初一期末复习尖子班经典例题(超好)

初一期末复习尖子班经典例题(超好)
初一期末复习尖子班经典例题(超好)

典型例题

知识点一:余角和补角

例1. 若∠1、∠2互为补角,且∠1>∠2,则下列表示∠2的余角的式子中正确的是()

解题后的思考:解答此题的关键是通过两角互补的条件找出表示∠2的式子.

例2. 如图所示,点O是直线AB上的一点,OC平分∠AOB,∠DOE=90°,∠AOD 和∠COE相等吗?为什么?除90°角外,还有哪些相等的角?试说明理由.

解题后的思考:同(或等)角的余(或补)角相等,这一性质是进行角度转换的重要依据,在解题过程中会经常用到,同学们应多加注意.

例3. 若一个角的余角比这个角的补角的一半还少8°,那么这个角的余角是多少度?

解题后的思考:(1)利用代数的方法解决几何中的计算问题,关键是正确设出未知数,列出方程,求出未知数的值.在设元时,可以直接或间接设出未知数.(2)在设未知数的过程中,要注意带单位,但在列方程时计算不带单位.

例4. 如图所示,已知∠1+∠2=90°,∠2+∠3=90°,问:

(1)∠1与∠3是什么关系?为什么?

(2)若要∠2与∠4相等,则∠1与∠4需满足什么关系?为什么?

解题后的思考:两角互余的性质表现在两角之间的数量关系上,由此可以判断题中的∠1与∠3、∠1与∠4的关系不是相等,就是互余(两角和为90°).

例5. 如图所示,∠AOB、∠COD都等于90°.

(1)试猜想∠AOD与∠BOC在数量上有什么关系?

(2)当∠COD绕着点O旋转到图(2)的位置时,你原来的猜想还成立吗?

解题后的思考:本题是一道开放探索型的题目,先猜测结果,再进行分析论证.解答第(2)问时可仿照第(1)问的思路进行.如果没有特别说明,像第(2)中的∠AOD 是指小于平角的角.

解题后的思考:求∠A+∠B+∠C的度数时,若换一个角度思考,把∠A+∠B+∠C看作一个整体是不是可求呢?

小结:互余和互补是角的关系中非常重要的几何结论,可用来解决角之间的数量关系.

知识点二:方位角

例7. 选择题:

(1)A看B的方向是北偏东21°,那么B看A的方向是()

A.南偏东69°B.南偏西69°C.南偏东21°D.南偏西21°

(2)在点O北偏西60°的某处有一点A,在点O南偏西20°的某处有一点B,则∠AOB的度数是()

A.100°B.70°C.180°D.140°

解题后的思考:先根据题意画出图形,结合图形解答更容易一些.

例8. 如图所示,在O处测得北偏东30°的小岛A处有一暗礁区,为避开这一危险区,轮船在O处应改为向东北方向航行才能避开这一危险区.

(1)在图中画出轮船的航线;

(2)求出轮船的航线与OA的夹角的度数.

解题后的思考:可以将方位角看成是沿正北或正南方向的射线旋转一定角度而形成的.故在实际应用中,一要确定其始边是正北还是正南;二要确定其旋转方向是向东还是向西;三要确定旋转角度的大小.

小结:解答方位角问题时一定要结合图形来进行,只要确定了方向线与南北方向线的夹角,问题就很容易解决了.

提分技巧

在解答角的关系问题时,互余和互补的性质经常用到.其性质可用代数中的等式来表示,求其中一个未知角的度数实际上就是解方程.因此,这类问题常要结合方程思想来解决,由此可以看出有些几何问题也能用代数方法来求解.

同步练习(答题时间:60分钟)

一、选择题.

1、若A看B的方向是北偏东30°,那么B看A的方向是()

A. 南偏东60°

B. 南偏西60°

C. 南偏东30°

D. 南偏西30°

2、如果∠α=n,而∠α既有余角,也有补角,那么n的取值范围是()

A. 90°<n<180°

B. 0°<n<90°

C. n=90°

D. n=180°

3、如图,将长方形ABCD沿AE折叠,使D点落在BC边上的F点处,如果∠BAF =60°,则∠DAE等于()

A. 15°

B. 30°

C. 45°

D. 60°

4、如图所示,点O在直线l上,∠1与∠2互余,∠α=116°,则∠β的度数是()

A. 144°

B. 164°

C. 154°

D. 150°

5、小明由A点出发向正东方向走10米到达B点,再由B点向东南方向走10米到达C点,则下列表述正确的是()

A. ∠ABC=22.5°

B. ∠ABC=45°

C. ∠ABC=67.5°

D. ∠ABC=135°

6、∠A的补角是125°12′,则它的余角是()

A. 54°18′

B. 35°12′

C. 35°48′

D. 以上都错

*7、如图所示,已知∠1>∠2,那么∠2与1/2(∠1-∠2)之间的关系是()

A. 互补

B. 互余

C. 和为45°

D. 和为22.5°

**8、对于互补的下列说法中:①∠A+∠B+∠C=180°,则∠A、∠B、∠C互补;

②若∠1是∠2的补角,则∠2是∠1的补角;③同一个锐角的补角一定比它的余角大90°;④互补的两个角中,一定是一个钝角与一个锐角.其中,说法正确的有()

A. 1个

B. 2个

C. 3个

D. 4个

二、填空题.

9、67°23′的余角是__________,补角是__________.

10、OA表示北偏东32°方向线,OB表示南偏东43°方向线,则∠AOB等于

__________.

11、若一个角的余角与它的补角的和为210°,则这个角等于__________.

12、∠1=120°,∠1与∠2互补,∠3与∠2互余,则∠3=__________.

**13、如图所示,OC平分∠BOD,OE平分∠AOD,则与∠COD互余的角是

__________.

**14、如图所示,A、O、D三点在同一直线上,∠AOB=∠COD,则图中互补的角有:__________.

三、解答题.

15、若一个角的补角等于它的余角的4倍,求这个角的度数.

16、如图所示,货轮O在航行过程中发现灯塔A在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C和海岛D.仿照表示灯塔方位的方法画出表示客轮B,货轮C和海岛D方向的射线.

*17、如图所示,已知A、O、B三点在同一直线上,射线OC为不同于射线OA、OB 的一条射线,已知OD平分∠AOC,∠DOE=90°,试说明OE平分∠BOC.

*18、如图所示,∠AOC与∠BOD都是90°,且∠AOB∶∠AOD=2∶11,求∠AOB 与∠BOC的度数.

*19、将一张长方形纸ABCD的两个角按如图所示方式折叠,且B’E与EC’的一部分重合.请问,∠α与∠β两个角是什么关系,并说明理由.

**20、在飞机飞行时,飞行方向是用飞行路线与实际的南或北方向线之间的夹角大小来表示的.如图,用AN(南北线)与飞行路线之间顺时针方向夹角作为飞行方向角.从A到B的飞行方向角为35°,从A到C的飞行方向角为60°,从A到D的飞行方向角为145°,试求AB与AC之间的夹角为多少度?AD与AC之间的夹角为多少度?并画出从A飞出且方向角为105°的飞行路线.

基本不等式经典例题精讲

新课标人教A 版高中数学必修五典题精讲(3.4基本不等式) 典题精讲 例1(1)已知0<x <3 1,求函数y=x(1-3x)的最大值; (2)求函数y=x+ x 1的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论. (1)解法一:∵0<x <3 1,∴1-3x >0. ∴y=x(1-3x)= 3 1·3x(1-3x)≤3 1[ 2) 31(3x x -+]2= 12 1,当且仅当3x=1-3x ,即x= 6 1时,等号成 立.∴x= 6 1时,函数取得最大值 12 1 . 解法二:∵0<x <3 1,∴ 3 1-x >0. ∴y=x(1-3x)=3x(3 1-x)≤3[ 23 1x x -+ ]2= 12 1,当且仅当x= 3 1-x,即x= 6 1时,等号成立. ∴x= 6 1时,函数取得最大值12 1. (2)解:当x >0时,由基本不等式,得y=x+x 1≥2x x 1? =2,当且仅当x=1时,等号成立. 当x <0时,y=x+ x 1=-[(-x)+ ) (1x -]. ∵-x >0,∴(-x)+ ) (1x -≥2,当且仅当-x= x -1,即x=-1时,等号成立. ∴y=x+x 1≤-2. 综上,可知函数y=x+x 1的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备. 变式训练1当x >-1时,求f(x)=x+ 1 1+x 的最小值. 思路分析:x >-1?x+1>0,变x=x+1-1时x+1与1 1+x 的积为常数.

(完整版)初一不等式难题-经典题训练(附答案)

初一不等式难题,经典题训练(附答案) 1. 已知不等式3x-a ≤0的正整数解恰好是1,2,3,则a 的取值范围是_______ 2. 已知关于x 的不等式组0 521 x a x ->?? -≥-?无解,则a 的取值范围是_________ 3. 若关于x 的不等式(a-1)x-2 a +2>0的解集为x<2,则a 的值为( ) A 0 B 2 C 0或2 D -1 4. 若不等式组2 20 x a b x ->?? ->?的解集为11x -<<,则2006()a b +=_________ 5. 已知关于x 的不等式组的解集41320 x x x a +?>+? ??+- 7. 不等式组951 1 x x x m +<+?? >+?的解集是2x >,则m 的取值范围是( ) A. 2m ≤ B. 2m ≥ C. 1m ≤ D. 1m f 8.不等式()()20x x x +-<的解集是_________ 9.当a>3时,不等式ax+2<3x+b 的解集是,则b=______ 10.已知a,b 为常数,若ax+b>0的解集是1 3 x <,则的0bx a -<解集是( ) A. 3x >- B 3x <- C. 3x > D. 3x < 11.如果关于x 的不等式组的整70 60x m x n -≥?? -? p 数解仅为1,2,3,那么适合不等式组的整数(m,n)对共 有( )对 A 49 B 42 C 36 D 13 12.已知非负数x,y,z 满足123 234 x y z ---==,设345x y z ω=++,求的ω最大值与最小值

初一上找规律专题(完整资料).doc

此文档下载后即可编辑 初一数学找规律 找规律:数列中每一个数,或者图形所关联的数,用它们的序列号(n)的式子表示 1、一些基本数字数列 (1)自然数列:1、2、3、4……n (2)奇数列:1、3、5、7……2n-1 (3)偶数列:2、4、6、8……2n (4)平方数列:1、4、9、16……n2 (5)2的乘方数列:2、4、8、16……2 n (6)符号性质数列: -1、1、-1、1……(-1) n 1、-1、1、-1……(-1) n+1 1、-1、1、-1……(-1) n-1 2、数字数列的变形 (1)数列的平移:有些数列里,每个数并不直接与它们的序列号形成基本的数字数列关系;比如下面的数列,是2的乘方数列变形而成的1、2、4、8、16……2 n-1数列中的每个数往右平移了一位,n就变成了n-1 (2)考虑符号性质的数列:有些数列本身就是基本数字数列,但必须考虑符号性质,如: 1、-4、9、-16……(-1) n-1n2很明显,是自然数的平方数列和符号性质数列的综合 (3)基本数字数列的拓展:有些数列只是改变了基本数字数列的某个部份,

如: 5、25、125、625……5 n这个数列,只是2的乘方数列的拓展; (4)综合数列:有些数列看起来很复杂,其实只是多个基本数列的综合,如: 3/2、-5/4、7/8、-9/16……(-1) n-1 (2n+1)/2n 上面的数列是三个基本数列及其变型数列的综合。数列中的每一个数都可以看成三个部分组成:符号部份是符号性质数列;分子部分是奇数列的平移数列;分母部分是2的乘方数列 练习:按以下的数排列:8,9,11,15,23,39……,则第11个数是1031 ,第n个数是2 n-1+7 3、特殊数列 (1)等差数列:数列中的每一个数减去它前面的数的差相等的数列叫等差数列。 如:2、5、8、11……2+(n-1)d其中数列中的第一个数叫首项,记作a1;相等的差叫公差,记作d;第n项的数记作an,称为通项an=a1+(n-1)d 练习:凸多边形的所有内角的角度之和称为多边形的内角和。已知三角形的内角和等于180o,四边形的内角和等于360o,五边形的内角和等于540o,六边形的内角和等于720o,则十边形的内角和等于1440o ,n边形的内角和等于(n-2)180o 。 (2)等比数列:数列中的每一个数除以它前面的数的商相等的数列叫等比数列。

基本不等式练习题及标准答案

基本不等式练习题及答案

————————————————————————————————作者:————————————————————————————————日期:

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2+1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

高考不等式经典例题

高考不等式经典例题 【例1】已知a >0,a ≠1,P =log a (a 3-a +1),Q =log a (a 2-a +1),试比较P 与Q 的大小. 【解析】因为a 3-a +1-(a 2-a +1)=a 2(a -1), 当a >1时,a 3-a +1>a 2-a +1,P >Q ; 当0<a <1时,a 3-a +1<a 2-a +1,P >Q ; 综上所述,a >0,a ≠1时,P >Q . 【变式训练1】已知m =a + 1a -2 (a >2),n =x - 2(x ≥12),则m ,n 之间的大小关系为( ) A.m <n B.m >n C.m ≥n D.m ≤n 【解析】选C.本题是不等式的综合问题,解决的关键是找中间媒介传递. m =a + 1a -2=a -2+1a -2 +2≥2+2=4,而n =x - 2≤(12)-2=4. 【变式训练2】已知函数f (x )=ax 2-c ,且-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值范围. 【解析】由已知-4≤f (1)=a -c ≤-1,-1≤f (2)=4a -c ≤5. 令f (3)=9a -c =γ(a -c )+μ(4a -c ), 所以???-=--=+1,94μγμγ???? ??? ? =-=38 ,35μγ 故f (3)=-53(a -c )+8 3(4a -c )∈[-1,20]. 题型三 开放性问题 【例3】已知三个不等式:①ab >0;② c a >d b ;③b c >a d .以其中两个作条件,余下的一个作结论,则能组 成多少个正确命题? 【解析】能组成3个正确命题.对不等式②作等价变形:c a >d b ?bc -ad ab >0. (1)由ab >0,bc >ad ?bc -ad ab >0,即①③?②; (2)由ab >0, bc -ad ab >0?bc -ad >0?bc >ad ,即①②?③; (3)由bc -ad >0, bc -ad ab >0?ab >0,即②③?①. 故可组成3个正确命题. 【例2】解关于x 的不等式mx 2+(m -2)x -2>0 (m ∈R ). 【解析】当m =0时,原不等式可化为-2x -2>0,即x <-1; 当m ≠0时,可分为两种情况: (1)m >0 时,方程mx 2+(m -2)x -2=0有两个根,x 1=-1,x 2=2 m . 所以不等式的解集为{x |x <-1或x >2 m }; (2)m <0时,原不等式可化为-mx 2+(2-m )x +2<0,

初一数学找规律题讲解

探索规律: 活动一:探索常见图形的规律,用火柴棒按下图的方式搭三角形 ⑴填写下表: ⑵照这样的规律搭建下去,搭n个这样的三角形需要多少根火柴棒? ★注意引导学生概括“探索规律”的一般步骤: ①寻找数量关系: ②用代数式表示规律: ③验证规律: ★练习:四棱柱有几个顶点、几条棱、几个面?五棱柱呢?十棱柱呢?n棱柱呢? 活动二:探索具体情景下事物的规律 问题1.若有两张长方形的桌子,把它们拼成一张大的长方形桌子,有几种拼法? 问题2.若按图2方式摆放桌子和椅子 ⑴一张桌子可坐6人,2张桌子可坐人。 ⑵按照上图方式继续排列桌子,完成下表: 问题3.如果按图3的方式将桌子拼在一起 ⑴2张桌子拼在一起可坐多少人?3张呢?n张呢? ⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐人。 ⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐人。 活动三:探索图表的规律 下面是2000年八月份的日历:

⑴日历中的绿色方框中的9个数之和与该方框正中间的数有什么关系? ⑵这个关系对其它这样的方框成立吗?你能用代数式表示这个关系吗? ⑶这个关系对任何一个月的日历都成立吗?为什么? ⑷你还能发现这样的方框中9个数之间的其他关系吗?用代数式表示。 ⑸你还能提出那些问题? 中考数学探索题训练—找规律 1、我们平常用的数是十进制数,如2639=2×103+6×102+3×101+9×100,表示十进制的数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9。在电子数字计算机中用的是二进制,只要两个数码:0和1。如二进制中101=1×22+0×21+1×20等于十进制的数5,10111=1×24+0×23+1×22+1×21+1×20等于十进制中的数23,那么二进制中的1101等于十进制的数 。 2、从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律请你猜想从1开始,将前10个奇数(即当最后一个奇数是19时),它们的和是 。 3、小王利用计算机设计了一个计算程序,输入和输出的数据如下表: 输入 (1) 2 3 4 5 … 输出 … 21 52 103 174 265 … 那么,当输入数据是8时,输出的数据是( ) A 、 618 B 、638 C 、658 D 、67 8 4、如下左图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要 枚棋子. 5、如下右图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第n 个小房子 用了 块石子。 6、如下图是用棋子摆成的“上”字: (1) (2)(3)

(完整版)基本不等式题型总结(经典,非常好,学生评价高)

基本不等式 一. 基本不等式 ①公式:(0,0)2 a b a b +≥≥≥,常用a b +≥ ②升级版:22222a b a b ab ++??≥≥ ??? ,a b R ∈ 选择顺序:考试中,优先选择原公式,其次是升级版 二.考试题型 【题型1】 基本不等式求最值 求最值使用原则:一正 二定 三相等 一正: 指的是注意,a b 范围为正数。 二定: 指的是ab 是定值为常数 三相等:指的是取到最值时a b = 典型例题: 例1 .求1(0)2y x x x =+<的值域 分析:x 范围为负,提负号(或使用对钩函数图像处理) 解:1()2y x x =--+- 00x x <∴->Q 1 2x x ∴-+≥=-1 2x x ∴+≤ 得到(,y ∈-∞

例2 .求12(3)3 y x x x =+>-的值域 解:123 y x x =+- (“添项”,可通过减3再加3,利用基本不等式后可出现定值) 12(3)63 x x =+-+- 330x x >∴->Q 12(3)3x x ∴ +-≥- 6y ∴≥, 即)6,y ?∈+∞? 例3.求2sin (0)sin y x x x π=+<<的值域 分析:sin x 的范围是(0,1),不能用基本不等式,当y 取到最小值时,sin x 不在范围内 解:令sin (0,1)t x t =∈, 2y t t =+ 是对钩函数,利用图像可知: 在(0,1)上是单减函数,所以23t t + >,(注:3是将1t =代入得到) (3,)y ∴∈+∞ 注意:使用基本不等式时,注意y 取到最值,x 有没有在范围内, 如果不在,就不能用基本不等式,要借助对钩函数图像来求值域。

初一找规律经典题带答案

初一找规律经典题带答 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

一、数字排列 1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值 (2) (2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __ 3、请填出下面横线上的数字。 1 1 2 3 5 8 ____ 21 4、有一串数,它的排列规律是1、2、3、2、3、4、3、4、 5、4、5、 6、……聪明的你猜猜第100个( ) 二、几何图形变化 1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个. 2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称). 三、数、式计算 1、已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ; 由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____. 3、,,,,已知:24552455154415448338333223222222?=+?=+?=+?=+ =+?=+b a a b a b 则符合前面式子的规律,,若 (21010) 规律发现

七年级数学上册期末复习典型例题讲析(人教版)

七年级数学上册典型例题 例1. 已知方程2x m-3+3x=5是一元一次方程,则m= . 解:由一元一次方程的定义可知m-3=1,解得m=4.或m-3=0,解得m=3 所以m=4或m=3 警示:很多同学做到这种题型时就想到指数是1,从而写成m=1,这里一定要注意x的指数是(m-3). 例2. 已知2 x=-是方程ax2-(2a-3)x+5=0的解,求a的值. 解:∵x=-2是方程ax2-(2a-3)x+5=0的解 ∴将x=-2代入方程, 得a·(-2)2-(2a-3)·(-2)+5=0 化简,得4a+4a-6+5=0 ∴ a=8 1 点拨:要想解决这道题目,应该从方程的解的定义入手,方程的解就是使方程左右两边值相等的未知数的值,这样把x=-2代入方程,然后再解关于a的一元一次方程就可以了. 例3. 解方程2(x+1)-3(4x-3)=9(1-x). 解:去括号,得2x+2-12x+9=9-9x, 移项,得2+9-9=12x-2x-9x. 合并同类项,得2=x,即x=2. 点拨:此题的一般解法是去括号后将所有的未知项移到方程的左边,已知项移到方程的右边,其实,我们在去括号后发现所有的未知项移到方程的左边合并同类项后系数不为正,为了减少计算的难度,我们可以根据等式的对称性,把所有的未知项移到右边去,已知项移到方程的左边,最后再写成x=a的形式. 例4. 解方程 1 7 5 3 2 1 4 1 6 1 8 1 = ? ? ? ? ? ? + ? ? ? ? ? ? + ? ? ? ? ? + - x . 解析:方程两边乘以8,再移项合并同类项,得111 351 642 x ?-? ?? ++= ? ?? ?? ?? 同样,方程两边乘以6,再移项合并同类项,得11 31 42 x- ?? += ? ??

不等式典型例题之基本不等式的证明

5.3、不等式典型例题之基本不等式的证明——(6例题) 雪慕冰 一、知识导学 1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法). (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法. (2)商值比较法的理论依据是:“若a,b∈R + ,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法. 2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B. 3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件. 4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法. 5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新????

高中不等式所有知识及典型例题(超全)

一.不等式的性质: 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性;7.寻找中间量或放缩法 ;8.图象法。其中比较法(作差、作商)是最基本的方法。 三.重要不等式 1.(1)若R b a ∈,,则ab b a 22 2≥+ (2)若R b a ∈,,则2 22b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”); 若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2 (2 22b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求 它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 5.a 3+b 3+c 3≥3abc (a,b,c ∈ R +), a +b +c 3 ≥3abc (当且仅当a =b =c 时取等号); 6. 1 n (a 1+a 2+……+a n )≥12n n a a a (a i ∈ R +,i=1,2,…,n),当且仅当a 1=a 2=…=a n 取等号; 变式:a 2+b 2+c 2≥ab+bc+ca; ab ≤( a +b 2 )2 (a,b ∈ R +) ; abc ≤( a +b +c 3 )3(a,b,c ∈ R +) a ≤ 2a b a +b ≤ab ≤ a +b 2 ≤ a 2+b 2 2 ≤b.(0b>n>0,m>0; 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1 x

初一找规律经典例题

奥数专题(三)找规律 一、数字排列规律题 1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 猜想:1+3+5+7+…+2015+2017= 推广:1+3+5+7+9+…+(2n-1)+(2n+1)= 2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __ 3、请填出下面横线上的数字。 1 1 2 3 5 8 ____ 21 4、有一串数,它的排列规律是 1、2、3、2、3、4、3、4、5、4、5、6、…… 聪明的你猜猜第2016个() 5、有一串数字3 6 10 15 21 ___ 第6个是什么数? 6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2016个数是(). 7、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为_________个. 二、几何图形变化规律题 1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球个. 2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2016个图形是(填图形名称). 三、数、式计算规律题 1、已知下列等式:

① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ; 由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____. 3、1+2+3+…+100= 经过研究,这个问题的一般性结论是 1+2+3+…+()12 1 +=n n n ,其中n是正整数. 现在我们来研究一个类似的问题: 1×2+2×3+…()1+n n = ? 观察下面三个特殊的等式 ()21032131 21??-??= ? ()3214323132??-??=? ()4325433 143??-??=? 将这三个等式的两边相加,可以得到1×2+2×3+3×4=2054331 =??? 读完这段材料,请你思考后回答: ⑴=?++?+?1011003221Λ ⑵()()=++++??+??21432321n n n Λ ⑶()()=++++??+??21432321n n n Λ 巩固练习: 1.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…, 则 100! 98! 的值为

初一下册数学经典题型

1. 如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程. 例如:方程260x =- 的解为3x= ,不等式组205x x ->????-??-+<-? , 的关联方程是 ;(填序号) (2)若不等式组1144275 x x x ? -?? ?++?<, >-的一个关联方程的根是整数,则这个关联方程可以是 ;(写 出一个即可) (3)若方程21+2x x -=, 1322x x ? ?+=+ ???都是关于x 的不等式组22x x m x m -?? -?<,≤的关联方程,求m 的取值范围.

2. 对于平面直角坐标系xOy中的点A,给出如下定义:若存在点B(不与点A重合,且直线AB不与坐标轴平行或重合),过点A作直线m∥x轴,过点B作直线n∥y轴,直线m,n相交于点C.当线段AC,BC的长度相等时,称点B为点A的等距点,称三角形ABC的面积为点A的 等距面积. 例如:如图,点A(2,1),点B(5,4),因为AC= BC=3,所以B 为点A的等距点,此时点A的等距面积为9 2. (1)点A的坐标是(0,1),在点B1(-1,0),B2(2,3),B3(-1,-1)中,点A的等距点为. (2)点A的坐标是(-3,1),点A的等距点B在第三象限, ①若点B的坐标是 ? ? ? ? ? 2 1 2 9 ,- - ,求此时点A的等距面积; ② ②若点A的等距面积不小于9 8,求此时点B的横坐标t的取值范围. 备用图

必修5--基本不等式几种解题技巧及典型例题

均值不等式应用(技巧)技巧一:凑项 1、求y = 2x+ 1 x - 3 (x > 3)的最小值 2、已知x > 3 2 ,求y = 2 2x - 3 的最小值 3、已知x < 5 4 ,求函数y = 4x – 2 + 1 4x - 5 的最大值。 技巧二:凑系数 4、当0 < x < 4时,求y = x(8 - 2x)的最大值。 5、设0 < x < 3 2 时,求y = 4x(3 - 2x)的最大值,并求此时x的值。 6、已知0 < x < 1时,求y = 2x(1 - x) 的最大值。 7、设0 < x < 2 3 时,求y = x(2 - 3x) 的最大值 技巧三:分离 8、求y = x2 + 7x + 10 x + 1 (x > -1)的值域; 9、求y = x2 + 3x + 1 x (x > 0)

的值域 10、已知x > 2,求y = x2 - 3x + 6 x - 2 的最小值 11、已知a > b > c,求y = a - c a - b + a - c b - c 的最小值 12、已知x > -1,求y = x + 1 x2 + 5x + 8 的最大值 技巧四:应用最值定理取不到等号时利用函数单调性 13、求函数y = x2 + 5 x2 + 4 的值域。 14、若实数满足a + b = 2,则3a + 3b的最小值是。 15、若 + = 2,求1 x + 1 y 的最小值,并求x、y的值。 技巧六:整体代换 16、已知x > 0,y > 0,且1 x + 9 y = 1,求x + y的最小值。

17、若x、y∈R+且2x + y = 1,求1 x + 1 y 的最小值 18、已知a,b,x,y∈R+ 且a x + b y = 1,求x + y的最小值。 19、已知正实数x,y满足2x + y = 1,求1 x + 2 y 的最小值 20、已知正实数x,y,z满足x + y + z = 1,求1 x + 4 y + 9 z 的最小值 技巧七:取平方 21、已知x,y为正实数,且x2 + y2 2 = 1,求x 1 + y2的最大值。 22、已知x,y为正实数,3x + 2y = 10,求函数y = 3x + 2y的最值。 23、求函数y = 2x - 1 + 5 - 2x(1 2 < x < 5 2 )的最大值。 技巧八:已知条件既有和又有积,放缩后解不等式 24、已知a,b为正实数,2b + ab + a = 30,求函数y = 1 ab 的最小值。

高中基本不等式经典例题教案

全方位教学辅导教案

例1:(2)1 2,33 y x x x =+>-。 变式:已知5 4x < ,求函数14245 y x x =-+-的最大值 。 技巧二:凑系数 例1.当 时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此 题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将 (82)y x x =-凑上一个系数即可。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:1、设2 3 0< -+的值域。 技巧四:换元 解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。 当 ,即t= 时,4 259y t t ≥? +=(当t=2即x =1时取“=”号)。 评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为()(0,0)() A y mg x B A B g x =++>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。 变式 (1)231 ,(0)x x y x x ++= > 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函 数()a f x x x =+的单调性。 例:求函数22 5 4 x y x +=+的值域。 解:令24(2)x t t +=≥,则2 254 x y x +=+221 1 4(2)4 x t t t x =++ =+≥+ 因10,1t t t >?=,但1 t t =解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调 性。 因为1 y t t =+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数, 故52 y ≥。

七年级找规律经典题汇总带答案

精心整理 一、数字排列规律题 1、观察下列各算式:1+3=4=22,1+3+5=9=23,1+3+5+7=16=24…按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值? (2)推广:1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少? 2 3410012三、1①1321+2+1=4,1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=____. 3、,,,,已知: 24 5 52455154415448338333223222222?=+?=+?=+?=+ 规律发现专题训练

…… 1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖 4块;那么第(n )个图案中有白色..地砖块。 2.我国着名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万 事非。”如图,在一个边长为1的正方形纸版上,依次贴上面积为2 1 , 41,81,…,n 2 1 的矩形彩色纸片(n 为大于1的整数)。请你用“数 .如果21.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6, 4!=4×3×2×1,…,则 100! 98! 的值为 25.观察下列图形的构成规律,根据此规律,第8个图形中有个圆. 、根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图中有 个点. 第3题

27、找规律.下列图中有大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个, 则第n 幅图中共有 个. 1、如图,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第100个图案需棋子 枚. 4、观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有 个. 5 6第5 910. 13个图形 142 个图案需根. 15、一张长方形桌子需配6把椅子,按如图方式将桌子拼在一起,那么8张桌子需配椅子 把. 16、下列每个图是由若干个圆点组成的形如四边形的图案,当每条边(包括顶点)上有n (n ≥2个圆点时, 图案的圆点数为S n .按此规律推断S n 关于n 的关系式为:S n = . 17、如图是由火柴棒搭成的几何图案,则第n 个图案中有 根火柴棒.(用含n 的代数式表示)

最新基本不等式经典例题(含知识点和例题详细解析)-(1)

基本不等式专题 知识点: 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当 b a =时取“=”) 2. (1)若* ,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x + ≥ (当且仅当1x =时取“=” ) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 5.若R b a ∈,,则2 )2(222b a b a +≤ +(当且仅当b a =时取“=”) 注意: (1)当两个正数的积为定植时,可以求它们的和的最小值, 当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用 应用一:求最值 例:求下列函数的值域 (1)y =3x 2+ 1 2x 2 (2)y =x +1 x 解:(1)y =3x 2+ 1 2x 2 ≥23x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2;

第课基本不等式经典例题练习附答案

第9课基本不等式 ◇考纲解读 ①了解基本不等式的证明过程. ②会用基本不等式解决简单的最大(小)值问题. ◇知识梳理 1.常用的基本不等式和重要的不等式 ①0,0,2≥≥∈a a R a 当且仅当,②22,______,2a b a b ab ∈+≥则 ③,_____a b ∈,则ab b a 2≥+,④222)2 (2b a b a +≤+ 2.最值定理:设,0,x y x y >+≥由 ①如积(xy P x y =+定值),则积有______②如积2(2S x y S x y += 定值),则积有______() 运用最值定理求最值的三要素: ________________________________________________ ◇基础训练 1.若1a b +=,恒有 () A .41 ≤ab B .41≥ab C .1622≤b a D .以上均不正确

2.当1 2x >时,821 y x x =+-的最小值为. 3.已知01x <<,则(12)y x x =-的最大值为. 4.实数,a b 满足22a b +=,则39a b +的最小值为. ◇典型例题 例1.求函数(5)(2)(1)1x x y x x ++= >-+的最小值. 例2.已知+∈R b a ,,且191,a b +=求a b +最小值. ◇能力提升 1.若+∈R b a ,,1)(=+-b a ab ,则b a +的最小值是() A .222+ B.25+ C.222- D.22 2.下列命题中正确的是() A .x x y 1+=的最小值是2 B .2 322++=x x y 的最小值是2 C .45 22++=x x y 的最小值是25D .x x y 432--=的最大值是342- 3.若+∈R b a ,满足3ab a b =++,则ab 的取值范围是________________. 4.若1x >时,不等式11x a x + ≥-恒成立,则实数a 的取值范围是____________. 5.若(4,1)x ∈-,求2221 x x x -+-的最大值.

初一找规律经典题型(含部分答案)

精心整理 图1 图2 图3 初一数学规律题应用知识汇总 “有比较才有鉴别”。通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。揭示的规律,常常包含着事物的序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。 初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索: 一、基本方法——看增幅 (一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n 个数可以表示为:a1+(n-1)b ,其中a 为数列的第一位数,b 为增幅,(n-1)b 为第一位数到第n 位的总增幅。然后再简化代数式a+(n-1)b 。 例:4、10、16、22、28……,求第n 位数。 分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n 位数是:4+(n-1)6=6n -2 例1、已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如上图所示). (1)当n =5时,共向外作出了个小等边三角形 (2)当n =k 时,共向外作出了个小等边三角形(用含k 的式子表示). 例2、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n 个图形中,互 不重叠的三角形共有个(用含n 的代数式表示)。 (二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。如增幅分别为3、5、7、9,说明增幅以同等幅度增加。此种数列第n 位的数也有一种通用求法。 基本思路是:1、求出数列的第n-1位到第n 位的增幅; 2、求出第1位到第第n 位的总增幅; 3、数列的第1位数加上总增幅即是第n 位数。 此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求 n =3 n =4 n =5 …

(完整版)中考数学必考经典题型

中考数学必考经典题型 题型一 先化简再求值 命题趋势 由河南近几年的中考题型可知,分式的化简求值是每年的考查重点,几乎都以解答题的形式出现,其中以除法和减法形式为主,要求对分式化简的运算法则及分式有意义的条件熟练掌握。 例:先化简,再求值:,1 2)1111( 22+--÷-++x x x x x x 其中.12-=x 分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将x 的值带入计算即可求值。 题型二 阴影部分面积的相关计算 命题趋势 近年来的中考有关阴影面积的题目几乎每年都会考查到,而且不断翻新,精彩纷呈.这类问题往往与变换、函数、相似等知识结合,涉及到转化、整体等数学思想方法,具有很强的综合性。 例 如图17,记抛物线y =-x 2+1的图象与x 正半轴的交点为A ,将线段OA 分成n 等份.设分点分别为P 1,P 2,…,P n -1,过每个分点作x 轴的垂线,分别与抛物线交于点Q 1,Q 2,…,Q n -1,再记直角三角形OP 1Q 1,P 1P 2Q 2,…的面积分别为 S 1,S 2,…,这样就有S 1=2312n n -,S 2=23 4 2n n -…;记W=S 1+S 2+…+S n -1,当n 越来越大时,你猜想W 最接近的常数是( ) (A)23 (B)12 (C)13 (D)14 分析 如图17,抛物线y =-x 2+1的图象与x 正半轴的交点为 A(1,0),与y 轴的交点为8(0,1). 设抛物线与y 轴及x 正半轴所围成的面积为S ,M(x ,y )在图示 抛物线上,则 222OM x y =+

相关文档
最新文档