步进电机控制系统外文翻译

步进电机控制系统外文翻译
步进电机控制系统外文翻译

步进电机的振荡、不稳定以及控制

摘要:本文介绍了一种分析永磁步进电机不稳定性的新颖方法。结果表明,该种电机有两种类型的不稳定现象:中频振荡和高频不稳定性。非线性分叉理论是用来说明局部不稳定和中频振荡运动之间的关系。一种新型的分析介绍了被确定为高频不稳定性的同步损耗现象。在相间分界线和吸引子的概念被用于导出数量来评估高频不稳定性。通过使用这个数量就可以很容易地估计高频供应的稳定性。此外,还介绍了稳定性理论。广义的方法给出了基于反馈理论的稳定问题的分析。结果表明,中频稳定度和高频稳定度可以提高状态反馈。

关键词:步进电机,不稳定,非线性,状态反馈。

1. 介绍

步进电机是将数字脉冲输入转换为模拟角度输出的电磁增量运动装置。其内在的步进能力允许没有反馈的精确位置控制。也就是说,他们可以在开环模式下跟踪任何步阶位置,因此执行位置控制是不需要任何反馈的。步进电机提供比直流电机每单位更高的峰值扭矩;此外,它们是无电刷电机,因此需要较少的维护。所有这些特性使得步进电机在许多位置和速度控制系统的选择中非常具有吸引力,例如如在计算机硬盘驱动器和打印机,代理表,机器人中的应用等.

尽管步进电机有许多突出的特性,他们仍遭受振荡或不稳定现象。这种现象严重地限制其开环的动态性能和需要高速运作的适用领域。这种振荡通常在步进率低于1000脉冲/秒的时候发生,并已被确认为中频不稳定或局部不稳定[1],或者动态不稳定[2]。此外,步进电机还有另一种不稳定现象,也就是在步进率较高时,即使负荷扭矩小于其牵出扭矩,电动机也常常不同步。该文中将这种现象确定为高频不稳定性,因为它以比在中频振荡现象中发生的频率更高的频率出现。高频不稳定性不像中频不稳定性那样被广泛接受,而且还没有一个方法来评估它。

中频振荡已经被广泛地认识了很长一段时间,但是,一个完整的了解还没有牢固确立。这可以归因于支配振荡现象的非线性是相当困难处理的。大多数研究人员在线性模型基础上分析它[1]。尽管在许多情况下,这种处理方法是有效的或有益的,但为了更好地描述这一复杂的现象,在非线性理论基础上的处理方法也是需要

的。例如,基于线性模型只能看到电动机在某些供应频率下转向局部不稳定,并不能使被观测的振荡现象更多深入。事实上,除非有人利用非线性理论,否则振荡不能评估。

因此,在非线性动力学上利用被发展的数学理论处理振荡或不稳定是很重要的。值得指出的是,Taft和Gauthier[3],还有Taft和Harned[4]使用的诸如在振荡和不稳定现象的分析中的极限环和分界线之类的数学概念,并取得了关于所谓非同步现象的一些非常有启发性的见解。尽管如此,在这项研究中仍然缺乏一个全面的数学分析。本文一种新的数学分被开发了用于分析步进电机的振动和不稳定性。

本文的第一部分讨论了步进电机的稳定性分析。结果表明,中频振荡可定性为一种非线性系统的分叉现象(霍普夫分叉)。本文的贡献之一是将中频振荡与霍普夫分叉联系起来,从而霍普夫理论从理论上证明了振荡的存在性。高频不稳定性也被详细讨论了,并介绍了一种新型的量来评估高频稳定。这个量是很容易计算的,而且可以作为一种标准来预测高频不稳定性的发生。在一个真实电动机上的实验结果显示了该分析工具的有效性。

本文的第二部分通过反馈讨论了步进电机的稳定性控制。一些设计者已表明,通过调节供应频率[ 5 ],中频不稳定性可以得到改善。特别是Pickup和Russell [ 6,7]都在频率调制的方法上提出了详细的分析。在他们的分析中,雅可比级数用于解决常微分方程和一组数值有待解决的非线性代数方程组。此外,他们的分析负责的是双相电动机,因此,他们的结论不能直接适用于我们需要考虑三相电动机的情况。在这里,我们提供一个没有必要处理任何复杂数学的更简洁的稳定步进电机的分析。在这种分析中,使用的是d-q模型的步进电机。由于双相电动机和三相电动机具有相同的d-q模型,因此,这种分析对双相电动机和三相电动机都有效。迄今为止,人们仅仅认识到用调制方法来抑制中频振荡。本文结果表明,该方法不仅对改善中频稳定性有效,而且对改善高频稳定性也有效。

2. 动态模型的步进电机

本文件中所考虑的步进电机由一个双相或三相绕组的跳动定子和永磁转子组成。一个极对三相电动机的简化原理如图1所示。步进电机通常是由被脉冲序列控制产生矩形波电压的电压源型逆变器供给的。这种电动机用本质上和同步电动机相同的原则进行作业。步进电机主要作业方式之一是保持提供电压的恒定以及脉冲频率在非常广泛的范围上变化。在这样的操作条件下,振动和不稳定的问题通常会出

现。

图1.三相电动机的图解模型

用q–d框架参考转换建立了一个三相步进电机的数学模型。下面给出了三相绕组电压方程

v a = Ri

a

+ L*di

a

/dt ? M*di

b

/dt ? M*di

c

/dt + dλ

pma

/dt ,

v b = Ri

b

+ L*di

b

/dt ? M*di

a

/dt ? M*di

c

/dt + dλ

pmb

/dt ,

v c = Ri

c

+ L*di

c

/dt ? M*di

a

/dt ? M*di

b

/dt + dλ

pmc

/dt , (1)

其中R和L分别是相绕组的电阻和感应线圈,并且M是相绕组之间的互感线圈。

λpma, λpmb and λpmc是应归于永磁体的相的磁通,且可以假定为转子位置的正弦函数如下

λpma = λ1 sin(Nθ),

λpmb = λ1 sin(Nθ? 2/3),

λpmc = λ1 sin(Nθ - 2/3), (2) 其中N是转子齿数。本文中强调的非线性由上述方程所代表,即磁通是转子位置的非线性函数。

使用Q ,d转换,将参考框架由固定相轴变换成随转子移动的轴(参见图2)。矩阵从a,b,c框架转换成q,d框架变换被给出了[8]

(3)

例如,给出了q,d参考里的电压

(4)

在a,b,c参考中,只有两个变量是独立的(i

a + i

b

+ i

c

= 0),因此,上面提到

的由三个变量转化为两个变量是允许的。在电压方程(1)中应用上述转换,在q,d 框架中获得转换后的电压方程为

v q = Ri

q

+ L

1

*di

q

/dt + NL

1

i

d

ω + Nλ

1

ω,

v d = Ri

d

+ L

1

*di

d

/dt ?NL

1

i

q

ω, (5)

图2,a,b,c和d,q参考框架

其中L1 = L + M,且ω是电动机的速度。有证据表明,电动机的扭矩有以下公式

T = 3/2Nλ

1i

q

. (6)

转子电动机的方程为

J*dω/dt = 3/2*Nλ

1i

q

?B

f

ω–Tl , (7)

如果B

f

是粘性摩擦系数,和Tl代表负荷扭矩(在本文中假定为恒定)。

为了构成完整的电动机的状态方程,我们需要另一种代表转子位置的状态变量。为此,通常使用满足下列方程的所谓的负荷角δ[8]

Dδ/dt = ω?ω

, (8)

其中ω

是电动机的稳态转速。方程(5),(7),和(8)构成电动机的状态空间

模型,其输入变量是电压v

q 和v

d

.如前所述,步进电机由逆变器供给,其输出电压不

是正弦电波而是方波。然而,由于相比正弦情况下非正弦电压不能很大程度地改变振荡特性和不稳定性(如将在第3部分显示的,振荡是由于电动机的非线性),为了本文的目的我们可以假设供给电压是正弦波。根据这一假设,我们可以得到如下的

v q 和v

d

v

q

= V

m

cos(Nδ) ,

v

d

= V

m

sin(Nδ) , (9)

其中V

m

是正弦波的最大值。上述方程,我们已经将输入电压由时间函数转变为

状态函数,并且以这种方式我们可以用自控系统描绘出电动机的动态,如下所示。

这将有助于简化数学分析。

根据方程(5),(7),和(8),电动机的状态空间模型可以如下写成矩阵式

? = F(X,u) = AX + Fn(X) + Bu , (10) 其中X = [iq id ω δ] T , u = [ω1 Tl] T 定义为输入,且ω1 = N ω0 是

供应频率。输入矩阵B 被定义为

矩阵A 是F(.)的线性部分,如下

F n (X)代表了F(.)的线性部分,如下

输入端u 独立于时间,因此,方程(10)是独立的。

在F(X,u)中有三个参数,它们是供应频率ω1,电源电压幅度V m 和负荷扭矩T l 。

这些参数影响步进电机的运行情况。在实践中,通常用这样一种方式来驱动步进电机,即用因指令脉冲而变化的供应频率ω1来控制电动机的速度,而电源电压保持不

变。因此,我们应研究参数ω1的影响。

3.分叉和中频振荡,

设ω=ω0,得出方程(10)的平衡

且φ是它的相角,

φ = arctan(ω1L1/R) . (16) 方程(12)和(13)显示存在着多重均衡,这意味着这些平衡永远不能全局稳

定。人们可以看到,如方程(12)和(13)所示有两组平衡。第一组由方程(12)

对应电动机的实际运行情况来代表。第二组由方程(13)总是不稳定且不涉及到实

际运作情况来代表。在下面,我们将集中精力在由方程(12)代表的平衡上。

附件2:外文原文

Oscillation, Instability and Control of Stepper Motors

LIYU CAO and HOWARD M. SCHWARTZ

Department of Systems and Computer Engineering, Carleton University, 1125 Colonel By Drive,

Ottawa, ON K1S 5B6, Canada

(Received: 18 February 1998; accepted: 1 December 1998) Abstract. A novel approach to analyzing instability in permanent-magnet stepper motors is presented. It is shown that there are two kinds of unstable phenomena in this kind ofmotor: mid-frequency oscillation and

high-frequency instability. Nonlinear bifurcation theory is used to illustrate the relationship between local instability and midfrequency oscillatory motion. A novel analysis is presented to analyze the loss of synchronism phenomenon, which is identified as high-frequency instability. The concepts of separatrices and attractors in phase-space are used to derive a quantity to evaluate the high-frequency instability. By using this quantity one can easily estimate the stability for high supply frequencies. Furthermore, a stabilization method is presented. A generalized approach to analyze the stabilization problem based on feedback theory is given. It is shown that the mid-frequency stability

and the high-frequency stability can be improved by state feedback. Keywords: Stepper motors, instability, nonlinearity, state feedback.

1. Introduction

Stepper motors are electromagnetic incremental-motion devices which convert digital pulse inputs to analog angle outputs. Their inherent stepping ability allows for accurate position control without feedback. That is, they can track any step position in open-loop mode, consequently no

feedback is needed to implement position control. Stepper motors deliver higher peak torque per unit weight than DC motors; in addition, they are brushless machines and therefore require less maintenance. All of these properties have made stepper motors a very attractive selection in many position and speed control systems, such as in computer hard disk drivers and printers, XY-tables, robot manipulators, etc.

Although stepper motors have many salient properties, they suffer from an oscillation or unstable phenomenon. This phenomenon severely restricts their open-loop dynamic performance and applicable area where high speed operation is needed. The oscillation usually occurs at stepping rates lower than 1000 pulse/s, and has been recognized as a mid-frequency instability or local instability [1], or a dynamic instability [2]. In addition, there is another kind of unstable phenomenon in stepper motors, that is, the motors usually lose synchronism at higher stepping rates, even though load torque is less than their pull-out torque. This phenomenon is identified as

high-frequency instability in this paper, because it appears at much higher frequencies than the frequencies at which the mid-frequency oscillation occurs. The high-frequency instability has not been recognized as widely as mid-frequency instability, and there is not yet a method to evaluate it.

Mid-frequency oscillation has been recognized widely for a very long time, however, a complete understanding of it has not been well established. This can be attributed to the nonlinearity that dominates the oscillation phenomenon and is quite difficult to deal with.

384 L. Cao and H. M. Schwartz

Most researchers have analyzed it based on a linearized model [1]. Although in many cases, this kind of treatments is valid or useful, a treatment based on nonlinear theory is needed in order to give a better description on this complex phenomenon. For example, based on a linearized model one can only see that the motors turn to be locally unstable at some supply frequencies, which does not give much insight into the observed oscillatory

phenomenon. In fact, the oscillation cannot be assessed unless one uses nonlinear theory.

Therefore, it is significant to use developed mathematical theory on nonlinear dynamics to handle the oscillation or instability. It is worth noting that Taft and Gauthier [3], and Taft and Harned [4] used mathematical concepts such as limit cycles and separatrices in the analysis of oscillatory and unstable phenomena, and obtained some very instructive insights into the socalled loss of synchronous phenomenon. Nevertheless, there is still a lack of a comprehensive mathematical analysis in this kind of studies. In this paper a novel mathematical analysis is developed to analyze the oscillations and instability in stepper motors.

The first part of this paper discusses the stability analysis of stepper motors. It is shown that the mid-frequency oscillation can be characterized as a bifurcation phenomenon (Hopf bifurcation) of nonlinear systems. One of contributions of this paper is to relate the midfrequency oscillation to Hopf bifurcation, thereby, the existence of the oscillation is proved theoretically by Hopf theory. High-frequency instability is also discussed in detail, and a novel quantity is introduced to evaluate high-frequency stability. This quantity is very easy

to calculate, and can be used as a criteria to predict the onset of the high-frequency instability. Experimental results on a real motor show the efficiency of this analytical tool.

The second part of this paper discusses stabilizing control of stepper motors through feedback. Several authors have shown that by modulating the supply frequency [5], the midfrequency

instability can be improved. In particular, Pickup and Russell [6, 7] have presented a detailed analysis on the frequency modulation method. In their analysis, Jacobi series was used to solve a ordinary differential equation, and a set of nonlinear algebraic equations had to be solved numerically. In addition, their analysis is undertaken for a two-phase motor, and

therefore, their conclusions cannot applied directly to our situation, where a three-phase motor will be considered. Here, we give a more elegant analysis for stabilizing stepper motors, where no complex mathematical manipulation is needed. In this analysis, a d–q model of stepper motors is used. Because two-phase motors and three-phase motors have the same q–d model and therefore, the analysis is valid for both two-phase and three-phase motors. Up to date, it is only recognized that the modulation method is needed to suppress the midfrequency oscillation. In this paper, it is shown that this method is not only valid to improve mid-frequency stability, but also effective to improve high-frequency stability.

2. Dynamic Model of Stepper Motors

The stepper motor considered in this paper consists of a salient stator with two-phase or threephase windings, and a permanent-magnet rotor. A simplified schematic of a three-phase motor with one pole-pair is shown in Figure 1. The stepper motor is usually fed by a voltage-source inverter, which is controlled by a sequence of pulses and produces square-wave voltages. This

motor operates essentially on the same principle as that of synchronous motors. One of major operating manner for stepper motors is that supplying voltage is kept constant and frequency

of pulses is changed at a very wide range. Under this operating condition, oscillation and instability problems usually arise.

Figure 1. Schematic model of a three-phase stepper motor.

A mathematical model for a three-phase stepper motor is established using q–d framereference transformation. The voltage equations for three-phase windings are given by

步进电机控制系统

目录 一、设计任务: (2) 二、步进电机概述: (2) 三、题目分析与整体构思: (4) 四、硬件电路设计: (7) 五、硬件验证: (10) 六、程序设计: (10) 七、系统仿真: (15) 八、感应子式步进电机工作原理: (17) 九、心得体会: (24) 参考文献: (25)

一、系统设计要求 步进电机作为一种电脉冲—角位移的转换元件,由于具有价格低廉、易于控、制、无积累误差和计算机接口方面等优点,在机械、仪表、工业控制等领域中获得了广泛的应用。本设计的具体要求是: 1. 设计制作一个步进电机控制电路,可以细分驱动和常规驱动。 2. 常规驱动状态转速四档可调并可实现正反转。 二、步进电机概述 步进电机是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。步进电机可以作为一种控制用的特种电机,利用其没有积累误差(精度为100%)的特点,广泛应用于各种开环控制。 现在比较常用的步进电机包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)和单相式步进电机等。 永磁式步进电机一般为两相,转矩和体积较小,步进角一般为7.5度或15度。 反应式步进电机一般为三相,可实现大转矩输出,步进角一般为 1.5度,但噪声和振动都很大。反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。 混合式步进电机是指混合了永磁式和反应式的优点。它又分为两相和五相:两相步进角一般为 1.8度而五相步进角一般为 0.72度。这种步进电机的应用最为广泛,也是本次细分驱动方案所选用的步进电机。 (一)步进电机的一些基本参数: 1.电机固有步距角: 电机固有步距角表示控制系统每发一个步进脉冲信号,电机所转动的角度。电机出厂时给出了一个步距角的值,如86BYG250A型电机给出的值为0.9°/1.8°(表示半步工作时为0.9°,整步工作时为1.8°),这个步距角可以称之为“电机固有步距角”,它不一定是电机实际工作时的真正步距角,真正的步距角和驱动器有关。 2.步进电机的相数: 步进电机的相数是指电机内部的线圈组数,目前常用的有二相、三相、四相、五相步进电机。电机相数不同,它们的步距角也不同,一般二相电机的步距角为0.9°/1.8°、三相的为0.75°/1.5°、五相的为0.36°

自动化系毕业设计外文翻译(中英文对照)

吉林化工学院信息与控制工程学院 毕业设计外文翻译 基于WINCC自动洗车监控系统设计 Design of Automatic Vehicle Cleaning Simulation System Based on WinCC 学生学号:08510234 学生姓名:李洪敏 专业班级:自动0904 指导教师:姜德龙 职称:教授 起止日期:2013.03.04~2013.03.19 吉林化工学院 Jilin Institute of Chemical Technology

一个成功的控制系统革新的策略 ——在升级的时候考虑这些指导方针 用最近的最新颖的系统升级一个主要的传统类型的控制系统是任何过程工业得到竞争力的关键。改良任何的系统主要目的是为了要有适当的连接性和互通性来增加灵活性和连续性的功能。 在这里提供的指导方针向指出了在一个如此富有挑战性的工程后面的主要问题。为了及时的和有成本效益的完成,要从概念上的计划上跟随它们。这些建议考虑了限制、假定和附加的研究来解决在整个工程中的一步步活动:设计、采购、构造和委任期间的全部预期问题。 为控制系统升级的需要。当升级一个传统的控制系统为一个集散控制系统(DCS)的时候,目标是: ●提供基于高度的分配机器智能的一个复杂的过程控制系统,供应有效的控 制和包罗万象的操作员接口。 ●保证那在低消耗下具有实时操作的新的集散控制系统(DCS)的高可靠性。 ●保证对工厂操作所必需的数据获取和程序数据设置的快速响应。有与任何 其他的最新颖的系统兼容的开放式结构。这允许过程控制和自动化系统整 合的最高程度,这些自动化系统有一个对各种厂商独立的并且公开分配的 接口的规格。 ●通过对工厂的关键区段/叁数的管理控制来提供工厂自动化。 ●可行性研究应该应该在升级现存的控制系统到集散控制系统(DCS)之前被 实行。所有的理由,无论是系统的、一些装置的或元件的,都要被证明。目 的包括: ●执行基于预先准备的关于对现存系统的恶化和荒废的报告的可行性研究。 ●检查现存的控制系统的线路板的寿命。它被通常估计从安装日期起是大约 15年。这可能造成依照每个控制/检测回路的临界一步步替换线路板的紧急 计划。 ●升级控制系统是艺术级的。通过有一个减少了硬件成份的高度可靠的系统, 丢弃陈旧的仪器,将会减少维护和操作的费用。 ●通过包括较多的厂商和征求最好的提议用最小的价格达成全部的需求。

四相步进电机控制系统设计资料讲解

四相步进电机控制系 统设计

课题:四相五线单4拍步进制电动机的正反转控制专业:机械电子工程 班级:2班 学号: 20110259 姓名:周后银 指导教师:李立成 设计日期: 2014.6.9~2014.6.20 成绩:

1概述 本实验旨在通过控制STC89C52芯片,实现对四相步进电机的转动控制。具体功能主要是控制电机正转10s、反转10s,连续运行1分钟,并用1602液晶显示屏显示出来。 具体工作过程是:给系统上电后,按下启动开关,步进电机按照预先 实验具体用到的仪器:STC89C52芯片、开关单元、四项步进电机、等硬件设 备。 实验具体电路单元有:单片机最小系统、步进电机连接电路、开关连接电路、1602液晶显示屏显示电路。 2四相步进电机 2.1步进电机 步进电机是一种将电脉冲转化为角位移的执行机构。电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。 2.2步进电机的控制 1.换相顺序控制:通电换相这一过程称为脉冲分配。 2.控制步进电机的转向控制:如果给定工作方式正序换相通电,步进 电机正转,如果按反序通电换相,则电机就反转。

3.控制步进电机的速度控制:如果给步进电机发一个控制脉冲,它就 转一步,再发一个脉冲,它会再转一步。两个脉冲的间隔越短,步进电机就转得越快。 2.3步进电机的驱动模块 ABCD四相工作指示灯指示四相五线步进电机的工作状态 2.4步进电机的工作过程 开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动, 1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,

控制系统基础论文中英文资料外文翻译文献

控制系统基础论文中英文资料外文翻译文献 文献翻译 原文: Numerical Control One of the most fundamental concepts in the area of advanced manufacturing technologies is numerical control (NC).Prior to the advent of NC, all machine tools were manual operated and controlled. Among the many limitations associated with manual control machine tools, perhaps none is more prominent than the limitation of operator skills. With manual control, the quality of the product is directly related to and limited to the skills of the operator . Numerical control represents the first major step away from human control of machine tools. Numerical control means the control of machine tools and other manufacturing systems though the use of prerecorded, written symbolic instructions. Rather than operating a machine tool, an NC technician writes a program that issues operational instructions to the machine tool, For a machine tool to be numerically controlled , it must be interfaced with a device for accepting and decoding the p2ogrammed instructions, known as a reader. Numerical control was developed to overcome the limitation of human operator , and it has done so . Numerical control machines are more accurate than manually operated machines , they can produce parts more uniformly , they are faster, and the long-run tooling costs are lower . The development of NC led to the development of several other innovations in manufacturing technology: 1.Electrical discharge machining. https://www.360docs.net/doc/404390898.html,ser cutting. 3.Electron beam welding.

集散控制系统

直接数字控制系统 现场总线控制系统 实时控制 传输速率 计算机控制系统 集散控制系统 现场总线 组态 串行传输 通信协议 监督计算机控制系统 分级控制系统 模拟通信 数字通信 并行传输 开放系统互连参考模型 数字滤波: 实时 三、单项选择题 1. TDC3000系统进行NCF组态时,每个系统可以定义()个单元。 (A)24 (B)100 (C)36 (D)64 2. TDC3000系统进行NCF组态时,每个系统可以定义()个区域。 (A)24 (B)10 (C)36 (D)64 3. TDC3000系统运行中,HM 如出现故障,可能会影响()。

(A) 控制功能运行 (B) 流程图操作 (C) 键盘按键操作 (D) 以上3种情况都有 4. TDC3000系统运行中,在HM 不可以进行如下操作()。 (A) 格式化卡盘 (B) 流程图文件复制 (C) 删除系统文件 (D) 删除用户文件 5. TDC3000系统中,HPMM 主要完成以下功能()。 (A) 控制处理和通讯 (B) 控制点运算 (C) 数据采集处理 (D) 逻辑控制 6. TDC3000系统中,每个HPM 可以有()卡笼箱。 (A) 8个 (B) 6个 (C) 3个 (D) 没有数量限制 7. TDC3000系统中,当IOP卡件(如AI卡)的状态指示灯闪烁时,表示此卡件存在()。 (A) 通信故障 (B) 现场输入/输出参数超量程报警(C) 软故障(D) 硬件故障 8. TDC3000系统中,若有一组AO卡为冗余配置,当其中一个AO卡状态指示灯灭时,其对应FTA 的输出应为()。 (A) 输出为100,对应现场为20mA (B) 正常通信 (C) 输出为设定的安全值 (D) 输出为0,对应现 场为4mA 9.TDC3000系统中,HLAI为高电平模拟量输入卡,不可以接收()信号。 (A) 24VDC信号(B) 4-20mA信号(C) 1-5V信号 (D) 0-100mv信号 10. TDC3000系统中,若有一组DI卡为冗余配置,则其对应的FTA应为()。 (A) 不冗余配置(B) 冗余配置(C) 由工艺重要性确定是否冗余配置 (D) 由控制工程师确定是否冗 余配置 11. TDC3000/TPS系统中,每个LCN系统可以定义()个AREA区域。 (A) 36 (B) 100 (C) 20 (D) 10 12.TDC3000/TPS系统中,操作员的操作权限是通过()的划分来限制的。 (A) UNIT单元(B) HPM硬件 (C) AREA区域 (D) 由工艺流程岗位 13. TDC3000/TPS系统中,每个AREA区域可以定义()个操作组。 (A) 390 (B) 400 (C) 450 (D) 20 14. TDC3000/TPS系统中,操作员在操作组画面上不可以进行下列()操作。

基于单片机的步进电机控制系统设计外文翻译

毕业设计(论文)外文资料翻译 学院:机械工程学院 专业:机械设计制造及其自动化 姓名: 学号:XXXXXXXXXX 外文出处:《Computational Intelligence and (用外文写)Design》 附件: 1.外文资料翻译译文;2.外文原文。 注:请将该封面与附件装订成册。

附件1:外文资料翻译译文 基于微型计算机的步进电机控制系统设计 孟天星余兰兰 山东理工大学电子与电气工程学院 山东省淄博市 摘要 本文详细地介绍了一种以AT89C51为核心的步进电机控制系统。该系统设计包括硬件设计、软件设计和电路设计。电路设计模块包括键盘输入模块、LED显示模块、发光二极管状态显示和报警模块。按键可以输入设定步进电机的启停、转速、转向,改变转速、转向等的状态参数。通过键盘输入的状态参数来控制步进电机的步进位置和步进速度进而驱动负载执行预订的工作。运用显示电路来显示步进电机的输入数据和运行状态。AT89C51单片机通过指令系统和编译程序来执行软件部分。通过反馈检测模块,该系统可以很好地完成上述功能。 关键词:步进电机,AT89C51单片机,驱动器,速度控制 1概述 步进电机因为具有较高的精度而被广泛地应用于运动控制系统,例如机器人、打印机、软盘驱动机、绘图仪、机械式阀体等等。过去传统的步进电机控制电路和驱动电路设计方法通常都极为复杂,由成本很高而且实用性很差的电器元件组成。结合微型计算机技术和软件编程技术的设计方法成功地避免了设计大量复杂的电路,降低了使用元件的成本,使步进电机的应用更广泛更灵活。本文步进电机控制系统是基于AT89C51单片机进行设计的,它具有电路简单、结构紧凑的特点,能进行加减速,转向和角度控制。它仅仅需要修改控制程序就可以对各种不同型号的步进电机进行控制而不需要改变硬件电路,所以它具有很广泛的应用领域。 2设计方案 该系统以AT89C51单片机为核心来控制步进电机。电路设计包括键盘输入电路、LED显示电路、发光二极管显示电路和报警电路,系统原理框图如图1所示。 At89c51单片机的P2口输出控制步进电机速度的时钟脉冲信号和控制步进电机运转方向的高低电平。通过定时程序和延时程序可以控制步进电机的速度和在某一

步进电机控制系统设计

文理学院芙蓉学院课程设计报告 课程名称:专业综合课程设计 专业班级:自动化1001班学号:40 学生:志航 指导教师:建英 完成时间: 2013年 6月13 日 报告成绩: 芙蓉学院教学工作部制

摘要 本文先介绍了混合式步进电机的结构和工作原理,分析了细分驱动对于改善步进电机运行性能的作用,论述了正弦波细分驱动可以实现等步距角、等力矩均匀细分驱动的原理,提出了一种基于H桥和其他分立元件分配脉冲的驱动技术,该方案可实现步进电机的单拍、半拍、双拍三种工作方式。本文采用控制电路主要由AT89C51单片机、晶振电路、地址锁存器、译码器、液晶显示电路组成,单片机是控制系统的核心。文中对整个系统的架构及硬件电路和驱动软件的实现都做了详细的介绍。 关键词:单片机;正弦脉宽调制;混合式步进电机;细分驱动

Abstract In this paper, the working principle and configuration of three-phase hybrid Stepper are introduced, then based on technologies such as stepper motor controller, PWM inverter and microcontroller. In the thesis, we develop a single chip computer -based digital controlling system for a three-phase hybrid stepper motor that is mainly constructed from a AT89C51 single chip computer and ST7920IC which is used as the core of control parts. The system's whole architecture, the design of hardware and software are introduced in detail. KEY WORDS: Microcontroller,SPWM,Hybrid stepper motor,Micro-stepping driver

集散控制系统参考文献

[1] MCGS用户指南. 北京昆仑通态自动化软件科技有限公司[M],2006. [2] MCGS参考手册. 北京昆仑通态自动化软件科技有限公司[M],2006. [3] 刘建民,陈建军.螺杆式空压机运行及维护技术问答[M].北京:中国电力出版社,2010. [4] 张培友.空压机智能监控节能改造研究[D].济南:山东科技大学硕士学位论文,2004. [5] 包建华,张兴奎. 基于MCGS组态软件的空气压缩机组监控软件开发[J], 2007 [6] 黄中原,刘健. 基于组态王的空压机远程监控系统研究[M].浙江大学,2006 [7] 吉永成. 用PLC对数台空气压缩机的控制[M]. 机械工业出版社,2002 [8] 活塞式压缩机产品介绍,山东生建集团 [9] 螺杆式压缩机产品介绍,北京复盛机械有限公司 [10] 苏娟,叶佳卓,杨贵.一种基于单片机的空气压缩机监控系统[[J] .测控技术与设备,2003, 5(29): 16-17 [11] 王立坤.基于PLC的空压机试验台的研究与开发[D].北京交通大学硕士学位论文,2008 [12] 邢子文.螺杆压缩机—理论、设计及应用「M].北京:机械工业出版社,2000: 1-5 [13] 王迪生,杨乐之.活塞式压缩机结构[M].北京:机械工业出版社,1988: 10-15 [14] 张芳玺,彭学院,张成兵.基于PLC的机车空压机性能测控系统研制[J].压缩机技术,2005年第6期,Pag. l -3 [15] 万毅.矿山空压机站智能监控系统的设计与实现[J].南京理工大学硕士论文,2007 [16]徐少明,金光熹.空气压缩机实用技术.北京:机械工业出版社,1994 [17]廖常初. FX 系统PLC 编程及应用.北京: 机械工业出版社,2007. [18]王兆义,杨新志.小型可编程控制器实用技术. 2 版.北京: 机械工 业出版社,2006. [19] 曹辉《可编程序控制器系统原理及应用》电子工业出版社,2003 [20] 路林吉.江龙康等《可编程序控制器原理及应用》清华大学出版社,2002

基于单片机的步进电机控制系统的设计_毕业设计

本科毕业设计 基于单片机的步进电机控制系统的设计

摘要 随着自动控制系统的发展和对高精度控制的要求,步进电机在自动化控制中扮演着越来越重要的角色,区别于普通的直流电机和交流电机,步进电机可以对旋转角度和转动速度进行高精度控制。步进电机作为控制执行元件,是机电一体化的关键组成之一,广泛应用在各种自动化控制系统和精密机械等领域。 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。 本系统介绍了一种基于单片机的步进电机控制系统的设计,包括了硬件设计和软件设计两部分。其中,硬件设计包括单片机最小系统、键盘控制模块、LCD显示模块、步进电机驱动模块、位置检测模块共5个功能模块的设计。系统软件设计采用C语言编写,包括主程序、数字键处理程序、功能键处理程序、电机驱动处理程序、显示模块、位置采集模块。 本设计采用STC89C52单片机作为主控制器,4*4矩阵键盘作为输入,LCD1602液晶作为显示,ULN2003A芯片驱动步进电机。系统具有良好的操作界面,键盘输入步进电机的运行距离;步进电机能以不同的速度运行,可以在不超过最大转速内准确运行到任意设定的位置,可调性较强;显示设定的运行距离和实际运行距离;方便操作者使用。关键词:单片机步进电机液晶显示键盘驱动

Design of the Stepping Motor Control System Based on SCM Qiu Haizhao (College of Engineering, South China Agricultural University, Guangzhou 510642,China) Abstract:With the development of automatic control system and the requirements of high-precision control, stepping motor control in automation is playing an increasingly important role, different from the common DC and AC motor, stepper motor rotation angle and rotational speed can be high-precision controlled. Stepper motor as a control actuator is a key component of mechanical and electrical integration, widely used in a variety of automated control systems and precision machinery and other fields. Stepper motor is the open-loop control components changing electric pulse signals into angular displacement or linear displacement .In the case of non-overloaded, the motor speed, stop position depends only on the pulse frequency and pulse number, regardless of load changes, that is, to add a pulse motor, the motor is turned a step angle. This system introduces a design of stepper motor control system based on single chip microcomputer, including hardware design and software design in two parts. Among them, the hardware design, including single chip minimal system, keyboard control module, LCD display module, the stepper motor drive module, position detection module five functional modules. System software design using C language, including the main program, process number keys, the key of function processes, motor driver handler, the display module, position acquisition module. This design uses STC89C52 microcontroller as the main controller, 4 * 4 matrix keyboard as an input, LCD1602 LCD as a display, ULN2003A chip as stepper motor driver. System has a good user interface, keyboard input stepper motor running distance; Stepper motor can run at different speed, and run to any given position accurately in any speed without exceeding the maximum speed, with a strong adjustable ; Display the running distance and the actual running distance, which is more convenient for the operator to use. Key words: SCM stepper LCD keyboard driver

速度控制系统设计外文翻译

译文 流体传动及控制技术已经成为工业自动化的重要技术,是机电一体化技术的核心组成之一。而电液比例控制是该门技术中最具生命力的一个分支。比例元件对介质清洁度要求不高,价廉,所提供的静、动态响应能够满足大部分工业领域的使用要求,在某些方面已经毫不逊色于伺服阀。比例控制技术具有广阔的工业应用前景。但目前在实际工程应用中使用电液比例阀构建闭环控制系统的还不多,其设计理论不够完善,有待进一步的探索,因此,对这种比例闭环控制系统的研究有重要的理论价值和实践意义。本论文以铜电解自动生产线中的主要设备——铣耳机作为研究对象,在分析铣耳机组各构成部件的基础上,首先重点分析了铣耳机的关键零件——铣刀的几何参数、结构及切削性能,并进行了实验。用电液比例方向节流阀、减压阀、直流直线测速传感器等元件设计了电液比例闭环速度控制系统,对铣耳机纵向进给装置的速度进行控制。论文对多个液压阀的复合作用作了理论上的深入分析,着重建立了带压差补偿型的电液比例闭环速度控制系统的数学模型,利用计算机工程软件,研究分析了系统及各个组成环节的静、动态性能,设计了合理的校正器,使设计系统性能更好地满足实际生产需要 水池拖车是做船舶性能试验的基本设备,其作用是拖曳船模或其他模型在试验水池中作匀速运动,以测量速度稳定后的船舶性能相关参数,达到预报和验证船型设计优劣的目的。由于拖车稳速精度直接影响到模型运动速度和试验结果的精度,因而必须配有高精度和抗扰性能良好的车速控制系统,以保证拖车运动的稳速精度。本文完成了对试验水池拖车全数字直流调速控制系统的设计和实现。本文对试验水池拖车工作原理进行了详细的介绍和分析,结合该控制系统性能指标要求,确定采用四台直流电机作为四台车轮的驱动电机。设计了电流环、转速环双闭环的直流调速控制方案,并且采用转矩主从控制模式有效的解决了拖车上四台直流驱动电机理论上的速度同步和负载平衡等问题。由于拖车要经常在轨道上做反复运动,拖动系统必须要采用可逆调速系统,论文中重点研究了逻辑无环流可逆调速系统。大型直流电机调速系统一般采用晶闸管整流技术来实现,本文给出了晶闸管整流装置和直流电机的数学模型,根据此模型分别完成了电流坏和转速环的设计和分析验证。针对该系统中的非线性、时变性和外界扰动等因素,本文将模糊控制和PI控制相结合,设计了模糊自整定PI控制器,并给出了模糊控制的查询表。本文在系统基本构成及工程实现中,介绍了西门子公司生产的SIMOREGDC Master 6RA70全数字直流调速装置,并设计了该调速装置的启动操作步骤及参数设置。完成了该系统的远程监控功能设计,大大方便和简化了对试验水池拖车的控制。对全数字直流调速控制系统进行了EMC设计,提高了系统的抗干扰能力。本文最后通过数字仿真得到了该系统在常规PI控制器和模糊自整定PI控制器下的控制效果,并给出了系统在现场调试运行时的试验结果波形。经过一段时间的试运行工作证明该系统工作良好,达到了预期的设计目的。 提升装置在工业中应用极为普遍,其动力机构多采用电液比例阀或电液伺服阀控制液压马达或液压缸,以阀控马达或阀控缸来实现上升、下降以及速度控制。电液比例控制和电液伺服控制投资成本较高,维护要求高,且提升过程中存在速度误差及抖动现象,影响了正常生产。为满足生产要求,提高生产效率,需要研究一种新的控制方法来解决这些不足。随着科学技术的飞速发展,计算机技术在液压领域中的应用促进了电液数字控制技术的产生和发展,也使液压元件的数字化成为液压技术发展的必然趋势。本文以铅电解残阳极洗涤生产线中的提升装置为研究

步进电机的控制电路和程序

步进电机的控制电路和程序 先看一下我们将要使用的51单片机综合学习系统能完成哪些实验与产品开发工作:分别有流水灯,数码管显示,液晶显示,按键开关,蜂鸣器奏乐,继电器控制,IIC总线,SPI总线,PS/2实验,AD模数转换,光耦实验,串口通信,红外线遥控,无线遥控,温度传感,步进电机控制等等。 上图是我们将要使用的51单片机综合学习系统硬件平台,本期实验我们用到了综合系统主机、步进电机,综合系统其它功能模块原理与使用详见前几期《电子制作》杂志及后期连载教程介绍。 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。步进电机可以作为一种控制用的特种电机,利用其没有积累误差(精度为100%)的特点,广泛应用于各种开环控制。 步进电机分类与结构 现在比较常用的步进电机分为三种:反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)。本章节以反应式步进电机为例,介绍其基本原理与应用方法。反应式步进电机可实现大转矩输出,步进角一般为1.5度。反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。常用小型步进电机的实物如图1 所示。 图1步进电机实物图 图 2 步进电机内部图 步进电机现场应用驱动电路 综合系统使用的是小型步进电机,对电压和电流 要求不是很高,为了说明应用原理,故采用最简单 的驱动电路,目的在于验证步进电机的使用,在正 式工业控制中还需在此基础上改进。一般的驱动电 路可以用图3的形式。 图3 一般驱动电路 在实际应用中一般驱动路数不止一路,用上图的分立电路体积大,很多 场合用现成的集成电路作为多路驱动。常用的小型步进电机驱动电路可以用 ULN2003或ULN2803。本书配套实验板上用的是ULN2003。ULN2003是高压大电流达林顿晶体管阵列系列产品,具有电流增益高、工作电压高、温度范围宽、带负载能力强等特点,适应于各类要求高速大功率驱动的系统。ULN2003A由7组达林顿晶体管阵列和相应的电阻网络以及钳位二极管网络构成,具有同时驱动7组负载的能力,为单片双极型大功率高速集成电路。ULN2003内部结构及等效电路图如图4:

外文资料翻译---工业控制系统与协同控制系统

外文资料翻译 工业控制系统与协同控制系统 当今的控制系统被广泛运用于许多领域。从单纯的工业控制系统到协同控制系统(CCS),控制系统不停变化,不断升级,现在则趋向于家庭控制系统,而它则是这两者的变种。被应用的控制系统的种类取决于技术要求。而且,实践表明,经济和社会因素也对此很重要。任何决定都有它的优缺点。工业控制要求可靠性,完整的文献记载和技术支持。经济因素使决定趋向于协同工具。能够亲自接触源码并可以更快速地解决问题是家庭控制系统的要求。多年的操作经验表明哪个解决方法是最主要的不重要,重要的是哪个可行。由于异类系统的存在,针对不同协议的支持也是至关重要的。本文介绍工业控制系统,PlC controlled turn key 系统,和CCS工具,以及它们之间的操作。 引言: 80年代早期,随着为HERA(Hadron-Elektron-Ring-Anlage)加速器安装低温控制系统,德国电子同步加速器研究所普遍开始研究过程控制。这项新技术是必需的,因为但是现有的硬件没有能力来处理标准过程控制信号,如4至20毫安的电流输入和输出信号。而且软件无法在0.1秒的稳定重复率下运行PID控制回路。此外,在实现对复杂的低温冷藏系统的开闭过程中,频率项目显得尤为重要。 有必要增加接口解决总线问题并增加运算能力,以便于低温控制。因为已安装的D / 3系统[1] 只提供了与多总线板串行连接,以实现DMA与VME的连接并用其模拟多总线板的功能。温度转换器的计算功能来自一个摩托罗拉MVME 167 CPU和总线适配器,以及一个MVME 162 CPU。其操作系统是VxWorks,而应用程序是EPICS。 由于对它的应用相当成功,其还被运用于正在寻找一个通用的解决方案以监督他们的分布式PLC的公共事业管理。 德国电子同步加速器研究所对过程管理系统的筛选 集散控制系统(D/ 3): 市场调查表明:来自GSE的D / 3系统被HERA低温冷藏工厂选中。因为集散控制系统(D/ 3)的特性,所以这决定很不错。在展示端和I / O端扩展此系统的可能将有助于解决日益增加的 HERA试验控制的要求。制约系统的大小的因素不是I / O的总数,通信网络的畅通与否。而通信网络的畅通与否取决于不存档的数据总量,不取决于报警系统中配置的数据。 拥有DCS特点(Cube)的SCADA系统: 相对于Y2K问题促使我们寻找一个升级版或者代替版来代替现有的系统而言,以上提到的D / 3系统有一些硬编码的限制。由于急需给Orsi公司提供他们的产品,Cube开始起作用了[2]。该项目包括安装功能的完全更换。这包括D / 3,以及德国电子同步加速器研究所的集成总线SEDAC和VME的温度转换器。该项目很有前景。但是因为HERA试验原定时间是有限制的,所以技术问题和组织问题也迫使计划提前。在供应商网站上的最后验收测试又出现了戏剧性的性能问题。有两个因素引起了这些问题。第一个跟低估在1赫兹运行的6级温度转换器

步进电机控制系统设计.

毕业设计论文 论文题目:基于单片机的步进电机控制电路板设计 摘要 随着微电子和计算机技术的发展,步进电机的需求量与日俱增,它广泛用于打印机、电动玩具等消费类产品以及数控机床、工业机器人、医疗器械等机电产品中,其在各个国民经济领域都有应用。研究步进电机的控制系统,对提高控制精度和响应速度、节约能源等都具有重要意义。 步进电机是一种能将电脉冲信号转换成角位移或线位移的机电元件,步进电机控制系统主要由步进控制器,功率放大器及步进电机等组成。采用单片机控制,用软件代替上述步进控制器,使得线路简单,成本低,可靠性大大增加。软件编程可灵活产生不同类型步进电机励磁序列来控制各种步进电机的运行方式。 本设计是采用AT89C51单片机对步进电机的控制,通过IO口输出的时序方波作为步进电机的控制信号,信号经过芯片ULN2003驱动步进电机;同时,用 4个按键来对电机的状态进行控制,并用数码管动态显示电机的转速。 系统由硬件设计和软件设计两部分组成。其中,硬件设计包括AT89C51单片机的最小系统、电源模块、键盘控制模块、步进电机驱动(集成达林顿ULN2003)模块、数码显示(SM420361K数码管)模块、测速模块(含霍尔片UGN3020)6个功能模块的设计,以及各模块在电路板上的有机结合而实现。软件设计包括键盘控制、步进电机脉冲、数码管动态显示以及转速信号采集模块的控制程序,最终实现对步进电机转动方向及转动速度的控制,并将步进电机的转动速度动态显示在LED数码管上,对速度进行实时监控显示。软件采用在Keil软件环境下编辑

************* 第1章绪论 1.1 课题背景 当今社会,电动机在工农业生产、人们日常生活中起着十分重要的作用。步进电机是最常见的一种控制电机,在各领域中得到广泛应用。步进电机作为执行元件,是机电一体化的关键产品之一, 广泛应用在各种自动化控制系统中。 随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。步进电机是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。步进电机可以作为一种控制用的特种电机,其优点是结构简单、运行可靠、控制方便。尤其是步距值不受电压、温度的变化的影响、误差不会长期积累的特点,给实际的应用带来了很大的方便。它广泛用于消费类产品(打印机、照相机、雕刻机)、工业控制(数控机床、工业机器人)、医疗器械等机电产品中。研究步进电机的控制和测量方法,对提高控制精度和响应速度、节约能源等都具有重要意义。控制核心采用C51芯片,它以其独特的低成本,小体积广受欢迎,当然其易编程也是不可多得的优点为此,本文设计了一个单片机控制步进电机的控制系统,可以实现对步进电机转动速度和转动方向的高效控制。 1.2 设计目的及系统功能 本设计的目的是以单片机为核心设计出一个单片机控制步进电机的控制系统。本系统采用AT89C51作为控制单元,通过键盘实现对步进电机转动方向及转动速度的控制,并且将步进电机的转动速度动态显示在LED数码管上。 1

毕业设计外文翻译---控制系统介绍

英文原文 Introductions to Control Systems Automatic control has played a vital role in the advancement of engineering and science. In addition to its extreme importance in space-vehicle, missile-guidance, and aircraft-piloting systems, etc, automatic control has become an important and integral part of modern manufacturing and industrial processes. For example, automatic control is essential in such industrial operations as controlling pressure, temperature, humidity, viscosity, and flow in the process industries; tooling, handling, and assembling mechanical parts in the manufacturing industries, among many others. Since advances in the theory and practice of automatic control provide means for attaining optimal performance of dynamic systems, improve the quality and lower the cost of production, expand the production rate, relieve the drudgery of many routine, repetitive manual operations etc, most engineers and scientists must now have a good understanding of this field. The first significant work in automatic control was James Watt’s centrifugal governor for the speed control of a steam engine in the eighteenth century. Other significant works in the early stages of development of control theory were due to Minorsky, Hazen, and Nyquist, among many others. In 1922 Minorsky worked on automatic controllers for steering ships and showed how stability could be determined by the differential equations describing the system. In 1934 Hazen, who introduced the term “ervomechanisms”for position control systems, discussed design of relay servomechanisms capable of closely following a changing input. During the decade of the 1940’s, frequency-response methods made it possible for engineers to design linear feedback control systems that satisfied performance requirements. From the end of the 1940’s to early 1950’s, the root-locus method in control system design was fully developed. The frequency-response and the root-locus methods, which are the

相关文档
最新文档