的组织中表达,Lck, Blk, Lyn and Hck和造血细胞有关.研究表明,Src与其他众多酶类可联合在一起促进多个细胞反应进程。Src 与多种激酶受体偶联,包括酪氨酸激酶受体,整合单白受体,G蛋白偶联受体等。.通过偶联作用影响细胞生长,发育,乃至转移扩散。最好的例子就是与EGFR(一种有关细胞生长的受体)的结合,Src可以使EGFR自身磷酸化,降低EGFR 的中间体的调节与胞吞作用。 除了牵涉到细胞内的反应,Src可能也在初级肿瘤细胞的转移中扮演着一个重要的角色。实际上Src转移细胞的存在减少了ECM反应以及组织反应的损失。分子调节这些过程的机理建立在Src和FAK的反应的基础上。Src与粘附分子有关。Src的磷酸化使得在粘附分子上的整联蛋白受体接收的黏着性与转移信号得以传播。 Src的作用靶点 一般来说就目前的研究而言,src的作用靶点有以下几类: 第一种是以src激酶为作用靶点。到目前为止还没有被批准的src激酶抑制剂,但是新的分子,有选择性的有潜力的化合物已经在被合成。设计测试更加有效的抑制剂,运用分子模型筛选技术,组合化学研发新的药物已经成为趋势。一般而言,一个抑制剂的选择性应该严格作用于癌细胞而不干扰正常细胞的生长进程,抑制剂也应间接作用于酶合成这样的在癌细胞进程中也会发生的物质。 第二种就是以SH2和SH3区域为靶点的药物,该药物是很多疾病的重要靶点,如癌症cardiovascular ,restenosis。这些分子阻断src和其他蛋白底物作用属于信号阻断途径,一般而言,SH2区域识别特殊的多肽包括一个磷酸化的酪氨酸残基。SH2的抑制剂分子设计基于氨基酸特定的排列顺序。在许多例子中,多肽库中产生的第一代配体给与了重要的信息以成功设计连接无受体的src的SH2的受体。而SH3的抑制剂则是基于与该区域作用的分子的多肽,其配体能够和SH3区域的酪氨酸富集区作用,但是一般而言这种作用是很弱的,因为形成的离子键和氢键数量有限。因此SH3抑制剂KI值在微摩尔范围内很低。尽管合成此种抑制剂的效果已经显现,但只有少量例子在文献中出现。 Src激酶家族的作用 Src酪氨酸激酶联系的受体对细胞的生长和分裂是非常重要的,它具有双重作用,既可以

重金属快速检测技术在中药材质量控制中的应用_郑琪

*中医药行业科研专项“常用大宗中药材质量现场快速检测技术研究”(201407003)** 通信作者Tel :(010)64014411-2847;E-mail :yyuan0732@gmail.com 第一作者 Tel :(010)64014411-2851;E-mail :397126331@qq.com ★综述专论★ 重金属快速检测技术在中药材质量控制中的应用 * 郑琪1,2, 南铁贵1,詹志来1,袁媛1**,黄璐琦1 (1.道地药材国家重点实验室培育基地,中国中医科学院中药资源中心,北京100700;2.陕西中医学院,西安712000)摘要:重金属污染日益严重使得中药材中重金属含量持续增高,中药材质量的好坏直接影响患者的安全和疗效。因此,如何能快速、准确、简便地鉴别中药材重金属含量,对于中药材的用药安全至关重要。本文总结分析了国内外重金属的快速检测方法,通过归纳酶分析法、免疫分析法、生物化学传感器法、荧光标记技术,讨论其优势与不足,为建立中药材重金属现场快速检测技术提供参考依据。 关键词:中药材;重金属污染;传统检测方法;快检技术;酶分析法;免疫分析法;生物化学传感器法;荧光标记技术中图分类号:R917 文献标识码:A 文章编号:0254-1793(2015)11-1873-05 doi :10.16155/j.0254-1793.2015.11.01 Application of rapid determination of heavy metals in quality control of Chinese crude drugs * ZHENG Qi 1,2,NAN Tie-gui 1,ZHAN Zhi-lai 1,YUAN Yuan 1** ,HUANG Lu-qi 1 (1.National Resource Center for Chinese Materia Medica ,China Academy of Chinese Medicinal Sciences ,Beijing 100700,China ; 2.Shaan'xi University of Chinese Medicine ,Xi'an 712000,China ) Abstract :Heavy metals in Chinese medicinal materials continue to increase due to the increasingly serious pollu-tion.Quality of Chinese crude drugs directly affects the safety of patients as well as the efficacy.How to identify Chi-nese medicinal herbs rapidly ,accurately and conveniently is an important issue to the safe medication of Chinese crude drugs.This article analyzed the rapid detection methods of heavy metals at home and abroad and discussed the advantages and shortcomings of existing methods such as inductive enzyme analysis ,immune analysis ,biological chemical sensor method and fluorescence labeling technology ,thus providing some references for establishing rapid determination methods for heavy metals in Chinese crude drugs. Keywords :crude drugs ;heavy metal pollution ;traditional detection method ;rapid detection methods ;enzyme analy-sis ;immune analysis ;biological chemical sensor method ;fluorescence labeling technology 重金属通常是指原子密度大于5g ·cm -3 的一 类金属元素,如铜(Cu )、镉(Cd )、金(Au )、银(Ag )、铅(Pb )、锌(Zn )、镍(Ni )、钴(Co )、铬(Cr )和汞(Hg )等[1]。中药作为天然药物,由于其具有毒副作用小、使用安全、疗效好等特点而被广泛使用。但随着环境污染日益加剧,工业三废、城市生活垃圾、污泥的排放、含重金属的农药化肥的不合理使用等,使中药材中重金属含量日益增高,中药材品质降低,严 重危害人体健康。重金属对人体危害表现在其可以 通过空气、水、食物等渠道进入体内,与体内有机成分、蛋白质、核糖、维生素、激素、生物酶等结合或反应,使其丧失或改变了原来的生理化学功能而产生 病变或表现出毒性 [2-4] 。近年来,我国发生了多起中药材重金属超标事 件。德国从我国进口的大批中药饮片中,30余种药材中重金属含量超标的多达11种,其中川芎6次检

FDA批准的激酶小分子抑制剂类药物及分类一览教学提纲

F D A批准的激酶小分子抑制剂类药物及分 类一览

FDA批准的激酶小分子抑制剂类药物及分类一览 蛋白激酶 蛋白激酶(Kinase)是细胞生命活动重要的信号使者,可催化将ATP末端的γ-磷酸基团转移至底物上,从而将各种信号进行传递(图1)。蛋白激酶参与了众多的生理过程,包括细胞增殖、存活、凋亡、代谢、转录以及分化等。药理学及病理学研究表明,对于很多疾病,如肿瘤、炎症性疾病、中枢神经系统疾病、心血管疾病及糖尿病等,蛋白激酶都是一个理想的药物靶点。 图1 Mechanism of protein kinases and related publications 对于蛋白激酶的研究始于20世纪50年代,并在90年代随着MAPK/ERK、JAK及PI3K等信号通路的揭示而达到一个研究热潮。迄今为止,在人体中发现了518种蛋白激酶,而编码具有激酶活性蛋白的基因则高达900多种。与之相对应,有关激酶抑制剂的研究也逐步发展,并在激酶作用机制的阐明过程中

扮演了重要角色,并成为重要的药物研究热点。该领域研究的文献数量也是逐年上升,从侧面反映了其在基础研究和药物发现中的重要性。 蛋白激酶抑制剂及其分类 过去的15年间,激酶抑制剂作为药物候选的研究取得了长足的进步,不论是基础研究还是在工业界。在人体现有药物靶点里面,蛋白激酶家族成员占比高达10%(FDA批准药物分子靶点深度解读)。2001年,第一个激酶抑制剂类药物Imatinib获得FDA批准,成为该领域发展的里程碑,此后十年该类药物以平均每年获批一种的速度稳步发展。而在2012年1月至2015年2月期间,小分子激酶抑制剂类药物迎来爆发式发展,共有15种新药获得审批。截至2016年12月底,共有31种小分子激酶抑制剂类药物获得审批,同时还有大量的化合物处于临床或临床前研究中。除此之外,科研人员还解析了超过5000种的蛋白激酶或蛋白激酶-抑制剂复合体的晶体结构,且超过五分之一的人类蛋白激酶具有明确的小分子抑制剂。因此,小分子激酶抑制剂已成为药物研发的一个热点领域。 蛋白激酶尽管在一级序列上有所差异,但在三维结构上却具有高度的保守性,特别是在催化活性结构域附近。该区域存在一个β-折叠构成的N-lobe区域及α-螺旋构成的C-lobe区域,而ATP结合在两者构成的沟状区,也是很多激酶抑制剂的结合位点。活性位点附近还存在一条Activation-Loop,通常末端存在一个保守的Asp-Phe-Gly (DFG)结构基序(图2A)。

活性发酵豆粕

活性发酵豆粕(生物活性菌体蛋白)介绍 第一部分豆粕为什么要发酵 【豆粕发酵的目的】 一、破坏豆粕中抗营养因子 豆粕中含有胰蛋白酶抑制因子、低聚糖、凝集素、植酸、脲酶等抗营养因子,在发酵过程中通过微生物作用、酶及发酵产生有机酸的作用,使得抗营养因子被降解或者钝化,从而得到破坏。 豆粕中的抗营养因子的危害(综述) 1、胰蛋白酶抑制因子IT,抑制生长。大豆中最重要蛋白类抗营养因子,约占大豆蛋白6%,IT通过对胰蛋白酶的抑制,引起胰腺肥大和增生,甚至产生腺瘤,引起动物生长抑制。 2、大豆凝集素(SBA),影响消化吸收及免疫抑制:脱脂豆粕中约含3%,难以完整吸收进入血液,引起红细胞凝集,在消化道中损坏小肠壁粘膜结构,影响多种酶的分泌,对肠道的消化和吸收功能有严重的抑制作用,凝集素也对动物的免疫系统产生不良影响,抑制动物生长。 3、低聚糖,胃肠胀气因子:豆粕富含棉子糖与水苏糖等低聚糖,人和动物不能消化这些低聚糖,结果它们进入结肠被细菌发酵产生大量二氧化碳和氢,少量甲烷,从而引起肠道胀气,并导致腹痛、腹泻、肠鸣等。 4、脲酶:影响蛋白吸收利用,是豆粕类蛋白原料质量重要影响因素。 5、植酸:与饲料原料中的磷结合,形成难于被动物消化吸收的植酸磷,降低动物对磷的消化吸收。 6、非淀粉多糖(NSP):是植物细胞壁物质主要成分,难以被单胃动物自身分泌的消化酶水解,能在消化道形成粘性食糜,降低饲料脂肪、淀粉和蛋白等养分营养价值。 7、酚类化合物:大豆中酚类化合物如单宁可以与蛋白质如赖氨酸、甲硫氨酸相结合,使蛋白质的利用率降低。 二、消除豆粕蛋白的抗原性 豆粕蛋白具有很强的抗原性,在发酵过程中,主要是通过降解而使其失去抗原性。大量研究表明,豆粕中存在的抗原物质能引起仔猪等幼龄动物的肠道过敏--损伤,进而引起腹泻。已证实,引起断奶仔猪过敏反应的主要抗原是大豆球蛋白和β--伴大豆球蛋白。 三、降解大分子蛋白质,形成易吸收的小肽蛋白 豆粕中主要组分11S 和7S 是大分子蛋白,分子量分别为350K D 和180K D,通过发酵酶解,被降解为可溶于水的小分子氨基酸及小肽,利于动物的吸收利用。S是蛋白质超速离心机组份分离时的单位,1S=1/1013秒。豆粕蛋白应用超速离心分离方法进行分离分析,按照沉降模式,可分为2S、7S、11S和15S 共4个主要的组份,它们的比例成分为9.4%,43%,43.6%和4.6%,7S、11S含量达86%以上。

脲酶抑制剂综述

脲酶抑制剂综述

抑制剂研究进展 1、脲酶抑制剂研究进展 1.1脲酶抑制剂种类及作用原理 脲酶是氨基水解酶的一类酶的通称,是一种作用于线型酰胺C-N键(非肽)的水解酶。土壤脲酶抑制剂是对土壤脲酶活性有抑制作用的化合物或元素。Conrad早在1940年就指出向土壤中加入某些物质可以抑制脲酶活性并延缓尿素水解。在随后的几十年里,脲酶抑制剂的研究取得很大进展,包括对尿素水解、NH3挥发、尿素N土壤转化、尿素利用率、作物产量的影响等。 脲酶抑制剂主要有无机物和有机物二大类。无机物中主要是分子量大于50的重金属化合物如Cu、Ag、Pb、Hg、Co、Ni、Au、As、Cr等元素的不同价态离子;有机化合物中包括对氨基苯磺酰胺、二硫代氨基甲酸盐、羟基草氨酸盐、有机汞化合物、酚类、醌及取代醌类、磷胺类化合及其转化物等。Bremner 和Douglas证明二元酚和醌是当时最有效的有机化合物,银和汞盐是最有效的无机化合物[62]。Mulvaney和Bremner(1981)、Byrnes和Freney 等(1995)指出,最有效的脲酶抑制剂是醌如 -苯醌和氢醌(HQ)、二元酚和磷胺类化合物如N-丁基硫代磷酰三胺(NBPT)、苯基磷酰二胺(PPD)、环己基磷酰三胺(CHPT)等[65]。其中HQ被认是较有效并经济的,而NBPT、PPD、CHPT 等磷胺化合物的抑制效果则是最好的。 对脲酶抑制剂的筛选,通常注意的只是该化合物使用后尿素在一定培养时间内的残留量,而对脲酶抑制剂的作用机制研究的较少。重金属离子和醌类物质的脲酶抑制作用机理相同,它们均能作用于脲酶蛋白上对酶促有重要的作用的巯基(-SH)),抑制作用的效果与金属-锍化物和醌-锍化物复合体的解离能力呈反比。磷胺类化合物的作用机理为该类化合物与尿素分子有相似的结构,可与尿素竞争与脲酶的结合位点,而且其与脲酶的亲和力极高,此种结合使得脲酶减少了作用尿素的机会,达到了抑制尿素水解的目的。 综合国内外的资料研究,脲酶抑制剂的作用机理主要表现在以下几个方面:

激酶抑制剂类药物

Sutent 药物基本信息 〖NDA申请人〗CPPY CV 〖NDA原始批准日期〗2006年07月26日 〖剂型/规格〗胶囊剂/12.5mg;胶囊剂/25mg;胶囊剂/50mg;胶囊剂/37.5mg 〖适应证〗50mg QD,用于治疗:Ⅰ、病情恶化后或对马来酸伊马替尼不耐受的胃肠间质瘤;Ⅱ、晚期肾细胞瘤 活性成分信息 〖USAN名称〗Sunitinib Malate,苹果酸舒尼替尼 〖CAS号〗341031-54-7(苹果酸盐);557795-19-4(游离碱) 〖曾用代号〗SU-11248(苹果酸盐) 〖作用类别〗激酶抑制剂类抗肿瘤药 〖化学名〗(Z)-N-(2-(二乙基氨基)乙基)-5-((5-氟-2-氧代吲哚 -3-亚基)甲基)-2,4-二甲基-1H-吡咯-3-羧酰胺苹果酸盐 〖化学结构式〗专利信息

年度销售情况(亿美元,信息来源:辉瑞公司年度财务报告及SEC报表) Tykerb 药物基本信息 〖NDA申请人〗Smithkline Beecham 〖NDA原始批准日期〗2007年03月13日 〖剂型/规格〗片剂/250mg; 〖适应证〗1250mg QD+卡培他滨治疗肿瘤过度表达HER2且使用过包括蒽环类抗生素、紫杉烷类抗生素曲妥珠单抗在内的抗肿瘤药物治疗的晚期或转移性乳腺癌;1500 QD+来曲唑治疗HER2过度表达且需要进行激素治疗的绝经后妇女的激素受体阳性的转移性乳腺癌 活性成分信息 〖USAN名称〗Lapatinib ditosylate (monohydrate),拉帕替尼二(对甲基苯磺酸)盐(单水合物) 〖CAS号〗388082-78-8 〖曾用代号〗 〖作用类别〗激酶抑制剂类抗肿瘤药; 〖化学名〗N-[3-氯-4-[(3-氟苯基)甲氧基]苯基]-6-[5[[[2-(甲磺酰基)乙基]氨基]甲基]-2-呋喃基]-4-喹啉胺二(对甲基苯磺酸)盐单水合物 〖理化性质〗黄色固体,25℃下于水中的溶解度为0.007mg/mL,于0.1N HCl中的溶解度为0.001mg/mL 〖化学结构式〗 专利信息

脲酶、硝化抑制剂综述

1.2缓控释肥料 1.2.1 缓控释肥料分类 缓控释肥料主要分为三类:1)通过化学方法改变肥料的结构而产生的缓控释肥料,主要有难溶性有机化合物(脲甲醛等)、水溶性化合物(异丁叉二脲等)、低溶解性无机盐(磷酸镁铵等),目前这类肥料在国外研究较多,但是成本的增加巨大。2)通过在肥料的表面包裹一层其他的材料生产的包膜肥料,使得养分释放变缓,高水平的产品可以通过调控与作物的需肥规律大致符合。3)添加抑制剂(脲酶抑制剂、硝化抑制剂)生产的长效缓释肥料,通过脲酶抑制剂和硝化抑制剂调控土壤中酶和微生物的活性,使得速效肥料在土壤中残留更长时间。 1.2.2国内外缓控释肥料研究进展 缓控释肥料在国外研究较早,美国、日本、欧洲等是世界上主要的缓控释肥料的生产国和消费国。1961年美国TV A首先通过实验室和小规模试验开发出来的包硫尿素,后续又开发出了以热固性聚合物包膜复合肥料,90年代中期,美国的包硫尿素的年产量与消费量约为10万t、聚合物包膜肥料产量约4万t,消费量约为4.5万t。缓控释肥以包硫尿素为主,并大多与速效肥掺混使用,主要应用于高尔夫球场、专业养护草坪等非农业领域;在添加抑制剂方面,美国道化公司开发的西吡[2-氯-6(三氯甲基)-吡啶]商品名为N-serve主要应用于美国的农场,主要原因是时间管理的需要;70年代末,日本多家公司开发了热塑性聚合物包膜肥料,最著名的为以聚烯烃和乙烯乙酸酯共聚物为包膜层的包膜复合肥料,90年代中期,日本聚合物包膜肥料年消费量为7.2万t,而包硫尿素仅为0.6万t,日本缓控释肥料以聚合物包膜复合肥为主,并大多是几种不同释放速率的包膜肥掺混,用于大田作物,主要用于水稻新耕作法栽培,在添加抑制剂方面,硫脲是日本最早使用的硝化抑制剂,由于其受影响的因素太多,使用量并不大;欧

酪氨酸激酶小分子抑制剂及其抗瘤作用研究进展

酪氨酸激酶小分子抑制剂抗瘤作用研究进展 小分子抑制剂作为生命科学领域和干细胞研究、药物研究等诸多领域的有效研究工具,其作用越来越被人们认可。现在介绍对抗肿瘤的络氨酸激酶小分子抑制剂的相关研究进展。 与肿瘤相关的酪氨酸激酶主要有位于细胞膜的受体酪氨酸激酶和位于胞浆的非受体酪氨酸激酶,酪氨酸激酶的过度激活与肿瘤发生、发展、预后与转归密切相关。其过度激活,导致其下游信号途径的激活,最终导致细胞的转化、增殖和抵抗细胞凋亡、促进细胞生存。因此,现在科研人员努力致力于酪氨酸激酶抑制剂尤其是从特异性酪氨酸激酶抑制剂角度来研究新的抗肿瘤药物,并且已取得了巨大的突破,如针对Bcr-Abl的Gleevec、针对EGFR 受体酪氨酸激酶Iressa,已被美国FDA批准分别用于慢性粒细胞性白血病和晚期非小细胞肺癌的治疗,效果显著。另外还有许多小分子抑制剂正在临床试验中,有些在HER2/neu和VEGFR受体酪氨酸激酶小分子抑制剂方面进行的一些研究,也取得一些有意义的结果。(在附件中我们已经为您整理出来相关的信息) 不断的反复的实验才能得到需要的结果,陶素生化现可提供诸多不同信号通路的抑制剂、调节剂以及小分子化合物,并附客户评价、产品相关参考文献、技术支持等助力您的实验研究,且保证产品的高纯度和高活性,交货及时并附带完整的谱图信息。 陶素生化能够提供的118种酪氨酸激酶抑制剂的独特集合,可用于高通量筛选和高内涵筛选 ? 通过前期临床研究和临床实验,生物活性和安全性得到验证 ? 其中一些抑制剂已经得到FDA批准 ? 作用于酪氨酸激酶,如EGFR,VEGFR,SRC,c-Met和JAK ? 结构多样,药效显著,可渗透细胞 ? 具有充分详细的结构说明,IC50值,及客户反馈资料 ? NMR和HPLC技术保证产品高纯度 酪氨酸激酶过度激活,从而导致其下游信号的激活,这在肿瘤的发生、发展、转移、治疗和转归等中起着重要的作用。因此,针对其信号转导途径寻找新的抗肿瘤药物具有重要意义。目前,针对Bcr-Abl的STI571、EGFR的ZD1839已被美国FDA批准在临床应用,分别用于治疗慢性粒细胞性白血病和非小细胞肺癌。从而使得科学工作者对研究针对肿瘤特异性癌基因的药物研究更具信心,并已有许多药物在临床试验阶段,如针对VEGFR的SU666,PTK787等。从目前的各方面收集的科研结果来看,这些抑制剂可能还不能将肿瘤完成治愈,但这些抑制剂与常规化疗相结合,会明显地提高肿瘤的治疗效果。以受体酪氨酸激酶信号通路为靶点的抗肿瘤药物,通常只有在该信号通路发生异常的肿瘤细胞上才能取得较好的疗效。但在肿瘤的治疗过程中,仅仅抑制了某些发生异常的信号转导,则其他一些信号通路仍可能会产生代偿而上调,从而影响治疗效果。因此,抑制信号转导的抗肿瘤治疗还应联合其他作用途径的药物以取得更好的疗效。无论如何,这些针对肿瘤特异性基因改变的药物是消除肿瘤而又无系统毒性的希望。 关键词:酪氨酸激酶;抗肿瘤药物;信号通路;小分子抑制剂库 下面整理了络氨酸酶小分子抑制剂的药物研发最热门靶点相关信息供您参考 2000年后肿瘤信号网络被逐渐阐释、完善,大量的分子靶向药物进入临床研究、走上市场,近年针对受体酪氨酸激酶靶点如Bcr-Abl(见1.1)、VEGF/VEGFRs(见1.2)、PDGF/PDGFRs(见1.3)、EGFR/HER2(见1.4)、ALk(见1.5)已有多个药物上市,me-too品种的研发逐渐放缓,但扩展适应症、克服耐药性、优化治疗方案的研究还没有结束。 1.1.Bcr-Abl抑制剂

最新FDA批准的激酶小分子抑制剂类药物及分类一览

FDA批准的激酶小分子抑制剂类药物及分类一览 1 蛋白激酶 2 蛋白激酶(Kinase)是细胞生命活动重要的信号使者,可催化将ATP末端的γ-3 磷酸基团转移至底物上,从而将各种信号进行传递(图1)。蛋白激酶参与了众多4 的生理过程,包括细胞增殖、存活、凋亡、代谢、转录以及分化等。药理学及5 病理学研究表明,对于很多疾病,如肿瘤、炎症性疾病、中枢神经系统疾病、6 心血管疾病及糖尿病等,蛋白激酶都是一个理想的药物靶点。 7 8 9 图1 Mechanism of protein kinases and related publications 10 对于蛋白激酶的研究始于20世纪50年代,并在90年代随着MAPK/ERK、JAK 11 及PI3K等信号通路的揭示而达到一个研究热潮。迄今为止,在人体中发现了518 12 种蛋白激酶,而编码具有激酶活性蛋白的基因则高达900多种。与之相对应,有13 关激酶抑制剂的研究也逐步发展,并在激酶作用机制的阐明过程中扮演了重要角14 色,并成为重要的药物研究热点。该领域研究的文献数量也是逐年上升,从侧面15 反映了其在基础研究和药物发现中的重要性。 16 蛋白激酶抑制剂及其分类 17 过去的15年间,激酶抑制剂作为药物候选的研究取得了长足的进步,不论是18 基础研究还是在工业界。在人体现有药物靶点里面,蛋白激酶家族成员占比高达19 10%(FDA批准药物分子靶点深度解读)。2001年,第一个激酶抑制剂类药物 20

Imatinib获得FDA批准,成为该领域发展的里程碑,此后十年该类药物以平均21 每年获批一种的速度稳步发展。而在2012年1月至2015年2月期间,小分子激22 酶抑制剂类药物迎来爆发式发展,共有15种新药获得审批。截至2016年12月23 底,共有31种小分子激酶抑制剂类药物获得审批,同时还有大量的化合物处于24 临床或临床前研究中。除此之外,科研人员还解析了超过5000种的蛋白激酶或25 蛋白激酶-抑制剂复合体的晶体结构,且超过五分之一的人类蛋白激酶具有明确26 的小分子抑制剂。因此,小分子激酶抑制剂已成为药物研发的一个热点领域。 27 28 蛋白激酶尽管在一级序列上有所差异,但在三维结构上却具有高度的保守性,29 特别是在催化活性结构域附近。该区域存在一个β-折叠构成的N-lobe区域及α30 -螺旋构成的C-lobe区域,而ATP结合在两者构成的沟状区,也是很多激酶抑制31 剂的结合位点。活性位点附近还存在一条Activation-Loop,通常末端存在一个32 保守的Asp-Phe-Gly (DFG)结构基序(图2A)。 33 34

脲酶抑制剂综述

抑制剂研究进展 1、脲酶抑制剂研究进展 1.1脲酶抑制剂种类及作用原理 脲酶是氨基水解酶的一类酶的通称,是一种作用于线型酰胺C-N键(非肽)的水解酶。土壤脲酶抑制剂是对土壤脲酶活性有抑制作用的化合物或元素。Conrad早在1940年就指出向土壤中加入某些物质可以抑制脲酶活性并延缓尿素水解。在随后的几十年里,脲酶抑制剂的研究取得很大进展,包括对尿素水解、NH3挥发、尿素N土壤转化、尿素利用率、作物产量的影响等。 脲酶抑制剂主要有无机物和有机物二大类。无机物中主要是分子量大于50的重金属化合物如Cu、Ag、Pb、Hg、Co、Ni、Au、As、Cr等元素的不同价态离子;有机化合物中包括对氨基苯磺酰胺、二硫代氨基甲酸盐、羟基草氨酸盐、有机汞化合物、酚类、醌及取代醌类、磷胺类化合及其转化物等。Bremner和Douglas证明二元酚和醌是当时最有效的有机化合物,银和汞盐是最有效的无机化合物[62]。Mulvaney和Bremner(1981)、Byrnes和Freney 等(1995)指出,最有效的脲酶抑制剂是醌如 -苯醌和氢醌(HQ)、二元酚和磷胺类化合物如N-丁基硫代磷酰三胺(NBPT)、苯基磷酰二胺(PPD)、环己基磷酰三胺(CHPT)等[65]。其中HQ被认是较有效并经济的,而NBPT、PPD、CHPT等磷胺化合物的抑制效果则是最好的。 对脲酶抑制剂的筛选,通常注意的只是该化合物使用后尿素在一定培养时间内的残留量,而对脲酶抑制剂的作用机制研究的较少。重金属离子和醌类物质的脲酶抑制作用机理相同,它们均能作用于脲酶蛋白上对酶促有重要的作用的巯基(-SH)),抑制作用的效果与金属-锍化物和醌-锍化物复合体的解离能力呈反比。磷胺类化合物的作用机理为该类化合物与尿素分子有相似的结构,可与尿素竞争与脲酶的结合位点,而且其与脲酶的亲和力极高,此种结合使得脲酶减少了作用尿素的机会,达到了抑制尿素水解的目的。 综合国内外的资料研究,脲酶抑制剂的作用机理主要表现在以下几个方面:

小分子抗肿瘤蛋白激酶抑制剂的研究进展_图文(精)

[8 ] POLVERINO A,COXON A,STARNES C,et al. AMG 706 ,an oral,multikinase inhibitor that selectively targets vascular endothelial growth factor,plateletderived growth factor,and kit receptors,potently inhibits angiogenesis and induces regression in tumor xenografts[J]. Cancer Res, 2006 , 66 ( 17 ):87158721. [9 ] SHANKAR D B,LI J,TAPANG P,et al. ABT869 ,a multitargeted receptor tyrosine kinase inhibitor: inhibition of FLT3 phosphorylation and signaling in acute myeloid leukemia[J] . Blood, 2007 , 109 ( 8 ):34003408. [ 10] SHARMA S, ABHYANKAR V, BURGESS R E, et al. A phase I study of axitinib ( AG013736 ) in combination with bevacizumab plus chemotherapy or chemotherapy alone in patients with metastatic colorectal cancer and other solid tumors[J]. Ann Oncol, 2010 , 21 ( 2 ): 297304. [ 11] SARKER D,MOLIFE R, EVANS T R, et al. A phase I pharmacokinetic and pharmacodynamic study of TKI258 ,an oral,multitargeted receptor tyrosine kinase inhibitor in patients with advanced solid tumors[J]. Clin Cancer Res,2008 , 14 ( 7 ): 20752081. [ 12] SIEMANN D W,BRAZELLE W D,

植物药在治疗感染性结石实验研究中的思路

植物药在治疗感染性结石实验研究中的 思路 (作者: _________ 单位:___________ 邮编:___________ ) 【摘要】对感染性结石,外科治疗残石率及并发症多,西药治疗周期长、药物毒副作用较大。现代植物药以及更广泛意义上的天然药物是全球“绿色”浪潮的组成部分,对感染性结石的治疗有一定的选择价值。在感染性结石的实验研究中,控制尿路感染、促使尿液酸化和抑制脲酶产氨是植物药研究的靶向。针对研究的靶向,筛选出能够抗感染、酸化尿液和抑制脲酶的植物药,在构建感染性结石体内外模型的基础上,研究现代植物药针对感染性结石的药理作用及有效成分。 【关键词】植物药;感染性结石;文献综述 感染性结石是尿路结石中常见的一种类型,成分为六水磷酸铵镁和碳酸磷灰石,约占泌尿系结石的5%?15%[1-5]。感染性结石复发率高,外科治疗残石率及并发症多,而西药治疗周期长、药物毒副作用较大,患者的依从性差[1]。临床上一直希望能够找到一种对感染性结石疗效理想且能长期使用,同时又能避免严重不良反应的疗法。现代植物药以及更广泛意义上的天然药物是全球“绿色”浪潮的组成部分,能

为感染性结石的研究提供较好的选择。然而,植物药要在真正意义上用于临床感染性结石的治疗,还需要坚实的实验研究。在欧洲、巴西、印度和美国等国,应用现代科学技术研究植物药治疗尿路结石的有效成分和药理作用取得了一定成果,如珠子草、偃麦草、硬毛治疝草和尿石通等的研究[6]。然而,现代植物药在我国感染性结石的实验研究方面还很不足。 感染性结石形成的先决条件是脲酶阳性细菌引起的持续性尿路感染[5-6];必要条件是脲酶将尿中的尿素分解为氨和二氧化碳 (C02),进而形成铵离子,同时使尿液呈碱性。因此控制尿路感染、促使尿液酸化和抑制脲酶产氨是植物药研究的靶向。针对研究的靶向,筛选出能够抗感染、酸化尿液和抑制脲酶的植物药,其基础研究的模式在于构建感染性结石体内外模型、研究植物药针对感染性结石的药理作用以及有效成分。 为了研究现代植物药对感染性结石形成的抑制作用,必须在体内外复制出感染性结石形成的模型。感染性结石成石的危险因素主要为铵和pH值。可以使用Griffith法配制人工尿液,将稀释后的奇异变形杆菌液接种于人工尿液中,奇异变形杆菌将人工尿中的尿素分解为氨和 CO2,氨水可增加尿pH值,铵与尿中的镁和磷酸根结合成磷酸铵镁;在碱性尿液中,钙和磷酸根合成磷灰石,并与来自尿素的CO2 结合成碳酸磷灰石,当这些成石物质达到过饱和时,结晶也将迅速形成,呈高度过饱和而析出。由此可以建立实验结石的体外模型[7-10]。 从研究角度粗选出能够抗感染、酸化尿液和抑制脲酶的植物药,分别于

相关文档
最新文档