比利时LMS Test' Lab Modal 基于实验的传递路径分析

小波分析考试题(附答案)

《小波分析》试题 适用范围:硕士研究生 时 间:2013年6月 一、名词解释(30分) 1、线性空间与线性子空间 解释:线性空间是一个在标量域(实或复)F 上的非空矢量集合V ;设V1是数域K 上的线性空间V 的一个非空子集合,且对V 已有的线性运算满足以下条件 (1) 如果x 、y V1,则x +y V1; (2) 如果x V1,k K ,则kx V1, 则称V1是V 的一个线∈∈∈∈∈性子空间或子空间。2、基与坐标 解释:在 n 维线性空间 V 中,n 个线性无关的向量,称为 V 的一组n 21...εεε,,,基;设是中任一向量,于是 线性相关,因此可以被基αn 21...εεε,,,线性表出:,其中系数 αεεε,,,,n 21...n 21...εεε,,,n 2111an ...a a εεεα+++=是被向量和基唯一确定的,这组数就称为在基下的坐标,an ...a a 11,,,αn 21...εεε,,,记为 () 。an ...a a 11,,,3、内积 解释:内积也称为点积、点乘、数量积、标量积。,()T n x x x x ,...,,21= ,令,称为x 与y 的内积。 ()T n y y y y ,...,,21=[]n n y x y x y x y x +++=...,2211[]y x ,4、希尔伯特空间 解释:线性 完备的内积空间称为Hilbert 空间。线性(linearity ):对任意 f , g ∈H ,a ,b ∈R ,a*f+b*g 仍然∈H 。完备(completeness ):空间中的任何柯西序列都收敛在该空间之内。内积(inner product ):,它满足:,()T n f f f f ,...,,21=时。 ()T n g g g g ,...,,21=[]n n y x y x y x y x +++=...,22115、双尺度方程 解释:所以都可以用空间的一个1010,V W t V V t ?∈?∈)()(ψ?) ()和(t t ψ?1V

基因芯片数据处理流程与分析介绍

基因芯片数据处理流程与分析介绍 关键词:基因芯片数据处理 当人类基因体定序计划的重要里程碑完成之后,生命科学正式迈入了一个后基因体时代,基因芯片(microarray) 的出现让研究人员得以宏观的视野来探讨分子机转。不过分析是相当复杂的学问,正因为基因芯片成千上万的信息使得分析数据量庞大,更需要应用到生物统计与生物信息相关软件的协助。要取得一完整的数据结果,除了前端的实验设计与操作的无暇外,如何以精确的分析取得可信数据,运筹帷幄于方寸之间,更是画龙点睛的关键。 基因芯片的应用 基因芯片可以同时针对生物体内数以千计的基因进行表现量分析,对于科学研究者而言,不论是细胞的生命周期、生化调控路径、蛋白质交互作用关系等等研究,或是药物研发中对于药物作用目标基因的筛选,到临床的疾病诊断预测,都为基因芯片可以发挥功用的范畴。 基因表现图谱抓取了时间点当下所有的动态基因表现情形,将所有的探针所代表的基因与荧光强度转换成基本数据(raw data) 后,仿如尚未解密前的达文西密码,隐藏的奥秘由丝丝的线索串联绵延,有待专家抽丝剥茧,如剥洋葱般从外而内层层解析出数千数万数据下的隐晦含义。 要获得有意义的分析结果,恐怕不能如泼墨画般洒脱随兴所致。从raw data 取得后,需要一连贯的分析流程(图一),经过许多统计方法,才能条清理明的将raw data 整理出一初步的分析数据,当处理到取得实验组除以对照组的对数值后(log2 ratio),大约完成初步的统计工作,可进展到下一步的进阶分析阶段。

图一、整体分析流程。基本上raw data 取得后,将经过从最上到下的一连串分析流程。(1) Rosetta 软件会透过统计的model,给予不同的权重来评估数据的可信度,譬如一些实验操作的误差或是样品制备与处理上的瑕疵等,可已经过Rosetta error model 的修正而提高数据的可信值;(2) 移除重复出现的探针数据;(3) 移除flagged 数据,并以中位数对荧光强度的数据进行标准化(Normalized) 的校正;(4) Pearson correlation coefficient (得到R 值) 目的在比较技术性重复下的相似性,R 值越高表示两芯片结果越近似。当R 值超过0.975,我们才将此次的实验结果视为可信,才继续后面的分析流程;(5) 将技术性重复芯片间的数据进行平均,取得一平均之后的数据;(6) 将实验组除以对照组的荧光表现强度差异数据,取对数值(log2 ratio) 进行计算。 找寻差异表现基因 实验组与对照组比较后的数据,最重要的就是要找出显著的差异表现基因,因为这些正是条件改变后而受到调控的目标基因,透过差异表现基因的加以分析,背后所隐藏的生物意义才能如拨云见日般的被发掘出来。 一般根据以下两种条件来筛选出差异表现基因:(i) 荧光表现强度差异达2 倍变化(fold change 增加2 倍或减少2倍) 的基因。而我们通常会取对数(log2) 来做fold change 数值的转换,所以看的是log2 ≧1 或≦-1 的差异表现基因;(ii) 显著值低于0.05 (p 值< 0.05) 的基因。当这两种条件都符合的情况下所交集出来的基因群,才是显著性高且稳定的差异表现基因。

小波分析考试题及答案

一、叙述小波分析理论发展的历史和研究现状 答:傅立叶变换能够将信号的时域和特征和频域特征联系起来,能分别从信号的时域和频域观察,但不能把二者有机的结合起来。这是因为信号的时域波形中不包含任何频域信息,而其傅立叶谱是信号的统计特性,从其表达式中也可以看出,它是整个时间域内的积分,没有局部化分析信号的功能,完全不具备时域信息,也就是说,对于傅立叶谱中的某一频率,不能够知道这个频率是在什么时候产生的。这样在信号分析中就面临一对最基本的矛盾——时域和频域的局部化矛盾。 在实际的信号处理过程中,尤其是对非常平稳信号的处理中,信号在任一时刻附近的频域特征很重要。如柴油机缸盖表明的振动信号就是由撞击或冲击产生的,是一瞬变信号,单从时域或频域上来分析是不够的。这就促使人们去寻找一种新方法,能将时域和频域结合起来描述观察信号的时频联合特征,构成信号的时频谱,这就是所谓的时频分析,亦称为时频局部化方法。 为了分析和处理非平稳信号,人们对傅立叶分析进行了推广乃至根本性的革命,提出并开发了一系列新的信号分析理论:短时傅立叶变换、时频分析、Gabor 变换、小波变换Randon-Wigner变换、分数阶傅立叶变换、线形调频小波变换、循环统计量理论和调幅—调频信号分析等。其中,短时傅立叶变换和小波变换也是因传统的傅立叶变换不能够满足信号处理的要求而产生的。 短时傅立叶变换分析的基本思想是:假定非平稳信号在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。但从本质上讲,短时傅立叶变换是一种单一分辨率的信号分析方法,因为它使用一个固定的短时窗函数,因而短时傅立叶变换在信号分析上还是存在着不可逾越的缺陷。 小波变换是一种信号的时间—尺度(时间—频率)分析方法,具有多分辨

GNSS在线数据处理系统在工程控制网中的运用

GNSS在线数据处理系统在工程控制网中的运用 发表时间:2019-09-08T17:24:49.033Z 来源:《基层建设》2019年第17期作者:张伟[导读] 摘要:本文主要对卫星定位系统的发展历程进行了分析,并对卫星定位技术在工程控制当中的意义进行了阐述,通过目前我国城市连续运行参考网站发展的方向以卫星定位系统应用在施工放样和国土资源调查中的情况,探讨了在信息采集和城市信息管理中卫星定位技术的重要性,希望能够提供参考价值,让GNSS在线数据处理系统得到更加广泛的应用。 正元地理信息集团股份有限公司山东分公司 250014摘要:本文主要对卫星定位系统的发展历程进行了分析,并对卫星定位技术在工程控制当中的意义进行了阐述,通过目前我国城市连续运行参考网站发展的方向以卫星定位系统应用在施工放样和国土资源调查中的情况,探讨了在信息采集和城市信息管理中卫星定位技术的重要性,希望能够提供参考价值,让GNSS在线数据处理系统得到更加广泛的应用。 关键词:GNSS技术;在线数据处理系统;工程控制网随着社会经济的不断发展,科学技术不断进步,计算机技术、GNSS技术等一些新兴技术的出现是必然趋势,目前正在不断完善一种以网络GNSS定位技术和数据处理方法,使各种网络的GNSS在线处数据处理系统更加完善和优质,在一定程度上推动了我国工程控制的发展,具有十分广大的应用前景和应用价值。 1.GNSS技术的发展历程 互联网科学技术的不断发展,让GPS等卫星导航技术拥有了更加广阔的发展空间,各种DNSS数据处理系统应运而生,网络在线数据处理系统不仅能将处理的成本有效降低,也能让用户的体验更加方便和便捷,不会受到时间、空间的限制,用户随时随地都可以通过邮件获取处理数据的过程以及结果,目前有许多国家以及科研机构都以互联网技术为基础,建造了GNSS在线数据处理系统。其中美国的SCOUT 系统以及澳大利亚的AUSPOS系统已经开始实现自动化运作,在处理数据时会自动选择与上传站点相邻的参考站,并对和平差进行计算和统计,整个处理过程非常迅速,而且在时代不断发展过程中,科学网络技术和经济不断进步,卫星定位系统的性能也在不断优化,卫星导航系统兼容与互相商户操作已经逐渐实现。在俄罗斯、美国都有了空中的卫星定位系统。目前多星座卫星定位系统的发展也为接收机带来了非常大的变化,卫星定位有着高精准度,并且其能通过与GSM、GPRS等通讯网络结合使用,整个操作非常方便、便捷,用户只需要通过卫星定位接收机,就可以定位远距离位置,让定位的高精度和快速度的功能有效实现。 2.GNSS在线数据处理系统在工程控制网中的运用 在现代社会当中,全球的卫星定位系统不仅是卫星技术自身的优化突破,并且在工程控制中也拥有非常广泛的应用价值,让工程设计能拥有更加科学的技术手段。应用卫星技术在工程网的每一个环节中,能够使该项工程更加便利和快捷,其不仅是只对测量进行控制,还会对地形进行测绘,具有非常大的功效。 2.1在工程控制测量中的应用 在工程控制测量中卫星定位技术的优势有许多,因为卫星定位技术的处理速度快,而且精度较高,所以广泛运用在各种类型的工程控制网中。随着社会的不断发展,对测量的要求更高,大地水准面的测量数据要求也更加准确。应用卫星定位技术测量我国东部平原地区,其精度可以高达3cm,在丘陵地区测量其精度可以高达5cm,控制网实现了从二维到三维的转变,能够颠覆传统的测量方法,在让测量成果质量得到保证的同时,也让运作效率不断提升,具有非常大的使用价值。今年来我国经济正在呈现快速发展的趋势,推动了大型工程建立,比如长江三峡工程、南水北调工程等,在对其控制网建设过程中,卫星定位系统都发挥了很大的作用和功效,为整个工程的建设提供了非常坚实的技术基础和后盾。 2.2应用于地形图测绘以及国土资源调查中 GNSS在线数据处理系统还包括RTK技术,RTK技术具有一定的优越性,目前已经在测绘地形图、测量地籍以及施工放样得到了应用,是非常重要的技术手段,在这类工程中有效采用RTK技术,不仅可以极大发挥出RTK技术的高精度、快速度的优势,而且还能有效提升工程进度。大型工程建设的施工要求更加严谨和严格,比如一些桥梁建设、高速公路建设、水坝工程建设等,这类工程施工具有一定的复杂性,而且工期比较紧凑,所以其建成必须要卫星定位技术辅助才能开展施工。目前随着卫星定位技术的不断发展,取得了更多优秀的成果,在PDA上已经可以使用GPSRTK技术进行施工放样,并且这一技术已经在西气东输工程中得到了应用,整个工程中对油管道的施工放样非常严谨,输油管线长达6000多公里,而需要在有限的时间内完成施工,就必须要进行分段施工,运用卫星定位技术不仅将其运行效率有效提高,而且也能精准把握控制网的准确度。 2.3应用于精密机械控制与土木工程机械控制 卫星定位技术不仅可以测量和控制工程网,还可以控制一些精密机械,比如大型集装箱吊装自动控制以及土木工程机械控制。这些机械控制都离不开卫星定位技术,在对机械进行控制时应用卫星定位技术,能够将该技术的高精准度、快速等特点充分发挥出来,结合无线通讯设备,可以自动控制野外施工作业,有效提高了施工进度,而且还能减少工人的施工量,让整个施工的质量和效率得到保障。 2.4应用于GIS信息采集以及城市信息管理当中 目前我国GPS信息采集工作的开展就是运用遥感技术和卫星定位RTK技术,使用RTK技术对GPS信息进行采集和更新是目前信息收集使用的重要手段,投入使用网络RTK技术不仅可以将城市信息化进程不断加快,还能够将城市基础设施信息采集过程中的实时性和可靠性提高。 由于在参考战网当中具有一定的特殊性和服务性能,有效的利用卫星定位技术以及通信网对信号进行统一采集和散播,可以让一网多用的功能实现,从而有效节约资源,也提高经济效益。而且在此基础上对城市进行管理规划时,能以提供更加快速的信息更新服务为基础开展规划工作。参考网站的静态观测数据还能对其他范畴进行服务,比如地震监测等,这种参考网站具有较为广泛的服务范围,所以也被称之为卫星定位的综合服务网。 目前我国已经有许多城市进行了参考战网的建立和运行工作,比如上海、深圳等。进一步推广卫星参考站网可以以我国目前发展的实际情况为基础,让参考战网能够由省级向市级、县级等方向发展。如今在苏州、南京等城市已经实现了网连网,并且其覆盖范围较广,江苏省的参考战网主要由64个站组成,广东省的参考战网主要由46个站组成。 3.结束语

工业大数据设备项目财务分析表

工业大数据设备项目财务分析表 一、项目背景情况 当前,地区将进入以转型促发展的新阶段,工业发展仍处于大有 可为的战略机遇期,同时也将面临着发展环境复杂多变的严峻挑战, 加之生产要素瓶颈等制约,任务艰巨而紧迫。 工业大数据是指在工业领域中,围绕典型智能制造模式,从客户 需求到销售、订单、计划、研发、设计、工艺、制造、采购、供应、 库存、发货和交付、售后服务、运维、报废或回收再制造等整个产品 全生命周期各个环节所产生的各类数据及相关技术和应用的总称,其 以产品数据为核心,极大延展了传统工业数据范围,同时还包括工业 大数据相关技术和应用。随着各国工业革新的推进、智能制造的发展,工业大数据行业得到快速发展。 工业大数据是未来工业在全球市场竞争中发挥优势的关键。近年来,各国纷纷推动其工业发展的改革,德国工业4.0、美国工业互联网、中国制造,制造业创新战略的实施基础都是工业大数据的搜集和特征 分析,以此创新发展、指导经营,推动工业智能化的发展。工业智能 化与工业大数据相互促进,其数据来源包含企业内部与外部及市场上

的相关数据,主要包含生产经营相关的业务数据、设备物联数据和外 部数据几个方面。 工业大数据是智能制造的关键技术,利用智能化的手段及数据服务,推动生产型制造向服务型制造转型,其在智能制造中有着广阔的 应用前景,在产品市场需求获取、产品研发、制造、运行、服务直至 报废回收的产品全生命周期过程中,工业大数据在智能化设计、生产、网络化协同制造、智能化服务、个性化定制等场景都发挥较大的作用。 随着工业化改革的发展,全球工业大数据的规模不断增加。截止 至2017年全球工业大数据的市场规模为201亿美元,当年全球大数据 市场规模为394亿元,工业大数据占全球大数据总规模超过50%,可见工业大数据已经成为全球大数据行业发展的主要的领域。未来,在以 德国为代表的工业4.0深化发展及其他国家智能制造的发展,预计 2020年全球工业大数据的市场规模为480亿美元,占大数据总规模的 比重约为60%。 《中国制造2025》提出推动了我国工业发展要向智能化的转变, 工业大数据成为行业发展的一个重要领域。据贵阳大数据交易所统计 资料显示,2017年我国工业大数据市场规模约为212元,较上年同比 增长41.3%,增速较快。按照国内工业数据化的发展及政策支持的推进,

小波分析结课论文

小波分析结课论文 基于正交滤波器组的Daubechies 小波设计及Quartus ll 仿真 1.非平稳信号的局部变换 信号s(t)和其频谱S(w)构成Fourier 变换对,由于Fourier 变换或反变换都属于全局变换,不能告知某种频率分量发生在那些时间内,因此用来不能描述信号的局部统计特性。对于非平稳信号s(t),应该采用局部变换来描述其随时间变化的统计特性。并且信号的局部性能需要使用时域和频域是我二维联合表示,才能精确描述。 1.1用内积构造信号变换 任何一种信号变换都可以写成该信号与某个选定的核函数之间的内积,因此可以用下面两种基本形式来构造。 信号s(t)的局部变换 = <取信号s(t)的局部,核函数无穷长> 或 信号s(t)的局部变换 = <取信号s(t)的全部,核函数局域化> 1.2小波变换 1.2.1选用小波变换的原因 三个信号局部变换的典型例子是短时Fourier 变换、Gabor 变换、小波变换,它们都是时频信号分析的线性变换。而短时Fourier 变换和Gabor 变换都属于“加窗Fourier 变换”,都以固定的滑动窗对信号进行分析,可以表征信号的局部频率特性。显然,这种时域固定等宽的滑动窗处理并不是对所有的信号都合适。因为有较多的自然界信号在低频端应具有很高的频率分辨率,在高频端的频率分辨率可以比较低。而从不相容原理的角度看,这类信号的高频分量应该具有高的时间分辨率,低频分量应该具有低的时间分辨率。对这类非平稳信号的线性时频分析,应该在时频平面的不同位置具有不同的分辨率,小波变换就是这样一种多分辨(率)分析方法,其目的是既见森林——信号概貌,又见树木——信号细节,所以,小波分析被称为数学显微镜。 1.2.2连续小波变换的定义及参数含义 平方可积分函数s(t)的连续小波变换定义为 (,)()*( )(),()s ab t b W T a b s t dt s t t a ψψ∞ -= =??? , a > 0

各种模态分析方法总结与比较

各种模态分析方法总结与比较 一、模态分析 模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。 模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过 AHA12GAGGAGAGGAFFFFAFAF

模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 AHA12GAGGAGAGGAFFFFAFAF

AHA12GAGGAGAGGAFFFFAFAF 二、各模态分析方法的总结 (一)单自由度法 一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。但是如果假定在给定的频带内只有一个模态是重要的,那么该模态的参数可以单独确定。以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。在给定的频带范围内,结构的动态特性的时域表达表示近似为: ()[]}{}{T R R t r Q e t h r ψψλ= 2-1 而频域表示则近似为: ()[]}}{ {()[]2ωλωψψωLR UR j Q j h r t r r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机内存。 这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正确的。然而实际情况通常并不是这样的,所以就需要用包含若干模态的模型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由度(MDOF)法。 单自由度算法运算速度很快,几乎不需要什么计算和计

数据处理的基本方法

第六节数据处理的基本方法 前面我们已经讨论了测量与误差的基本概念,测量结果的最佳值、误差和不确定度的计算。然而,我们进行实验的最终目的是为了通过数据的获得和处理,从中揭示出有关物理量的关系,或找出事物的内在规律性,或验证某种理论的正确性,或为以后的实验准备依据。因而,需要对所获得的数据进行正确的处理,数据处理贯穿于从获得原始数据到得出结论的整个实验过程。包括数据记录、整理、计算、作图、分析等方面涉及数据运算的处理方法。常用的数据处理方法有:列表法、图示法、图解法、逐差法和最小二乘线性拟合法等,下面分别予以简单讨论。 列表法是将实验所获得的数据用表格的形式进行排列的数据处理方法。列表法的作用有两种:一是记录实验数据,二是能显示出物理量间的对应关系。其优点是,能对大量的杂乱无章的数据进行归纳整理,使之既有条不紊,又简明醒目;既有助于表现物理量之间的关系,又便于及时地检查和发现实验数据是否合理,减少或避免测量错误;同时,也为作图法等处理数据奠定了基础。 用列表的方法记录和处理数据是一种良好的科学工作习惯,要设 计出一个栏目清楚、行列分明的表格,也需要在实验中不断训练,逐步掌握、熟练,并形成习惯。 一般来讲,在用列表法处理数据时,应遵从如下原则:

(1) 栏目条理清楚,简单明了,便于显示有关物理量的关系。 (2) 在栏目中,应给出有关物理量的符号,并标明单位(一般不重复写在每个数据的后面)。 (3) 填入表中的数字应是有效数字。 (4) 必要时需要加以注释说明。 例如,用螺旋测微计测量钢球直径的实验数据列表处理如下。 用螺旋测微计测量钢球直径的数据记录表 从表中,可计算出 D i D = n = 5.9967 ( mm)

工业大数据应用场景分析

工业大数据应用场景分析 2015-08-05 工业4点0 工业4点0 工业大数据也是一个全新的概念,从字面上理解,工业大数据是指在工业领域信息化应用中所产生的大数据。随着信息化与工业化的深度融合,信息技术渗透到了工业企业产业链的各个环节,条形码、二维码、RFID、工业传感器、工业自动控制系统、工业物联网、ERP、CAD/CAM/CAE/CAI等技术在工业企业中得到广泛应用,尤其是互联网、移动互联网、物联网等新一代信息技术在工业领域的应用,工业企业也进入了互联网工业的新的发展阶段,工业企业所拥有的数据也日益丰富。工业企业中生产线处于高速运转,由工业设备所产生、采集和处理的数据量远大于企业中计算机和人工产生的数据,从数据类型看也多是非结构化数据,生产线的高速运转则对数据的实时性要求也更高。因此,工业大数据应用所面临的问题和挑战并不比互联网行业的大数据应用少,某些情况下甚至更为复杂。 工业大数据应用将带来工业企业创新和变革的新时代。通过互联网、移动物联网等带来的低成本感知、高速移动连接、分布式计算和高级分析,信息技术和全球工业系统正在深入融合,给全球工业带来深刻的变革,创新企业的研发、生产、运营、营销和管理方式。这些创新不同行业的工业企业带来了更快的速度、更高的效率和更高的洞察力。工业大数据的典型应用包括产品创新、产品故障诊断与预测、工业生产线物联网分 析、工业企业供应链优化和产品精准营销等诸多方面。本文我们讲就工业大数据在制造企业的应用场景进行逐一梳理。 1、加速产品创新 客户与工业企业之间的交互和交易行为将产生大量数据,挖掘和分析这些客户动态数据,能够帮助客户参与到产品的需求分析和产品设计等创新活动中,为产品

基因表达谱芯片的数据分析

基因表达谱芯片的数据分析(2012-03-13 15:25:58)转载▼ 标签:杂谈分类:生物信息 摘要 基因芯片数据分析的目的就是从看似杂乱无序的数据中找出它固有的规律, 本文根据数据分析的目的, 从差异基因表达分析、聚类分析、判别分析以及其它分析等角度对芯片数据分析进行综述, 并对每一种方法的优缺点进行评述, 为正确选用基因芯片数据分析方法提供参考. 关键词: 基因芯片; 数据分析; 差异基因表达; 聚类分析; 判别分析 吴斌, 沈自尹. 基因表达谱芯片的数据分析. 世界华人消化杂志2006;14(1):68-74 https://www.360docs.net/doc/4110398007.html,/1009-3079/14/68.asp 0 引言 基因芯片数据分析就是对从基因芯片高密度杂交点阵图中提取的杂交点荧光强度信号进行的定量分析, 通过有效数据的筛选和相关基因表达谱的聚类, 最终整合杂交点的生物学信息, 发现基因的表达谱与功能可能存在的联系. 然而每次实验都产生海量数据, 如何解读芯片上成千上万个基因点的杂交信息, 将无机的信息数据与有机的生命活动联系起来, 阐释生命特征和规律以及基因的功能, 是生物信息学研究的重要课题[1]. 基因芯片的数据分析方法从机器学习的角度可分为监督分析和非监督分析, 假如分类还没有形成, 非监督分析和聚类方法是恰当的分析方法; 假如分类已经存在, 则监督分析和判别方法就比非监督分析和聚类方法更有效率。根据研究目的的不同[2,3], 我们对基因芯片数据分析方法分类如下: (1)差异基因表达分析: 基因芯片可用于监测基因在不同组织样品中的表达差异, 例如在正常细胞和肿瘤细胞中; (2)聚类分析: 分析基因或样本之间的相互关系, 使用的统计方法主要是聚类分析; (3)判别分析: 以某些在不同样品中表达差异显著的基因作为模版, 通过判别分析就可建立有效的疾病诊断方法. 1 差异基因表达分析(difference expression, DE) 对于使用参照实验设计进行的重复实验, 可以对2样本的基因表达数据进行差异基因表达分

小波分析基础及应用期末习题

题1:设{},j V j Z ∈是依尺度函数()x φ的多分辨率分析,101()0x x φ≤

11()3.k k h k p -=为高通分解滤波器,写出个双倍平移正交关系等式 题6:列出二维可分离小波的4个变换基。 题8:要得到“好”的小波,除要求滤波器0()h n 满足规范、双正交平移性、低通等最小条件外,还可以对0()h n 加消失矩条件来得到性能更优良的小波。 (1) 请写出小波函数()t ψ具有p 阶消失矩的定义条件: (2) 小波函数()t ψ具有p 阶消失矩,要求0()h n 满足等式: (3) 在长度为4的滤波器0()h n 设计中,将下面等式补充完整: 222200000000(0)(1)(2)(3)1 (0)(2)(1)(3)0 ,1 2h h h h h h h h n ?+++=???+==??? 规范性低通双平移正交阶消失矩

模态分析与振动测试技术

模态分析与振动测试技术 固体力学 S0902015 李鹏飞

模态分析与振动测试技术 模态分析的理论基础是在机械阻抗与导纳的概念上发展起来的。近二十多年来,模态分析理论吸取了振动理论、信号分析、数据处理数理统计以及自动控制理论中的有关“营养”,结合自身内容的发展,形成了一套独特的理论,为模态分析及参数识别技术的发展奠定了理论基础。 一、单自由度模态分析 单自由度系统是最基本的振动系统。虽然实际结构均为多自由度系统,但单自由度系统的分析能揭示振动系统很多基本的特性。由于他简单,因此常常作为振动分析的基础。从单自由度系统的分析出发分析系统的频响函数,将使我们便于分析和深刻理解他的基本特性。对于线性的多自由度系统常常可以看成为许多单自由度系统特性的线性叠加。 二、多自由度系统模态分析 对于多自由度系统频响函数数学表达式有很多种,一般可以根据一个实际系统来讨论,给出一种形式;也可根据问题的要求来讨论,给出其他不同的形式。为了课程的紧凑,直接联系本课程的模态分析问题,我们就直接讨论多自由度系统通过频响函数表达形式的模态参数和模态分析。即多自由度系统模态参数与模态分析。 多自由度系统模态分析将主要用矩阵分析方法来进行。 我们以N个自由度的比例阻尼系统作为讨论的对象。然后将所分析的结果推广到其他阻尼形式的系统。 设所研究的系统为N个自由度的定常系统。其运动微分方程为: (2—1) ++= M X CX KX F ?)阶式中M,C,K分别为系统的质量、阻尼及刚度矩阵。均为(N N 矩阵。并且M及K矩阵为实系数对称矩阵,而其中质量矩阵M是正定矩阵,刚度矩阵K对于无刚体运动的约束系统是正定的;对于有刚体运动的自由系统则是半正定的。当阻尼为比例阻尼时,阻尼矩阵C为对称矩阵(上述是解耦条件)。 N?阶矩阵。即 X及F分别为系统的位移响应向量及激励力向量,均为1

(完整版)在线考试系统登录系统数据系统UML

软件工程系课程设计 课程:系统建模基础(UML )概述________ 编制时间:2011 年06 月12 日 目录 1.1、............................................. 系统的性能需求 3 1.2、............................................... 系统主要功能

3 1.3功能模块需求分析 (4) 1.4本章小结 ............................................... 1.0 2.1系统结构设计 (11) 2.2考试流程设计 (11) 2.3数据库设计 ............................................. 1.3 2.4系统功能模块设计 . (18) 2.5关键类设计 (24) 2.6、对象图 (25) 3.1、活动图 (29) 3.2、状态图 (35) 3.3、顺序图 (37) 3.4、协作图 (39) 4.1、构件图............................................... 4.2 4.2、部署图............................................... 4.2

在线考试系统的需求分析 1.1、系统的性能需求 为了保证考试系统能长期、稳定、安全、可靠、高效地运行,系统应满足以下的一些性能需求: ①系统处理的准确性和及时性:准确性和及时性是考试系统的必要性能。在系统设计和开发过程中,要充分考虑系统目前和将来可能承受的工作量,使系统的处理能力和响应时间能满足用户要求。 ②系统的开放和系统可扩充性:考试系统在开发过程中,应充分考虑以后的可扩充性。例如,系统要能够承载课程的题库、试卷库等实现课程考试。题库、试卷库或单套试卷可以随时进行增加、删除和修改等维护。要求系统提供足够的手段进行功能的调整和扩充,可以简单的加入和减少系统的模块,配置系统的硬件。通过软件的修补、替换完成系统的升级和更新换代。 ③系统的易用性和易维护性:要求系统应该尽量使用用户熟悉的术语和中文信息的界面。系统界面应友好易用,应有详细的系统使用说明,对一些容易出现的误操作应该有相应的提示以及处理办法。考试系统要具有易用性、友好性,系统安装方便、维护简单。 ④系统的安全性:充分考虑用户、题库、服务器等的安全。系统对系统不同等级的用户分别设置不同的权限。考试期间由于机器死机重新启动机器后,计时器应合理进行计时。考试期间由于机器原因需要更换考试用机,学生重新登录考试系统后应能继续做题,考试服务器应能及时保存学生的操作结果。 1.2、系统主要功能 系统主要功能包括用户管理、专业管理、课程管理、试卷管理、学生在线考试等等,下面就系统的主要功能做简要分析: ①用户信息管理 考生可以注册系统,但是不能修改和删除自己的信息,注册以后可以参加考试和查询成绩。管理员可以添加、修改、删除学生信息。 ②课程专业信息管理 管理员可以对课程进行管理,可以添加、修改、删除、查询课程,还可以对专业进行添加、修改、删除的管理。

大学物理实验数据处理基本方法

实验数据处理基本方法 实验必须采集大量数据,数据处理是指从获得数据开始到得出最后结 论的整个加工过程,它包括数据记录、整理、计算与分析等,从而寻找出 测量对象的内在规律,正确地给出实验结果。因此,数据处理是实验工作 不可缺少的一部分。数据处理涉及的内容很多,这里只介绍常用的四种方 法。 1列表法 对一个物理量进行多次测量,或者测量几个量之间的函数关系,往往 借助于列表法把实验数据列成表格。其优点是,使大量数据表达清晰醒目, 条理化,易于检查数据和发现问题,避免差错,同时有助于反映出物理量 之间的对应关系。所以,设计一个简明醒目、合理美观的数据表格,是每 一个同学都要掌握的基本技能。 列表没有统一的格式,但所设计的表格要能充分反映上述优点,应注意以下几点:1.各栏目均应注明所记录的物理量的名称(符号 )和单位; 2.栏目的顺序应充分注意数据间的联系和计算顺序,力求简明、齐全、有条理; 3.表中的原始测量数据应正确反映有效数字,数据不应随便涂改,确实要修改数据时, 应将原来数据画条杠以备随时查验; 4.对于函数关系的数据表格,应按自变量由小到大或由大到小的顺序排列,以便于判 断和处理。 2图解法 图线能够明显地表示出实验数据间的关系,并且通过它可以找出两个 量之间的数学关系,因此图解法是实验数据处理的重要方法之一。图解法 处理数据,首先要画出合乎规范的图线,其要点如下: 1.选择图纸作图纸有直角坐标纸 ( 即毫米方格纸 ) 、对数坐标纸和 极坐标纸等,根据 作图需要选择。在物理实验中比较常用的是毫米方格纸,其规格多为17 25 cm 。 2.曲线改直由于直线最易描绘 , 且直线方程的两个参数 ( 斜率和截距 ) 也较易算得。所以对于两个变量之间的函数关系是非线性的情形,在用图解法时 应尽可能通过变量代换 将非线性的函数曲线转变为线性函数的直线。下面为几种常用的变换方法。 ( 1) xy c ( c 为常数 ) 。 令 z 1,则 y cz,即 y 与 z 为线性关系。 x ( 2) x c y ( c 为常x2,y 1 z ,即 y 与为线性关系。

工业大数据案例

大数据技术在新工业革命中将扮演着重要的角色。制造业大数据应用覆盖工业的研发设计、生产制造、供应链管理、市场营销和售后服务等产品生命周期的各个环节。在研发设计环节,可满足工程组织的设计协同要求,评估和改进当前操作工艺流程,从而提供更好的设计工具,缩短产品交付周期。在生产制造环节,可综合大量的机器、生产线、运营等数据的高级分析实现制造过程优化。在供应链管理环节,制造业大数据主要用于实现供应链资源的高效配置和精确匹配。在市场营销环节,可利用大数据挖掘用户需求和市场趋势,找到机会产品,进行生产指导和后期市场营销分析。同时大数据也是推进传统制造业转型升级的重要工具。因此在新工业革命的世界竞争中,制造业大数据必将是各国信息技术企业竞争的焦点。要迎接新工业革命的挑战,必须发展制造业大数据。 制造业大数据的特点: 从制造业大数据的特点来看,它符合大数据定义中的4V特点,数据规模大(Volume)、处理速度快(Velocity)、数据多样化(Variety)、数据价值密度低(Value). 从规模来看,工业数据的主体,是由机器设备所产生的数据量远超过其它行业以人为主要产生的数据量。以风力发电机为例,终端正常状态下每秒会产生一个数据包,这个数据包包含500个左右的测点数据。如果全部数据需要处理与存储,那么1000台风机发电机产生的测点数据每秒可高达50万个。而无论是大型的风电场运营企业还是风电设备制造商,其需要监控的风机都会达到数千甚至上万的规模。而且与金融、电信等传统服务业可以区分忙时与闲时不同,大多数工业设备的运转都具有长时间连续的特

点。数据通常需要长时间或者永久保留,总的规模应该是TB或者PB级。1千千个G等于1个TB,1000个TB约等于一个PB级。 从处理速度来看,由于源数据的持续高吞吐量,大数据处理平台必须能够高速的对数据进行实时解包、协议解析、格式转换等基本处理。而在越来越多的智能化应用中,需要能够进行实时的数据分析并完成相应操作。特别是在控制系统中,针对安全生产的实时故障检测要求从数据收集到完成数据分析能够实现秒级甚至毫秒级的事前预警或事后报警停机,以避免事故的发生或对设备本身造成更大的连锁损害。 从数据多样性来看,工业数据不仅包括机器设备产生的时序、时空、高伟矩阵等数据,同时还有ERP等信息化管理系统产生的关系型数据,设计研发环节的产品图纸、工艺文档、加工代码等非结构化数据,以及来自外部互联网的半结构化(如JSON XML等)与非结构化数据(如文本等),它们构成了一个典型的多样化数据体系。 从数据价值来看,由于大量的工业设备与智能产品绝大部分时间工作于正常的工况条件下,因而在制造大数据分析的典型场景中,以生产运营优化为目的的应用只是需要使用聚合后的数据,而以故障分析为目标的应用针对的数据仅为少量非正常的工况,因此相对传统企业信息化数据而言,工业数据的价值密度相对较低。 Predix是一个云操作系统,负责将各种工业资产设备和供应商相互连接并接入云端,实现工业数据管理与工业数据分析,并提供资产性能管理(APM)和运营优化服务。SAP开发了面向物联网应用和实时数据处理的HANA大数据平台,并利用其在传统企业信息化ERP系统上的优势,推动HANA与信息

小波分析学习心得

小波分析学习心得 学习小波分析这门课程已经有一段时间了,我对于这一门课程已经有了一定程度的认识。由于学科专业所限,我平时接触小波分析的机会并不是很多,很高兴在这个学期能够有机会专门学习小波分析。经过这一段时间小波分析的学习,虽然我还不能说是精通小波分析,不过也是对其中的一些基本概念有了一定的理解。后文中,我将会对在小波分析学习过程中所得到的一些学习心得进行总结。 我们通常说的波一般指的是物质的一种运动方式,在数学中它对应于时间域或空间域的震荡方程。正弦波就是一种最为常见的波,它的振幅均匀的分布时域中,并不收敛,所具有的能量是无穷的。小波,顾名思义,就是小的波,它的能量是有限的,相对于正弦波而言,它的振幅在时域上是收敛的,能量并不是无穷的。傅里叶变换将函数投影到正弦波上,将函数分解成了不同频率的正弦波,这是一个非常伟大的发现,但是在大量的应用中,傅里叶变换的局限性却日趋明显,事实上在光滑平稳信号的表示中,傅里叶变换已经达到了近似最优表示,但是日常生活中的信号却并不是一直光滑的,傅里叶变换在奇异点的表现就令人非常不满意,从对方波的傅里叶逼近就可以看出来,用了大量不同频率的正弦波去逼近其系数衰减程度相当缓慢。其内在的原因是其基底为全局性基底,没有局部化能力,以至局部一个小小的摆动也会影响全局的系数。很多应用场合要求比较精确的时频定位,傅里叶变换的缺点就越来越突出了。 窗口傅里叶变换将信号乘上一个局部窗,然后再做傅里叶变换,获得比较好的时频定位特性,再沿时间轴滑动窗口,得到整个时间轴上的频率分布,似乎到这里就应该结束了,因为我们可以把窗设计小点获得较高的时间分辨率,并期望有同样高的频率分辨率,但测不准原理无情的告诉我们,没有这么好的窗能在时

(完整版)环保在线监测系统解决方案

. 环保在线监测系统解决方案上海领萃环保科技公司

一、方案概况 污染物在线监测系统是环保监测与环境预警的信息平台。系统采用先进的无线网络,涵盖水质监测、环境空气质量监测、固定污染源监测(CEMS)、以及视频监测等多种环境在线监测应用。系统以污染物在线监测为基础,充分贯彻总量管理、总量控制的原则,包含了环境管理信息系统的许多重要功能,充分满足各级环保部门环境信息网络的建设要求,支持各级环保部门环境监理与环境监测工作,适应不同层级用户的管理需求。 二、方案架构 污染物在线监测系统设计构成: 1、连续、及时、准确地监测排污口(环境空气)各监测参数及其变化状况; 2、中心站可随时取得各子站的实时监测数据,统计、处理监测数据,编制报告 与图表,并可输入中心数据库或上网查询; 3、收集并可长期储存指定的监测数据及各种运行资料、环境资料备案检索; 4、系统具有监测项目超标及子站状态信号显示、报警功能; 5、具有自动运行、停电保护、来电自动恢复功能; 6、运维状态测试,例行维修和应急故障处理; 三、污染物在线监测系统解决方案 1、环境空气质量在线监测解决方案 空气质量监测系统可实现区域空气质量的在线自动监测,能全天候、连续、自动地监测环境空气中的二氧化硫、二氧化氮、臭氧和可吸入颗粒物的实时变化情况,迅速、准确的收集、处理监测数据,能及时、准确地反映区域环境空气质量状况及变化规律,为环保部门的环境决策、环境管理、污染防治提供详实的数据资料和科学依据。 1.1系统构成 环境空气质量在线监测系统包括监测子站、中心站、质量保证实验室和系统支持实验室。子站的主要任务是对环境空气质量和气象状况进行连续自动监测,由采样装置、监测分析仪、校准设备、气象仪器、数据传输设备、子站计算机或数据采集仪以及站房环境条件保证设施等组成,如下图所示: 环境空气质量监测的参数主要包括SO2、NOX、O3、CO、PM10(2.5)、气象参数。 1.2系统特点 1.2.1系统集成优势

工业数据的采集处理

计算机世界/2006年/6月/19日/第B25版 实用技术 如今,在仪器制造、移动通信、航海等工业领域,以个人电脑为平台的信号采集和数据处理系统得到了广泛应用。其中,数据采集依靠硬件板卡,数据分析则要借助于软件技术。 工业数据的采集处理 北京科技大学王家鑫李希胜 在数据采集、处理的应用中,使用最为广泛,基础最为牢固的是PC_Based Control 技术,它是融合PC 技术、信号测量和分析技术、控制技术、通信技术于一体的高性能测量与控制技术,用于信号量测、工业过程数据采集和控制、运动控制、通信控制等。包括工业电脑平台、功能卡和应用软件。通过插入各种功能卡和编写软件,形成功能强大的数据采集系统、通信控制器和运动控制系统。 近年来,PC_Based Control 技术向更快速、更精确的测控方向发展,其中数据采集与控制是其核心技术之一,其基本任务是物理信号(电压/电流)的产生或测量。但是要使计算机系统能够测量物理信号,必须要使用传感器把物理信号转换成电信号(电压或者电流信号)。有时不能把被测信号直接连接到数据采集卡,而必须使用信号调理辅助电路,先将信号进行一定的处理。总之,数据采集与控制系统是在硬件板卡/远程采集模块的基础上借助软件来控制整个系统的工作,包括采集原始数据、分析数据、给出结果等,其中的硬件板卡就是现在广为使用的数据采集卡。而要对数据进行分析并产生结果,就需要利用软件编程技术来实现了。 这里,笔者以PCI-8319 光电隔离模入接口卡为例,介绍如何利用VC++ 6.0实现数据的采集、控制和分析。 PCI-8319 光电隔离模入接口卡 本文所要介绍的PCI-8319 光电隔离模入接口卡就是一款满足PC_Based Control 技术要求的硬件板卡。它提供了PCI 总线插槽的PC系列微机,具有即插即用(PnP)的功能。操作系统可选用Windows、Unix等多种操作系统,以及专业数据采集分析系统LabVIEW 等软件环境。在硬件的安装上也非常简单,使用时只需将接口卡插入机内任何一个PCI总线插槽中并用螺丝固定,信号电缆从机箱外部直接接入。 PCI-8319 光电隔离模入接口卡主要由多路模拟开关电路、高性能放大器电路、模数转换电路、开关量输入输出电路、接口控制逻辑电路、光电隔离电路及DC/DC电源电路组成,采用三总线光电隔离技术,使被测量信号系统同计算机之间完全电气隔离,适用于恶劣环境的工业现场数据采集以及必须保证人身安全的人体信号采集系统。该模入接口卡采用了高性能的仪用放大器,具有极高的输入阻抗和共模抑制比,并具有最高可达 1000 倍的放大增益,可直接配接各种传感器,以完成对不同信号的放大处理,同时,本卡自带 DC/DC隔离电源模块,无需用户外接电源。 PCI-8319 模入接口卡允许采用32路单端输入方式或16路双端输入方式。用户可根据需要选择测量单极性信号或双极性信号。其输入的模拟信号由卡前端的37芯D型插头直接接入。本卡还提供了非隔离的TTL电平的16路输入和16路输出信号通道,这些信号通道由卡后端的40芯扁平电缆转换为37芯D型插头提供给用户。 其多路模拟开关电路以及高性能放大器电路和模数转换电路均采用了AD公司的芯片作为使用器件,可以满足不同用户的不同需求。 开关量输入输出电路,接口控制逻辑电路及光隔电路DC/DC电源电路均可达到较好的使用

相关文档
最新文档