随机试验报告(基于小波算法的弱信号提取)

随机试验报告(基于小波算法的弱信号提取)
随机试验报告(基于小波算法的弱信号提取)

北理工随机信号分析实验报告

本科实验报告实验名称:随机信号分析实验

实验一 随机序列的产生及数字特征估计 一、实验目的 1、学习和掌握随机数的产生方法。 2、实现随机序列的数字特征估计。 二、实验原理 1、随机数的产生 随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。 在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。 (0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下: )(m od ,110N ky y y n n -= N y x n n /= 序列{}n x 为产生的(0,1)均匀分布随机数。 下面给出了上式的3组常用参数: 1、10 N 10,k 7==,周期7 510≈?; 2、(IBM 随机数发生器)31 16 N 2,k 23,==+周期8 510≈?; 3、(ran0)31 5 N 21,k 7,=-=周期9 210≈?; 由均匀分布随机数,可以利用反函数构造出任意分布的随机数。 定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有 )(1R F X x -= 由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变

Erdas实验报告

E RDAS实验报告 图像融合实验 数据来源 采用Erdas中examples文件内的2000年Atlanta多光谱TM数据和高清全色Pan数据。两图为同一地区不同坐标影像,故使用前需预处理从而得到实验区域。 目的 多光谱TM数据分辨率较低但包含多波段色彩,而全色Pan数据只包含一层高清影像,为了得到研究区域的高清彩色影像,我们将TM和Pan数据在Erdas2014中进行融合以达到实验目的。 方法 在遥感领域运用较多的融合方法有主成分变换法、比值变换法、小波变换法和HIS变换法。本实验则运用HIS变换法。IHS属于色度空间变换,从多光谱彩色合成影像上分离出代表信息的明度(I)和代表光谱信息的色调(H)、饱和度(S)等3个分量,并采用相同区域的高分辨率全色波段数据代替明度(I)进行空间信息融合。 步骤 1.几何校正 因原始图像空间坐标不同,需选取控制点进行几何校正。本实验校正方法为多项式法,选取6个控制点进行校正,其校正叠加截图如下:

2.叠加剪切 由校正结果可知两图像只有部分区域重合,所以建立AOI对重合区域进行剪切,以得到研究区域,截图如下: 3.重采样 因多光谱图像分辨率较低,像元点较大,若要与全色图融合出高清影像需进行重采样来调整像元大小,以达到与高清图一致。 4.二次剪切 因图为栅格,统一像元后,边缘区必然会有一定的扩展(如下图),虽说扩展的范围较小,但在科研应用方面不符合要求,故须二次剪切。 5.RGB转HIS

TM图像选取前三层再分别赋予蓝、绿、红三色,转化为HIS格式,如下图: 6.直方图匹配 将高清图像直方图以标准图像的直方图为标准作变换,使全色光图和HIS图中I层两图像的直方图相同和近似,从而使两幅图像具有类似的色调和反差,以便作进一步的运算。 7.图像叠加 运用Layer stack功能将全色光高清图和H、S图层进行叠加即所谓的图像融合。它将多波段图层组合到了一起,从而得到新的包含多个有助于研究者使用的多波段影像。 8.IHS转RGB

随机信号分析实验报告

一、实验名称 微弱信号的检测提取及分析方法 二、实验目的 1.了解随机信号分析理论如何在实践中应用 2.了解随机信号自身的特性,包括均值、方差、相关函数、频谱及功率谱密度等 3.掌握随机信号的检测及分析方法 三、实验原理 1.随机信号的分析方法 在信号与系统中,我们把信号分为确知信号和随机信号。其中随机信号无确定的变化规律,需要用统计特新进行分析。这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。 随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。本实验中算法都是一种估算法,条件是N要足够大。 2.微弱随机信号的检测及提取方法 因为噪声总会影响信号检测的结果,所以信号检测是信号处理的重要内容之一,低信噪比下的信号检测是目前检测领域的热点,而强噪声背景下的微弱信号提取又是信号检测的难点。 噪声主要来自于检测系统本身的电子电路和系统外空间高频电磁场干扰等,通常从以下两种不同途径来解决 ①降低系统的噪声,使被测信号功率大于噪声功率。 ②采用相关接受技术,可以保证在信号功率小于噪声功率的情况下,人能检测出信号。 对微弱信号的检测与提取有很多方法,常用的方法有:自相关检测法、多重自相法、双谱估计理论及算法、时域方法、小波算法等。 对微弱信号检测与提取有很多方法,本实验采用多重自相关法。 多重自相关法是在传统自相关检测法的基础上,对信号的自相关函数再多次做自相关。即令: 式中,是和的叠加;是和的叠加。对比两式,尽管两者信号的幅度和相位不同,但频率却没有变化。信号经过相关运算后增加了信噪比,但其改变程度是有限的,因而限制了检测微弱信号的能力。多重相关法将 当作x(t),重复自相关函数检测方法步骤,自相关的次数越多,信噪比提高的越多,因此可检测出强噪声中的微弱信号。

基于小波信号的噪声消除matlab实验报告

南京师范大学物理科学与技术学院 医用电子学论文 论文名称:基于小波变换的心电信号噪声消除 院系:物科院 专业:电路与系统 姓名:聂梦雅 学号: 121002043 指导教师:徐寅林

摘要 以小波变换的多分辨率分析为基础, 通过对体表心电信号(ECG) 及其噪声的分析, 对ECG信号中存在的基线漂移、工频干扰及肌电干扰等几种噪声, 设计了不同的小波消噪算法; 并利用MIT/BIH 国际标准数据库中的ECG 信号和程序模拟所产生的ECG 信号, 分别对算法进行了仿真与实验验证。结果表明, 算法能有效地滤除ECG 信号检测中串入的几类主要噪声, 失真度很小, 可满足临床分析与诊断对ECG 波形的要求。 关键词: ECG 信号, 小波变换, 基线漂移, 工频干扰, 肌电干扰

Abstract We apply the multi-resolution analysis (MRA ) of wavelet transform ( WT ) , which was proposed by Mallat [ 5 ] , to suppress the three main types of noises existing in electrocardiogram ( ECG ) signals : baseline wander, power line interference and electro my ographical interference. We apply Mallat algorithm [ 4 ] to suppress the baseline wander in ECG signals. We apply the sof t-thresholding algorithm, proposed by donohoetal on the basis of MRA of WT , to suppress power line interference in ECG signals. We apply Mallat algorithm and then the algorithm proposed by Donohoetal to suppress the electro my ographical interference in ECG signals ,who sefrequency range varies f rom 5Hz to 2kHz. We performed simulations ,using both ECG signals from MIT/BIH database, and ECG signals generated via computer simulation .The results show that the algorithm can suppress the main no isesexisting in ECG signals efficiently with very little distortion, and can satisfy the requirement s of clinical analysis and diagnosis on ECG waveforms. Key words: ECG (electro cardio gram ) signal, wavelet transform , baseline wander, power line interference , electro my ographical interference

实验报告

实验课程: 数学分析 专业: 数学与应用数学 班级: 09级数本一班 学号: 2009403078 姓名: 王h 实验一 函数极限(黑体三号) 【实验目的】1.掌握使用Matlab 求极限的方法2.通过Matlab 实验理解掌握极限的定义。 【实验内容】1.求函数极限 2. 求数列极限 3. 了解函数在某点连续 【实验所使用的仪器设备与软件平台】实验使用MATLAB 软件 【实验方法与步骤】(阐述实验的原理、方案、方法及完成实验的具体步骤等,对于必须编写计算机程序的实验,要附上编写的程序) 一、 实验原理:1.运用数列极限的定义。2.函数极限的定义。3.函数) (x f 在0x 点连续的定义。4.运用极限)(lim x f 与)(lim x f 存在的充要条件。 二、 实验方案与方法:首先了解极限的定义,然后运用Matlab 软件编写 程序求极限。在使用Matlab 时要会运用声明符号变量syms,并且针对函数求极限的情况(左极限或右极限以及趋近于某点的左右极限等不同情况)编写相应的程序。 三、 实验步骤: 1. 先确定函数极限求∞ →n lim n n ,) 1ln(cos 1lim +-→x e x x x ,2 2 ) 2(sin ln lim x x x -→ ππ ,x x arctan lim ∞ →, x x x x 2) 1( lim +∞ → 2. 以第一个为例编写程序如下:

3.再求数列极限618 .02 15lim 1 ≈-= +∞ →n n n F F (其中已知数列 ] )2 5 1( )2 5 1[(5 1F 1 1 ++--+= n n n 【实验结果】 【结果分析与讨论】

随机信号通过线性和非线性系统后地特性分析报告 实验报告材料

实验三 随机信号通过线性和非线性系统后的特性分析 一、实验目的 1、了解随机信号的均值、均方值、方差、自相关函数、互相关函数、概率密度、频谱及功率谱特性。 2、研究随机信号通过线性系统和非线性系统后的均值、均方值、方差、自相关函数、互相关函数、概率密度、频谱及功率谱有何变化,分析随机信号通过线性系统和非线性系统后的特性 二、实验仪器与软件平台 1、 微计算机 2、 Matlab 软件平台 三、实验步骤 1、 根据本实验内容和要求查阅有关资料,设计并撰写相关程序流程。 2、 选择matlab 仿真软件平台。 3、 测试程序是否达到设计要求。 4、 分析实验结果是否与理论概念相符 四、实验内容 1、 随机信号通过线性系统和非线性系统后的特性分析 (1)实验原理 ①随机信号的分析方法 在信号系统中,可以把信号分成两大类:确定信号和随机信号。确定信号具有一定的变化规律,二随机信号无一定的变化规律,需要用统计特性进行分析。在这里引入了一个随机过程的概念。所谓随机过程,就是随机变量的集合,每个随机变量都是随机过程的一个采样序列。随机过程可以分为平稳的和非平稳的,遍历的和非遍历的。如果随机信号的统计特性不随时间的推移而变化。则随机过程是平稳的。如果一个平稳的随机过程的任意一个样本都具有相同的统计特性。则随机过程是遍历的。下面讨论的随机过程都认为是平稳的遍历的随机过程,因此,可以随机取随机过程的一个样本值来描述随机过程中的统计特性。 随机过程的统计特性一般采用主要的几个平均统计特性函数来描述,包括、均方值、方差、自相关系数、互相关系数、概率密度、频谱及功率谱密度等。 a.随机过程的均值 均值E[x(t)]表示集合平均值或数学期望值。基于过程的各态历经行,可用时间间隔T 内的幅值平均值表示,即 ∑-==1 /)()]([N t N t x t x E 均值表达了信号变化的中心趋势,或称之为直流分量。

小波变换

《医学图像处理》实验报告 实验十:小波变换 日期: 2014年05月06日 摘要 本次实验的实验目的及主要内容是: 一维小波变换和反变换 二维小波变换和反变换 二维小波细节置零、去噪

一、技术讨论 1.1实验原理 小波变换的原理:是指一组衰减震动的波形,其振幅正负相间变化为零,是具有一定的带宽和中心频率波组。小波变换是用伸缩和平移小波形成的小波基来分解(变换)或重构(反变换)时变信号的过程。不同的小波具有不同带宽和中心频率,同一小波集中的带宽与中心频率的比是不变的,小波变换是一系列的带通滤波响应。它的数学过程与傅立叶分析是相似的,只是在傅立叶分析中的基函数是单频的调和函数,而小波分析中的基函数是小波,是一可变带宽内调和函数的组合。 小波去噪的原理:利用小波变换把含噪信号分解到多尺度中,小波变换多采用二进型,然后在每一尺度下把属于噪声的小波系数去除,保留并增强属于信号的小波系数,最后重构出小波消噪后的信号。其中关键是用什么准则来去除属于噪声的小波系数,增强属于信号的部分。 1.2实验方法 1)dwt函数(实现1-D离散小波变换) [cA,cD]=dwt(X,’wname’)使用指定的小波基函数‘wname’对信号X进行分解,cA和cD分别是近似分量和细节分量; [cA,cD]=dwt(X,Lo_D,Hi_D)用指定的滤波器组Lo_D,Hi_D对信号进行分解 2)idwt函数(实现1-D离散小波反变换) X=idwt(cA,cD,’wname’) X=idwt(cA,cD,Lo_R,Hi_R) X=idwt(cA,cD,’wname’,L) X=idwt(cA,cD,Lo_R,Hi_R,L) 由近似分量cA和细节分量cD经过小波反变换,选择某小波函数或滤波器组,L为信号X中心附近的几个点 3)dwt2函数(实现2-D离散小波变换) [cA,cH,cV,cD]=dwt2(X,’wname’) [cA,cH,cV,cD]=dwt2(X,’wname’) cA近似分量,cH水平细节分量,cV垂直细节分量,cD对角细节分量 4)idwt2函数(实现2-D离散反小波变换) X=idwt2(cA,cH,cV,cD,’wname’) X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R) X=idwt2(cA,cH,cV,cD,’wname’,S) X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S)

课 程 实 验 报 告

课程实验报告 专业年 2012年 课程名称应用多元统计分析 指导教师 *** 学生姓名 ** 学号 *************** 实验日期 ********** 实验地点实验室 实验成绩 教务处制 2013 年1月 12 日

实验项 目名称系统聚类分析与主成分分析的上机实验 实验目的SPSS软件中factor analysis的计算机操作及结果分析,使学生能熟练应用计算机及要求软件进行聚类分析与主成分分析与结果分析,培养实际应用能力。 题目: 实某地区35个城市2004年的7项经济统计指标数据(见附表)(1)试用最短距离聚类法对35个城市综合实力进行系统聚类分析,验并画出聚类谱系图。 (2)试用主成分分析法对35个城市7项经济指标进行主成分分析,内并分析其综合实力。 注:对输出结果进行分析! 容要求: 将SPSS软件的分析过程的关键步骤截图说明,需要计算 的地方要写出详细计算步骤。 实聚类分析:1.选择菜单项:分析→分类→系统聚类分析,在系统聚类分析对话 验框中将“城市编号”变量选入“标注个案(C)”中,将其他变量选入“变量框”中,如图一所步在“分群”单选框中选中“个案”,表示进行的是Q型聚类。在“输出”复选框中选中“统计量” 骤和“图”,表示要输出的结果包含以上两项。

图一: 2. 单击“统计量(S)”按钮,在“系统聚类分析:统计量”对话框中选择“合并进程表”、“相似性矩阵”,表示输出结果将包括这两项内容。 3.单击“绘制(T)”按钮,在“系统聚类分析:图”对话框中选择“树状图”、“冰柱”,表示输出的结果将包括谱系聚类图(树状)以及冰柱图(垂直)。 4.单击“方法(M)”按钮,弹出“系统聚类分析:方法”对话框。“聚类方法(M)”选项条中可选项包括的几种方法,本实验中选择“组间联接”:“度量标准-区间(N)”选项条中可选项包括的几种度量方法,本实验中选择“平方Euclidean距离”:“转换值-标准化(S)”选项条中可选项包括几种将原始数据标准化的方法,本实验中选择“全局从0到1”。

随机信号实验报告

随机信号分析 实验报告 目录 随机信号分析 (1) 实验报告 (1) 理想白噪声和带限白噪声的产生与测试 (2) 一、摘要 (2) 二、实验的背景与目的 (2) 背景: (2) 实验目的: (2) 三、实验原理 (3) 四、实验的设计与结果 (4) 实验设计: (4) 实验结果: (5) 五、实验结论 (12) 六、参考文献 (13) 七、附件 (13) 1

理想白噪声和带限白噪声的产生与测试一、摘要 本文通过利用MATLAB软件仿真来对理想白噪声和带限白噪声进行研究。理想白噪声通过低通滤波器和带通滤波器分别得到低通带限白噪声和帯通带限白噪声。在仿真的过程中我们利用MATLAB工具箱中自带的一些函数来对理想白噪声和带限白噪声的均值、均方值、方差、功率谱密度、自相关函数、频谱以及概率密度进行研究,对对它们进行比较分析并讨论其物理意义。 关键词:理想白噪声带限白噪声均值均方值方差功率谱密度自相关函数、频谱以及概率密度 二、实验的背景与目的 背景: 在词典中噪声有两种定义:定义1:干扰人们休息、学习和工作的声音,引起人的心理和生理变化。定义2:不同频率、不同强度无规则地组合在一起的声音。如电噪声、机械噪声,可引伸为任何不希望有的干扰。第一种定义是人们在日常生活中可以感知的,从感性上很容易理解。而第二种定义则相对抽象一些,大部分应用于机械工程当中。在这一学期的好几门课程中我们都从不同的方面接触到噪声,如何的利用噪声,把噪声的危害减到最小是一个很热门的话题。为了加深对噪声的认识与了解,为后面的学习与工作做准备,我们对噪声进行了一些研究与测试。 实验目的: 了解理想白噪声和带限白噪声的基本概念并能够区分它们,掌握用MATLAB 或c/c++软件仿真和分析理想白噪声和带限白噪声的方法,掌握理想白噪声和带限白噪声的性质。

哈工大小波分析上机实验报告

小波分析上机实验报告 院系:电气工程及自动化学院 学科:仪器科学与技术

实验一小波分析在信号压缩中的应用 一、试验目的 (1)进一步加深对小波分析进行信号压缩的理解; (2)学习Matlab中有关信号压缩的相关函数的用法。 二、相关知识复习 用一个给定的小波基对信号进行压缩后它意味着信号在小波阈的表示相对缺少了一些信息。之所以能对信号进行压缩是因为对于规则的信号可以用很少的低频系数在一个合适的小波层上和一部分高频系数来近似表示。 利用小波变换对信号进行压缩分为以下几个步骤来完成: (1)进行信号的小波分解; (2)将高频系数进行阈值量化处理。对从1 到N 的每一层高频系数都可以选择不同的阈值并且用硬阈值进行系数的量化; (3)对量化后的系数进行小波重构。 三、实验要求 (1)对于某一给定的信号(信号的文件名为leleccum.mat),利用小波分析对信号进行压缩处理。 (2)给出一个图像,即一个二维信号(文件名为wbarb.mat),利用二维小波分析对图像进行压缩。 四、实验结果及程序 (1)load leleccum %将信号装入Matlab工作环境 %设置变量名s和ls,在原始信号中,只取2600-3100个点 s = leleccum(2600:3100); ls = length(s); %用db3对信号进行3级小波分解 [c,l] = wavedec(s, 3, 'db3'); %选用全局阈值进行信号压缩 thr = 35; [xd,cxd,lxd,perf0,perfl2] = wdencmp('gbl',c,l,'db3',3,thr,'h',1); subplot(2,1,1);plot(s); title('原是信号s'); subplot(2,1,2);plot(xd); title('压缩后的信号xd');

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告 ——基于MATLAB语言 姓名: _ 班级: _ 学号: 专业:

目录 实验一随机序列的产生及数字特征估计 (2) 实验目的 (2) 实验原理 (2) 实验内容及实验结果 (3) 实验小结 (6) 实验二随机过程的模拟与数字特征 (7) 实验目的 (7) 实验原理 (7) 实验内容及实验结果 (8) 实验小结 (11) 实验三随机过程通过线性系统的分析 (12) 实验目的 (12) 实验原理 (12) 实验内容及实验结果 (13) 实验小结 (17) 实验四窄带随机过程的产生及其性能测试 (18) 实验目的 (18) 实验原理 (18) 实验内容及实验结果 (18) 实验小结 (23) 实验总结 (23)

实验一随机序列的产生及数字特征估计 实验目的 1.学习和掌握随机数的产生方法。 2.实现随机序列的数字特征估计。 实验原理 1.随机数的产生 随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。 在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。 (0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下: y0=1,y n=ky n(mod N) ? x n=y n N 序列{x n}为产生的(0,1)均匀分布随机数。 定理1.1若随机变量X 具有连续分布函数F x(x),而R 为(0,1)均匀分布随机变量,则有 X=F x?1(R) 2.MATLAB中产生随机序列的函数 (1)(0,1)均匀分布的随机序列函数:rand 用法:x = rand(m,n) 功能:产生m×n 的均匀分布随机数矩阵。 (2)正态分布的随机序列 函数:randn 用法:x = randn(m,n) 功能:产生m×n 的标准正态分布随机数矩阵。 如果要产生服从N(μ,σ2)分布的随机序列,则可以由标准正态随机序列产生。 (3)其他分布的随机序列 分布函数分布函数 二项分布binornd 指数分布exprnd 泊松分布poissrnd 正态分布normrnd 离散均匀分布unidrnd 瑞利分布raylrnd 均匀分布unifrnd X2分布chi2rnd 3.随机序列的数字特征估计 对于遍历过程,可以通过随机序列的一条样本函数来获得该过程的统计特征。这里我们假定随机序列X(n)为遍历过程,样本函数为x(n),其中n=0,1,2,……N-1。那么,

随机信号分析实验报告二 2

《随机信号分析》实验报告二 班级: 学号: 姓名:

实验二高斯噪声的产生和性能测试 1.实验目的 (1)掌握加入高斯噪声的随机混合信号的分析方法。 (2)研究随机过程的均值、相关函数、协方差函数和方差。 ⒉实验原理 (1)利用随机过程的积分统计特性,给出随机过程的均值、相关函数、协方差函数和方差。 (2)随机信号均值、方差、相关函数的计算公式,以及相应的图形。 ⒊实验报告要求 (1)简述实验目的及实验原理。 (2)采用幅度为1,频率为25HZ的正弦信号错误!未找到引用源。为原信号,在其中加入均值为2,方差为0.04的高斯噪声得到混合随机信号X(t)。 试求随机过程 的均值、相关函数、协方差函数和方差。用MATLAB进行仿真,给出测试的随机过程的均值、相关函数、协方差函数和方差图形,与计算的结果作比较,并加以解释。 (3)分别给出原信号与混合信号的概率密度和概率分布曲线,并以图形形式分别给出原信号与混合信号均值、方差、相关函数的对比。 (4)读入任意一幅彩色图像,在该图像中加入均值为0,方差为0.01的高斯噪声,请给出加噪声前、后的图像。 (5)读入一副wav格式的音频文件,在该音频中加入均值为2,方差为0.04的高斯噪声,得到混合随机信号X(t),请给出混合信号X(t)的均值、相关函数、协方差函数和方差,频谱及功率谱密度图形。 4、源程序及功能注释 (2)源程序: clear all; clc; t=0:320; %t=0:320 x=sin(2*pi*t/25); %x=sin(2*p1*t/25) x1=wgn(1,321,0); %产生一个一行32列的高斯白噪声矩阵,输出的噪声强度为0dbw

小波实验报告一维Haar小波2次分解

一、题目:一维Haar 小波2次分解 二、目的:编程实现信号的分解与重构 三、算法及其实现:离散小波变换 离散小波变换是对信号的时-频局部化分析,其定义为:/2200()(,)()(),()()j j Wf j k a f t a t k dt f t L R φ+∞---∞=-∈? 本实验实现对信号的分解与重构: (1)信号分解:用小波工具箱中的dwt 函数来实现离散小波变换,函数dwt 将信号分解为两部分,分别称为逼近系数和细节系数(也称为低频系数和高频系数),实验中分别记为cA1,cD1,它们的长度均为原始信号的一半,但dwt 只能实现原始信号的单级分解。在本实验中使用小波函数db1来实现单尺度小波分解,即: [cA1,cD1]=dwt(s,’db1’),其中s 是原信号;再通过[cA2,cD2]=dwt(cA1,’db1’)进行第二次分解,长度又为cA2的一半。 (2)信号重构:用小波工具箱中的upcoef 来实现,upcoef 是进行一维小波分解系数的直接重构,即: A1 = upcoef('a',cA1,'db1'); D1 = upcoef('a',cD1,'db1')。 四、实现工具:Matlab 五、程序代码: %装载leleccum 信号 load leleccum; s = leleccum(1:3920); %用小波函数db1对信号进行单尺度小波分解 [cA1,cD1]=dwt(s,'db1'); subplot(3,2,1); plot(s); title('leleccum 原始信号'); %单尺度低频系数cA1向上一步的重构信号 A1 = upcoef('a',cA1,'db1'); %单尺度高频系数cD1向上一步的重构信号 D1 = upcoef('a',cD1,'db1'); subplot(3,2,3); plot(A1); title('单尺度低频系数cA1向上一步的重构信号'); subplot(3,2,5); plot(D1); title('单尺度高频系数cD1向上一步的重构信号'); [cA1,cD1]=dwt(cA1,’db1'); subplot(3,2,2); plot(s); title('leleccum 第一次分解后的cA1信号'); %第二次分解单尺度低频系数cA2向上一步的重构信号 A2= upcoef('a',cA2,'db1',2); %第二次分解单尺度高频系数cD2向上一步的重构信号 D2 = upcoef('a',cD2,'db1',2); subplot(3,2,4); plot(A2);

哈工大小波实验报告

小波理论实验报告 院(系) 专业 学生 学号 日期 2015年12月

实验报告一 一、 实验目的 1. 运用傅立叶变换知识对常用的基本函数做基本变换。 2. 加深对因果滤波器的理解,并会判断因果滤波器的类型。 3. 运用卷积公式对基本信号做滤波处理并分析,以加深理解。 4. 熟悉Matlab 中相关函数的用法。 二、 实验原理 1.运用傅立叶正、反变换的基本公式: ( )?()() ()(),1 1?()(),22i x i t i t i t i t f f x e dx f t e dt f t e f t f e d f t e ωωωωωωωωπ π ∞∞---∞ -∞ ∞ --∞ ==== =?? ? 及其性质,对所要处理信号做相应的傅里叶变换和逆变换。 2.运用卷积的定义式: 1212()()()()+∞ -∞ *=-? f t f t f f t d τττ 对所求信号做滤波处理。 三、 实验步骤与内容 1.实验题目: Butterworth 滤波器,其冲击响应函数为 ,0 ()0, 0若若α-?≥=?

北邮DSP实验报告

北京邮电大学 数字信号处理硬件实验 实验名称:dsp硬件操作实验姓名:刘梦颉班级: 2011211203 学号:2011210960 班内序号:11 日期:2012年12月20日 实验一常用指令实验 一、实验目的 了解dsp开发系统的组成和结构,熟悉dsp开发系统的连接,熟悉dsp的开发界面,熟 悉c54x系列的寻址系统,熟悉常用c54x系列指令的用法。 二、实验设备 计算机,ccs 2.0版软件,dsp仿真器,实验箱。 三、实验操作方法 1、系统连接 进行dsp实验之前,先必须连接好仿真器、实验箱及计算机,连接方法如下所示: 1)上电复位 在硬件安装完成后,接通仿真器电源或启动计算机,此时,仿真盒上的“红色小灯”应 点亮,否则dsp开发系统与计算机连接有问题。 2)运行ccs程序 先实验箱上电,然后启动ccs,此时仿真器上的“绿色小灯”应点亮,并且ccs正常启 动,表明系统连接正常;否则仿真器的连接、jtag接口或ccs相关设置存在问题,掉电,检 查仿真器的连接、jtag接口连接,或检查ccs相关设置是否正确。 四、实验步骤与内容 1、实验使用资源 实验通过实验箱上的xf指示灯观察程序运行结果 2、实验过程 启动ccs 2.0,并加载“exp01.out”;加载完毕后,单击“run”运行程序; 五、实验结果 可见xf灯以一定频率闪烁;单击“halt”暂停程序运行,则xf灯停止闪烁,如再单击 “run”,则“xf”灯又开始闪烁; 关闭所有窗口,本实验完毕。 六、源程序代码及注释流程图: 实验二资料存储实验 一、实验目的 掌握tms320c54的程序空间的分配;掌握tms320c54的数据空间的分配;熟悉操作 tms320c54数据空间的指令。 二、实验设备 计算机,ccs3.3版软件,dsp仿真器,实验箱。 三、实验系统相关资源介绍 本实验指导书是以tms32ovc5410为例,介绍相关的内部和外部内存资源。对于其它类型 的cpu请参考查阅相关的资料手册。下面给出tms32ovc5410的内存分配表: 对于存储空间而言,映像表相对固定。值得注意的是内部寄存器与存储空间的映像关系。 因此在编程应用时这些特定的空间不能作其它用途。对于篇二:31北邮dsp软件实验报告北京邮电大学 dsp软件

肌组织实验报告

竭诚为您提供优质文档/双击可除 肌组织实验报告 篇一:表面肌实验报告 武汉理工大学 现代数字信号处理在前沿学科中的应用实验报告 基于semg时域特征的动作识别 学院:信息工程学院 学号:姓名: 班级:电子154 实验基于semg时域特征特的动作识别 一、实验目的 1.了解肌电信号常用的时域分析方法; 2.利用mATLAb对肌电信号进行去噪、特征提取及动作识别; 二、实验设备 1.wi-Fi表面肌电信号采集卡; 2.32位windowsxp台式机(matlab7.0软件); 3.802.11b/g无线网卡;

三、实验内容 (1)学习信号的基本去噪方法,并用mATLAb实现; (2)学习肌电信号常用的时域特征并利用matlab来进行波形长度(wL)符号改变数(ssc)、过零点(Zc)、威尔 逊赋值(wAmp)等特征的提取; (3)学习神经网络信号处理方法,掌握bp神经网络的用法,将其用于肌电信号的动作识别。 学习以上三个部分,最终完成一整套肌电信号去噪、特征提取(选取一种特征)、基于特征的动作识别的mATLAb程序。 四、实验原理 (1)小波去噪 小波去噪方法是一种建立在小波变换基础上的新兴算法,基本思想是根据噪声在不同频带上的小波分解系数具有不同强度分布的特点,将各频带上的噪声对应的小系数去除,保留原始信号的小波分解系数,然后对处理后系数进行小波重构,得到纯净信号。 小波去噪的基本原理图如下 (2)特征提取 时域分析是将肌电信号看成均值为零,而方差随着信号强度的变化而变化的随机信号。时域特征的计算复杂度低,提取比较方便。

最常用的方法有:方差,过零点数(Zerocrossing,Zc),willison幅值(willisonAmplitude,wAmp),绝对值平均值(meanAbsoluteValue,mAV)和波形长度(wavelength,wL)等。在实际应用中,为了让特征可以包含更多的信息,往往选择用不同的时域特征组合形成联合特征向量。我们主要介绍一下几种方法: 过零率(Zc):为波形通过零线的次数,从一定程度上反映了信号的频率特性。为了降低零点引入的噪声,往往会引入一个阈值δ。计算方式如下: sgn(?xk?xk?1),(xk?xk?1??)(1)willison幅值:是由willison提出一种对表面肌电信号的幅值变化数量进行计 算的方法,经过后人的研究,对willison幅值的阈值有了明确的范围限定,目前认为50~100?V是最合适的阈值范围。其数学表示公式如公式(3-3)。 wAmp??fxi?xi?1 t?1n(2) ?1f(x)???0其中:ifx?阈值otherwise 波形长度(wL):它是对某一分析窗中的波形长度的统计,波长可以体现该样本的持续时间、幅值、频率的特征。 1n?1 wL??x(i?1)?x(i)ni?1(3)符号改变斜率(ssc):为信号的的频率性能提供了一些附加信息,对于3个连续的采样

随机信号分析实验报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y 实验报告 课程名称:随机信号分析 院系:电子与信息工程学院班级: 姓名: 学号: 指导教师: 实验时间: 实验一、各种分布随机数的产生

(一)实验原理 1.均匀分布随机数的产生原理 产生伪随机数的一种实用方法是同余法,它利用同余运算递推产生伪随机数序列。最简单的方法是加同余法 )(mod 1M c y y n n +=+ M y x n n 1 1++= 为了保证产生的伪随机数能在[0,1]内均匀分布,需要M 为正整数,此外常数c 和初值y0亦为正整数。加同余法虽然简单,但产生的伪随机数效果不好。另一种同余法为乘同余法,它需要两次乘法才能产生一个[0,1]上均匀分布的随机数 )(mod 1M ay y n n =+ M y x n n 1 1++= 式中,a 为正整数。用加法和乘法完成递推运算的称为混合同余法,即 )(mod 1M c ay y n n +=+ M y x n n 1 1++= 用混合同余法产生的伪随机数具有较好的特性,一些程序库中都有成熟的程序供选择。 常用的计算语言如Basic 、C 和Matlab 都有产生均匀分布随机数的函数可以调用,只是用各种编程语言对应的函数产生的均匀分布随机数的范围不同,有的函数可能还需要提供种子或初始化。 Matlab 提供的函数rand()可以产生一个在[0,1]区间分布的随机数, rand(2,4)则可以产生一个在[0,1]区间分布的随机数矩阵,矩阵为2行4列。Matlab 提供的另一个产生随机数的函数是random('unif',a,b,N,M),unif 表示均匀分布,a 和b 是均匀分布区间的上下界,N 和M 分别是矩阵的行和列。 2.随机变量的仿真 根据随机变量函数变换的原理,如果能将两个分布之间的函数关系用显式表达,那么就可以利用一种分布的随机变量通过变换得到另一种分布的随机变量。 若X 是分布函数为F(x)的随机变量,且分布函数F(x)为严格单调升函数,令Y=F(X),则Y 必为在[0,1]上均匀分布的随机变量。反之,若Y 是在[0,1]上 均匀分布的随机变量,那么)(1 Y F X X -= 即是分布函数为FX(x)的随机变量。式中F X -?1 ()为F X ()?的反函数。这样,欲求某个分布的随机变量,先产生在[0,1]区间上的均匀分布随机数,再经上式变 换,便可求得所需分布的随机数。 3.高斯分布随机数的仿真 广泛应用的有两种产生高斯随机数的方法,一种是变换法,一种是近似法。 如果X1,X2是两个互相独立的均匀分布随机数,那么下式给出的Y1,Y2

随机信号处理模实验报告

随机信号分析与处理实验报告院系:信息工程学院 专业:电子信息科学与技术 姓名: 方静 学号:030941209 指导老师:廖红华

实验一 熟悉MATLAB 的随机信号处理相关命令 一、实验目的 1、利用Matlab 对随机熟悉各种随机信号函数的用法 2、掌握随机信号的简单分析方法 二、实验原理 1、语音的录入与打开 在MATLAB 中,wavread 函数用于读取语音信号,采样值放在向量y 中,s f 表示采样频率(Hz),bits 表示 采样位数。[N1 N2]表示读取从N1点到N2点的值。 2、语音信号的频域分析 FFT 即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。在Matlab 信号处理工具箱中,语音信号的频域分析就是对信号进行傅里叶变换后的分析。 4、方差 定义22)]}()({[t t m t X E X X -=)(δ 为随机过程的方差。方差通常也记为DX (t ) ,随机过程的方差也是时间 t 的函数, 由方差的 定义可以看出,方差是非负函数。 5、自相关与互相关 自相关和互相关分别表示的是两个时间序列之间和同一个时间序列在任意两个不同时刻的取值之间的相关程度,即互相关函数是描述随机信号x(t),y(t)在任意两个不同时刻t1,t2的取值之间的相关程度,自相关函数是描述随机信号x(t)在任意两个不同时刻t1,t2的取值之间的相关程度。 互相关函数给出了在频域内两个信号是否相关的一个判断指标,把两测点之间信号的互谱与各自的自谱联系了起来。它能用来确定输出信号有多大程度来自输入信号,对修正测量中接入噪声源而产生的误差非常有效. 事实上,在图象处理中,自相关和互相关函数的定义如下:设原函数是f(t),则自相关函数定义为R(u)=f(t)*f(-t),其中*表示卷积;设两个函数分别是f(t)和g(t),则互相关函数定义为R(u)=f(t)*g(-t),它反映的是两个函数在不同的相对位置上互相匹配的程度。 6. 短时过零率与短时能量 语音一般分为无声段,清音段和浊音段。由于语音信号是一个非平稳过程,不能用处理平稳信号的信号处理技术对其进行分析处理。但由于语音信号本身的特点,在10-30ms 的短时间范围内,其特性可以看作是一个准稳态过程,具有短时性,因此采用短时能量和过零率来对语音进行端点检测是可行的。 信号的短时能量定义为:设语音波形时域信号为x(t),加窗分帧处理后得到第n 帧语音信号为xn(m),则定义的短时能量函数如下: ) ()()(x m n x m w m n +=,10-≤≤ N m ,,0)(),1(~0,1)(=-==n w N m m w m 为其他值,其中n=0,1T,2T……并且N 为帧长,T 为帧移长度。 短时过零率表示一帧语音中语音信号的波形穿过横轴的零电平的次数,他可以用来区分清音和浊音,因为语音信号中高音段有高的过零率,低音段有低的过零率,短时能量大的地方过零率小,短时能量小的地方过零率大。 过零率可以反映信号的频谱特性。当离散时间信号相邻两个样点的正负号相异时,我们称之为“过零”,即此时信号的时间波形穿过了零电平的横轴。统计单位时间内样点值改变符号的次数具可以得到平均过零

哈工大 小波理论与应用上机报告

姓名:学号: 课程名称:小波理论及应用 实验名称:上机实践作业 实验序号:第一次实验日期:2014.05.12 学院及专业名称: 同组人:独立完成 实验成绩:总成绩: 教师评语: 指导教师签字: 年月日

实验报告一 一、 实验目的 1、 运用傅里叶变换知识对常用的基本函数做基本变换。 2、 加深对因果滤波器的理解,并会判断因果滤波器的类型。 3、 运用卷积公式对基本信号做滤波处理并作出分析,以加深理解 4、 熟悉Matlab 中相关函数的用法 二、 实验原理 1 .运用傅里叶正、反变换的基本公式: ( )?()() ()(),1 1?()(),22ωωωωωωωωπ π ∞∞---∞ -∞ ∞ --∞ ==== =?? ? i x i t i t i t i t f f x e dx f t e dt f t e f t f e d f t e (2-1) 及其性质,对所要处理信号做相应的傅里叶变换和逆变换。 2.运用卷积的定义式:1212()()()()+∞ -∞ *=-?f t f t f f t d τττ (2-2) 对所求信号做滤波处理。 三、 实验步骤与内容 实验题目: Butterworth 滤波器,其冲击响应函数为 ,0 ()0, 0若若α-?≥=?

相关文档
最新文档