梁支架、模板计算书

梁支架、模板计算书
梁支架、模板计算书

扣件式梁支架、模板安全计算书

一、计算依据

1、《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011

2、《混凝土结构设计规范》GB50010-2010

3、《建筑结构荷载规范》GB50009-2012

4、《钢结构设计规范》GB50017-2003

5、《建筑施工临时支撑结构技术规范》JGJ300-2013

1、计算参数

2、施工简图

(图1)剖面图1

(图2)剖面图2

二、面板验算

根据规范规定面板可按简支跨计算,根据施工情况一般楼板面板均搁置在梁侧模板上,无悬挑端,故可按简支跨一种情况进行计算,取b=1m单位面板宽度为计算单元。

W=bh2/6=1000×152/6=37500mm3

I=bh3/12=1000×153/12=281250mm4

1、强度验算

由可变荷载控制的组合:

q 1=0.9×{1.2[G

1k

+(G

2k

+G

3k

)h]b+1.4Q

1k

b}=0.9×(1.2×(0.5+(24+1.5)×

800/1000)×1+1.4×2.5×1)=25.722kN/m 由永久荷载控制的组合:

q 2=0.9×{1.35[G

1k

+(G

2k

+G

3k

)h]b+1.4×0.7Q

1k

b}=0.9×(1.35×(0.5+(24+1.5)×

800/1000)×1+1.4×0.7×2.5×1)=27.599kN/m 取最不利组合得:

q=max[q1,q2]=max(25.722,27.599)=27.599kN/m

(图3)面板简图

(图4)面板弯矩图

M max=0.061kN·m

σ=M max/W=0.061×106/37500=1.635N/mm2≤[f]=37N/mm2

满足要求

2、挠度验算

q k=(G1k+(G3k+G2k)×h)×b=(0.5+(24+1.5)×800/1000)×1=20.9kN/m

(图5)简图

(图6)挠度图

ν=0.029mm≤[ν]=400/((4-1)×400)=0.333mm

满足要求

三、次梁验算

由可变荷载控制的组合:

q1=0.9×{1.2[G1k+(G2k+G3k)h]a+1.4Q1k a}=0.9×(1.2×(0.5+(24+1.5)×800/1000)×400/ 1000/(4-1)+1.4×2.5×400/1000/(4-1))=3.43kN/m

由永久荷载控制的组合:

q2=0.9×{1.35[G1k+(G2k+G3k)h]a+1.4×0.7Q1k a}=0.9×(1.35×(0.5+(24+1.5)×800/1000 )×400/1000/(4-1)+1.4×0.7×2.5×400/1000/(4-1))=3.68kN/m

取最不利组合得:

q=max[q1,q2]=max(3.43,3.68)=3.68kN/m

计算简图:

(图7)简图

1、强度验算

(图8)次梁弯矩图(kN·m) M max=0.444kN·m

σ=M max/W=0.444×106/(166.667×1000)=2.665N/mm2≤[f]=17N/mm2 满足要求

2、抗剪验算

(图9)次梁剪力图(kN)

V max=2.323kN

τmax=V max S/(Ib)=2.323×103×62.5×103/(833.333×104×5×10)=0.348N/mm2≤[τ]=1.7N/mm2

满足要求

3、挠度验算

挠度验算荷载统计,

q k=(G1k+(G3k+G2k)×h)×a=(0.5+(24+1.5)×800/1000)×400/1000/(4-1)=2.787kN/m

(图10)变形计算简图

(图11)次梁变形图(mm)

νmax=0.257mm≤[ν]=1.1×1000/400=2.75mm

满足要求

四、主梁验算

梁侧楼板的立杆为梁板共用立杆,立杆与水平钢管扣接属于半刚性节点,为了便于计算统一按铰节点考虑,偏于安全。根据实际工况,梁下增加立杆根数为1,故可将主梁的验算力学模型简化为1+2-1=2跨梁计算。这样简化符合工况,且能保证计算的安全。

等跨连续梁,跨度为:2

跨距为:(等跨)0.5

将荷载统计后,通过次梁以集中力的方式传递至主梁。

A.由可变荷载控制的组合:

q1=0.9×{1.2[G1k+(G2k+G3k)h]a+1.4Q1ka}=0.9×(1.2×(0.5+(24+1.5)×800/1000)×400/((4-1)×1000)+1.4×2.5×400/((4-1)×1000))=3.43kN/m

B.由永久荷载控制的组合:

q2=0.9×{1.35[G1k+(G2k+G3k)h]a+1.4×0.7Q1ka}=0.9×(1.35×(0.5+(24+1.5)×800/1 000)×400/((4-1)×1000)+1.4×0.7×2.5×400/((4-1)×1000))=3.68kN/m

取最不利组合得:

q=max[q1,q2]= max(3.43,3.68)=3.68kN

此时次梁的荷载简图如下

(图16)次梁承载能力极限状态受力简图

用于正常使用极限状态的荷载为:

q k=[ G1k+(G2k+G3k)h]a=(0.5+(24+1.5)×800/1000)×400/((4-1)×1000)=2.787kN/m 此时次梁的荷载简图如下

(图17)次梁正常使用极限状态受力简图

根据力学求解计算可得:

承载能力极限状态下在支座反力:R=4.447kN

正常使用极限状态下在支座反力:R k=3.368kN

还需考虑主梁自重,则自重标准值为g k= 32.65/1000=0.033 kN/m 自重设计值为:g=0.9×1.2gk=0.9×1.2×32.65/1000=0.035kN/m

则主梁承载能力极限状态的受力简图如下:

(图18)主梁正常使用极限状态受力简图则主梁正常使用极限状态的受力简图如下:

(图19)主梁正常使用极限状态受力简图1、抗弯验算

(图12)主梁弯矩图(kN·m)

M max=0.668kN·m

σ=M max/W=0.668×106/(4.493×1000)=148.63N/mm2≤[f]=205N/mm2

满足要求

2、抗剪验算

(图13)主梁剪力图(kN)

V max= 7.866kN

τmax=Q max S/(Ib)=7.866×1000×3.042×103/(10.783×104×0.6×10)=36.987N/mm2≤[τ]=120N/mm2

满足要求

3、挠度验算

(图14)主梁变形图(mm)

νmax=0.172mm≤[ν]=1×1000/(1+1)/400=1.25mm

满足要求

4、支座反力计算

因两端支座为扣件,非两端支座为可调托座,故应分别计算出两端的最大支座

反力和非两端支座的最大支座反力。

故经计算得:

两端支座最大支座反力为:R1=1.045kN

非端支座最大支座反力为:R2=15.733kN

五、端支座扣件抗滑移验算

按上节计算可知,两端支座最大支座反力就是扣件的滑移力R1=1.045kN≤[N]=8kN

满足要求

六、可调托座验算

非端支座最大支座反力为即为可调托座受力

R2=15.733kN≤[N]=40kN

满足要求

七、立柱验算

1、长细比验算

验算立杆长细比时取k=1,μ1

μ2按JGJ130-2011附录C取用

l01=kμ1(h+2a)=1×1.649×(1.5+2×200/1000)=3.133m

l02=kμ2h=1×2.089×1.5=3.133m

取两值中的大值

l0=max(l01,l02)=max(3.133,3.133)=3.133m

λ=l0/i=3.133×1000/(1.59×10)=197.075≤[λ]=210

满足要求

2、立柱稳定性验算(顶部立杆段)

λ1=l01/i=3.133×1000/(1.59×10)=197.05

根据λ1查JGJ130-2011附录A.0.6得到υ=0.186

A不考虑风荷载

梁侧立杆承受的楼板荷载

N1=[1.2(G1k+(G2k+G3k)h0)+1.4Q1k]l a1l b1=(1.2×(0.5+(24+1.5)×120/1000)+1.4×2.5)×1.1×1.1=9.404kN

由第五节知,梁侧立杆承受荷载为就是端支座的最大反力

R1=1.045kN

由于梁中间立杆和梁侧立杆受力情况不一样,故应取大值进行验算

N A=max(N1+R1,R2)=15.733kN

f=NA/(υA)=15.733×1000/(0.186×(4.24×100))=199.493N/mm2≤[σ]=205N/mm2 满足要求

B考虑风荷载

风荷载体型系数:

ωk=μzμsω0=0.65×0.109×0.3=0.021kN/m

M w=0.9×1.4ωk l a h2/10=0.9×1.4×0.021×1.1×1.52/10=0.007kN·m

组合风荷载得:N B=N A+0.9×1.4M w/l b=15.733+0.9×1.4×0.007/10=15.734kN

f=N B/(υA)+M w/W=15.734×1000/(0.186×4.24×100)+0.007×106/(4.49×103)=200.98 N/mm2≤[σ]=205N/mm2

满足要求

3、立柱稳定性验算(非顶部立杆段)

λ2=l02/i=3.133×1000/(1.59×10)=197.075

根据λ1查JGJ130-2011附录A.0.6得到υ=0.186

此处还应考虑架体的自重产生的荷载

A不考虑风荷载

N C=N A+1.2×H×g k=15.733+1.2×0.033×(4.7+(800-120)/1000)=15.944kN

f=N C/(υA)=15.944×1000/(0.186×(4.24×100))=202.33N/mm2≤[σ]=205N/mm2

满足要求

B考虑风荷载

组合风荷载得:N D=N C+0.9×1.4M w/l b=15.944+0.9×1.4×0.007/10=15.944kN

f=N D/(υA)+M w/W=15.944×1000/(0.186×4.24×100)+0.007×106/(4.49×103)=203.65

2N/mm2≤[σ]=205N/mm2

满足要求

八、抗倾覆验算

根据规范规定应分别按混凝土浇筑前、混凝土浇筑中两种工况进行架体进行抗倾覆验算。

工况1:

混凝土浇筑前,倾覆力矩主要由风荷载产生,抗倾覆力矩主要由模板及支架自重产生。其他水平力作用于架体顶部,大小为0.02G1k,则:

M T=0.9×1.4(ωk L a H2/2+0.02G1k Ll b H)=1.4×(0.021×8×4.72/2+0.02×0.5×8×1×4.7)=3. 156kN·m

M R=1.35G1k Ll b2/2=1.35×0.5×8×((4-1)×1)2/2=24.3kN·m

满足要求:M T≤M R

工况2:

在混凝土浇筑过程中,倾覆力矩主要由泵送、倾倒混凝土等因素产生的水平荷载产生,抗倾覆力矩主要由钢筋、混凝土、模板及支架自重产生。其他水平力作用于架体顶部,大小为0.02[G1k+(G2k+G3k)h],则:

M T=0.9×1.4(ωk L

H2/2+0.02[G1k+(G2k+G3k)h]Ll b H)=1.4×(0.021×8×4.72/2+0.02×(0.5+(24+1.5)×800/1000)×8×1×4.7)=24.633kN·m

M R=1.35[G1k+(G2k+G3k)h]Ll b2/2=1.35×(0.5+(24+1.5)×800/1000)×8×((4-1)×1)2/2=1 015.74kN·m

满足要求:M T≤M R

箱涵设计计算书

公路桥涵设计计算书 一,设计资料 公路上箱涵,净跨径L 0为2.5m ,净高h 0为3.0m ,箱涵顶平均为2.0m 夯填砂砾石,顶为300mm 沥青混凝土路面铺装层,两侧边为砂砾石夯填,土的内摩擦角?为40o ,砂砾石密度γ=23KN/m 3,箱涵选用C25混凝土和HRB335钢筋。本设计安全等级为二级,荷载为公路-Ⅱ级。 二 设计计算 (一)截面尺寸 顶板、底板厚度 δ=40cm(C1=30cm) 侧墙厚度 t=40cm(C2=30cm) 故 横梁计算跨径 L p =L 0+t=2.5+0.4=2.9m 侧墙计算高度 hp=h0+δ=3.0+0.4=3.4m (二) 荷载计算 1.恒载 恒载竖向压力 221/0.56m KN H P =+=δγγ 恒载水平压力 顶板处 2 002 11 /00.1024045tan m KN H e p =???? ? ?-=γ 底板处 2 002 12 /01.2934045tan )(m KN h H e p =??? ? ??-+=γ 2.活载

汽车后轮地宽度0.6m ,公路-Ⅱ级车辆荷载由《公路桥涵设计通用规范》(JTG D60-2004)第4.3.4条计算一个汽车后轮横向分布宽,按30。角向下分布。 m m H 23 .145.0130tan 26.00?=+ m m H 2 8 .145.0130tan 26.00?=+ 故,横向分布宽度为029.43.1230tan 1.026.00=+??? ? ??+=a m 同理,纵向,汽车后轮招地长度0.2m : m H o 2 4 .1255.130tan 22.0?=+ 故,m H b 509.2230tan 22.00=??? ? ???= ∑G=140KN 车辆荷载垂直压力 2m /25.13509 .2029.4140KN b a G q =?=?∑= 车 车辆荷载水平压力 2 002 m /2.8820445tan KN q e =??? ? ??-?=车车 (三)内力计算 1.构件刚度比 1.171 21=?= P L h I I K 2.节点弯矩和轴向力计算 (1)a 种荷载作用下(图1)

地铁车站主体结构模板、支架计算书

计算书 1模板配置概况表 模板支架配置表 2材料的物理力学性能指标及计算依据 2.1材料的物理力学性能指标 1)材料的物理力学性能指标 ①碗扣支架钢管截面特性 根据JGJ166-2008规范表5.1.6、5.1.7采用: φ=,壁厚t=3.5mm,按壁厚3.0mm计算。截面积A=4.24cm2,自外径48mm 重q=33.1N/m,抗拉、抗弯抗压强度设计值f=205N/mm2,抗剪强度设计值fv=125N/mm2,弹性模量E=2.06×105N/mm2。

回转半径i=1.59cm,截面模量W=4.49cm3,截面惯性矩I=10.78cm4。 ②方木 根据《建筑施工模板安全技术规范》(JGJ162-2008)附录 A 3.1-3 木材的强度设计值和弹性模量采用; 方木采用红皮云杉,弹性模量E=9000N/mm2,抗弯强度设计值f=13N/mm2,承压强度设计值f=10N/mm2,顺纹抗拉强度设计值fm=8.0 N/mm2,顺纹抗剪强度设计值fv=1.4N/mm2。 截面尺寸85mm×85mm,惯性矩I=bh3/12=4.350×10-6m4 ,抗弯截面模量W=bh2/6=1.024×10-4m3, 静矩S= bh2/8=7.677×10-5m3 截面尺寸100mm×100mm,惯性矩I=bh3/12=8.333×10-6m4 ,抗弯截面模量W=bh2/6=1.667×10-4m3, 静矩S= bh2/8=1.250×10-4m3 截面尺寸120mm×120mm,惯性矩I=bh3/12=1.728×10-5m4 ,抗弯截面模量W=bh2/6=2.88×10-4m3, 静矩S= bh2/8=2.16×10-4m3 ③木胶合板(参照产品试验性能参数) 模板采用胶合面板,规格2440mm×1220mm×18mm 抗弯强度设计值f=11.5N/mm2,承压抗拉强度设计值fm=8.0 N/mm2,抗剪强度设计值fv=1.3N/mm2,弹性模量E=6000 N/mm2; 取1m宽模板, 惯性矩: I=bh3/12=1000×183/12=4.86×10-7 m4; 模板的截面抵抗矩为:w=bh2/6=1000×182/6=5.40×10-5m3; 静矩: S= bh2/8=1000×182/8=4.05×10-5m3; ④钢模板面板 钢模板采用大模板,面板为6mm厚Q235A钢板,规格2m×3m。 抗弯拉、压强度设计值f=215N/mm2,抗剪强度设计值f=125N/mm2 弹性模量E=206000N/mm2。 取1m宽,截面积A=6000mm2,惯性矩I=1.8×10-8m4;截面模量W=6×10-6m3;静矩S=4.5×10-6m3 ⑤钢背楞 竖肋、横肋和边肋均采用[8普通型热轧槽钢;背楞采用2[10普通型热轧

箱梁模板设计计算汇总

箱梁模板设计计算 1箱梁侧模 以新安江特大桥主桥箱梁为例。 现浇混凝土对模板的侧压力计算:新浇筑的初凝时间按8h,腹板一次浇注高度4.5m,浇注速度1.5m/h,混凝土无缓凝作用的外加剂,设计坍落度16mm。 F=0.22*26*8*1.0*1.15*1.51/2=64.45KN/m2 F=26*4.5=117.0KN/m2 故F=64.45KN/m2作为模板侧压力的标准值。 q1=64.45*1.2+(1.5+4+4)*1.4=90.64KN/m2(适应计算模板承载能力) q2=64.45*1.2=77.34KN/m2(适应计算模板抗变形能力) 1.1侧模面板计算 面板为20mm厚木胶板,模板次楞(竖向分配梁)间距为300mm,计算高度1000mm。面板截面参数:Ix=666670mm4,Wx=66667mm3,Sx=50000mm3,腹板厚1000mm。

按计算简图1(3跨连续梁)计算结果:Mmax=0.82*106N.mm,Vx=16315N,fmax=0.99mm。 由 Vx*Sx/(Ix*Tw)得计算得最大剪应力为 2.48MPa,大于1.35MPa不满足。 由 Mx/Wx得计算得强度应力为4.89MPa,满足。 由fmax/L得挠跨比为1/304,不满足。 按计算简图2(较符合实际)计算结果:Mmax=0.25*106 N.mm,Vx=9064N,fmax=0.12mm。 由 Vx*Sx/(Ix*Tw)得计算得最大剪应力为0.68MPa,满足。 由 Mx/Wx得计算得强度应力为3.82MPa,满足。 由fmax/L得挠跨比为1/1662,满足。 由此可见合理的建立计算模型确实能减少施工投入避免不必要的浪费。 1.2竖向次楞计算 次楞荷载为:q3=90.64*103*0.3=27192N/m=27.19N/mm,选用方木100*100mm,截面参数查附表。水平主楞间距为900mm,按3跨连续梁计算。

现浇箱梁支架设计计算书.

现浇箱梁支架设计计算书 第一章编制依据 1、编制依据 1.1施工合同文件及其他相关文件。 1.2工地现场考察所获取的资料。 1.3《公路桥涵施工技术规范》JTG/T F50-2011。 1.4《公路工程质量检验评定标准》JTG F80-2004。 1.5《公路工程施工安全技术规范》JTJ076-95。 1.6《公路工程水泥及水泥混凝土试验规程》JTG E30-2005。 1.7《建筑施工模板安全技术规范》JGJ 162-2008 1.8《建筑施工扣件式钢管脚手架安全技术规范》JGJ 130-2011 1.9《建筑施工高处作业安全技术规范》JGJ 80-91 1.10《建筑结构荷载规范》GB50009-2001(2006年版) 第二章工程概况 本工程为新建桥梁,起点桩号K3+799.97,终点桩号K3+866.03,桥长 66.06m 。桥跨布置为一联,具体分跨为:(16+27+16)m 。主桥箱梁采用C50混凝土。桥梁支架位于地势较低的水田之中,在进行支架搭设前应进行地基处理。 1 上部结构采用现浇预应力砼变截面连续箱梁,桥梁与道路成75°夹角,分为上下行两座独立的桥梁。桥梁平面位于R=1200mm的圆弧上,纵断面位于0.54%的上坡上。

2 桥梁左、右幅不等宽,左幅桥梁宽度为25.25m ,右幅桥梁宽度为22.5m ,两幅桥梁之间设置1.0m 的中央分隔带。左幅桥具体布置为:6m (人行道、非机动车 道)+1.5m(机非分隔带)+17.25m(机动车道)+0.50m(防撞栏)=25.25m;右幅桥具体布置为:6m (人行道、非机动车道)+1.5m(机非分隔带)+14.5m (机动车道)+0.50m(防撞栏)=22.5m。上部结构为(16+27+16)m 变截面预应力砼连续箱梁。桥墩处梁高1.7m ,桥台和中跨跨中梁高为1.1m ,采用二次抛物线过渡,过渡段的方程式为Y=0.004167X2+1.1。左幅桥箱梁顶板宽25.25m ,底板宽20.25m ,悬臂宽 2.5m ,为单箱五室结构;右幅桥箱梁顶板宽22.5m ,底板宽17.5m ,悬臂宽2.5m ,为单箱五室结构。标准段跨中顶板厚度25cm ,底板厚度22cm ,腹板厚50cm 。支座附近顶板厚度50cm ,底板厚度47cm ,腹板厚65cm 。支点处设横隔梁,中横隔梁宽2.0m ,端横隔梁宽1.2m 。 3 桥台采用座板式桥台,基础采用冲击钻钻孔灌注桩基础,桥台桩基直径为 1.5m ,按嵌岩桩设计,要求嵌入中风化石飞岩深度不小于1.0D (D 为桩基直径)。台背回填透水性较好的砂砾石,回填尺寸按施工规范要求确定,回填时要求分层压实,压实度不小于96%。桥墩采用柱式桥墩,墩柱间设系梁。桥面横坡:采用 2.0%双向横坡,坡向外侧,桥面横坡通过箱梁斜置形成,箱梁顶、底板始终保持平行。 4 桥面铺装:4cm 厚改性沥青砼(AC-13C )+ 5 cm厚中粒式沥青砼(AC- 20C )防水层,铺装总厚9cm 。桥面排水:桥面设置泄水管,直接将桥面雨水导入道路排水系统。 5 伸缩缝:为了保证梁能自由变形,在0#、3#桥台处设置GQF-Z60型伸缩缝。支座采用GPZ (2009)桥梁盆式橡胶支座。

涵洞模板支架计算

涵洞模板支架计算 (一)、箱涵侧模板承受水平推力 1、新浇混凝土对箱涵侧模板的最大水平压力计算 (1)箱涵最大浇筑高度:3+ (2)箱涵每段第二次浇筑工程量(混凝土):(×+××2+×2)×24= (3)箱涵采用商品混凝土浇筑,其浇筑能力20m3/h,考虑÷20≈3h浇筑完成。 故浇筑速度:÷3=h (4)由于在冬季施工,贵阳地区按5℃气温考虑。 (5)新浇混凝土对箱涵侧模板的最大水平压力 根据《路桥施工计算手册》当混凝土浇筑速度在6m/h以下时作用于侧面模板的最大压力P m按下式计算:

P 1=K ×γ×h 当v/T ≤时:h=+T 当v/T >时:h=+T 式中:P 1—新浇混凝土对侧面模板的最大压力,kPa ; h —有效压头高度,m ; T —混凝土入模时的温度,℃m ; K —外加剂影响修正系数,不加时,K =1;掺缓凝外加剂时,K = v —混凝土的浇筑速度,m/h ; r —钢筋混凝土容重,取25KN/m 3 当5=>时,新浇混凝土有效压头高度h=+×=(m ) 故P 1=×25×= 2、采用插入式振捣器振捣混凝土,其侧面模板的水平压力取P 2= 3、箱涵侧模板承受水平推力P =P 1+P 2=+4= (二)墙体模板计算 墙体内外模板均采用×竹胶板,横向、竖向肋板采用10×10cm 方木,墙体两侧模板采用对拉杆固定。 1.横向肋板间距计算: 根据《路桥施工计算手册》当墙侧采用木模板时支撑在内楞上一般按三跨连续梁计算,按强度和刚度要求确定: 取1m 宽的模板,则作用于模板上的线荷载: q=×1=m ①按强度要求时的横肋间距: 式中:l —横肋间距,mm mm q b h l 3513.7010002065.465.4=??==

模板支架设计方案

模板支架设计 一、编制依据: 《混凝土结构工程施工质量验收规范》 《建筑施工扣件式钢管脚手架安全技术规范》 《木结构工程施工质量验收规范》 施工图纸(工程结构形式、荷载大小、地基土类别、承受浇筑混凝土的重量及侧压力)及施工组织设计(施工进度、施工设备、材料供应以及施工荷载) 二、编织步骤及注意事项: 脚手架工程施工的主要步骤如下:主要及相关人员商讨方案---确定方案---编制方案---报公司技术、安全部门审批方案---审批合格后由架子工长组织实施---各方验收合格---投入使用脚手架工程在施工前,技术负责人应召集技术、安全、生产等相关人员对本工程的脚手架搭设情况进行研讨,确定脚手架应搭设的步距、纵距、横距、总高度、范围等各项参数内容,然后由技术负责人或技术员编制,编制完毕的方案经技术负责人审核后报公司技术安全部门会审,并由公司总工程师审批后执行。方案审批返回项目部,由项目部架子工长组织工人进行搭设,经公司技术、安全及项目部技术、安全部门负责人验收合格,方可使用。 三、模板支架荷载: 1、荷载分类 作用于模板支架的荷载可分为永久荷载(恒荷载)与可变荷载(活荷载)。 2、永久荷载(恒荷载)可分为: (1)模板及支架自重,包括模板、木方、纵向水平杆、横向水平杆、立杆、剪刀撑、横向斜撑和扣件等的自重; (2)新浇混凝土自重; (3)钢筋自重 3 、可变荷载(活荷载)可分为: (1)施工荷载,包括作业层上的人员、器具和材料的自重; (2)倾倒或振捣混凝土荷载。 四、方案确定: 1、工程概况

板厚240 mm 180mm 150mm 130mm 130mm 高1000mm 700mm 700mm 700mm 700mm 梁 宽700mm 500mm 500mm 500mm 500mm 2、顶板支撑方案搭设参数的确定 现以转换层为例选择顶板模板支撑方案: ①、由于层高为4.5m,可确定支架搭设高度为4.2m(层高减掉板厚);现设定支撑架布距为1.2m,则立杆上端伸出顶层横杆中心线至模板支撑点的长度a=层高-板厚-底层横杆至地面距离-整倍的布距-相邻模板背楞的高度;及 a=4.5-0.2-0.1-1.2×3-0.1=0.5 ②、初步确定立杆纵距和横距均为1.2m; ③、模板材料选择竹胶板;相邻模板的小楞采用50×100mm2木方,间距为300mm;顶托梁采用100×100mm2木方,间距为1200mm。采用的钢管类型为48× 3.5。 3、设计计算内容: 1.板底面板强度、挠度和剪力计算; 2.板底木方强度、挠度和剪力计算; 3.木方下面支撑梁(木方或钢管)强度、挠度计算; 4.扣件的抗滑承载力计算; 5.立杆的稳定性计算。 4、计算解析: 力传递过程: 面板-木方-托梁-顶托(或扣件)-立杆 楼板支撑架立面简图

现浇箱梁支架及模板计算书

附件1:连续箱梁施工工艺流程图

附件3:质量保证体系 第 旦 量 质 思想保证 组织保证 提高质量意识 TQC 教育 检查落实 疋 教 育 计 划 改进工作质量 质量保证体系 项目经理部质量 管 理领导小组 项目队质 £量小组 各项工作制度和标准 技术保证 贯彻IS09000系 列质量标准,推 行全面质量管理 现 场 Q C 小 组 活 动 熟 悉 图 纸 掌 握 规 范 应 用 新 技 术 工 -艺 技术岗位责任制 质量责任制 底 划 训 核 总结表彰先进 提高工作技能 制度保证 经济法规 经济责任制 优 质 优 价 宀 完 善 计 量 支 付 手 续 制 疋 奖 罚 措 施 签 疋 包 保 责 任 状 L 1 接 疋 进 充加 受 期 行 分强 奖优罚劣 业 不 自 用现 主 疋 检 现场 和 期 代试 经济兑现 监 质 化试 理 量 检验 监 检 手控 督 查 段制 质量评定

附件4:安全、质量保证体系图 质量保证体系 L 思想保证组织保证技术保证 提高质量意识 I TQC教育项目经理部质量管理领导小组 项目队质量小组 为用户服务质量工作检查 检查落实 改进工作质量 QC 小 组 活 岗 前 技 术 培 训 总结表彰先进 贯彻IS09000系列质量标 准,推行全面质量管理 施工保证 创优规划 制度保证 各项工作制度和标准 熟 悉 图 纸 掌 握 规 r 1 T 技术岗位责任制 底划 提高工作技能 实现质量目标 经济法规 经济责任制 优 测 优 价 复 核 卓 里 质 疋 创 优 措 施 确 创 优 项 目 制 疋 奖 罚 措 施 质量评定 充加 分强 利现 现场 代试 检验 测控 手手 制 奖优罚 劣 经济兑 现 见 专业资料

F匝道现浇箱梁盘扣支架计算书

F匝道现浇箱梁盘扣支架计算书 本工程现浇梁板支架根据《建筑施工承插型盘扣式钢管支架安全技术规程》(JGJ231-2010)中模板支架进行计算。 箱梁梁高,顶板厚,底板厚,翼缘板根部厚,边缘厚,则恒载在腹板及端横梁位置为m2,底板为m2,翼缘板根部恒载为m2,边缘为m2;模板、机具、施工人员、倾倒、振捣混凝土的活载按5KN/m2考虑。 满堂支架底板横距120cm;腹板下横距90cm;腹板侧用60cm间距调整;翼板下横距150cm。在标准箱室段立杆纵向间距为150cm;横梁实心段纵距90cm,腹板加宽段纵距120cm。详见方案图。 主龙骨采用14#工字钢,横桥向铺设。底板次龙骨采用10#工字钢,顺向铺设,间距30cm。翼缘板主龙骨采用10#工字钢,次龙骨采用10*10cm方木,间距为20cm。 盘扣支架立杆材质为Q345B钢材,规格型号采用φ60×型钢管,截面积A=,惯性矩I= cm4、回转半径i=,容许应力[σ]=300Mpa;14#工字钢截面积A=,惯性矩I=712cm4;抵抗矩W=,容许应力[σ]=205Mpa;10#工字钢截面积A=,惯性矩I=245cm4;抵抗矩W=49cm3,容许应力[σ]=205Mpa;10*10cm方木(柏树)截面积A=100cm2,惯性矩I=8333333mm4;抵抗矩W=166667mm3,容许应力[σ W ]=17M pa,[σ j ]=;5*10cm方木截面积A=50cm2,惯性矩I=;抵抗矩W=,容许应力[σ W ] =17Mpa,[σ j ]=,弹性模量E=10*103MPa。 相关材料参数见下表:

一)模板计算 模板采用15mm厚木胶合板,抗弯强度[σw]=,抗剪强度[σj]=,弹性模量E =*103。 1、腹板、横梁位置 模板取宽度1m作为计算单元,跨径取,则模板的惯性矩I=ab3/12=1000*15* 15*15/12=281250mm4,抵抗距W=ab2/6=1000*15*15/6=37500mm3。该处荷载q=*+* 5=m 模板按3跨连续梁计算,则根据路桥计算手册可知: M=* qmax L2=***=则σ w =M/W=*106/37500=<【σ w 】= MPa σ j =A=**200/(1000*15)=<【σ j 】= 最大扰度f=*qL4/(100EI)=**2004/(100**103*281250)=<L/250=,扰度满足要求。 2、底板位置 模板取宽度1m作为计算单元,跨径取,则模板的惯性矩I=ab3/12=1000*15* 15*15/12=281250mm4,抵抗距W=ab2/6=1000*15*15/6=37500mm3。该处荷载q=*+* 5=m 模板按3跨连续梁计算,则根据路桥计算手册可知: M=* qmax L2=***=则σ w =M/W=*106/37500=<【σ w 】= MPa σ j =A=**300/(1000*15)=<【σ j 】= 最大扰度f=*qL4/(100EI)=**3004/(100**103*281250)=<L/250=,扰度满足要求。 3、翼缘板位置 模板取宽度1m作为计算单元,跨径为,则模板的惯性矩I=ab3/12=1000*15* 15*15/12=281250mm4,抵抗距W=ab2/6=1000*15*15/6=37500mm3。该处荷载q=*+* 5=模板按3跨连续梁计算,则根据路桥计算手册可知: M=* qmax L2=***=【σ w 】= MPa σ j =*A=***200/(1000*15)=<【σ j 】= 最大扰度f=*qL4/(100EI)=**2004/(100**103*281250)=<L/250=,扰度满

箱涵模板支架计算书

箱涵模板支架计算书 一、方案选择 1、通道涵施工顺序 通道涵分三次浇筑,第一次浇至底板内壁以上500mm,第二次浇至顶板以下500mm,第三次浇筑剩余部分。 2、支模架选择 经过分析,本通道涵施工决定采用满堂式模板支架,采用扣件式钢筋脚手架搭设。 顶板底模选用18㎜厚九层胶合板,次楞木为50×100,间距为300㎜,搁置在水平钢管?48×3.5上,水平钢管通过直角扣件把力传给立柱?48×3.5,立柱纵、横向间距均为500×500㎜,步距 1.8m。侧壁底模为18㎜九层胶合板,次楞木50×100,间距为200㎜,主楞采用?48×3.5钢管,间距为400mm。螺栓采用?12,间距400mm。满堂支架图如下:

具体计算如下。 二、顶板底模计算 顶板底模采用18mm厚胶合板,木楞采用50×100mm,间距为300mm。 按三跨连续梁计算 1.荷载 钢筋砼板自重:0.6×25×1.2=18KN/㎡(标准值17.85KN/㎡) 模板重:0.3×1.2=0.36KN/㎡(标准值0.30 KN/㎡) 人与设备荷载:2.5×1.4=3.50KN/㎡ 合计:q=21.9KN/㎡ 2.强度计算 弯矩:M==0.1×21.9×0.32=0.197KN·m q: 均布荷载 l:次楞木间距 弯曲应力:f ==(0.197×106)/(×1000×182)=3.64 N/mm2 M: 弯矩 W: 模板的净截面抵抗矩,对矩截面为bh2 b: 模板截面宽度,取1m h: 模板截面高度,为18mm 因此f<13.0 N/mm2 ,符合要求。 3.挠度计算

W==(0.677×(17.85+0.3)×3004)/(100×9.5×103×1000×183/12) < =0.216㎜<300/400=0.75㎜,符合要求. q:均布荷载标准值 E: 模板弹性模量,取9.5×103 I:模板的截面惯性矩,取 三、顶板下楞计算 楞木采用50×100mm,间距为300,支承楞木、立柱采用?48×3.5钢管,立柱间距为500mm。 楞木线荷载:q=21.9×0.3=6.57KN/㎡(标准值18.15×0.3=5.45N/mm2) (1)、强度计算 弯矩:M==0.1×6.57×0.52=0.164KN·m : 楞木截面宽度 弯曲应力:f ==(0.164×106)/(×50×1002)=1.968N/mm2 因此f<13.0 N/mm2,符合要求。 (2)、挠度计算 W==(0.677×(17.85+0.3)×5004)/(100×9.5×103×1000×183/12) < =0.194㎜<500/400=1.25㎜,符合要求. 四、支承顶板楞木水平钢管计算 顶板支承钢管线荷载:q=25.28×0.5=12.64KN/㎡(标准值

盘扣式现浇箱梁模板支架计算书(匝道桥)

盘扣式现浇箱梁支架模板计算书计算依据: 1、《建筑施工承插型盘扣式钢管支架安全技术规程》JGJ231-2010 2、《混凝土结构设计规范》GB 50010-2010 3、《建筑结构荷载规范》GB 50009-2012 4、《钢结构设计标准》GB 50017-2017 一、工程属性

JGJ231-2010 梁底支撑主梁左侧悬挑长度a1(mm) 0 梁底支撑主梁右侧悬挑长度a2(mm) 0 平面图

立面图 四、面板验算 面板类型覆面木胶合板面板厚度t(mm) 15 面板抗弯强度设计值[f](N/mm2) 15 面板抗剪强度设计值[τ](N/mm2) 1.4 面板弹性模量E(N/mm2) 10000 W=bh2/6=1000×15×15/6=37500mm3,I=bh3/12=1000×15×15×15/12=281250mm4 q1=[1.2(G1k+(G2k+G3k)×h)+1.4×Q1k]×b=[1.2×(0.1+(13+1.5)×1.8)+1.4×3]×1= 35.64kN/m q1静=1.2×[G1k+(G2k+G3k)×h]×b=1.2×[0.1+(13+1.5)×1.8]×1=31.44kN/m q1活=1.4×Q1k×b=1.4×3×1=4.2kN/m q2=[1×(G1k+(G2k+G3k)×h)+1×Q1k]×b=[1×(0.1+(13+1.5)×1.8)+1×3]×1= 29.2kN/m

计算简图如下: 1、强度验算 M max=0.107q1静L2+0.121q1活L2=0.107×31.44×0.1862+0.121×4.2×0.1862= 0.134kN·m σ=M max/W=0.134×106/37500=3.561N/mm2≤[f]=15N/mm2 满足要求! 2、挠度验算 νmax=0.632q2L4/(100EI)=0.632×29.2×185.7144/(100×10000×281250)= 0.078mm≤[ν]=min[L/150,10]=min[185.714/150,10]=1.238mm 满足要求! 3、支座反力计算 设计值(承载能力极限状态) R1=R5=0.393q1静L+0.446q1活L=0.393×31.44×0.186+0.446×4.2×0.186=2.643kN R2=R4=1.143q1静L+1.223q1活L=1.143×31.44×0.186+1.223×4.2×0.186=7.628kN R3=0.928q1静L+1.142q1活L=0.928×31.44×0.186+1.142×4.2×0.186=6.309kN 标准值(正常使用极限状态) R1'=R5'=0.393q2L=0.393×29.2×0.186=2.131kN R2'=R4'=1.143q2L=1.143×29.2×0.186=6.198kN R3'=0.928q2L=0.928×29.2×0.186=5.032kN

现浇箱梁支架计算书

怀集至阳江港高速公路怀集至郁南段一期工程X2合同段 A匝道第三联现浇支架 计算书 编制: 审核: 审批: 中铁二十局集团有限公司 怀阳高速公路X2标项目经理部 二〇一八年二月

目录 一、工程概况 (1) 二、箱梁设计情况 (1) 三、支架布设方案 (3) 四、计算依据 (4) 五、荷载计算取值 (5) 1、恒载 (5) 2、活载 (5) 六、各构件受力计算 (5) 1、荷载分块 (5) 2、荷载计算 (6) 3、支架验算 (8) (1)竹胶板验算 (8) (2)方木验算 (9) (3) I14工字钢验算 (10) (4)贝雷梁验算: (10) (5) I36工字钢验算: (13) (6)Φ529mm钢管桩计算 (15) (7) C30混凝土独立基础计算 (15)

A匝道桥第三联支架计算 一、工程概况 本桥为跨越道路而设,路线纵断较高,最大桥高约38米。桥跨设计为(25+30+30)+5×25+(25+37+25),上部结构采用预应力混凝土预制小箱梁和预应力混凝土现浇箱梁。桥墩采用柱式墩、墙式墩,桥台采用柱式台;桥墩、桥台基础均采用桩基础。桥跨起点桩号为AK0+602.418,终点桩号AK0+905.018,中心桩号AK0+753.718,桥跨全长为302.6m(包括耳墙)。本桥平面位于圆曲线、缓和曲线、缓和曲线和圆曲线上,纵断面纵坡为3.95%和0.5%。 二、箱梁设计情况 本桥第三联(25+37+25m)于AK0+862.28上跨B2匝道桥,交叉角度149°,8号墩至11号台,桥位布置见图1。全桥箱梁高度均为200cm,跨中顶板厚度25cm,底板厚度22cm,梁端顶板厚度45cm,底板厚度42cm;翼缘板宽度250cm,翼缘板板端厚度18cm,翼缘板根部厚度45cm。腹板高度113cm,厚度由梁端80cm向跨中45cm渐变。箱梁细部尺寸见表1,箱梁横断面见图2。混凝土强度为C50,工程量为569.75m3。

模板支架计算书

模板支架 计 算 书

一、概况: 现浇钢筋砼检查井,板厚(max=200mm),最大满包截面为300×600 mm,沿梁方向梁下立杆间距为800 mm,最大层高4.7 m,施工采用Ф48×3.5 mm钢管搭设滿堂脚手架做模板支撑架,楼板底立杆纵距、横距相等,即la=lb=1000mm,步距为1.5m,模板支架立杆伸出顶层横杆或模板支撑点的长度a=100 mm。剪力撑脚手架除在两端设置,中间隔12m-15m设置。应支3-4根立杆,斜杆与地面夹角450-600。搭设示意图如下: 二、荷载计算: 1.静荷载 楼板底模板支架自重标准值:0.5KN/ m3 楼板木模板自重标准值:0.3KN/m2 楼板钢筋自重标准值:1.1KN/ m3 浇注砼自重标准值:24 KN/ m3 2.动荷载 施工人员及设备荷载标准值:1.0 KN/ m2 掁捣砼产生的荷载标准值:2.0 KN/ m2 架承载力验算: 大横向水平杆按三跨连续梁计算,计算简图如下:

q 作用大横向水平杆永久荷载标准值: qK1=0.3×1+1.1×1×0.16+24×1×0.16=4.32 KN/m 作用大横向水平杆永久荷载标准值: q1=1.2 qK1=1.2×4.32=5.184 KN/m 作用大横向水平杆可变荷载标准值: qK2=1×1+2×1=3KN/m 作用大横向水平杆可变荷载设计值: q2=1.4 qK2=1.4×3=4.2 KN/m 大横向水平杆受最大弯矩 M=0.1q1Ib2+0.117q2Ib2=0.1×5.184×12+0.117×4.2×12=1.01 KN/m 抗弯强度:σ=M/W=1.01×106/5.08×103=198.82N/ m2<205N/ m2=f 滿足要求 挠度:V=14×(0.667 q1+0.99 qK2)/100EI =14×(0.667×5.184+0.99×3)/100×2.06×105×12.19×104 =2.6 mm<5000/1000=5 mm滿足要求 3.扣件抗滑力计算 大横向水平杆传给立杆最大竖向力 R=1.1q1Ib+1.2q2Ib=1.1×5.184×1+1.2×4.2×1=10.74KN>8KN,不能滿足,应采取措施,紧靠立杆原扣件下立端,增设一扣件,在主节点处立杆上为双扣件,即R=10.74KN <16KN,滿足要求。 4.板下支架立杆计算: 支架立杆的轴向力设计值为大横杆传给立杆最大竖向力与楼板底模板支架自重产生的轴向力设计值之和,即: N=R+0.5×1.2+10.74+0.5×1.2=11.34KN

塔楼模板支架施工方案计算书

青田县瓯江四桥(步行桥)工程 塔楼施工方案 检算书 计算: 复核: 审核: 中铁四局集团有限公司 青田县瓯江四桥(步行桥)工程项目经理部 二〇一六年九月十日 青田项目部塔楼施工模板支架计算书 1编制依据 (1)《青田县瓯江四桥(步行桥)工程相关设计图纸》; (2)《建筑扣件式钢管脚手架安全技术规范》(JGJ130-2011); (3)《建筑施工计算手册》(第二版); (4)《建筑施工承插型盘扣式钢管支架安全技术规程》JGJ231-2010 (5)《建筑施工模板安全技术规范》JGJ162-2008 (6)《建筑结构荷载规范》GB50009-2012

(7)《钢结构设计规范》GB50017-2003 (8)《混凝土结构设计规范》GB50010-2010 (9)《建筑地基基础设计规范》GB50007-2011 (10)《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011 2方案简介 青田县瓯江四桥(步行桥)工程设计瓯南桥头塔楼一座、瓯南滨水塔楼一座、瓯北滨水塔楼一座、瓯北桥头塔楼一座,总建筑面积为2817.76m2。 其中瓯南桥头塔楼位于P1墩处,地上三层,建筑高度16.940m,为混凝土框架结构;瓯南滨水塔楼地上四层,建筑高度29.928m,结构形式为混凝土剪力墙结构; 瓯南、瓯北桥头塔楼及滨水塔楼外排脚手架及承重支架全部采用盘扣式钢管脚手架。 瓯北滨水塔楼地上七层,建筑高度36.368m,结构形式为混凝土剪力墙结构;瓯北桥头塔楼地上四层,建筑高度17.720m,为混凝土框架结构。瓯南、瓯北桥头塔楼为钻孔桩加承台基础,待承台及基础梁施工完成后搭设内外脚手架,然后再进行柱梁板钢筋模板混凝土施工,待下层施工完成后继续安装上层脚手架并进行下一步工序施工。 瓯南滨水塔楼采用P3和P4墩承台作为基础,瓯北滨水塔楼采用P8和P9墩承台作为基础,在承台施工时预留塔楼墙柱插筋,待墩身施工完成后,搭设塔楼内外脚手架进行塔楼墙柱梁板的施工,瓯南、瓯北桥头塔楼建筑施工完成后再进行相应的箱梁施工。瓯南、瓯北桥头塔楼计划于2017年1月16日进行装饰施工;瓯南、瓯北滨水塔楼装饰施工计划于2016年6月10日开始。 根据现场实际情况以及经济合理性,瓯南、瓯北塔楼施工起重吊装选择汽车吊进行物资的上下倒运作业。 按照主体结构施工顺序,在墙柱钢筋及模板施工完成后,开始进行梁的施工。首先进行满堂支撑架的架设,再进行顶板模板的施工,之后进行梁位置的定位放线,再施工梁模板和梁钢筋,最后进行梁的加固。 (1)梁模支设:模板采用15mm竹胶板,加固肋条采用100×100木方及φ48×3.0钢管做背肋,对于高度小于600mm的梁不采用对拉螺杆,当梁高600~800mm时设一道对拉拉杆,高度大于800mm的梁设两道对拉螺杆,螺杆水平向间距@600mm。 (2)搭设梁底模支架,在柱子上弹出轴线、梁位置及水平标高线,钉柱头模板。按设计标高调整顶托标高,然后放梁底模,并拉线找平,当梁底跨度大于或等于4m时,梁底模起拱按设计要 求做,当设计无具体要求时,起拱高度为1‰-3‰跨长。 (3)梁模支架设单排立杆加顶托、二道水平拉杆并设剪刀撑。根据所弹墨线安装梁侧模板,顶撑杆及斜撑等。立杆纵向间距控制在500-600㎜,梁底增设一根立杆,即横距500㎜,其他同楼板支撑系统,梁下钢管扣件必须设置双扣件,防止滑扣。

箱梁模板支架验算(两箱室)

箱梁模板(碗扣式)计算书计算依据: 1、《建筑施工模板安全技术规范》JGJ162-2008 2、《建筑施工碗扣式钢管脚手架安全技术规范》JGJ166-2008 3、《混凝土结构设计规范》GB50010-2010 4、《建筑结构荷载规范》GB 50009-2001 5、《钢结构设计规范》GB 50017-2003 一、工程属性 箱梁类型双室梁A(mm) 4550 B(mm) 900 C(mm) 3000 D(mm) 1200 E(mm) 400 F(mm) 200 G(mm) 3000 H(mm) 0 I(mm) 3365 J(mm) 1040 K(mm) 220 L(mm) 1330 M(mm) 520 箱梁断面图 二、构造参数 底板下支撑小梁布置方式垂直于箱梁断面横梁和腹板底的小梁间距l2(mm) 200 箱室底的小梁间距l3(mm) 200 翼缘板底的小梁间距l4(mm) 200 标高调节层小梁是否设置否可调顶托内主梁根数n 2 主梁受力不均匀系数ζ0.5 立杆纵向间距l a(mm) 900 横梁和腹板下立杆横向间距l b(mm) 600 箱室下的立杆横向间距l c(mm) 900 翼缘板下的立杆横向间距l d(mm) 900 模板支架搭设的高度H(m) 8

立杆计算步距h(mm) 1200 立杆伸出顶层水平杆长度a(mm) 200 斜杆或剪刀撑设置剪刀撑符合《规范》JGJ166-2008设置要求 支架立杆步数8 次序横杆依次间距hi(mm) 1 350 2 1200 3 1200 4 1200 5 1200 6 1200 7 600 8 600 箱梁模板支架剖面图 三、荷载参数 新浇筑混凝土、钢筋自重标准值G1k(kN/m3) 26 模板及支撑梁(楞)等自重标准值G2k(kN/m2) 1 支架杆系自重标准值G3k(kN/m) 0.15 其它可能产生的荷载标准值G4k(kN/m2) 0.4

现浇箱梁支架计算书

现浇箱梁支架计算书 一、设计依据 1、《两阶段施工图设计》(第四册第二分册) 2、《建筑施工碗扣式脚手架安全技术规范》(JGJ166-2008) 3、《建筑施工扣件式钢管脚手架安全技术规范》(JGJ 130-2001) 4、《公路桥涵钢结构及木结构设计规范》(JTJ025-86) 5、《公路桥涵施工技术规范》(JTJ041-2000)——人民交通出版社 6、《钢结构设计规范》(GB50017-2003) 7、《路桥施工计算手册》——人民交通出版社 二、工程概况 挖色立交桥(主线K46+060)现浇箱梁采用C40砼,左幅上部结构设计为:(3×20)米现浇连续箱梁,顶板宽12.0米,底板宽7.5m,梁高1.4m,单箱双室。右幅上部结构设计为:(3×20)米现浇连续箱梁,顶板宽14.5米,底板宽10m,梁高1.4m,单箱三室。箱梁顶板厚度25cm,底板厚度25cm,腹板宽度55cm。现浇箱梁支架采用Ф48×3.5mm 碗扣式满堂支架。面板采用15mm厚竹胶板,模板背楞采用10cm×10cm木方,根据箱梁结构尺寸现场加工。 因本桥曲率半径较小,为方便施工,对横隔板、腹板、箱室部分采取相同的支架布距。碗扣式钢管支架的纵、横间距分别为60cm、90cm,水平横杆层距为120cm;横向分配梁采用[8槽钢,间距90cm;采用可调托撑、可调底座调节顶、底部标高,顶、底托伸出钢管长度不大于30cm;模板面板采用竹胶板,模板背楞及支撑采用10×10cm的方木;地基进行换填碎石土处理(换填50cm碎石土处理,压路机碾压密实),并浇筑15cm 厚C20砼。支架计算取右幅单箱三室箱梁进行受力分析,箱梁结构图及支架设计断面详见2-1。

钢筋砼箱涵模板计算例子

一、工程概况 本设计为安徽肥东龙潭东风大道改造工程。由于肥东东风大道的建设,东风大道在K17+52处,与安徽省天然公司已建D400高压管道交叉。为防止管道发生意外,需对该段交叉管道进行箱涵保护。本工程箱涵保护长度65米。 二、施工部署 2.1、组织机构 为确保优质、高速、安全、文明地完成本工程建设,我公司本着科学管理,精干高效、结构合理的原则,已选派了具有开拓进取精神、施工经验丰富、态度诚恳、勤奋实干、科学务实的工程技术人员和管理人员组建了项目管理班子和管理机构。根据本工程的特点,从已组建的项目管理机构中指派工程师林奕和具体负责本工程的施工,其他各部门人员协助配合,以质量、安全、工期成本为中心。开展高效率的工作。 2.2、管理目标 质量目标:本部位工程质量达到优良标准。 安全目标:杜绝人身伤亡事故。 工期目标:绝对工期44日历天,开工时间计划为2010年1月20日 2.3、劳动力安排计划 根据该工程的特点,我项目部已组织了专门施工箱涵,通道工程的劳务作业施工队,配置了普工20人、模板工20人、架子工10人、钢筋工15人、砼工8人、防水工2人。各工种紧密配合,具体分工如下: 普工:清理基槽土方,搬移材料、碎石垫层铺设、袋装土护坡、基槽回填,配合技术工种作业等。 模板工:支模前的放线,配模,支模,拆模等。 架子工:施工脚手架及支撑、承重脚手架搭设等。 钢筋工:钢筋加工及半成品的运输,绑扎,保护层的控制等。 砼工:砼的浇筑入模,振捣,养护等(砼的搅拌运输由商品砼站集中组织供应) 防水工:涵洞的沉降缝处理等。 2.4、投入的主要施工机械设备 为满足本工程的施工需要,拟投入主要施工机械设备如下: ①、为满足基槽土方开挖,投入1.25m3反铲挖掘机1台,自卸汽车3台, 潜水泵3台。 ②、为满足砼施工需要,砼计划从商品砼站购置,采用3台9m3砼搅拌 运输车运至现场浇筑,现场配备砼振动器3台,30kw发电机1台,同时 投入成套的钢筋加工设备,木工机械,测量设备及其他设备等,均已按 施工组织总设计的配置要求组织到位,满足本工程的施工需要。 2.5、投入的主要施工材料 主要施工材料计划如下表:

模板支架专项方案计算书汇总

主体结构 模板支架受力计算书 计算人: 复核人:

狮山路站模板、支架强度及稳定性验算 1、设计概况 狮山路站为地下两层,双跨整体式现浇钢筋混凝土框架结构;车站内衬墙与围护桩间设置柔性防水层。在通道、风道与主体结构连接处设置变形缝。主要结构构件的强度等级及尺寸如下: 表1 狮山路站主体结构横断面尺寸表 2、模板体系设计方案概述 狮山路站全长272m,共分10段结构施工。主体结构施工拟投入8套标准段脚手架(长27.2m×宽19.8m×6.35m)。最长段模板长32m、最短段模板长24m,每段模板平均按27.2m考虑。模板主要采用胶合板模板加三角钢模板。支架采用Φ48×3.5mm碗扣式钢管脚手架支撑,中间加强杆件、剪刀撑、扫地杆采用扣件式脚手架。 (1)狮山路站侧墙模板施工采用三角支架模板系统,三角大模板支架体系分为:三角钢架支撑和现场拼装的模板系统。三角支架分为4.0m高的标准节和0.85m高的加高节,大模板采用4000(长)×1980(宽)×6.0mm(厚)钢模板。大模板竖肋、横肋和边肋均采用[8普通型热轧槽钢,背楞采用2[10,普通型热轧槽钢。 在浇注底板混凝土时,侧墙部分要比底板顶面向上浇灌300mm高。在浇灌混凝土前水平埋入一排φ25精扎螺纹钢(外露端车丝),作为侧墙大模板的底部支撑的地脚螺栓拉结点,L=700。在施工过程中必须确保此部分侧墙轴线位置和垂直度的准确,以保证上下侧墙的对接垂直、平顺。对于单面侧墙模板,采用单面侧向支撑加固。侧向支撑采用角钢三角架斜撑,通过预埋Φ25拉锚螺栓和支座垫块固定。纵向间距同模板竖龙骨间距,距离侧墙表面200mm。

(完整版)现浇箱梁内模支架计算

国道324线磊口大桥续建工程 现浇连续箱梁(50+85+50m) 内模满堂支架 计 算 书 编制: 审核: 审批: 广州市方阵路桥工程技术有限公司 国道324线磊口大桥续建工程项目经理部 2016年9月11日

目录 一、现浇箱梁满堂扣件支架布置及搭设要求 (1) 二、支架材料力学性能指标 (1) 1、钢管截面特性 (1) 2、竹胶板、木方 (1) 三、荷载分析计算 (1) 1、板自重荷载分析 (2) 2、其它荷载 (2) 三、荷载验算 (2) 1、底模验算 (2) 2、[10#槽钢主横梁验算 (3) 3、顺桥向顶部10×10cm方木分配梁验算 (3) 4、立杆受力计算 (4) 5、支架立杆稳定性验算 (4) 7、箱梁侧模验算 (5)

一、现浇箱梁满堂扣件支架布置及搭设要求 采用满堂支架,使用与立杆配套的横杆及立杆可调底座、立杆可调托撑。支架体系由支架基础、Φ48×3.5mm 立杆、横杆,立杆顶设两层支撑梁,10cm ×10cm 木方做顺桥向分配梁、间距35cm 均匀布置;主横梁采用[10#槽钢间距同立杆间距75cm ;模板系统由侧模、底模、端模等组成。 二、支架材料力学性能指标 1、钢管截面特性 2、竹胶板、木方 2.1、箱梁底模、侧模及内模均采用δ=15 mm 的竹胶板。竹胶板容许应力 []pa 80M =σ,弹性模量Mpa E 3109?=。 2.2、横桥向顶部主梁[10#槽钢,截面参数和材料力学性能指标: 截面抵抗矩:W=39.7cm 3 截面惯性矩:I=198cm 4 截面积:A=12.7cm 2 2.3、顺桥向顶部分配梁采用方木,截面尺寸为10x10cm 。截面参数和材料力学性能指标: 截面抵抗矩:W=bh 2/6=10×102/6=166.7cm 3 截面惯性矩:I=bh 3/12=10×103/6=833.3cm 4 2.4、方木的力学性能指标按《公路桥涵钢结构及木结构设计规范》(JTJ025-86)取值,则: []pa 12M =σ,Mpa E 3109?= 木头容重6kN/m 3,折算成10cm ×10cm 木方为0.06kN/m 3,木头最大横纹剪应力取 [τ]=3.2~3.5N/mm 2 三、荷载分析计算 碗扣式脚下手架满堂支架竖向力传递过程:箱梁钢筋砼和内模系统的自重及施工临时荷载能过底模传递到横梁上,横梁以集中荷载再传递给纵梁,纵梁以支座反力传递到每根立杆,立杆通过底托及方木传递至底板模板上。以下分别对支架的底模、横梁、纵梁、立

相关文档
最新文档