CAE有限元分析软件-abaqus介绍资料

CAE有限元分析软件-abaqus介绍资料
CAE有限元分析软件-abaqus介绍资料

Abaqus

模拟真实世界的高级有限元软件

非线性有限元分析技术的领航者Abaqus公司是世界知名的有限元软件公司,成立于1978年,主要业务是非

线性有限元分析软件Abaqus的开发,维护及售后服务。不断吸取最新的分析理论,即计算机技术。领导着全世界非线性有限元的发展,Abaqus软件已经被全球工业界广泛接受,并拥世界最大的非线性力学用户群。Abaqus已经成为国际上最先进的大型通用非线性有限元分析软件。

2005年5月,Abaqus软件公司与世界知名的在产品生命周期管理软件方面拥有先进技术的达索公司合并,并将共同开发新一代的软件分析平台,这标志着制造业统一有限元时代的来临!

Courtesy

功能简介

前后处理

●模型导入

无缝导入各种主流CAD的模型,如:Catia, Pro/E, UG, AutoCAD, SolidWorks等

CAE与Catia实时相关

●几何建模

现代化的GUI界面,基于特征化、参数化几何建模

●网格划分

快速、高质量自动生成六面体、四面体、壳体等网格

●载荷与边界条件

方便施加结构、热、声学、电、流体等载荷及边界条件

●装配与连接

对多部件的装配提供了方便、快捷、多样的接触和连接方式

●任务管理和监控

多任务的菜单式管理、实时对分析任务进行监控、远程提交计算任务

●后处理

将云图、曲线、矢量等以显示、图片、动画的形式输出、还可以显示立体切片、透明及半透明等形式

●用户界面定制

根据用户不同需求进行个性化界面开发、方便用户进行流程化分析

结构分析

●静态、准静态

各类工程结构、零件及装配件间的强度校核等

●振动、模态分析

结构固有频率的提取、瞬态响应分析、DDAM、稳态响应分析、随机响应分析、复特征值分析等

●高度非线性分析

几何、材料、边界非线性分析、采用灵

活高效的自动增量步长法确保计算收

敛,采用自适应网格技术解决大变形问

题。

排气管裂纹分析

●接触分析

大规模接触问题的精确求解、面面接触、自动接触、支持界面不匹配网格、Tie连接等

接触对的自动识别

●柔性多体动力学分析

对机构的运动情况进行分析、并和有限元功能结合进行结构和机械的耦合分析。

●爆炸和冲击分析

水下爆炸、空爆、高速冲击、侵彻、穿甲

●跌落和碰撞分析

系统级分析、考虑装配预应力

悬架系统的轮辋最上部撞上防护栏的碰撞分析结果手机跌落分析

●复合材料失效和断裂分析

虚拟裂纹闭合技术、粘结单元、裂纹扩展模拟、失效单元自动删除。

●成型过程分析

冲压、冷轧、热轧、煅造、弯管等过程分析、包括各种扳金件的加工过程模拟

●显式——隐式联合分析

模拟成型后回弹分析、焊接裂缝评估、带预应力的碰撞、充气轮胎的冲击分析,建筑物地震响应等

●焊点、垫片、螺栓连接分析

螺栓预紧力、法兰密封和连接、发动机密封件分析

●橡胶和轮胎分析

丰富的橡胶材料模型、完善的轮胎建模及分析流程、橡胶密封件分析

●后注塑结构分析

直接转化注塑软件Moldflow的结果进行后注塑结构分析

●屈曲和失稳分析

●循环载荷分析

●子结构和子模型分析

●粘弹性/粘塑性材料分析

●用户子程序

方便用户使用Fortran、C语言进行材料、单元等二次开发

●设计灵敏度分析

对结构参数进行灵敏度分析并据此进行结构的优化设计

●疲劳和耐久性分析

根据结构和材料的受载情况统计进行生存能力分析和疲劳寿命预估

汽车垫片耐久性分析

●海洋工程结构分析

对海洋工程的特殊载荷如流荷、浮力、惯性力等进行模拟

对海洋工程的特殊结构如锚链、管道、电缆等进行模拟

对海洋工程的特殊的连接、如土壤/管道连接、锚接/海床摩擦、管道/管道相对滑动等进行模拟

流固耦合分析

●静流体分析●湿模态分析

●流体晃动分析●Abaqus/FSI

●水下爆炸分析●气动弹性分析

●渗流分析Array

热分析

●稳态热传导分析●热应力分析●热疲劳分析

●瞬态热传导分析●绝热分析●完全热—固耦合●对流散热分析●热结触分析●顺序热—固耦合●热辐射分析●摩擦生热分析●热—电耦合

其它物理场耦合分析

●声场分析●质量扩散●声—固耦合分析●湿应力分析●压电分析

产品介绍

Abaqus是一套功能强大的工程模拟的有限元软件,其解决问题的范围从相对简单的线性分析到许多复杂的非线性问题。Abaqus包括一个丰富的、可模拟任意几何形状的单元库。并拥有各种类型的材料模型库,可以模拟典型工程材料的性能,其中包括金属、橡胶、高分子材料、复合材料、钢筋混凝土、可压缩超弹性泡沫材料以及土壤和岩石等地质材料。作为通用的模拟工具,Abaqus除了能解决大量结构(应力/位移)问题,还可以模拟其他工程领域的许多问题,例如热传导、质量扩散、热电耦合分析、声学分析、岩土力学分析及压电解质分析。

Abaqus有两个主求解器模块—Abaqus/Standard和Abaqus/Explicit。Abaqus还包含一个全面支持求解器的图形界面,即人机交互前后处理模块—Abauqs/CAE。Abaqus对某些特殊问题还提供了专用模块来加以解决。

Abaqus/CAE

Abaqus/CAE使您能够快速有效的创建、编辑、监控、诊断和后处理先进的Abaqus分析。Abaqus/CAE将建模、分析、工作管理以及结果显示集成于一个一致的、使用方便的环境中、这使得初学者易于学习而经验丰富的用户工作效率会更高。

参数式建模

Abaqus/CAE在创建各部件时采用基于特征的参数化建模工具。Abaqus/CAE以一系列特征、如拉伸、切除和放样等形式存储各部件,允许特征被编辑、删除、取消、回复和重建。

几何模型的导入和修补

用户使用工业标准格式可以从各种CAD系统导入几何模型;还可以用专用转换器从流行的CAD系统中直接导入模型。几何体也能从Abaqus/CAE中导出。

草图绘制和阵列

在Abaqus/CAE里,创建几何体是从草图绘制器开始的。草图绘制工具包括尺寸标定和阵列等功能。

装配

用户通过控制部件进行约束定位来建立装配件。一个部件能够被多次创建出实例,可以使用大量的约束来对各个装配构件正确的定位。

梁截面显示功能

网格划分工具

Abaqus/CAE提供了复杂的分网工具、用户能够精确地创建各种一维、二维和三维网格。

无与伦比的Abaqus求解器

分析特性

Abaqus/CAE允许Abaqus的分析特性定义在几何模型上,也能直接运用于导入的网格,使得用户最大限度的灵活处理同时包括几何体和网格体的混合模型。

集合

集合包括针对几何体的几何集和针对导入网格体的节点集和单元集。当创建分析工作时,任何与一个几何集相关的节点和单元将包括在对应的节点集和单元集中。

材料

能够为Abaqus的各种材料模型创建数据,并提供工具帮助你确定实验数据的精度。

曲线拟合功能

单元

使用Abaqus/CAE能够为部件的区域指定相应的单元类型,并支持Abaqus/Standard和Abaqus/Explicit里面的全部单元类型,包括定义高级选项,如自适应网格和单元算法选项。

剖面

剖面管理器允许对梁截面进行创建、修改、复制、重命名和删除操作

蒙皮

三维部件的表面或二维部件的边,能用壳单元或者薄膜单元来覆盖,这些单元与下层的实体单元共节点。

分析步骤

根据需要,用户可将全部的加载历史分割成多步,有相应的分析类型、载荷、边界条件、接触等与之对应。

接触

接触模块允许在部件实例之间定义相互作用的关系以及约束。通过直观的界面操作可以定义各种接触方式:如面面接触、自接触等,并定义机械接触或热接触的接触性质。约束有许多形式一体、显示体、耦合和捆绑连接等。连接单元、界面热辐射、对流换热条件和弹性地基也都可以在该模块中定义。

预设条件

施于模型上初始条件、加载过程和边界条件均可在载荷模块中定义,并在CAE中显示。

强大的诊断、可视化和用户自定义功能

工作的提交和监测

对大型模型的管理

结果的可视化

用户自定制

Abaqus/Standard

Abaqus/standard使各种线形和非线性工程模拟能够有效、精确、可靠的实现。广泛的分析能力、优越的性能、完备的用户指南、高质量一流的技术支持使得Abaqus/Standard成为分析许多工程问题的有效工具。此外许多常见的建模前后处理软件都支持Abaqus。

Abaqus/Standard提供各类型的分析程序,从常见的线性问题分析到复杂多步非线性问题都能高效、可靠的解决。

Abaqus/Standard可以模拟大量的物理现象,例如除了应力/位移分析之外还有:热传导,质量扩散和声学现象。不同物理现象间的相互作用,如热固耦合,热电耦合,压电耦合和多种介质的流固耦合,声固耦合等分析也能够进行模拟。对于以上或其它非线性分析,Abaqus/Standard会自动调整收敛准则和时间步长来确保解的精确性。

Abaqus/Explicit

Abaqus/Explicit(显式积分)为模拟广泛的动力学问题和准静态问题提供精确、强大和高效的有限元求解技术。Abaqus/Explicit适用于模拟高度非线性动力学和准静态分析(可以考虑绝热效应)、完全耦合瞬态-位移分析、声固耦合分析;还可以进行退火过程模拟,从而适用于多步骤成型模拟。

Abaqus/Explicit特别适用于分析瞬态动力学问题,例如:手机和其他电子产品的跌落时跌落实验,弹道冲击和汽车子系统的冲击等。基于表面的流体空腔可用于模拟填充了流体或气体的结构,包括结构变形与内部液体或气体压力的耦合分析,如安全气囊展开分析。

Abaqus/Explicit高效处理接触问题和其它非线性的能力使其成为求解许多非线性准静态问题的有效工具,如制造过程(如高温金属轧制和扳金冲压)和能量吸收装置缓慢挤压过程的模拟。

Abaqus/Explicit中的自适应网格功能使之能够模拟大量的材料发生严重变形的问题,例如金属成型的问题。声学功能提供瞬态声固耦合分析,例如潜水艇在冲击载荷作用下的响应分析以及冲击载荷在水下传播。声学分析的功能与模拟气泡载荷、流体的空化和有无海床对液体表面的影响等功能有机结合。

将Abaqus/Standard和Abaqus/Explicit兼容并包

由于它们各自的优点,Abaqus/Explicit和Abaqus/Standard引领着高级非线性模拟技术的发展。Abaqus/Explicit和Abaqus/Standard可以互相结合并同于同一问题分析,为求解提供了无以匹敌的力量和机动性。需要集成两种求解器的进行有限元分析的例子是常见的。

Abaqus for CATIA V5

Abaqus for CA TIA V5产品为用户提供了完全集成在CA TIA V5的使用环境中,采用功能强大的Abaqus求解器进行非线性有限元分析的功能。

其他模块

Abaqus/Design

Abaqus/Design是一个可选择的附加产品,用于设计灵敏度(DSA)。设计灵敏度用于预测设计发生变化时对结构响应产生的变化。

Abaqus/Aqua

Abaqus/Aqua是另一个可选择的附加产品,是用于海洋工程。它包括海洋平台和立管分析,J管道拉伸模拟,基座弯曲计算和漂浮结构研究。稳态水流和波浪效果模拟可以实现对结构加拉,漂浮和流体惯性加载,对于在流体表面以上的结构还可以实现风力加载。

Abaqus/Foundation

Abaqus/Foundation提供Abaqus/Standard中线形静态和动态分析的功能,价格也大大降低。

Fe-safe

Fe-safe模块的一系列功能可以附加在Abaqus/Standard和Abaqus/Explicit上应用。他的目的是通过疲劳分析预测部件和系统寿命。

CAD模型接口——CATIA V4,CATIA V5,I-DEAS,Parasolid,Pro/E 该模块是Abaqus/CAE和当前流行的CAD软件之间的接口,可以直接导入各CAD 模型并进行自动和手工的几何体修补工作。

Abaqus Interface for MSC.ADAMS(ADAMS接口)

Abaqus和ADAMS/Flex软件的接口,可以导入ADAMS模型中的部件进行有限元分析并将结果返回ADAMS。

Abaqus Interface for MOLDFLOW(MOLDFLOW接口)

Abaqus和注塑模拟软件MOLDFLOW之间的接口,可以基于MOLDFLOW分析得到的注塑成型后的材料性质和残余应力进行有限元分析。

专业ABAQUS有限元建模经验笔记

基于ABAQUS的有限元分析和应用 第一章绪论 1.有限元分析包括下列步骤: 2.为了将试验数据转换为输入文件,分析者必须清楚在程序中所应用的和由实验人员提供的材料数据的应力和应变的度量。 3.ABAQUS建模需注意以下内容: 4.对于许多包含过程仿真的大变形问题和破坏分析,选择合适的网格描述是非常重要的,需要认识网格畸变的影响,在选择网格时必须牢牢记住不同类型网格描述的优点。 第二章ABAQUS基础 1.一个分析模型至少要包含如下的信息:离散化的几何形体、单元截面属性、材料数据、载荷和边界条件、分析类型和输出要求。 ①离散化的几何形体:模型中所有的单元和节点的集合称为网格。 ②载荷和边界条件: 2.功能模块: (1)Assembly(装配):一个ABAQUS模型只能包含一个装配件。 (2)Interaction(相互作用):相互作用与分析步有关,这意味着用户必须规定相互作用是在哪些分析步中起作用。 (3)Load(载荷):载荷和边界条件与分析步有关,这意味着用户指定载荷和边界条件是在哪些分析步中起作用。 (4)Job(作业):多个模型和运算可以同时被提交并进行监控。 3.量纲系统 ABAQUS没有固定的量纲系统,所有的输入数据必须指定一致性的量纲系统,常用的一致性量纲系统如下:

4.建模要点 (1)创建部件:设定新部件的大致尺寸的原则必须是与最终模型的最大尺寸同一量级。(2)用户应当总是以一定的时间间隔保存模型数据(例如,在每次切换功能模块时)。(3)定义装配: 在模型视区左下角的三向坐标系标出了观察模型的方位。在视区中的第2个三向坐标系标出了坐标原点和整体坐标系的方向(X,Y和Z轴)。 (4)设置分析过程: (5)在模型上施加边界条件和荷载: 用户必须指定载荷和边界条件是在哪个或哪些分析步中起作用。 所有指定在初始步中的力学边界条件必须赋值为零,该条件是在ABAQUS/CAE中自动强加的。 在许多情况下,需要的约束方向并不一定与整体坐标方向对齐,此时用户可定义一个局部坐标系以施加边界条件。 在ABAQUS中,术语载荷通常代表从初始状态开始引起结构响应发生变化的各种因素,包括:集中力、压力、非零边界条件、体力、温度(与材料热膨胀同时定义)。

abaqus有限元分析过程

一、有限单元法的基本原理 有限单元法(The Finite Element Method)简称有限元(FEM),它是利用电子计算机进行的一种数值分析方法。它在工程技术领域中的应用十分广泛,几乎所有的弹塑性结构静力学和动力学问题都可用它求得满意的数值结果。 有限元方法的基本思路是:化整为零,积零为整。即应用有限元法求解任意连续体时,应把连续的求解区域分割成有限个单元,并在每个单元上指定有限个结点,假设一个简单的函数(称插值函数)近似地表示其位移分布规律,再利用弹塑性理论中的变分原理或其他方法,建立单元结点的力和位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程组,从而求解结点的位移分量. 进而利用插值函数确定单元集合体上的场函数。由位移求出应变, 由应变求出应力 二、ABAQUS有限元分析过程 有限元分析过程可以分为以下几个阶段 1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型――有限元模型,从而为有限元数值计算提供必要的输入数据。有限元建模的中心任务是结构离散,即划分网格。但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。

2.计算阶段:计算阶段的任务是完成有限元方法有关的数值计算。 由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成 3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理, 并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。 下列的功能模块在ABAQUS/CAE操作整个过程中常常见到,这个表简明地描述了建立模型过程中要调用的每个功能模块。 “Part(部件) 用户在Part模块里生成单个部件,可以直接在ABAQUS/CAE环境下用图形工具生成部件的几何形状,也可以从其它的图形软件输入部件。 Property(特性) 截面(Section)的定义包括了部件特性或部件区域类信息,如区域的相关材料定义和横截面形状信息。在Property模块中,用户生成截面和材料定义,并把它们赋于(Assign)部件。 Assembly(装配件) 所生成的部件存在于自己的坐标系里,独立于模型中的其它部件。用户可使用Assembly模块生成部件的副本(instance),并且在整体坐标里把各部件的副本相互定位,从而生成一个装配件。 一个ABAQUS模型只包含一个装配件。

abaqus 有限元分析(齿轮轴)

Abaqus分析报告 (齿轮轴) 名称:Abaqus齿轮轴 姓名: 班级: 学号: 指导教师:

一、简介 所分析齿轮轴来自一种齿轮泵,通过用abaqus软件对齿轮轴进行有限元分析和优化。齿轮轴装配结构图如图1,分析图1中较长的齿轮轴。 图1.齿轮轴装配结构图 二、模型建立与分析 通过part、property、Assembly、step、Load、Mesh、Job等步骤建立齿轮轴模型,并对其进行分析。 1.part 针对该齿轮轴,拟定使用可变型的3D实体单元,挤压成型方式。 2.材料属性 材料为钢材,弹性模量210Gpa,泊松比0.3。

3.截面属性 截面类型定义为solid,homogeneous。 4.组装 组装时选择dependent方式。 5.建立分析步 本例用通用分析中的静态通用分析(Static,General)。 6.施加边界条件与载荷 对于齿轮轴,因为采用静力学分析,考虑到前端盖、轴套约束,而且根据理论,对受力部分和轴径突变的部分进行重点分析。 边界条件:分别在三个轴径突变处采用固定约束,如图2。 载荷:在Abaqus中约束类型为pressure,载荷类型为均布载荷,分别施加到齿轮接触面和键槽面,根据实际平衡情况,两力所产生的绕轴线的力矩方向相反,大小按比例分配。 均布载荷比计算: 矩形键槽数据: 长度:8mm、宽度:5mm、高度:3mm、键槽所在轴半径:7mm 键槽压力面积:S1 = 8x3=24mm2 平均受力半径:R1=6.5mm 齿轮数据:= 齿轮分度圆半径:R2 =14.7mm、压力角:20°、 单个齿轮受力面积:S2 ≈72mm2 通过理论计算分析,S1xR1xP1=S2xR2xP2,其中,P1为键槽均布载荷

支架的有限元分析ABAQUS

支架的线性静力学分析实例:建模和分析计算 在此实例中读者将学习ABAQUS/CAE的以下功能。 1) Sketch功能模块:导人CAD二维图形,绘制线段、圆弧和倒角,添加尺寸,修改平面图,输出平面图。 2) Part功能模块:通过拉伸来创建几何部件,通过切割和倒角未定义几何形状。 3) Property功能模块:定义材料和截面属性。 4) Mesh功能模块:布置种子,分割实体和面,选择单元形状、单元类型、网格划分 技术和算法,生成网格,检验网格质量,通过分割来定义承受载荷的面。 5) Assembly功能模块:创建非独立实体。 6) Step功能模块:创建分析步,设置时间增量步和场变量输出结果。 7) Interaction功能模块:定义分布榈合约束(distributing coupling constraint)。 8) Load功能模块:定义幅值,在不同的分析步中分别施加面载荷和随时间变化的集中力,定义边界条件。 9) Job功能模块:创建分析作业,设置分析作业的参数,提交和运行分析作业,监控运行状态。 10) Visualization功能模块:后处理的各种常用功能。 结构静力学分析(static analysis)是有限元法的基本应用领域,适用于求解惯性及阻尼对结构响应不显著的问题。主要用来分析由于稳态外载荷引起的位移,应力和应变等。本章的静力学分析实例按照ABAQUS工程分析的流程对支架进行线性静力学分析,通过实例基本掌握了分析的流程,同时了解接触的定义。 1.问题描述 所示的支架,一端牢固地焊接在一个大型结构上,支架的圆孔中穿过一个相对较软的杆件,圆孔和杆件用螺纹连接。材料的弹性模量E=2100000MPa,泊松比为0.3。

ABAQUS有限元接触分析的基本概念

ABAQUS有限元接触分析的基本概念2009-11-24 00:06:28 作者:jiangnanxue 来源:智造网—助力中国制造业创新—https://www.360docs.net/doc/408013859.html, CAE(计算机辅助工程)是一门复杂的工程科学,涉及仿真技术、软件、产品设计和力学等众多领域。世界上几大CAE公司各自以其独到的技术占领着相应的市场。ABAQUS有限元分析软件拥有世界上最大的非线性力学用户群,是国际上公认的最先进的大型通用非线性有限元分析软件之一。它广泛应用于机械制造、石油化工、航空航天、汽车交通、土木工程、国防军工、水利水电、生物医学、电子工程、能源、地矿、造船以及日用家电等工业和科学研究领域。ABAQUS在技术、品质和可靠性等方面具有卓越的声誉,可以对工程中各种复杂的线性和非线性问题进行分析计算。 《ABAQUS有限元分析常见问题解答》以问答的形式,详细介绍了使用ABAQUS建模分析过程中的各种常见问题,并以实例的形式教给读者如何分析问题、查找错误原因和尝试解决办法,帮助读者提高解决问题的能力。 《ABAQUS有限元分析常见问题解答》一书由机械工业出版社出版。 16.1.1 点对面离散与面对面离散 【常见问题16-1】 在ABAQUS/Standard分析中定义接触时,可以选择点对面离散方法(node-to-surface-dis - cre-tization)和面对面离散方法(surface-to-surface discretization),二者有何差别? 『解答』 在点对面离散方法中,从面(slave surface)上的每个节点与该节点在主面(master surface)上的投影点建立接触关系,每个接触条件都包含一个从面节点和它的投影点附近的一组主面节点。 使用点对面离散方法时,从面节点不会穿透(penetrate)主面,但是主面节点可以穿透从面。 面对面离散方法会为整个从面(而不是单个节点)建立接触条件,在接触分析过程中同时考虑主面和从面的形状变化。可能在某些节点上出现穿透现象,但是穿透的程度不会很严重。 在如图16-l和图16-2所示的实例中,比较了两种情况。

Abaqus有限元分析中的沙漏效应

Abaqus有限元分析中的沙漏效应[转] 2011-09-21 17:34:27| 分类:有限元 | 标签: |字号大中小订阅 1. 沙漏的定义 沙漏hourglassing一般出现在采用缩减积分单元的情况下: 比如一阶四边形缩减积分单元,该单元有四个节点“o”,但只有一个积 分点“*”。而且该积分点位于单元中心位置,此时如果单元受弯或者受剪,则必然会发生变形,如下图a所示。 关于沙漏问题,建议看看abaqus的帮助文档,感觉讲的非常好,由浅入深,把深奥的东西讲的很容易理解。 沙漏的产生是一种数值问题,单元自身存在的一种数值问题,举个例子,对于单积分点线性单元,单元受力变形没有产生应变能--也叫0能量模式,在 这种情况下,单元没有刚度,所以不能抵抗变形,不合理,所以必须避免这种情况的出现,需要加以控制,既然没有刚度,就要施加虚拟的刚度以限制沙漏 模式的扩展---人为加的沙漏刚度就是这么来的。 关于沙漏现象的判别,也就是出现0能模式的方法最简单的是察看单元变 形情况,就像刚才所说的单点积分单元,如果单元变成交替出现的梯形形状, 如果多个这样的单元叠加起来,是不是象我们windows中的沙漏图标呢? ABAQUS中沙漏的控制: *SECTION CONTROLS:指定截面控制 警告:对于沙漏控制,使用大于默认值会产生额外的刚度响应,甚至当值 太大时有时导致不稳定。默认沙漏控制参数下出现沙漏问题表明网格太粗糙, 因此,更好的解决办法是细化网格而不是施加更大的沙漏控制。 该选项用来为减缩积分单元选择非默认的沙漏控制方法,和standard中的修正的四面体或三角形单元或缩放沙漏控制的默认系数;在explicit中,也 为8节点块体单元选择非默认的运动方程:为实体和壳选择二阶方程、为实体 单元激活扭曲控制、缩放线性和二次体积粘度、设置当单元破损时是否删除他们、或为上述完全破损的单元指定一标量退化参数。等 必需参数: NAME:名字 可选参数: DISTORTION CONTROL:只用于explicit分析。=YES激活约束防止负体积 单元出现或其他可压缩材料的过度变形,这对超弹材料是默认的。DISTORTION

abaqus有限元分析简支梁

1.梁C 的主要参数: 其中:梁长3000mm ,高为406mm ,上下部保护层厚度为38mm ,纵筋端部保护层厚度为25mm 抗压强度:35.1MPa 抗拉强度:2.721MPa 受拉钢筋为2Y16,受压钢筋为2Y9.5,屈服强度均为440MPa 箍筋:Y7@102,屈服强度为596MPa 2.混凝土及钢筋的本构关系 1、运用陈光明老师的论文(Chen et al. 2011)来确定混凝土的本构关系: 受压强度: 其中C a E ==28020,c f ρσ'=,0.002ρε= 2、受压强度与开裂位移的相互关系:

其中123.0, 6.93c c == 3、损伤因子: 其中c h = e=10(选取网格为10mm ) 4、钢筋取理想弹塑性 5、名义应力应变和真实应力及对数应变的转换: ln (1)ln(1)true nom nom Pl true nom E σσεσε ε=+=+- 6、混凝土最终输入的本构关系如下: compressive behavior tensile behavior tension damage yield stress inelastic strain yield stress displacement parameter displacement 21.50274036 2.721 25.56359281 2.72247E-05 2.683556882 0.0003129 0.18766492 0.0003129 28.88477336 8.85105E-05 2.646628319 0.0006258 0.31902609 0.0006258 31.43501884 0.000177278 2.610210508 0.0009387 0.41606933 0.0009387 33.24951537 0.000292271 2.574299562 0.0012516 0.49065237 0.0012516 34.40787673 0.000430648 2.538891515 0.0015645 0.54973463 0.0015645 35.01203181 0.000588772 2.503982327 0.0018774 0.5976698 0.0018774 35.16872106 0.000762833 2.46956789 0.0021903 0.63732097 0.0021903 34.97805548 0.000949259 2.435644029 0.0025032 0.67064827 0.0025032 34.52749204 0.001144928 2.402206512 0.0028161 0.69903885 0.0028161 33.88973649 0.001347245 2.369251048 0.003129 0.72350194 0.003129 33.17350898 0.001541185 2.336773294 0.0034419 0.74478941 0.0034419 32.38173508 0.001737792 2.30476886 0.0037548 0.76347284 0.0037548 31.54367693 30.68161799 0.001936023 0.002135082 2.27323331 2.242162167 0.0040677 0.0043806 0.77999451 0.79470205 0.0040677 0.0043806

abaqus有限元建模小例子

问题一: 工字梁弯曲 1.1 问题描述: 在<<材料力学实验>>中,弯曲实验測定了工字梁弯曲应变大小及其分布,以验证弯曲正应力公式。在这里,採用ABAQUS/CAE建立试验件的有限元模型,ABAQUS/Standard模块进行分析求解,得到应力、应变分布,对比其与理论公式计算值及实验測量值的差別。 弯曲实验的相关数据: 材料:铝合金E=70GPa 泊松比0.3 实验装置结构简图如图所示: 结构尺寸测量值:H=50(+/-0.5mm) h=46(+/-0.5mm) B=40(+/-0.5mm) b=2(+/-0.02mm) a=300(+/-1mm) F1=30N Fmax=300N N ? F100 = 1.2 ABAQUS有限元建模及分析 一对象: 工字型截面铝合金梁 梁的结构简图如图1所示,結构尺寸、载荷、約束根据1.1设定,L取1600mm,两端各伸出100mm。 二用ABAQUS/CAE建立实验件的有限元模型,效果图如下: 边界条件简化: 左侧固定铰支座简化为下表面左参考点处的约束U1=U2=U3=0

右侧活动铰支座简化为下表面右参考点处的约束U1=U2=UR3=0 几何模型

有限元模型 三ABAQUS有限元分析結果 ①应力云图(Z方向正应力分量):施加载荷前 F=300N

②应变(Z方向分量): 中间竖直平面的厚度方向应变分布图: F=100N F=200N

F=300N 由上图可以看出应变沿着厚度方向呈线性比例趋势变化,与实验测得的应变值变化趋势相同。中性轴处应变均接近零值,应变与距离中性轴位移基本为正比关系。 1.3分析结果: 中间竖直截面上下边缘轴向应力数值对比:*10^-6 MPa 距中性轴距ABAQUS模拟实验测量值平均理论值 1/2H -96.182*70000 -97*70000 -6.9165=-70000*98.807 -1/2H 95.789*70000 92*70000 6.9165

abaqus有限元分析报告开裂梁要点

Abaqus梁的开裂模拟计算报告 1.问题描述 利用ABAQUS有限元软件分析如图1.1所示的钢筋混凝土梁的裂缝开展。参考文献Brena et al.(2003)得到梁的基本数据: 图1.1 Brena et al.(2003)中梁C尺寸 几何尺寸:跨度3000mm,截面宽203mm,高406mm的钢筋混凝土梁 由文献Chen et al. 2011得材料特性: 1.混凝土:抗压强度f c’=35.1MPa,抗拉强度f t= 2.721MPa,泊松比ν=0.2,弹性模量 E c=28020MPa; 2.钢筋:弹性模量为E c=200GPa,屈服强度f ys=f yc=440MPa,f yv=596MPa 3.混凝土垫块:弹性模量为E c=28020MPa,泊松比ν=0.2 2.建模过程 1)Part 打开ABAQUS使用功能模块,弹出窗口Create Part,参数为:Name:beam;Modeling Space:2D;Type:Deformable;Base Feature─Shell;Approximate size:2000。点击Continue 进入Sketch二维绘图区。由于该梁关于Y轴对称,建模的时候取沿X轴的一半作为模拟对象。 使用功能模块,分别键入独立点(0,0),(1600,0),(1600,406),(406,0),(0,0)并按下下方提 示区的Done,完成草图。 图2.1 beam 部件二维几何模型

相同的方法建立混凝土垫块: 图2.2 plate 部件二维几何模型 所选用的点有(0,0),(40,0),(40,10),(0,10) 受压区钢筋: 在选择钢筋的base feature的时候选择wire,即线模型。 图2.3 compression bar 部件二维几何模型 选取的点(0,0),(1575,0) 受拉区钢筋: 图2.4 tension bar 部件二维几何模型 选取的点(0,0),(1575,0) 箍筋: 图2.5 stirrup 部件二维几何模型 选取的点为(0,0),(0,330) 另外,此文里面为了作对比,部分的模型输入尺寸的时候为m,下面无特别说明尺寸都为mm。

石亦平ABAQUS有限元分析实例详解之读后小结-完整版

目录 第一章ABAQUS简介 (1) 第二章ABAQUS基本使用方法 (1) 第三章线性静力分析实例 (6) 第四章 ABAQUS的主要文件类型 (8) 第五章接触分析实例 (9) 第六章弹塑性分析实例 (13) 第七章热应力分析实例 (15) 第八章多体分析实例 (16) 第九章动态分析实例 (17) 第十章复杂工程分析综合实例 (20)

第一章ABAQUS简介 [1] (pp7) 在[开始] →[程序] →[ABAQUS 6.5-1]→[ABAQUS COMMAND],DOS提示符下输入命令 Abaqus fetch job = 可以提取想要的算例input文件。 第二章ABAQUS基本使用方法 [2] (pp15) 快捷键:Ctrl+Alt+左键来缩放模型;Ctrl+Alt+中键来平移模型;Ctrl+Alt+右键来旋转模型。 (pp16) ABAQUS/CAE不会自动保存模型数据,用户应当每隔一段时间自己保存模型以避免意外丢失。 [3] (pp17) 平面应力问题的截面属性类型是Solid(实心体)而不是Shell(壳)。 ABAQUS/CAE推荐的建模方法是把整个数值模型(如材料、边界条件、载荷等)都直接定义在几何模型上。载荷类型Pressure的含义是单位面积上的力,正值表示压力,负值表示拉力。 [4] (pp22) 对于应力集中问题,使用二次单元可以提高应力结果的精度。 [5] (pp23) Dismiss和Cancel按钮的作用都是关闭当前对话框,其区别在于:前者出现在包含只读数据 的对话框中;后者出现在允许作出修改的对话框中,点击Cancel按钮可关闭对话框,而不保存所修改的内容。 [6] (pp26) 每个模型中只能有一个装配件,它是由一个或多个实体组成的,所谓的“实体”(instance) 是部件(part)在装配件中的一种映射,一个部件可以对应多个实体。材料和截面属性定义在部件上,相互作用(interaction)、边界条件、载荷等定义在实体上,网格可以定义在部件上或实体上,对求解过程和输出结果的控制参数定义在整个模型上。 [7] (pp26) ABAQUS/CAE中的部件有两种:几何部件(native part)和网格部件(orphan mesh part)。 创建几何部件有两种方法:(1)使用Part功能模块中的拉伸、旋转、扫掠、倒角和放样等特征来直接创建几何部件。(2)导入已有的CAD模型文件,方法是:点击主菜单File→Import→Part。 网格部件不包含特征,只包含节点、单元、面、集合的信息。创建网格部件有三种方法:(1)导入ODB文件中的网格。(2)导入INP文件中的网格。(3)把几何部件转化为网格部件,方法是:进入Mesh功能模块,点击主菜单Mesh→Create Mesh Part。 [8] (pp31) 初始分析步只有一个,名称是initial,它不能被编辑、重命名、替换、复制或删除。在初始 分析步之后,需要创建一个或多个后续分析步,主要有两大类: (1)通用分析步(general analysis step)可以用于线性或非线性分析。常用的通用分析步包含以下类型: — Static, General: ABAQUS/Standard静力分析 — Dynamics, Implicit: ABAQUS/Standard隐式动力分析

Abaqus螺栓有限元分析

1.分析过程 1.1.理论分析 1.2.简化过程 如果将Pro/E中的3D造型直接导入Abaqus中进行计算,则会出现裂纹缝隙无法修补,给后期的有限元分析过程造成不必要的麻烦,因此,在Abaqs中进行计算之前,对原来的零件模型进行一些简化和修整。 A.法兰部分不是分析研究的重点,因此将其简化掉; B.经计算,M24×3的螺纹的升角很小,在度,因此可以假设螺旋升角为0; C.忽略螺栓和螺母的圆角等细节; 1.3.Abaqus中建模 查阅机械设计手册,得到牙型如下图所示,在Abaqus中按照下图所示创建出3D模型,如错误!未找到引用源。所示。同样的方式,我们建立螺母的3D模型nut,如错误!未找到引用源。所示。

图 1-1 图 1-2 建立材料属性并将其赋予模型。在Abaqus的Property模块中,选择Material->Manager->Create,创建一个名为Bolt&Nut的新材料,首先设置其弹性系数。在Mechanical->Elastic中设置其杨氏模量为193000Mpa,设置其泊松比为,如错误!未找到引用源。所示。 建立截面。点击Section->Manager->Creat,建立Solid,Homogeneous的

各向同性的截面,选择材料为Bolt&Nut,如错误!未找到引用源。所示。 将截面属性赋予模型。选择Assign->Section,选择Bolt模型,然后将刚刚建立的截面属性赋予它。如错误!未找到引用源。所示。同样,给螺母nut赋予截面属性。 图 1-3 图 1-4

图 1-5 然后,我们对建立的3D模型进行装配,在Abaqus中的Assembly模块中,我们同时调入两个模型,然后使用Constraint->Coaxial命令和Translate和Instance命令对模型进行移动,最终的装配结果如错误!未找到引用源。所示。 图 1-6 第四步,对模型进行网格划分。进入Abaqus中的Mesh模块,然后选择Bolt 零件,使用按边布种的方式对其进行布种,布种结果如错误!未找到引用源。所示。在菜单Mesh->Control中进行如错误!未找到引用源。所示的设置使用自由网格划分,其余设置使用默认。在菜单Mesh->Element type中选用如错误!未找到引用源。所示的设置。按下Mesh图标,对工件进行网格划分,最终的结果如错误!未找到引用源。所示。同样的方式对螺母模型nut进行网格划分,最终结

石亦平ABAQUS有限元分析实例详解之读后小结 (Part 4)

石亦平《ABAQUS有限元分析实例详解》之读后小结 第九章动态分析实例 [95] (pp280) ABAQUS包括两大类方法: 振型叠加法(modal superposition procedure):用于求解线性动态问题; 直接解法(direct-solution dynamic analysis procedure):主要用于求解非线性动态问题。 提示:ABAQUS的所有单元均可用于动态分析,选取单元的一般原则与静力分析相同。但在模拟冲击和爆炸载荷时,应选用一阶单元,因为它们具有集中质量公式,模拟应力波的效果优于 二次单元所采用的一致质量公式。 [96] (pp281) 振型叠加法的基础是结构的各阶特征模态(eigenmode),因此在建模时要首先定义一个 频率提取分析步(frequency extraction),从而得到结构的振型(mode shape)和固有频率(natural frequency),然后才能定义振型叠加法的各种分析步。振型叠加法包括4种分析类型: (1)瞬时模态动态分析(transient modal dynamic analysis)计算线性问题在时域(time domain)上的动态响应。用此分析要满足如下5个基本条件: (a) 系统是线性的(线性材料特性,无接触行为,不考虑几何非线性)。 (b) 响应只受相对较少的频率支配。当在响应中频率的成分增加时(例如打击和碰撞问题),振 型叠加法的效率将会降低。 (c) 载荷的主要频率应该在所提取的频率范围之内,以确保对载荷的描述足够精确。 (d) 特征模态应该能精确地描述任何突然加载所产生的初始加速度。 (e) 系统的阻尼不能过大。 (2)基于模态的稳态动态分析(mode-based steady-state dynamic analysis)在用户指定频率内的谐波激励下,计算引起结构响应的振幅和相位,得到的结果是在频域(frequency domain)上的。其典型分析对象包括发动机的零部件和建筑物中的旋转机械等。 (3)反应谱分析(response spectrum analysis)当结构的固定点处发生动态运动时,计算其峰值响应(位移、应力等),得到的结果是在频域上的。其典型应用是计算在发生地震时建筑物 的峰值响应。 (4)随机响应分析(random response analysis)当结构随机连续的激励时,计算其动态响应,

Abaqus螺栓有限元分析

Abaqus螺栓有限元分析

1.分析过程 1.1.理论分析 1.2.简化过程 如果将Pro/E中的3D造型直接导入Abaqus中进行计算,则会出现裂纹缝隙无法修补,给后期的有限元分析过程造成不必要的麻烦,因此,在Abaqs中进行计算之前,对原来的零件模型进行一些简化和修整。 A.法兰部分不是分析研究的重点,因此将其简化掉; B.经计算,M24×3的螺纹的升角很小,在度,因此可以假设螺旋升角为0; C.忽略螺栓和螺母的圆角等细节; 1.3.Abaqus中建模 查阅机械设计手册,得到牙型如下图所示,在Abaqus中按照下图所示创建出3D模型,如图错误!文档中没有指定样式的文字。-1所示。同样的方式,我们建立螺母的3D模型nut,如图错误!文档中没有指定样式的文字。-2所示。

图错误!文档中没有指定样式的文字。-1 图错误!文档中没有指定样式的文字。-2 建立材料属性并将其赋予模型。在Abaqus的Property模块中,选择Material->Manager->Create,创建一个名为Bolt&Nut的新材料,首先设置其弹性系数。在Mechanical->Elastic中设置其杨氏模量为193000Mpa,设置其泊松比为0.3,如图错误!文档中没有指定样式的文字。-4所示。 建立截面。点击Section->Manager->Creat,建立Solid,Homogeneous的各向同性的截面,选择材料为Bolt&Nut,如图错误!文档中没有指定样式的文字。-5所示。

将截面属性赋予模型。选择Assign->Section,选择Bolt模型,然后将刚刚建立的截面属性赋予它。如图错误!文档中没有指定样式的文字。-3所示。同样,给螺母nut赋予截面属性。 图错误!文档中没有指定样式的文字。-3 图错误!文档中没有指定样式的文字。-4

相关主题
相关文档
最新文档