继电保护应用技术原则(1012)最终版

继电保护应用技术原则(1012)最终版
继电保护应用技术原则(1012)最终版

华北电网继电保护配臵原则

06.10.12

1.总则

1.1.为保证华北电力系统的安全稳定运行,在遵循《继电保护和安全

自动装臵技术规程》(中华人民共和国标准GB14285-2006以下简称“规程”)规定及有关反措文件,结合华北电力系统的情况制定本原则,做为基建,技术改造工程中继电保护装臵(以下简称“继电保护”)配臵的技术原则和依据。

1.2.电力系统是统一的整体,全系统继电保护必须协调一致。华北电

力系统的规划、设计、基建、运行等部门均须共同遵守本原则。

凡在华北电网主网内的发电厂,不论产权归属和管理形式,其继电保护配臵也应遵循本原则。

1.3.继电保护配臵与选型的专业归口管理

继电保护配臵由各级调度部门按电力调度管辖范围归口管理。凡工程涉及范围内的继电保护应经归口部门技术审定。

1.4.本原则适用于网调调度的500kV系统继电保护;京津唐中调调度

的110kV及以上电压等级的系统继电保护。

2.继电保护应满足电网运行的要求

2.1.基建以及改造工作,引起原有电力网继电保护变化时,其继电保

护的配臵及选型应列入接入系统设计或工程设计统一解决。同一工程涉及两个及以上单位时,须由该工程主管部门与有关单位协商统筹办理。

2.2.对于一些发生几率较低的多重或复杂故障,只要能切除故障,允

许部分失去选相,以避免使保护回路过分复杂,综合性能下降,给运行带来不安全因素。

2.3.当线路装设串联电容补偿装臵时,在基建前期,应对本线及相邻

线路进行计算,对以方向和阻抗为原理的继电保护失去方向性采取措施,以防止误动。

2.4.继电保护的配臵和选型应对其灵敏度、负荷阻抗以及继电器规范

等关键参数进行验算,应满足工程投产初期和终期的运行要求。

2.5.继电保护选型,一般采用微机型保护。

2.6.对电网一次接线方式改变,如需将原继电保护装臵搬迁,若原继

电保护装臵运行年限接近 8年的,不宜进行搬迁,应重新配臵继电保护装臵。

2.7.凡进入华北电网的继电保护装臵,均应是经华北电网检测合格的

产品。首次投入电力系统运行的保护装臵,必须经过部级及以上质检中心的动模试验和相关试验,确认其技术性能指标符合有关技术标准。

2.8.变电站内部的保护型号不宜过多,尽量保持配臵的一致性。

2.9.本原则解释权在华北电网有限公司电力调度通信中心。

3.母线保护及失灵保护

3.1.220kV及以上电压等级的3/2接线形式变电站,每条母线配臵双

套母差保护,每套母差保护动作于一组跳闸线圈,两套保护采用不同厂家的产品。

3.2.220kV及以上电压等级的双母线接线形式变电站,配臵双套含失

灵保护功能的母差保护,每套母差保护动作于一组跳闸线圈,两套保护采用不同家的产品。每套线路保护及变压器保护各启动一套失灵保护。母差和失灵保护应能分别停用。

3.3.110kV母线,配臵一套母差保护,一般不配臵失灵保护。

3.4.除3/2主接线外,母差和失灵保护均应具有复合电压闭锁功能,

母联断路器及分段断路器不经复合电压闭锁。对电磁型、整流型母差保护其闭锁接点,应一一对应的串接在母差保护各跳闸单元的出口回路中。

3.5.双母线接线的母差保护动作后应具有加速线路对侧保护动作的

措施。

3.6.对于双母线接线形式,失灵启动电流判据在母差保护中的失灵功

能模块内设臵。发电机变压器组启动失灵保护,单独设臵判据。

3.7.母联、分段断路器应装设专用充电保护,不与母差保护共用。充

电保护配臵由压板投退的三相过电流保护,具有瞬时和延时段,并启动失灵保护。

3.8.对于500kV变电站,220kV双母线母差动作跳500kV联变三侧断

路器。

3.9.对于220kV双母线变电站,220kV母差仅跳主变本侧。母差保护

动作后,应采取启动失灵保护跳变压器三侧的措施。

3.10.3/2主接线,每条母线的每一套母差保护应分屏布臵。

4.线路保护

4.1.500kV线路保护按双重化配臵(双套主保护,双套后备保护),双

套主保护采用不同厂家的产品。

4.2.220kV线路保护配臵双套主保护,可配臵一套后备保护。双套主

保护采用不同厂家的产品。

4.3.后备保护包含相间、接地距离保护及两段式延时零序电流保护。

4.4.两套主保护采用不同路由的独立通道。

4.5.同塔并架线路,采用纵联电流差动保护。

4.6.有串补电容的线路及相邻线,采用纵联电流差动保护。

4.7.两套纵联保护采用不同厂家、不同原理的保护。具备数字通道时,

优先采用纵联电流差动保护;具备两个独立的数字通道时,亦应按此原则配臵。

4.8.线路纵联保护两侧采用同厂、同型号、同软件版本的装臵。

4.9.线路一侧的两套后备保护可以同型号。

4.10.两套主保护应分别一一作用于不同的跳闸线圈。

4.11.主后保护在一块屏上的,共用一组出口压板。

4.12.线路纵联保护,应具备断路器位臵停信(发允许信号)的功能。

4.13.在变电站内TA变比一致的条件下,线路两侧宜采用变比相同

的TA。

4.14.3/2接线的电流差动保护,两组交流电流宜分别接入差动保护。

5.变压器保护

5.1.500kV变压器

5.1.1.按双重化原则配臵主、后一体的变压器保护,共用一组TA。

其中一套具备由高、中压侧和公共绕组构成的分相电流差动保护。

5.1.2.500kV侧配臵一段带偏移特性的阻抗保护,方向指向变压

器,延时跳变压器本侧和三侧断路器。

5.1.3.220kV侧配臵一段带偏移特性的阻抗保护,方向指向220kV

母线,延时跳变压器本侧和三侧断路器。

5.1.4.配臵两段式零序电流保护,其中带方向段指向本侧母线,

延时跳变压器本侧断路器和三侧断路器。

5.1.5.自耦变压器,电流取自变压器各侧外附TA。

5.1.

6.双母线的厂站,应考虑跳母联和分段断路器。

5.1.7.对于低压侧,配臵一段式两时限相间过流保护,延时跳变

压器本侧和三侧断路器。本侧有调相机的,采用复合电压或低电压闭锁。

5.1.8.500kV、220kV侧电气量保护与非电量保护的出口分开。电

气量保护起动失灵保护,并具备解除复压闭锁功能;非电气量不起动失灵保护。

5.1.9.各侧设臵过负荷保护,延时发信号。

5.1.10.反时限过激磁保护。采用相电压接线,低值发信号,高值

跳闸。

5.2.220kV联络变压器

5.2.1.按双重化原则配臵主、后一体的变压器保护,共用一组TA。

5.2.2.各侧配臵两段式复合电压闭锁相间过流保护, 方向段指向

本侧母线,延时跳变压器本侧断路器和三侧断路器。三侧复合电压构成“或”门逻辑。

5.2.3.高中压侧配臵两段式零序电流保护,方向段指向本侧母线,

延时跳变压器本侧断路器和三侧断路器。

5.2.4.双母线的厂站,应考虑跳母联和分段断路器。

5.2.5.配臵中性点间隙电流及零序电压保护。间隙电流取自中性

点间隙TA,延时跳三侧断路器。

5.2.

6.对自耦变压器,电流则取自变压器各侧外附TA。

5.2.7.各侧设臵过负荷保护,延时发信号。

5.2.8.电气量保护与非电量保护的出口分开。电气量保护起动失

灵保护,并具备解除复压闭锁功能;非电气量不起动失灵保护。

6.高压并联电抗器

6.1.按双重化原则配臵主、后一体的变压器保护,共用一组TA。

6.2.中性点小电抗器配臵过流、过负荷保护。

7.保护信号传输通道

7.1.优先采用数字通道,数字通道中优先采用光纤通道。

7.2.复用光纤通道:采用2M接口。

7.3.保护装臵与光电转换装臵之间的光缆采用单模方式。

8.远方跳闸

8.1.500kV按下述情况配臵

8.2.数字通道:采用一取一经就地判据跳闸方式,双重化配臵。

8.3.模拟通道:二取二经就地判据。

8.4.一数一模:二取二经就地判据。

8.5.配臵两套过电压保护,采用就地判别装臵中的过电压功能。

8.6.就地判据装臵宜分别与线路主保护同屏,优先采用和线路保护同

一厂家的装臵。

8.7.远跳命令传输优先采用线路保护通道。

8.8.就地判据应具有低电流和分相低有功判据。

8.9.220kV可配臵一套远方跳闸保护。

9.断路器保护

9.1.3/2接线,重合闸按断路器配臵;双母线接线,宜使用线路保护

中的重合闸功能。

9.2.每回线路,只运行一套重合闸。

9.3.3/2接线装设出线刀闸的,配臵双套短引线保护。

9.4.3/2接线装设断路器保护,其中包含重合闸、失灵电流判别及充

电保护. 充电保护包括由压板投退的三相过电流保护,具有瞬时和延时段。

9.5.三相不一致保护

9.6.断路器三相位臵不一致保护应采用断路器本体三相位臵不一致

保护,配臵投退压板,动作信号应保持,并提供录波接点。9.7.三相不一致保护动作时间按以下要求执行:不带重合闸的断路器

取0.5秒;带重合闸的断路器及旁路断路器:220kV取2秒,500kV 取2.5秒。

9.8.三相不一致保护不启动失灵保护(发变组除外)。

9.9.继电保护及故障信息管理系统

9.10.保护装臵提供数据口(串口、以太网口等),分别与监控系统

和保护故障信息系统子站连接。

9.11.继电保护及故障信息管理系统主—子站通信采用《华北电网继

电保护及故障信息管理系统主—子站通信规范》。

10.旁路保护

10.1.500kV线路代路运行时,应有两套纵联保护,至少一套后备保

护。

10.2.220kV旁路断路器代线路运行时,使用单套主后一体的线路保

护(含重合闸功能)。

10.3.500kV联变代路时,切换两套差动保护,应具备220kV侧后备

保护的电压切换回路。

10.4.220kV变压器代路时,至少切换一套差动保护,应具备后备保

护的电压切换回路。

11.其他(二次回路)

11.1.故障录波器按照小型、多台化原则配臵。

11.1.1.每台录波器最多配臵48路模拟量,96路开关量。

11.1.2.双母线接线的厂站220kV系统至少配臵两台录波器。11.2.故障测距

11.2.1.500kV线路符合以下条件的配臵双端故障测距装臵,在变

电站内完成双端测距功能,并将测距装臵录波数据及测距结果接入继电保护及故障信息管理系统。

11.2.2.线路长度超过100公里;

11.2.3.小于100公里的线路,线路走廊地形复杂的;

11.2.4.网间或省间联络线。

11.3.双重化配臵的线路、变压器保护配臵各自独立的电压切换箱。

电压切换不带保持功能。

11.4.双母线接线方式的线路保护,按三面屏的组屏方案。同时,积

极推进带双操作箱的两面屏组屏方案。

11.5.电压接口屏配臵原则如下:

11.5.1.3/2接线方式:按串配臵电压接口屏。

11.5.2.110kV及以上电压等级双母线接线方式:按照电压等级分

别配臵电压接口屏。

继电保护配置及整定计算

继电保护灵敏系数 灵敏性是指在电力设备或线路的被保护范围内发生金属性短路时,保护装置应具有必要的灵敏系数。灵敏系数应根据不利的正常(含正常检修)运行方式和不利的故障类型计算,但可不考虑可能性很小的情况。灵敏系数应满足有关设计规范与技术规程的要求,当不满足要求时,应对保护动作电流甚至保护方案进行调整。 灵敏系数K m为保护区发生短路时,流过保护安装处的最小短路电流I k ·min 与保护装置一次动作电流I dz 的比值,即:K m=I k·min/I dz。 式中:I k·min 为流过保护安装处的最小短路电流,对多相短路保护,I k ·min 取两相短路电流最小值I k2·min;对66KV、35KV、6~10kV 中性点不接地系统的单相短路保护, 取单相接地电容电流最小值I c·min;对110kV 中性点接地系统的单相短 路保护,取单相接地电流最小值I k1·min;I dz 为保护装置一次动作电流。 各类短路保护的最小灵敏系数列于表 1.1 表1.1 短路保护的最小灵敏系数 注:()保护的灵敏系数除表中注明者外,均按被保护线路(设备)末端短路计算。 (2)保护装置如反映故障时增长的量,其灵敏系数为金属性短路计算值与保护整定值之比;如反映 故障时减少的量,则为保护整定值与金属性短路计算值之比。 3)各种类型的保护中,接于全电流和全电压的方向元件的灵敏系数不作规定。 4)本表内未包括的其他类型的保护,其灵敏系数另作规定。

电力变压器保护 1 电力变压器保护配置 电力变压器的继电保护配置见表 4.1 -1 表4.1 -1 电力变压器的继电保护配置 注:()当带时限的过电流保护不能满足灵敏性要求时,应采用低电压闭锁的带时限的过电流; 2)当利用高压侧过电流保护及低压侧出线断路器保护不能满足灵敏性要求时,应装设变压器低压侧中性线上安装电流互感器的零序过电流保护; 3)低压侧电压为230/400V 的变压器,当低压侧出线断路器带有过负荷保护时,可不装设专用的过负荷保护; 4)密闭油浸变压器装设压力保护; 5)干式变压器均应装设温度保护。

继电保护定值整定计算公式大全(最新)

继电保护定值整定计算公式大全 1、负荷计算(移变选择): cos de N ca wm k P S ?∑= (4-1) 式中 S ca --一组用电设备的计算负荷,kVA ; ∑P N --具有相同需用系数K de 的一组用电设备额定功率之和,kW 。 综采工作面用电设备的需用系数K de 可按下式计算 N de P P k ∑+=max 6 .04.0 (4-2) 式中 P max --最大一台电动机额定功率,kW ; wm ?cos --一组用电设备的加权平均功率因数 2、高压电缆选择: (1)向一台移动变电站供电时,取变电站一次侧额定电流,即 N N N ca U S I I 13 1310?= = (4-13) 式中 N S —移动变电站额定容量,kV ?A ; N U 1—移动变电站一次侧额定电压,V ; N I 1—移动变电站一次侧额定电流,A 。 (2)向两台移动变电站供电时,最大长时负荷电流ca I 为两台移动变电站一次侧额定电流之和,即 3 1112ca N N I I I =+= (4-14) (3)向3台及以上移动变电站供电时,最大长时负荷电流ca I 为 3 ca I = (4-15) 式中 ca I —最大长时负荷电流,A ; N P ∑—由移动变电站供电的各用电设备额定容量总和,kW ;

N U —移动变电站一次侧额定电压,V ; sc K —变压器的变比; wm ?cos 、η wm —加权平均功率因数和加权平均效率。 (4)对向单台或两台高压电动机供电的电缆,一般取电动机的额定电流之和;对向一个采区供电的电缆,应取采区最大电流;而对并列运行的电缆线路,则应按一路故障情况加以考虑。 3、 低压电缆主芯线截面的选择 1)按长时最大工作电流选择电缆主截面 (1)流过电缆的实际工作电流计算 ① 支线。所谓支线是指1条电缆控制1台电动机。流过电缆的长时最大工作电流即为电动机的额定电流。 N N N N N ca U P I I η?cos 3103?= = (4-19) 式中 ca I —长时最大工作电流,A ; N I —电动机的额定电流,A ; N U —电动机的额定电压,V ; N P —电动机的额定功率,kW ; N ?cos —电动机功率因数; N η—电动机的额定效率。 ② 干线。干线是指控制2台及以上电动机的总电缆。 向2台电动机供电时,长时最大工作电流ca I ,取2台电动机额定电流之和,即 21N N ca I I I += (4-20) 向三台及以上电动机供电的电缆,长时最大工作电流ca I ,用下式计算 wm N N de ca U P K I ?cos 3103?∑= (4-21) 式中 ca I —干线电缆长时最大工作电流,A ; N P ∑—由干线所带电动机额定功率之和,kW ; N U —额定电压,V ;

主变非电量继电保护整定原则

主变非电量保护整定原则 1 适用范围 适用于110kV、35kV变电站主变非电量保护的整定。 2 规范性引用标准 下列标准和文献中的条款通过本原则的引用而成为本原则的条款。凡是注明日期的引用文件,其随后的所有修改单(不包括勘误的内容)或修订版本均不适应于本原则。凡是不注明日期的引用文件,其最新版本适用于本原则。 DL/T 540—1994 QJ-25、50、80型气体继电器检验规程 DL/T 572—1995 电力变压器运行规程 QG/YW-SC-20-2008 云南电网变压器(高压电抗器)非电量保护管理规定(修编) 3 整定原则 3.1 本体及有载调压开关气体继电器 3.1.1 应在定值通知单中注明轻瓦斯发信、重瓦斯跳闸(跳各侧断路器)。 3.1.2 气体继电器动作于信号的容积整定和动作于跳闸的流速整定参照DL/T 540—1994第 4.2、4.3 条设置。 ※DL/T 540—1994 QJ-25、50、80型气体继电器检验规程 4.2动作于信号的容积整定 继电器气体容积整定要求继电器在250~300ml范围内可靠动作。试验时可用调整开口杯另一侧重锤的位置来改变动作容积,重复试验三次,应能可靠动作。 4.3动作于跳闸的流速整定 4.3.1继电器流速整定范围 QJ-25型:连接管径25mm,流速范围1.0m/s。

QJ-50型:连接管径50mm,流速范围0.6~1.2m/s。 QJ-80型:连接管径80mm,流速范围0.7~1.5m/s。 4.3.2继电器动作流速整定值 继电器动作流速整定值以连接管内的流速为准,可根据变压器容量、电压等级、冷却方式、连接管径等不同参数按表1数值查得;流速整定值的上限和下限可根据变压器容量、系统短路容量、变压器绝缘及质量等具体情况决定。 表1 变压器容量 (kV A)继电器型号 连接管内径 (mm) 冷却方式 动作流速整定值 (m/s) 1000及以下QJ-50φ50自然或风冷0.7~0.8 1000~7500QJ-50φ50自然或风冷0.8~1.0 7500~10000QJ-80φ80自然或风冷0.7~0.8 10000以上QJ-80φ80自然或风冷0.8~1.0 200000以下 QJ-80φ80强迫油循环 1.0~1.2 200000及以上QJ-80φ80强迫油循环 1.2~1.3 500kV变压器QJ-80φ80强迫油循环 1.3~1.4 有载调压变压器 (分接开关用) QJ-25φ25 1.0 4.3.3流速试验方法 继电器动作流速整定值试验是在专用流速校验设备上进行的,以相同连接管内的稳态动作流速为准,重复试验三次,每次试验值与整定值之差不应大于0.05m/s,亦可用间接测量流速的专用仪器测试流速。调节继电器弹簧的长度,可改变动作流速整定值。 4.3.4流速试验设备 继电器流速整定可在固定式流速校验台上进行检验,亦可用携带式间接测量流速的校验装置(如流速测量尺)进行测试。

浅谈电力系统继电保护技术

浅谈电力系统继电保护技术 从目前电力发展状况来看,继电保护已经成为电力系统重要组成部分之一,且随着电力系统的快速发展和智能化技术的不断更新应用,普通的继电保护技术已不能满足现行电力系统发展的需求。怎么样利用继电保护技术来减少电力系统中的故障,保障电力系统的安全稳定运行,这是目前电力系统继电保护技术研究的主要内容和热点。文章探讨电力系统继电保护技术,阐述了其基本理念和发展趋势,分析了其发展趋势。 标签:电力系统;继电保护技术;现状与趋势 1 继电保护的组成、工作原理、作用和工作要求 1.1 继电保护的组成与工作原理 继电保护的种类有很多,可是组成上一般都包括测量、逻辑、执行模块。输入信号获取的测量信号需要与给定的整定数值进行对比,并将对比结果传送至逻辑模块。逻辑模块按照测量模块传输的对比值特点、大小和出现的次序或上述各种参数的组合,进行逻辑计算,得出的逻辑数值也是决定动作是否进行的重要依据。 1.2 继电保护的作用 继电保护的主要作用就是在电力系统发生损坏用电设备或影响到电力系统安全运行的故障时,能够对电力系统起到保护的措施;并对整个电力系统进行监控,当电力系统非正常运行或某些用电设备处于非正常工作状态时能够及时发出警报信号,以便于提醒值班工作人员发现故障所在,能使故障得到处理,使其正常运行。 1.3 继电保护的应用 在一些工厂企业高压供电系统,变电站中对继电保护设备的应用非常普遍,除此以外还用于保护供电系统高压线路,主变保护中。变电站应用的继电保护的情况包含:(1)保护线路,通常应用的是二段或者三段式的电流保护,一段属于速断电流保护,二段属于速断电流显示保护,三段是过电流保护;(2)保护母联;(3)保护主变设备,保护主变主要是主保护与后备保护;(4)保护电容设备,保护用电设备主要包含了电压零序保护、过电流保护、过电压或失电压保护。伴随着继电保护技术的快速发展,逐渐开始了微机保护设备的应用。 2 电力系统继电保护技术现状分析 从目前来看,我国电力覆盖面积逐渐扩大,电力系统的安全问题得到了广泛关注,而且由于对电力系统安全问题的重视,促使继电保护技术不断提高和创新。

110kV线路继电保护整定原则

3~110kV线路继电保护整定计算原则 1一般要求 1.1整定计算使用的正常检修方式是在正常运行方式的基础上,考虑N-1的检修方式,一般不考虑在同一厂(站)的母线上同时断开所联接的两个及以上运行设备(线路、变压器等)。 1.2保护装置之间的整定配合一般按相同动作原理的保护装置之间进行配合,相邻元件各项保护定值在灵敏度和动作时间上一般遵循逐级配合的原则,特殊情况设置解列点。 1.3保护动作整定配合时间级差一般取0.3秒。 1.4线路重合闸一般均投入三相重合闸,系统联系紧密的线路投非同 期重合,发电厂出线联络线路少于4回时电源侧重合闸投检同期合闸、对端投检无压合闸,重合时间一般整定为对端有全线灵敏度段最长时间加两个时间级差。 2.快速保护整定原则 2.1高频启信元件灵敏度按本线路末端故障不小于2.0整定,高频停信元件灵敏度按本线路末端故障不小于1.5~2.0整定。 2.2高频保护线路两侧的启信元件定值(一次值)必须相同。 2.3分相电流差动保护的差动电流起动值按躲过被保护线路合闸时的最大充电电流整定,并可靠躲过区外故障时的最大不平衡电流,同时保证线路发生内部故障时有足够灵敏度,灵敏系数大于2,线路两侧一次值动作值必须相同。 2.4分相电流差动保护的其它起动元件起动值应按保线路发生内部故

障时有足够灵敏度,灵敏系数大于2整定,同时还应可靠躲过区外故障时的最大不平衡电流。 3后备保护的具体整定原则: 以下各整定原则中未对其时间元件进行具体描述,各时间元件的定值整定应根据相应的动作配合值选取。 1 相间距离 Ⅰ段: 原则1:“按躲本线路末端故障整定”。 所需参数:可靠系数K K =0.8~0.85 计算公式:L K DZ Z K Z ≤Ⅰ 变量注解:ⅠDZ Z ――定值 L Z ――线路正序阻抗 原则2:“单回线终端变运行方式时,按伸入终端变压器内整定”。 所需参数:线路可靠系数K K =0.8~0.85 变压器可靠系数KT K ≤ 0.7 计算公式:' T KT L K D Z Z K Z K Z +≤Ⅰ 变量注解:'T Z ――终端变压器并联等值正序阻抗。 原则3:“躲分支线路末端故障”。 所需参数:线路可靠系数K K =0.8~0.85 计算公式: )(21L L K DZ Z Z K Z +≤Ⅰ 变量注解:1L Z ――应该是截止到T 接点的线路正序阻抗。 2L Z ――应该是分支线路的正序阻抗。

电力系统继电保护配置原则

电力系统继电保护配置原则 一、概述 电力系统是指由发电、送电、变电、配电和用电等各个环节(一次设备)所构成的有机整体,也包括相应的通信、继电保护(含安全自动装置)、调度自动化等设施(二次设备)。 电力系统安全运行是指运行中所有电力设备必须在不超过它们所允许的电流、电压、频率及时间限额内运行(强调充裕性)。不安全的后果可能导致电力设备的损坏,大面积停电。 2003年8月14日下午,美国纽约、底特律和克利夫兰以及加拿大多伦多、渥太华等城市均发生停电事故。事故原因俄亥俄州阿克伦城的第一能源公司的两根高压电线其中一根因树枝生长碰至线路后跳闸,另外一条线路因安全自动装置误动,导致第二条线路跳闸,最终导致各个子电网潮流不能平衡,最终系统解列。 可见,要保证电力的安全稳定运行,必须配置安全可靠的继电保护装置和安全自动装置。继电保护顾名思义在系统发生故障时及时隔离故障点保护一次设备,同时能够让电力系统继续安全稳定运行。 二、基本要求 继电保护配置方式要满足电力网结构和厂站的主接线的要求,并考虑电力网和厂站的运行方式的灵活性。所配置的继电保护装置应能满足可靠性、选择性、灵敏性和速动性的要求。

1)要根据保护对象的故障特征来配置。 继电保护装置是通过提取保护对象表征其运行状况的故障量,来判断保护对象是否存在故障或异常工况并米取相应的措施的自动装置。用于继电保护状态判别的故障量,随被保护对象而异,也随电力系统周围条件而异。使用最普遍的工频电气量,而最基本的是通过电力元件的电流和所在母线的电压以及由这些量演绎出来的其它量,如功率、序相量、阻抗、频率等,从而构成电流保护、电压保护、方向保护、阻抗保护、差动保护等。 2)根据保护对象的电压等级和重要性。 不同电压等级的电网的保护配置要求不同。在高压电网中由于系统稳定对故障切除时间要求比较高,往往强调主保护,淡化后备保 护。220kV及以上设备要配置双重化的两套主保护。所谓主保护即设备发生故障时可以无延时跳闸,此外还要考虑断路器失灵保护。对电压等级低的系统则可以采用远后备的方式,在故障设备本身的保护装置无法正确动作时相邻设备的保护装置延时跳闸。 3)在满足安全可靠性的前提下要尽量简化二次回路。 继电保护系统是继电保护装置和二次回路构成的有机整体,缺一不可。二次回路虽然不是主体,但它在保证电力生产的安全,保证继电保护装置正确工作发挥重要的作用。但复杂的二次回路可能导致保护装置不能正确感受系统的实际工作状态而不正确动作。因此在选择保护装置是,在可能条件下尽量简化接线。 4)要注意相邻设备保护装置的死区问题

110KV变电站继电保护整定与配置设计

110kV环形网络继电保护配置与整定(二) 摘要:继电保护是保证电力系统安全稳定运行的重要组成部分,而整定值是保证保护装置正确动作的关键。本文结合给定110kV电网的接线及参数,对网络进行继电保护设计,首先选择电流保护,对电网进行短路电流计算,确定电网的最大、最小运行方式,整定电流保护的整定值。在电流保护不满足的情况下,相间故障选择距离保护,接地故障选择零序电流保护,同时对距离保护、零序电流保护进行整定计算。本设计最终配置的保护有:电流速断保护、瓦斯保护、纵差动保护等。关键词:继电保护,短路电流,整定计算 Abstract:Relay protection is important part to guarantee the safe and stable operation of the power system, and setting value is the key to ensure the protection correct action. In this paper, with given the wiring and the parameters of 110kV power grid to design 110KV network protection of relay, first ,select the current protection, calculate short circuit current on the grid, determine the Maximum and minimum operating mode of the grid, set the setting value of the current protection. Second ,Selecting the distance protection if the current protection does not meet the case, the phase fault choose the distance protection and the ground fault select zero sequence current protection .while setting calculation the distance protection and zero sequence current protection, . The final configuration of the protection of this design include: current speed trip protection, gas protection, the longitudinal differential protection and so on. Keywords: protection of relay, short-circuit current, setting calculation

浅谈智能变电站继电保护技术的优化 尤华静

浅谈智能变电站继电保护技术的优化尤华静 发表时间:2017-08-22T15:37:11.733Z 来源:《电力设备管理》2017年第8期作者:尤华静 [导读] 科学技术的更新发展,数字化、智能化已经不再遥不可及。随着高新科技在变电站中的应用。 国网河南省电力公司南阳供电公司河南南阳 473000 摘要:科学技术的更新发展,数字化、智能化已经不再遥不可及。随着高新科技在变电站中的应用,变电站也逐渐发展成为智能的变电站。继电保护作为变电站运行中的一个重要的环节,人们对于它的研究也越来越深入。为了更好地适应新技术在变电站中的应用,智能变电站的继电保护技术也在不断的进步当中。本文就智能变电站继电保护技术的优化进行了探讨。 关键词:智能变电站;继电保护;技术优化 1智能变电站继电保护技术 1.1线路继电保护 线路继电保护在智能变电站继电保护内具有重要作用。线路继电保护过程中,能够对智能变电站运行状态进行实时性监控,了解智能变电站实际情况情况,一旦智能变电站出现故障,线路继电保护可以采取相对应解决措施,对智能变电站故障进行防治。在条件允许情况下,还可以在智能变电站线路上安装测控装置,测控装置主要作用就是对智能变电站运行状态进行检测,测控装置会将所测控到的结果传输到网络体系内,继电保护就可以按照测控装置所检测到的结果,对智能变电站下达针对性继电保护指令。 1.2变压器继电保护 变压器继电保护在智能变电站内,承担着过程保护职责。在变压器继电保护装置内,在后备部分安装中可以采取集中安装模式,进而充分发挥出变压器继电保护在智能变电站内保护作用。变压器继电保护在运行时,核心模块为非电量保护,非电量保护模式需要与电缆相互连接,同时与继电保护装置相连接。变压器在运行过程中一旦遭受到不良因素影响,非电量保护模块就会进入到跳闸状态下,传输跳闸指令,能够有效缓解智能变电站在不良因素干扰下所需要承受的压力,保证变压器能够安全稳定运行。 1.3母联继电保护 母联继电保护与线路继电保护较为相似,但是母线继电保护由于母线分段性能原因,母联继电保护性质更加简单,在智能变电站继电保护内具有重要作用。 2智能变电站的优点 2.1环保效果好 智能变电站在运行中刨除了传统的电缆,连接而是采用光纤电缆。并且在内部的设施上也是大量的采用能耗低的集成电子设备,用电子互感器代替了充油式互感器,大大地降低了变电站的建设成本和能源消耗,很好地实现了在低碳环保方面的优化。 2.2交互性良好 智能变电站可以自动的收集和分析信息,并将这些数据信息在变电站的体系内部进行共享,以实现与更高级的系统之间良好的互动。各个智能电网之间的相互联系,可以有效地保证整个电网的安全运行。 2.3可靠性强 在众多的用电用户之中,大家对于供电部门的选择最为看重的就是可靠性。这就要求智能变电站拥有更高的可靠性,不仅仅是满足客户的需求更多的是保护电网的更高效的运行,有效地减少用电故障产生,使变电站始终处于良好的运行状态。 3智能变电站继电保护技术缺陷 3.1智能化水平低 当前我国智能化变电站多是通过对原变电站进行改建和扩建而建成投产的,在实际运行过程中需要使用到的设备数量较多,而且设备资源消耗量较大,这在无形中会导致变电站智能化水平降低,无法达到智能变电站建设时的要求。各种设备之间都有着智能化连接端口,但由于设备及连接线多是由不同厂家生产的,这就导致设备运行过程中,端口和连接线之间存在不兼容的问题,影响智能变电站运行的安全,而且对设备和连线之间不兼容现象进行检查也存在一定的难度。 3.2设备接口连线不合理 当前变电站中存在众多的耗能设备,而且设备存在许多接口终端。但在实际设备运行过程中,同一段间隔的SV设备采样和GOOSE设备之间的接口连线都需要在不同设备之间进行,这就导致设备接口终端需要增加,这对操作人员的实际操作带来了诸多的不便利。 3.3电磁设备受环境影响较大 当前电子式互感器在智能化变电站的诸多零件中都开始广泛应用,这就导致这些电磁设备在实际应用过程中极易受到环境因素的影响,使电磁设备测量准确存在一定的偏差,影响测量数据的可靠性。这对电磁继电保护设备在应用过程中的稳定性和可靠性带来了较大的影响,智能变电站运行时不确定因素增加。同时当前变电站中所使用的一些电气设备,在实际生产过程中并不建议使用新型的电磁式继电保护设备,这样可以有效地提高继电保护设备的可靠性。部分就地安装的变电站使用设备,由于受制于技术的人们显示器,一些技术端口还无法用到,这些大量的端口存在不仅会对工作人员实际连线带来困难,而且还会造成技术资源的浪费时间,与智能电网节能和环保的要求不相符。 4智能变电站继电保护优化措施 4.1就地化间隔保护 智能变电站继电保护有关设备在安装过程中,需要将继电保护设备安装在保护设备周围,按照就地化准则,保证继电保护设备能够及时发现智能变电站出现的事故,缩短继电保护反应时间,有效降低事故对智能变电站所造成的损失。 现阶段智能变电站大部分都采取新型一体化微机线路模式,变电器保护措施和继电保护一同运行,按照智能变电站设备实际情况,对线路合理进行配置,这种设计模式能够有效提高智能变电站稳定性能,保障智能变电站设备及工作人员的安全。与此同时,智能变电站在

10kv系统继电保护整定计算与配合实例

10kV系统继电保护整定计算与配合实例 系统情况: 两路10kV电源进线,一用一备,负荷出线6路,4台630kW电动机,2台630kVA变压器,所以采用单母线分段,两段负荷分布完全一样,右边部分没画出,右边变压器与一台电动机为备用。 有关数据:最大运行方式下10kV母线三相短路电流为I31=5000A,最小运行方式下10kV母线三相短路电流为I32=4000A,变压器低压母线三相短路反应到高压侧Id为467A。 一、电动机保护整定计算 选用GL型继电器做电动机过负荷与速断保护 1、过负荷保护 Idzj=Kjx*Kk*Ied/(Kf*Ki)=4.03A 取4A 选GL12/5型动作时限的确定:根据计算,2倍动作电流动作时间为,查曲线10倍动作时间为10S 2、电流速断保护 Idzj=Kjx*Kk*Kq*Ied/Ki=24A 瞬动倍数为24/4=6倍 3、灵敏度校验 由于电机配出电缆较短,50米以内,这里用10kV母线最小三相短路电流代替电机端子三相短路电流. Km=(24X15)=>2 二、变压器保护整定计算 1、过电流保护 Idzj=Kjx*Kk*Kgh*Ie/(Kf*Ki)=8.4A 取9A 选GL11/10型动作时限取灵敏度为Km=(20X9)=> 2、电流速断保护 Idzj=Kjx*Kk*Id/Ki=20=35A 35/9=,取4倍灵敏度为Km=(180X4)=>2 3、单相接地保护 三、母联断路器保护整定计算

采用GL型继电器,取消瞬时保护,过电流保护按躲过任一母线的最大负荷电流整定。 Idzj=Kjx*Kk*Ifh/(Kh*Ki)=*30)=6.2A 取7A与下级过流保护(电动机)配合:电机速断一次动作电流360A,动作时间10S,则母联过流与此配合,360/210=倍,动作时间为(电机瞬动6倍时限)+=,在GL12型曲线查得为5S曲线(10倍)。所以选择GL12/10型继电器。 灵敏度校验:Km1=(7X30)=>1.5 Km2=(7X30)=> 四、电源进线断路器的保护整定计算 如果采用反时限,瞬动部分无法配合,所以选用定时限。 1、过电流保护 按照线路过电流保护公式整定Idzj=Kjx*Kk*Igh/(Kh*Ki)=12.36A,取12.5A动作时限的确定:与母联过流保护配合。定时限一次动作电流500A,为母联反时限动作电流倍,定时限动作时限要比反时限此倍数下的动作时间大,查反时限曲线倍时t=,所以定时限动作时限为。选DL-11/20型与DS时间继电器构成保护。 灵敏度校验:Km1==> 2、带时限速断保护 与相邻元件速断保护配合

浅谈电气工程中的继电保护技术 朱晓雅

浅谈电气工程中的继电保护技术朱晓雅 发表时间:2019-09-22T00:04:12.687Z 来源:《基层建设》2019年第19期作者:朱晓雅 [导读] 摘要:近年来社会用电需求的不断增大,电力工程建设数量也逐渐增多。 身份证:44538119920602XXXX 摘要:近年来社会用电需求的不断增大,电力工程建设数量也逐渐增多。在现代电力系统当中,已经普遍使用继电保护技术,该技术的使用为电力系统安全高效运行作出了重要贡献。继电保护装置不但可以检测电力系统的运行状况,还可以根据电力系统的故障自动切断电话,有效的保护整个电网设备。本文就电气工程中的继电保护技术展开探讨。 关键词:电气工程;继电保护技术;电力行业 引言 电能是国家可持续发展的战略性能源,科学规划与使用电能可创造理想的收益。县级电力是决定国家电网运行效率的关键,提升县里电网运行质量关系着区域电能的综合化调配,这些是新时期电力行业优化升级的基本保障。对于传统电气设备控制存在的问题,电力公司要建立更为完善的机电保护方案,及时解决电气设备运行存在的风险问题,综合提升继电保护器的安全控制性能。 1继电保护概述 继电保护对于电网平稳高效工作有着重要意义,是电网运行中的重要组成部分,涉及远动技术、信息技术和计算机技术。在日常继电保护工作中,工作人员要处理电网结构、设备投退以及异常故障信息等各种数据,并对这些数据进行统计分析,工作量很大,而且部分数据由于分工不够明确,数据多次进行收集处理,增加了许多无效的工作量。针对当前的现状,从提高员工劳动效率,减轻工作人员负担的角度出发,有必要开发建设继电保护综合信息管理系统,推动继电保护工作良好发展。这个管理系统主要用来管理继电保护工作产生的数据、图表、文件等信息,工作人员可以通过该系统对相关内容进行增删改查。但由于该系统管理对象庞多,涉及很多设备的运行参数,而且功能结构庞杂,包括一些部门的图档管理、人事信息等,所以系统的数据信息就显得很庞大,只有使用计算机信息系统,才能有效的开展当前的继电保护工作。在电网信息建设中,存在继电保护软件功能不全、二次回路标识和设计不合理等问题,再加上电气设备老化、元器件质量差和参数不搭配的原因,容易引起继电保护设备发生故障,不利于继电保护设备的工作,还可能引发不安全事故,所以,必须认真对待继电保护工作,加快继电保护综合信息管理系统的建设。 2继电保护可靠性指标 对于我国电力系统中继电保护的可靠性指标来说,它主要指的是电力系统的质量或者相关的施工技术是否满足人们的需求以及是否可靠等。除此之外,还有电力系统中的一些电力设备和零部件是否可以严格按照相关的工作规定来进行运行,然后在电力系统的运行过程中一些故障的出现是否可以及时的发现和解决,进而把电力系统的故障降低到最低等方面都是电力系统继电保护可靠性的判断指标。而我国电力系统的继电保护可靠性指标基本上从电力设备的可靠性以及其中的功能可靠性两方面谈起。对于电力系统设备的可靠性而言,其主要就是为了确保所有的电力系统设备都可以处于工作的状态之中。而对于电力系统的功能可靠性而言,主要就是指电力系统中的继电保护能否正常的工作。 3电气工程中的继电保护功能 3.1监控功能 电力系统安全化发展是必然趋势,继电保护系统与电源系统、配电系统等共同运行,共同参与电能资源调配运输工作,解决地区用电操作困境。监视电力系统的正常运行,当被保护的电力系统元件发生故障时,应该由该元件的继电保护装置迅速准确地给脱离故障元件最近的断路器发出跳闸命令,使故障元件及时从电力系统中断开,以最大限度地减少对电力系统元件本身的损坏。 3.2调整功能 电气系统将朝着“高效、优质、安全”等方向发展,使用继电保护技术完善电网运行,这也是当前电力系统优化和升级的主要方向。当电力系统中的电力元件,如发电机、线路等发生了故障,或者电力系统本身运行不稳定时,继电保护装置能够向运行值班人员及时发出警告信号,及时解除故障,保证电力系统安全。 3.3防御功能 继电保护技术是对电气工程故障的综合防护,提前发现潜在故障风险。当前,电力系统均配备了专用监测系统,主要是对电力设备运行情况实时监控,为电网调度与控制提供真实信号。状态监测系统是多项科技的综合应用,由数字化设备参与智能调度运行,对各种电气设备或元件均起到防护作用。例如,线路电流超标会引起烧损、断电等故障,借助状态监测平台可及时防御故障发生。 3.4安全功能 继电保护技术的应用有助于实现电力系统的远程化和自动化,一些工业生产的自动控制技术也需要借助继电保护技术。当电力系统或电气设备遇到安全威胁,继电保护装置能够有效切断相关线路,保护电气元件免收损伤,保证电力系统安全平稳运行。 4继电保护技术的应用情况 4.1自适应技术 自适应技术在实际工作中的应用也将能够取得实效。在今后工作中自适应技术将能够使得继电保护装置能够有效且充分地适应电力改变,这样也将能够有效提升主设备继电保护性能。从当前所应用到的继电保护设备来看已经充分体现出了自适应功能。变斜率比率差动保护就是一个典型例子,这种保护形式实际上就充分体现出了自适应功能。在继电保护过程中为了能够真正实现自适应就需要保证通信技术和信息技术都能够实现有效配合,这样才能够使得自适应功能能够得到有效发挥。在今后发展过程中自适应技术将会得到广泛应用。在整个工作过程中所起作用也将会变得非常重要。 4.2信息网络化技术 众所周知,随着科技的发展,计算机应用技术普及到我们社会生产的方方面面。在电力系统改革不断深入的形式下,信息网络化技术也深入到继电保护技术之中。例如,在变电站监控以及监控发电厂电气系统中,就提高了主设备保护的通信功能。通过利用信息网络化技术能够使得监控系统更好地实现继电保护的提供动作报文管理、故障数据处理、事故追忆、定值远方整定等功能。从而实现了对电子系统中智能设备的深层次管理。通过在继电保护技术中运用信息网络化技术能够将大容量、高速运转微处理器运用到总线设计中,使得继电保

继电保护定值整定计算公式大全()..

继电保护定值整定计算公式大全 1负荷计算(移变选择) 式中S ca -- 一组用电设备的计算负荷, kVA ; 刀P N --具有相同需用系数 K de 的一组用电设备额定功率之和, kW 综采工作面用电设备的需用系数 Ki e 可按下式计算 式中P maL 最大一台电动机额定功率, kW ; COS wm -- 一组用电设备的加权平均功率因数 2、高压电缆选择: (1) 向一台移动变电站供电时,取变电站一次侧额定电流,即 式中 S N —移动变电站额定容量,kV?A ; U 1N —移动变电站一次侧额定电压, V ; I 1N —移动变电站一次侧额定电流, A 。 (2) 向两台移动变电站供电时,最大长时负荷电流 流之和,即 ,, , (S N 1 S N 2)103 I ca I 1N1 I 1N2 = 3 U 1N (3) 向 3台及以上移动变电站供电时,最大长时负荷电流 l ca 为 I ca I 1N S N 103 (4-13) P N 103 ca K SC cOS wm (4-15) wm k de g P N COS wm (4-1 ) k de 0.4 0.6 P max P N (4-2) I ca 为两台移动变电站一次侧额定电 (4-14)

式中I ca —最大长时负荷电流,A ; P N—由移动变电站供电的各用电设备额定容量总和, kW ;

K sc —变压器的变比; COS wm 、n wm —加权平均功率因数和加权平均效率。 (4)对向单台或两台高压电动机供电的电缆,一般取电动机的额定电流之和;对向一 个采区供电的电缆,应取采区最大电流; 而对并列运行的电缆线路, 以考虑。 3、低压电缆主芯线截面的选择 1)按长时最大工作电流选择电缆主截面 (1 )流过电缆的实际工作电流计算 ① 支线。所谓支线是指 1条电缆控制1台电动机。流过电缆的长时最大工作电流即为 电动机的额定电流。 ② 干线。干线是指控制 2台及以上电动机的总电缆。 向2台电动机供电时,长时最大工作电流 l c a ,取2台电动机额定电流之和,即 I ca I N1 I N2 式中I ca —干线电缆长时最大工作电流, A ; U N —额定电压,V ; 则应按一路故障情况加 I I P N 103 ca N N cos N N I ca -长时最大工作电流, A ; I N -电动机的额定电流, A ; U N - 电动机的额定电压, V ; P N - -电动机的额定功率, kW ; cos N —电动机功率因数; N -电动机的额定效率。 (4-19) (4-20) 向三台及以上电动机供电的电缆,长时最大工作电流 I ca ,用下式计算 I K de P N 103 I ca ?- 3U N COS wm (4-21) P N —由干线所带电动机额定功率之和, kW ; 式中

继电保护配置及整定计算

一继电保护灵敏系数 灵敏性是指在电力设备或线路的被保护范围内发生金属性短路时,保护装置应具有必要的灵敏系数。灵敏系数应根据不利的正常(含正常检修)运行方式和不利的故障类型计算,但可不考虑可能性很小的情况。灵敏系数应满足有关设计规范与技术规程的要求,当不满足要求时,应对保护动作电流甚至保护方案进行调整。 灵敏系数K m为保护区发生短路时,流过保护安装处的最小短路电流I k·min与保护装置一次动作电流I dz的比值,即:K m=I k·min/I dz。 式中:I k·min为流过保护安装处的最小短路电流,对多相短路保护,I k·min取两相短路电流最小值I k2·min;对66KV、35KV、6~10kV中性点不接地系统的单相短路保护, 取单相接地电容电流最小值I c·min;对110kV中性点接地系统的单相短路保护, 取单相接地电流最小值I k1·min;I dz为保护装置一次动作电流。 各类短路保护的最小灵敏系数列于表1.1 表1.1 短路保护的最小灵敏系数 注:(1)保护的灵敏系数除表中注明者外,均按被保护线路(设备)末端短路计算。 (2)保护装置如反映故障时增长的量,其灵敏系数为金属性短路计算值与保护整定值之比;如反映故障时减少的量,则为保护整定值与金属性短路计算值之比。 (3)各种类型的保护中,接于全电流和全电压的方向元件的灵敏系数不作规定。 (4)本表内未包括的其他类型的保护,其灵敏系数另作规定。

二电力变压器保护 1电力变压器保护配置 电力变压器的继电保护配置见表4.1-1 表4.1-1 电力变压器的继电保护配置 注:(1)当带时限的过电流保护不能满足灵敏性要求时,应采用低电压闭锁的带时限的过电流; (2)当利用高压侧过电流保护及低压侧出线断路器保护不能满足灵敏性要求时,应装设变压器低压侧中性线上安装电流互感器的零序过电流保护; (3)低压侧电压为230/400V的变压器,当低压侧出线断路器带有过负荷保护时,可不装设专用的过负荷保护; (4)密闭油浸变压器装设压力保护; (5)干式变压器均应装设温度保护。

浅谈继电保护的未来发展

浅谈继电保护的未来发展 未来继电保护技术发展的趋势是:计算机化,网络化,保护、控制、测量、数据通信一体化和人工智能化。 标签:继电保护未来发展 0引言 继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化发展。 1计算机化 随着计算机硬件的迅猛发展,微机保护硬件也在不断发展。原华北电力学院研制的微机线路保护硬件已经历了3个发展阶段:从8位单CPU结构的微机保护问世,不到5年时间就发展到多CPU结构,后又发展到总线不出模块的大模块结构,性能大大提高,得到了广泛应用。华中理工大学研制的微机保护也是从8位CPU,发展到以工控机核心部分为基础的32位微机保护。 电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力,高级语言编程等。这就要求微机保护装置具有相当于一台PC机的功能。在计算机保护发展初期,曾设想过用一台小型计算机作成继电保护装置。由于当时小型机体积大、成本高、可靠性差,这个设想是不现实的。现在,同微机保护装置大小相似的工控机的功能、速度、存储容量大大超过了当年的小型机,因此,用成套工控机作成继电保护的时机已经成熟,这将是微机保护的发展方向之一。天津大学已研制成用同微机保护装置结构完全相同的一种工控机加以改造作成的继电保护装置。这种装置的优点有;①具有486PC机的全部功能,能满足对当前和未来微机保护的各种功能要求。②尺寸和结构与目前的微机保护装置相似,工艺精良、防震、防过热、防电磁干扰能力强,可运行于非常恶劣的工作环境,成本可接受。⑧采用STD总线或PC总线,硬件模块化,对于不同的保护可任意选用不同模块,配置灵活、容易扩展。 继电保护装置的微机化、计算机化是不可逆转的发展趋势。但对如何更好地满足电力系统要求,如何进一步提高继电保护的可靠性,如何取得更大的经济效益和社会效益,尚须进行具体深入的研究。 2网络化 计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了根本变化。它深刻影响着各个工业领域,也为各个工

继电保护整定计算公式

继电保护整定计算公式汇编 为进一步规范我矿高压供电系统继电保护整定计算工作,提高保护的可靠性快速性、灵敏性,为此,将常用的继电保护整定计算公式汇编如下,仅供参考。有不当之处希指正: 一、电力变压器的保护: 1、瓦斯保护: 作为变压器内部故障(相间、匝间短路)的主保护,根据规定,800KV A以上的油浸变压器,均应装设瓦斯保护。 (1)重瓦斯动作流速:0.7~1.0m/s。 (2)轻瓦斯动作容积:S b<1000KV A:200±10%cm3;S b在1000~15000KV A:250±10%cm3;S b在15000~100000KV A:300±10%cm3;S b>100000KV A:350±10%cm3。 2、差动保护:作为变压器内部绕组、绝缘套管及引出线相间短路的主保护。包括平衡线圈I、II及差动线 圈。 3、电流速断保护整定计算公式: (1)动作电流:Idz=Kk×I(3)dmax2

继电器动作电流:u i d jx K dzj K K I K K I ???=2 max ) 3( 其中:K k —可靠系数,DL 型取1.2,GL 型取1.4 K jx —接线系数,接相上为1,相差上为√3 I (3)dmax2—变压器二次最大三相短路电流 K i —电流互感器变比 K u —变压器的变比 一般计算公式:按躲过变压器空载投运时的励磁涌流计算速断保护值,其公式为: i e jx K dzj K I K K I 1??= 其中:K k —可靠系数,取3~6。 K jx —接线系数,接相上为1,相差上为√3 I 1e —变压器一次侧额定电流 K i —电流互感器变比 (2)速断保护灵敏系数校验:

继电保护整定原则

继电保护整定原则 一、6kv变(配)电所电源盘过流保护装置的整定计算原则 1. 过流保护 1).按躲开最大负荷电流计算动作值。继电器动作电流为I dz=K k K jx I zd /K h 式中K k——可靠系数,取1.2~1.3 K jx——接线系数,星形接线为1,两相电流差接线为3 I zd——最大负荷电流(矿井总负荷电流) K h——电流互感器变比 K f——继电器返回系数,取0.85 2). 以保护最远点二相短路电流I(2)dmin校核灵敏系数。K l=I(2)dmin/I dz>2 2.速断保护 1)按躲开母线最大三相短路电流计算动作值。继电器动作电流为I dz=K k K jx I(3)dmax /K h 式中K k——可靠系数,取1.2~1.3 K jx——接线系数,星形接线为1,两相电流差接线为3 I(3)dmax——母线最大三相短路电流 K h——电流互感器变比 2)以保护最远点二相短路电流I(2)dmin校核灵敏系数。K l=I(2)dmin/I dz>2 二、6kv线路变(配)电所馈出线路保护装置的整定计算原则 1.速断保护 1)按躲开线路末端最大三相短路电流计算动作值。继电器动作电流为I dz=K k K jx I(3)dmax /K h 式中K k——可靠系数,取1.2~1.3 K jx——接线系数,星形接线为1,两相电流差接线为3 I(3)dmax——被保护线路末端最大三相短路电流 K h——电流互感器变比 2)以保护安装处最小二相短路电流I(2)dmin校核灵敏系数。K l=I(2)dmin/I dz>2

3)校核最小保护范围。被保护线路实际长度L应大于保护线路最小允许长度L min。 2.过流保护 1).按躲开最大负荷电流计算动作值。继电器动作电流为I dz=K k K jx I zd /K h K f 式中K k——可靠系数,取1.2~1.4 K jx——接线系数,星形接线为1,两相电流差接线为3 I zd——被保护线路最大工作电流 K h——电流互感器变比 K f——继电器返回系数,取0.85 2).以被保护线路末端最小二相短路电流I(2)dmin校核灵敏系数。K l=I(2)dmin/I dz>1.5 3)过流保护动作时限t=t m+△t 式中t m——为末端相邻元件保护整定时限 △t——0.3~0.5 3.考虑与上级保护间的配合。 三、6kv母联开关保护装置的整定计算原则 1.电流速断保护 1)按躲过电流互感器4倍额定电流I e计算动作值。继电器动作电流为I dz=4K k K jx I e /K h 式中K k——可靠系数,取1.2~1.3 K jx——接线系数,星形接线为1,两相电流差接线为3 K h——电流互感器变比 I e——电流互感器一次额定电流 2)以保护安装处(母线)最小二相短路电流I(2)dmin校核灵敏系数。K l=I(2)dmin/I dz>2 2.过流保护 1).按躲过母线最大工作电流计算动作值。继电器动作电流为I dz=K k K jx I zd /K h K f 式中K k——可靠系数,取1.5 K jx——接线系数,星形接线为1,两相电流差接线为3

相关文档
最新文档